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The purpose of this paper is to make some remarks con-
cerning the best order of approximation in two-dimensional
simultaneous diophantine approximations, That is, let ¢, be
the infimum over all constants ¢ > 0 such that for every pair
of real numbers j;, 5. there is an infinity of rational integers
q > 0, p,, p; satisfying

(%) [gB — ol < (/@)% | qfs — D2 | < (c/@)'*.
Much research has been done on this problem, and the best values
to date are

1
46"

A

G <

2
(1) -

due to Cassels [3] and Davenport [5] respectively. This paper will
be concerned with this problem where 1, 8,, 8, is the basis of a real

cubic number field.
Let K be a totally real cubic number field. Let «,, a, a, be a

basis of K (over the rational numbers, Q). Let
M= Z<a0y &y, a2>

be the free Z-module of rank 3 generated by «,, a, &, (Z = rational
integers). Let D, > 0 be the discriminant of M (see [2] for the re-
levant facts on number fields). Now for &£e M we have

£ =X + oy + a2

for integers x, 9, 2, so N&é (N denotes the “norm” of K/Q) defines a
ternary cubic form with rational coefficients. Define

m(M) = inf N&

geJ{
Neso
and
m_(M) = inﬂf IN&|.
se M
Nico
Set
dm (Mym_(M)

C: = sup
K, M -DﬂI
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where the supremum is over all totally real cubic fields K and all
(full) modules M contained in K.

THEOREM 1. Let ¢ > C, be given. Then for all B8,, B, such that
1, 8,8, is a basis of a real cubic number field, * has an infinite
number of solutions. Conversely, if ¢ < C, then there exists a pair
By, B, such that * has only a finite number of solutions.

We note that in the first assertion of the theorem 1, 5,, 8, is not
restricted to being the basis of a totally real field. Of course, the
8., B, of the second assertion will be such that 1, 8, 8, is the basis
of a totally real field.

COROLLARY (Cassels [3]). Let ¢ < 2/1. Then there exists B, 5,
such that * has only a finite number of solutions.

Proof. By Theorem 1 it suffices to show that C, = 2/7. Let K
be the cyclic field defined by f(X) = X* + X*—2X — 1 = 0. There
is a positive root ¢ and a negative root &' of f. Let M equal the
integers of K. So D, = 49. We have N¢ =1 and N(—¥¢) = —1.
Moreover § > 0and — 6" > 0som_ (M) = m_(M) = 1. Hence C} = 4/49
as desired.

Now we turn to what is known about C,. We state

Conjecture. C, = 2/7.

That is, for all K, M, m. (M)m_(M) < D,/49. Although this re-
sult is true in the cases I have been able to check I have no really
good evidence for its validity. I state it as above merely to have a
positive statement.

One can combine a result of Chalk [4, p. 330] and one of Daven-
port [4, p. 61] to give an upper bound for C,. However, the best
result appears to be the one derivable from Theorem 1 and Daven-
port’s result (1). Namely, from the second part of Theorem 1 it is
clear that C, < ¢,. Thus we have

THEOREM 2.

1
4G4+ *

A

C, <

2
7

Hence for all totally real cubic fields K and all modules M con-
tained in K,
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Mm_(M) < ——=2% |
m(M)ym_(M) = 4 < 461

Theorem 2 is, of course, a result about ternary cubic forms (see
[4, p. 61]). Let f be a factorizable ternary cubic form of discrimi-
nant D(f) > 0. Write

f(@) = Ly(x) Ly(x) Ly(x)
where L,, L,, L, are real linear forms. Define

m.(f) = inf, f(@)

Ly(@)>0
f(x)>0

m_(f) = inf | f@)] .

Ly(z)>0
flz)<o

Then if f(x) has rational coefficients and does not represent 0 non-
trivially we have

m.(Hm () = 2L
(For, by [4, p. 263] f is proportional to a “norm” form for a totally
real cubic field.)

Also we note that any counterexample to the conjecture given
above would give an improvement of Cassels’ result (1). Further, if
the conjecture were true then by analogy with one-dimensional dioph-
antine approximations one would expect that ¢, = 2/7 also.

The paper is divided up as follows. In §2 we give an auxiliary
result on quadratic forms needed in the proof of Theorem 1. In §3
we give the facts needed in order to determine whether * has or has
not an infinite number of solutions when 1, 8, 8, is a basis of a cubic
field. In §4 and § 5 we prove Theorem 1 when K is totally real. In
§ 6 we give a much more precise result in the case that K is not
totally real.

2. A result on quadratic forms. We consider two-dimensional
real space R: Let <Z. be the open square
Z, ={(@,y)eRmax (x|, |y]) < r}

for real numbers r > 0. We are concerned with the problem of when
the curve in R? associated with a given binary quadratic form meets
<#.. We consider first the trivial case.

ProrositioN 1. Let Z(x, y) = ax® + 2bxy + cy® be a positive defi-
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nite binary quadratic form of discriminant d = ac — b* > 0. Let
© > 0 be given. Consider the curve in R*

S L, y) = pd'* .

Then if r* > p/2 we see 57 N <&, + ¢. Moreover this result is best
possible, as shown by the form Zy(x,y) = 2* + y* (d, = 1).

Proof. With Z, as above, suppose max{(|z{ |y|*) < p/2. Then
Zyx, y) < p/2 + p/2 = p and so (x, y) cannot lie on 4.

Conversely, suppose 7* > p/2. It suffices to find (z, y) € 2 such
that max (2%, ¥*) < p/2. By homogeneity we may assume d = 1. Now
for some choice of signs of z, ¥

# =y = pl(a +2|b| + )
lies on 27 So it suffices to show that
(2) a+2|bl+c=2

when ac — b* = 1. Note that a,c¢ > 0, since Z is positive definite.
By the arithmetic-geometric mean inequality we have
a+e¢=2ac)? =21+ )*r=201 ~ b)),

which gives (2).
Unfortunately, obtaining the next result is much more tedious.

PROPOSITION 2. Let Z(x,y) = ax* + 2bxy + cy® be an indefinite
binary quadratic form with discriminant d = ac — b* < 0.  Let
0,0 > 0 be given. Consider the points (curves) in R’

Z(x,y) = p|d}!
57
Z(x,y) = —op|d|'"*.

Then if v* > 16 p we have 57 (\ <B. + ¢. Moreover this result 1s
best possible, as shown by the form Z(x,y) = 2* — 0y (d, = —9).

Proof. With Z, as above suppose that max (2, ¥*) < 1”0 p. Then
-0yt <Vop=p|d"
2 -0y = -0y > -0V p=—0p|d["?

so (x, ¥) cannot lie on 27;.

To prove the main part of the proposition we see we must find
(2, y) € &7 such that
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max (@, ) =V 0 p.

The proof involves making a number of reductions and then examin-
ing many cases.

First we note that we may assume that 6 = 1. For if ¢ <1 set
Z'= —Z,0' =0p and ¢' = 67 > 1 and we have

F =V8 p=1V5 p.

Now by the symmetry of the square x-—«, y— —y we may assume
that b = 0. Further, by the symmetry of the square z—y, y — 2,
we may assume a < 0 implies ¢ < 0. Also by homogeneity we may
assume d = —1. And finally, setting Z'= Z,0' =9, 0' =1, we see
(x,y) e 57" if and only if (o', p'*y)e 57 and so we may assume
p=1
So, to recapitulate, we have Z(z, y) = ax® + 2bxy + cy® where

(3) b —ac=1,b=>0

(4) a < 0 implies ¢ < 0.
Define the curves 5# by
Zw,y) =1
G

where 6 = 1. Then we must find (2, y) € 2 such that
(5) max (2% ¥*) £ V0 .

Now it is readily verified that for some choices of signs of z,y
the values of %, y* listed below (under the given condition) yield
points on S7°.

2 9y* Condition
(1) b’/—a —a a<0
(@ii) ob*la oa a>0
(iii) —c b/ —c c<0
@iv) oc ob*/c ¢c>0
1 1
- - 2b 0
) a+2b+ ¢ a—+ 20+ ¢ @+ebte>
. —0 —0
-0 - —° — 2b 0.
(v1) a—2b4+ ¢ a—2b+ ¢ @ tes

We show that at least one of the above six points lies on ©7 and satis-
fies (5).



6 WILLIAM W. ADAMS

Case 1. Assume o < 0. Thus by (4) we have ¢ < 0. Hence
a — 2b + ¢ < 0 and point (vi) is on 52 We would be done unless

(6) VI <a—-2+¢<0,

which we now assume. Now points (i), (iii) are on 5 and so it
suffices to show max (0*/—a, —a) <10 or max(—c, b*/—c) < V9.
We have from (6) that —a, —¢ <1/6. Moreover we now have sym-
metry between a and ¢, so we assume —a = —c¢. Then it suffices to

show that »/—a <176 or by (8) that ¢+ 1/a = —1/6. Now if
—a =1 we have from (6)

c+izc+a>—1/F
a

as desired. So assume
(7) 1=z —-az=—c.

Now by (8) b=1, so by (7) a + 2b + ¢ > 0, so point (v) lies on 5%
Thus we would be done unless

1
Ve
which we also assume. Now b =1, so (6) implies that Vo = 2.

Then from (8) we have a + ¢ < —3/2. Putting this back in (6) gives
V6 >17/2. Further, a + ¢ < —8/2 and (7) yields —a = 3/4. So finally

(8) 0<a+2b4¢c<

c+lzarlzn-2:_v35
a a 3

v

as desired.
So from now on we may assume that a = 0.

Case 2. Assume a +c¢=0. Now if a+c¢c=0 and b=0 we
have from (8) —ac=18s0 a>0,¢c<0and ¢ =1 = —¢. Point (iii)
is on 27 and clearly satisfies (5), since 6 = 1. Otherwise we have
a+2b+ ¢>0, so point (vi) is on ¥ and we are done unless (8)
holds, which we now assume. Now if ¢ = 0, then (3) implies b = 1 and
this contradicts (8), since 6 = 1. Thus ¢ <0, and so ¢ >0. Now we
have points (ii), (iii) on 5# so it suffices to show

(9) max(ab 6a><'l/5 or max(—c ————><1/5

We note first that we have »®* < a/1v” 6. This follows, sincea + ¢ =0
and (8) implies b* < 1/46. Then from (3) 1 < 1/46 — ac. Since ¢ = —c¢
we obtain a* = 1 — 1/45. So finally
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1\ 1 —~
1——) =2——2=21V"% ¥
o> ( 45) =ws -
(since 0 = 1) as desired. Therefore to prove (9) it suffices to show
that @ >1/1/6 implies B*< —1/0 ¢ < 6. Well 1 =5 — ac = a(—c)
implies a(—¢) <1< 16 a implies —¢ < 176. Further, by (8) and
a>1/V6 we have 2b + ¢ < 0, so
<4< —Vd e
since —e¢ < 49 .
Case 3. Assume a + ¢ < 0. Then ¢ < 0(a = 0). Also
a—2b+¢<0,

so point (vi) is on 27 and we are done unless (6) holds, which we
now assume,.

Subcase 1. We assume a = 0. Thus b = 1. Then (6) yields
2-10 <e<0

so 6 > 4. Now point (iii) is on .5#7 Moreover —c < 16 —2< 1/0.
So we are done, unless

(10) —c<1—/1—_5_<%,

which we now assume. Now by (10)
a+20+c=24+¢c>2~-4>0,

so point (v) is on 5 also. Moreover,

1 1 2 -
- 2 <V .
a+2b+4¢ 2+c<3<

Subcase 2. We may now assume a > 0. So points (ii) and (iii)
are on 57 and it suffices to prove (9). We first show

—¢>1/7 implies b < a/1/ 7 <= % .

First by (8) a(—¢) <1, so —e¢ >1"6 impliesa < 1)1/ 6. And by
(6) and —¢ > 179 we have 2b < a, so b* < a’/4 < a/V/ 6, since a <
4V 5. Therefore we may further assume —c <176. So to prove
(9) it suffices to show b* < — 176 ¢. Now (6) implies b* < 6/4. Thus
b*< —cv' 6 unless —c¢ < V6 /4, which we assume. Then
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0 0 0 0
1_b2 < 2 < l
a0 < 4 A=e) 4 ¢ 4 16

HIU‘
[<23 RSV)

thus ¢ = 16/5.'#Now ifia + 2b + ¢ = 0 we have

—a—c —c
< ,

b
2 2

IA

SO

b < %2< -V e

(since —¢ <176). So we may assume a + 2b + ¢ > 0, and so point
(v) is on 57 and so we are done, unless (8) holds, which we now

assume. If —c¢=1/1/6 we have
P=14+ac<ls —Vide,

as desired. Otherwise —c¢ < 1/1/6. Then from (8)
W+e<a+2+ce<ING,

so

1 2
e L oo 2
<vs <%

and
1 1\ 2
b—ac <+ () =2 <1,
M<:6+(V5 5 <
since —¢ > a and 6 > 2, and this contradicts (3).

3. Some facts about cubic fields. Let K be a real cubic num-
ber field. Let 1, 3,8, be a basis of K. In [1] we showed how to
count the number of solutions to * for sufficiently large ¢. In this
section we record the results obtained in [1] which allow us to gain
information concerning whether, for a given ¢, * has an infinity of
solutions. All unproved statements given in this section may be found
in [1].

If e K, denote by a = a, a™, a® the conjugates of a.

LEMMA 1. Given a basis 1, B, B; of K there is a basis ay, a,, &, of
K satisfying
(11) a + af'B, + af’'B, = 0 (t=1,2)
(12) K= + af + a,5,>0.
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Conversely, given a basis a,, &, &, of K, we can find a basis 1, B,, B,
of K satisfying (11); (12) may be guaranteed by changing the signs
Of aO} al’ aZ'

Now assume we have «,, a,, @, 5,, 5. as given in Lemma 1 with
£, > 0. Let
M = Ka,, a,, )

For ¢ e M write & = qa, + p,&, + P&, and in this way we view M as
being in one-to-one correspondence with the possible solutions to *.
Now for 7 = 1,2 we have from (11)

_g(i) = aii)(QBl - 201) + a;i)(qIBZ - pz) .
Set v; =¢B; — »; (1 =1,2) and we see N& = £Z(7,,7.) where Z is the

quadratic form

13) Z(w, y) = @z + ay)es + ay) .

Let C, > 0 be large but fixed, depending only on the initial data.
Consider all £¢e M (for ¢ > 0) giving rise to a solution of * with
¢ = C,. Then for ¢ > 0 large

(14) s =a(a+ Lo+ L) = gr + 0@

(in particular & > 0). Let d; = ¢"*v;(¢ = 1, 2) and thus from (14) and

*

Z(an 32) = qZ(71y 72) = ’CFIEZ(A/M 72) + O(Q—m) ’
that is,
(15) Z(0,, 0;) = £*N&E + 0(g™*?) .

Now the values of N¢ for &£e M are a discrete set of numbers. Thus
the set of curves

(16) Z(x, y) = £;'N&

for £ ¢ M form a discrete set of curves. Moreover, from (15) and *
values of N& are bounded and so there are only a finite number of
possible curves (16) for solutions to *. Thus what we have shown is
that the solutions to

10,1, 10, < Ci”

(i.e., * with ¢ = C)) lie essentially on a finite set of curves in R* de-
fined by (16). The key result from [1] tells us how these points are
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distributed on these curves.

PROPOSITION 8. Let <%. be the open square of radius r > 0 de-
fined in § 2.

(1) Suppose that for some &ec M, 7. meets (16), Then there are
an tnfinity of solutions to x with ¢ = ri.

(2) Comnwversely, suppose that for all &éc M the closure of 7. does
not meet (16). Then *x has only a finite number of solutions with
¢c =1

Proof. (1) Let
7 = (£5'€)"™, (t=1,2)
(for £ > 0). Then
Z(1,, .) = £5'NE

that is, (%, 7.) lies on (16). Now consider a curve (16) that meets
. for some &€ M. Then from [1] we know that the set of all
(0., 7,) on this eurve such that the corresponding (4,, ¢,) satisfy x for
some ¢ = C, sufficiently large are dense in the part of the curve lying
in <. Since for these & the (0,,d,) satisfy % it is clear that for
these &, q— . From (14) then we see that fors = 1,2, |9, — 0, — 0
as ¢ — oo. There must then be an infinite number of pairs (d,, 6,) in
<%, also, as desired.

(2) Since the set of curves (16) form a discrete family, we have
by hypothesis an 7’ > r such that none of the curves (16) meets <#..
Suppose there is an infinite number of solutions to * with ¢ = »2,
Then as above we have for the corresponding ¢ that N¢ is bounded.
So an infinite number of the pairs (4, d,) in .<Z. correspond to the
same curve (16). As in Case 1 we have for these (d,, d,) that

|7: — 0:| =0 (g — <)

we see that an infinite number of pairs (7,7, lie in .2Z.. Hence
some curve (16) meets .<z.. This contradiction completes the proof
of Proposition 3.

We require one more formula, namely one for x,. Write
Z(x, ¥) = ax® + 2bxy + ¢y .
Then from (13)
amn a = ala?
(18) 2b = ala? + aPag

(19) c = C(;)C(éz) .
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Note that even if K is not totally real the a, b, ¢ are real, since then
for «c K we have aV = a® (complex conjugate). Let d = ac — b
be the diseriminant of Z. Clearly

d= L (apap - apayy.
4
It is readily checked that d == 0. Moreover, solving equations (11)

and (12) for x, and using the assumption «, > 0, we obtain

2(d]”

20 K7 =
20 | Dy |2

where D, = det (a{"’)* (1,7 = 0,1, 2) is the discriminant of M.
We note finally that Z is indefinite or positive definite depending
on whether K is totally real or not, respectively.

4. Proof of the first half of Theorem 1 for K totally real.
We combine Propositions 2, 3 to yield the result. We in fact
prove the slightly more general

THEOREM 3. Let K be a totally real cubic field. Let 1,8, 85,
be a basis of K/Q and define «,, o, &, as in Lemma 1. Let

M = Zlay, 0y, )y
Then for any ¢ > 0 such that
g s Am.(m_ ()

)

D,
* has an wnfinity of solutions.
Proof. Let
(21) p = 2m (M)/Dy
(22) 0 =m_(M)m,(M).

Set v* = ¢. So by hypothesis
> 2(m (Mym_(M))*/Dif =1v'6 o .
Thus, by Proposition 2, &7 N 5% # ¢. That is, <. intersects

(23) Za, y) = —2%‘1,# m (M)
or
24) Zwy) = — 2L ()

1/2
Dy
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There is a £€ M such that N&é = m, (M) or N§ = —m_(M), whichever
is desired (i.e., choose ¢ depending on whether (23) or (24) meets
&%.). So by Case 1 of Proposition 8 we have an infinite number of
solutions to x with »* = ¢, as desired.

5. Proof of the second half of Theorem 1 for K totally real.
Again we prove the slightly more general

THEOREM 4. Let K be a totally real cubic field. Let M K be
a full module. Let ¢ > 0 satisfy

dm (Mym_(M)

c?
< Dy

Then there exists a basis «,, &, o, of M such that for the associated
B, 8. of Lemma 1, = has only a finite number of solutions.

Proof. The proof is taken, essentially, from [6]. Define p, é by
(21), (22) respectively.

We first determine «,, a,, .. Let N > 0 be large. By a lemma
of Davenport [4, p. 16] there is a basis «,, a,, @, of M satisfying

a® = N + O(N'?)

a? = N + (N1

a® =16 N+ (N

aP = =16 N + O(N®)
(N — o). Let B, 8, be determined by Lemma 1. We assume &, > 0
(nothing is really altered in what follows if we replace a; by —a;
(z=0,1,2)).

Define 2# as in Proposition 2, that is, by (23) and (24). Let
r2 = ¢, Now if we show that for N sufficiently large, Z. N 5 = ¢
(bar denotes closure), then <Z does not meet (16) for any &e M, by
the definition of m. (M), m_(M) as minimal values of N&. Thus by
Proposition 3, = has only a finite number of solutions, as desired.

It remains then only to show that <Z does not meet 5% From
the definitions (17), (18), (19) we compute

a = N? + O(N*7?)

b = O(N*P?)

¢ = —0N*+ O(N*?),
and so

|d [ = VT N*+ O(N*) .

So suppose (%, y) € <Z. That is,
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max (22, y) < 1* = ¢ < 2 POMAMDE _ | 5,

D¢
Then
Z(x,y) = N*o* + 0((2* + oy | + ¥ )N°F)
= Nt + O(N*#)
= 07| d | a + O(N)
< pld]" (for N large)
and

Z(x,y) = —ONy* + O(N*F)

= _ i i d |1/z ’_1/2 + 0(N3/2)
> —op|d " {for N large) .

Thus, (x, ) cannot lie on 5%
6. The nontotally real case.
It remains to prove Theorem 1 in the case where K is not totally

real. Now we showed in §1 that

G,

v

2
=
Since 1/23"* < 2/7, the following theorem suffices.

THEOREM 5. Let ¢ > 237" Let 1,8,0. be a basis of a real
nontotally real cubic field. Then x has an infinite number of solu-
tions. Conwversely, if ¢ << 237'*, then there ewxist B,, 5, such that
1,5,8, is a basis of a real montotally real cubic field and * has
only a finite number of solutions.

The second half of this theorem is due to Furtwangler [7]. Also
Theorem 5 could be stated in the more general form of Theorems 3
and 4 (see below).

Proof. The first half of this theorem parallels the proof in § 4.
Let «a,, a,, a, correspond to B,B, as in Lemma 1. Let M be the
module generated by «,, o, @,. Set

m(M) = inf N& .

feM
§>0

Then it is known [4, p. 61]

(25) m(M) < [—% -
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Now in Proposition 1 set

2m(M)
| DM |1/2

p:

and define 57 as there. Then if

2 _m(M)

>
| Dy [

we have <%, N &7 + ¢. Let r* = ¢. Then by hypothesis and (25)

> __ —1/ m(M)
”'-—C>23 22W

Now there is a £e M such that N& = m(M). For this & and the
formula (20) for x£, we see that 57 in Proposition 1 is the curve (16)
of Proposition 3. So by Proposition 8 there is an infinite number of
solutions to x*.

The converse follows closely the proof given in §5. It uses the
field generated by the real root of X® — X — 1 of discriminant 23'*
in the same manner as the corollary to Theorem 1. We use Daven-
port’s lemma to make Z(x, y) look like N*=x* + y*. We do not carry
out the proof here; it is essentially carried out in [6].
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