TRIVIALLY EXTENDING DECOMPOSITIONS OF E^n

JOSEPH ZAKS
TRIVIALLY EXTENDING DECOMPOSITIONS OF E^n

JOSEPH ZAKS

Let G be a monotone decomposition of E^n, then G can be extended in a trivial way, to the monotone decomposition G^1 of E^{n+1}, where $E^n = \{(x_1, \cdots, x_n, 0) \in E^{n+1}\}$, by adding to G all points of $E^{n+1} - E^n$. If the decomposition space E^n/G of G is homeomorphic to E^n, E^n/G is said to be obtained by a pseudo-isotopy if there exists a map $F: E^n \times I \to E^n \times I$, such that $F_t(=F|E^n \times t)$ is homeomorphism onto $E^n \times t$, for all $0 \leq t < 1$, F_0 is the identity and F_1 is equivalent to the projection $E^n \to E^n/G$.

The purpose of this paper is to present a relation between these two notions. It will then follow, that if G is the decomposition of E^3 to points, circles and figure-eights, due to R. H. Bing, for which E^3/G is homeomorphic to E^3, then E^3/G^1 is not homeomorphic to E^3.

Moreover, we will present a direct, geometric proof to this particular property.

For definitions, see [1]. See also [2].

Theorem 1. If G is a monotone decomposition of E^n, such that E^n/G is homeomorphic to E^n, then the following are equivalent:

1. E^{n+1}/G^1 is homeomorphic to E^{n+1}.
2. E^n/G can be obtained by a pseudo-isotopy.

Proof. (1) \Rightarrow (2). Let $h: E^{n+1}/G^1 \to E^{n+1}$ be a homeomorphism and let $p: E^{n+1} \to E^{n+1}/G^1$ be the projection map.

The map $H: E^n \times I \to E^{n+1}$, defined by $H(x, t) = h(p(x, 1 - t))$ for all $x \in E^n$, $t \in I$, is such that H_t is a homeomorphism into for all $0 \leq t < 1$, H_1 is equivalent to the projection map $E^n \to E^n/G$, and $H(E^n \times I)$ is homeomorphic to $E^n \times I$, hence, up to a homeomorphism of $E^n \times I$ onto itself, H is the required pseudo-isotopy.

(2) \Rightarrow (1). Let $F: E^n \times I \to E^n \times I$ be the pseudo-isotopy for E^n/G. The map $H: E^{n+1} \to E^{n+1}$, where

\[
H(x, t) = \begin{cases}
F(x, 1 + t) & -1 \leq t \leq 0 \\
F(x, 1 - t) & 0 \leq t \leq 1 \\
(x, t) & t \geq 1 \text{ or } t \leq -1
\end{cases}
\]

where $x \in E^n$.

is well defined, $H(E^{n+1}) = E^{n+1}$, and $H(E^{n+1})$ is homeomorphic to E^{n+1}/G^1, because $H_0 = F_1$ and it is equivalent to the projection map E^n onto E^n/G. The proof is completed.
Using Theorem 1 of [4], we have the following

COROLLARY. If G is a monotone decomposition of E^2, such that E^2/G is homeomorphic to E^2, then E^3/G^1 is homeomorphic to E^3.

It is well known that the decomposition G of E^3 to points, circles and figure-eights, as described in §4 of [3], is such that E^3/G is homeomorphic to E^3 but E^3/G cannot be obtained by a pseudo-isotopy, see [1] and [2]. Therefore, it follows from Theorem 1 that this G has the property that E^3/G^1 is not homeomorphic to E^4; see our remark at the end of this paper.

However, we would like to present a direct proof for

THEOREM 2. Let G be the decomposition of E^3, as described in §4 of [3], then E^3/G^1 is not homeomorphic to E^4.

Proof. Suppose it is not true, then let $h: E^3/G^1 \rightarrow E^4$ be a homeomorphism, and $p: E^4 \rightarrow E^4/G^1$ be the projection map.

Let f be the map of the complete 2-complex, C^2_7, with 7 vertices, into E^4, which is affine on each triangle of C^2_7, and is almost an embedding, except for its effect $f(P) = f(Q)$ for two points P and Q of C^2_7, where P and Q are points in the relative interior of two disjoint (in C^3_2) triangles A and B, respectively. f is described in [6], see also [7].

Without loss of generality we may assume, as we do, that $f(A) \subset E^3 \subset E^4$, and $f(P) = f(Q) =$ the origin. Therefore $f(B)$ has in E^3 only an edge l, passing through the origin, as described in Figure 1, where we also describe the two disks, which are the union of all the circles and figure-eights of G. In order that the disk of G, which is perpendicular to $f(A)$, will not meet $f(A)$ except in the common radius of the two disks of G, we push, continuously and without touching the rest of $f(C^2_7)$, the interior of the disk D, which is contained in $f(A)$, so that it will have small positive values in the 4-th coordinate.

By doing this, we defined the two disks to lie in E^3, therefore we get an equivalent decomposition to that of §4 of [3], which we denote again by G, and we let G^1 be its extension to E^4.

The set $p f(A \cup B)$ in E^4/G^1 is homeomorphic to the union of two disjoint disks, together with a simple arc α joining an interior point of one disk to an interior point of the other. Therefore, $[p f(C^2_7)]$-interior α is homeomorphic to C^2_7 in E^4/G^1, and since h is supposed to be a homeomorphism, $h[p f(C^2_7)]$-interior α is a subset of E^4, homeomorphic to C^2_7.

This contradicts a well known result of A. Flores, [5], therefore
In fact, E^4/G^1 is even not embeddable in E^4, (same proof).

REMARK. Theorem 2 was proved by M. M. Cohen in his "Simplicial structures and transverse cellularity", Ann. of Math. 85 (1967) 218–245.

REFERENCES

Received May 21, 1968. Research supported in part by the National Foundation, Grant GP-7536.

UNIVERSITY OF WASHINGTON

SEATTLE, WASHINGTON
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsuisha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.
Herbert James Alexander, *Extending bounded holomorphic functions from certain subvarieties of a polydisc* 485

Edward T. Cline, *On an embedding property of generalized Carter subgroups* 491

Roger Cuppens, *On the decomposition of infinitely divisible characteristic functions with continuous Poisson spectrum. II* 521

William Richard Emerson, *Translation kernels on discrete Abelian groups* 527

Robert William Gilmer, Jr., *Power series rings over a Krull domain* 543

Julien O. Hennefeld, *The Arens products and an imbedding theorem* 551

James Secord Howland, *Embedded eigenvalues and virtual poles* 565

Bruce Ansgar Jensen, *Infinite semigroups whose non-trivial homomorphs are all isomorphic* 583

Michael Joseph Kascic, Jr., *Polynomials in linear relations. II* 593

J. Gopala Krishna, *Maximum term of a power series in one and several complex variables* 609

Renu Chakravarti Laskar, *Eigenvalues of the adjacency matrix of cubic lattice graphs* 623

Thomas Anthony McCullough, *Rational approximation on certain plane sets* 631

T. S. Motzkin and Ernst Gabor Straus, *Divisors of polynomials and power series with positive coefficients* 641

Graciano de Oliveira, *Matrices with prescribed characteristic polynomial and a prescribed submatrix* 653

Graciano de Oliveira, *Matrices with prescribed characteristic polynomial and a prescribed submatrix. II* 663

Donald Steven Passman, *Exceptional 3/2-transitive permutation groups* 669

Grigoris Tsagas, *A special deformation of the metric with no negative sectional curvature of a Riemannian space* 715

Joseph Zaks, *Trivially extending decompositions of E^n* 727