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Let G be a monotone decomposition of En, then G can be
extended in a trivial way, to the monotone decomposition G1

of E»+1, where En = {{xu , xn, 0) 6 J5>+1}, by adding to G all
points of En+ί — En. If the decomposition space En/G of G
is homeomorphic to £>, En\G is said to be obtained by a pseudo-
isotopy if there exists a map F: En X I—>En X I, such that
2JT

t(=jp| En X ί) is homeomorphism onto En X ί, for all 0 <; ί < 1,
Fo is the identity and F1 is equivalent to the projection

The purpose of this paper is to present a relation between
these two notions. It will then follow, that if G is the de-
composition of Ez to points, circles and figure-eights, due to
R. H. Bing, for which E*IG is homeomorphic to E\ then E'/G1

is not homeomorphic to E\

Moreover, we will present a direct, geometric proof to this par-
ticular property.

For definitions, see [l]. See also [2].

THEOREM 1. If G is a monotone decomposition of En, such that
En/G is homeomorphic to En, then the following are equivalent:

(1) En+1\Gι is homeomorphic to En+ι.
(2) En/G can be obtained by a pseudo-isotopy.

Proof. (1) => (2). Let h: En+ιIGι -> En+1 be a homeomorphism and
let p: En+1 —> En+ιIGι be the projection map.

The map H: En x I— En+1

f defined by H(x, t) = hp(x, 1 - t) for
all x e En

y te J, is such that Ht is a homeomorphism into for all
0 ^ t < 1, Hι is equivalent to the projection map En —* EnjG, and
H(En x /) is homeomorphic to En x /, hence, up to a homeomorphism
of En x I onto itself, H is the required pseudo-isotopy.

(2) =* (1). Let F:En x I--+E71 x I be the pseudo-isotopy for EnjG.
The map H: En+1 -> £7Λ+1, where

ί) -

is well defined, H(E*+1) = En+\ and H(En+1) is homeomorphic to En+1/G\
because Ho = F1 and it is equivalent to the projection map En onto
En/G. The proof is completed.
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Using Theorem 1 of [4], we have the following

COROLLARY. If G is a monotone decomposition of E2, such that
E2/G is homeomorphic to E2, then E*jGι is homeomorphic to E\

It is well known that the decomposition G of E* to points, circles
and figure-eights, as described in §4 of [3], is such that E*/G is
homeomorphic to E5 but Ez/G cannot be obtained by a pseudo-isotopy,
see [1] and [2]. Therefore, it follows from Theorem 1 that this G
has the property that E^G1 is not homeomorphic to E4; see our re-
mark at the end of this paper.

However, we would like to present a direct proof for

THEOREM 2. Let G be the decomposition of i73, as described in
§4 of [3], then EAjGι is not homeomorphic to E\

Proof. Suppose it is not true, then let h: E^/G1 ^ £ 4 be a ho-
meomorphism, and p: E* —* E^G1 be the projection map.

Let / be the map of the complete 2-complex, C?, with 7 vertices,
into E\ which is affine on each triangle of C?, and is almost an em-
bedding, except for its effect f(P) = f(Q) for two points P and Q of
C?, where P and Q are points in the relative interior of two disjoint
(in C2) triangles A and B, respectively. / is described in [6], see
also [7].

Without loss of generality we may assume, as we do, that
f(A) c E2 c E\ and f(P) = f(Q) = the origin. Therefore f(B) has
in Ez only an edge I, passing through the origin, as described in
Figure 1, where we also describe the two disks, which are the union
of all the circles and figure-eights of G. In order that the disk of
G, which is perpendicular to f(A), will not meet f(A) except in the
common radius of the two disks of G, we push, continuously and
without touching the rest of f(Q), the interior of the disk D, which
is contained in f{A), so that it will have small positive values in the
4-th coordinate.

By doing this, we defined the two disks to lie in E\ therefore
we get an equivalent decomposition to that of § 4 of [3], which we
denote again by G, and we let G1 be its extension to E\

The set pf(A (J B) in E^/G1 is homeomorphic to the union of two
disjoint disks, together with a simple arc a joining an interior point
of one disk to an interior point of the other. Therefore, [pf(C2)-
interior a] is homeomorphic to C2 in E4/G\ and since h is supposed
to be a homeomorphism, h[pf(C%)-mteτior a] is a subset of E*, ho-
meomorphic to C2.

This contradicts a well known result of A. Flores, [5], therefore
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FIGURE 1

the proof is completed.
In fact, EyG1 is even not embeddable in E\ (same proof).

REMARK. Theorem 2 was proved by M. M. Cohen in his "Sim-
plicial structures and transverse cellularity", Ann. of Math. 85 (1967)
218-245.
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