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In this paper our attention centers on partial recursive
retracing functions, especially countable ones (as defined below),
and on their relationship with classes of number theoretic
functions constituting solution sets for TI) function predicates
in the Kleene hierarchy. Arithmetical function predicates which
have singleton solution sets (i.e., so called implicit arith-
metical definitions) have received ample attention in the
recursion-theoretic literature. We shall be concerned with
such predicates, at the levels T]! and T]% but we shall primarily
be concerned with the wider classes of TI) and T]) predicates
having countable selution sets. In §5, we show (by obtaining
examples which range over the whole of 52 n {D|D > ¢},
¥ as defined in §4) that a solution of a countable T[{ predicate
need not be definable by means of a “strong” I} predicate; in
fact, we establish the corresponding (slightly stronger) pro-
position for countable, finite-to-one, general recursive retracing
functions. The question whether all solutions of a countable
TI; predicate are ] definable is left open but subjected to

conjecture.

In §4, we present a new and somewhat more compact proof for
one of the main theorems obtained by C. E. M. Yates in [20] (indeed,
we obtain a slightly stronger theorem); and we shall derive one of the
other principal results of [20] as a corollary to some of our theorems.
In §4 and §5 systematic use is made of the main content of Myhill’s
paper [14].

We proceed now to lay down the conventions which are to be in
force throughout the rest of the paper; at the end of this section we
shall indicate briefly the contents of each of the remaining sections.
‘The symbol N always denotes the set {0,1,2, ...} of natural numbers.
We shall in general use lower case Greek letters for subsets of N and
lower case Latin letters for functions (partial or total) with domain
and range included in N, although this particular convention will not
be adhered to with absolute rigor. Given a function f: a — N where
a & N, we denote by of the domain, «, of f, and by pf the range
of f. We fix a standard recursive enumeration ([10]) of the partial
recursive functions of one variable, and denote this enumeration by
{p.}o0; similarly, we fix a standard recursive enumeration {p, of
the partial recursive functions of two variables. We further fix a
recursive enumeration &, of the set {{e, z, ¥) | .(z) = y¥}; and we denote
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by @: the set {(x,y)|(3t).<.(&(t) = (e, ®,¥))}. Similarly, we fix a
recursive enumeration &, of the set {(e, ., 2., ¥) | @%@, ;) = ¥}; and
we denote by @;° the set {(x,, @, ¥) | (). Eut) = (¢, 2, @, ¥))}. We
degree ¢} = @. If & is a class of partial recursive functions, then
by the index set, G(& ), of % we mean {e|p,€. & }. We denote
by W, the set op,; and we define D, = @ and D,., = {m,, -+, m,},
where n + 1 =2™ 4 2™ 4 ... + 2™ and where m, < m, < -+ < m,
in case » > 1. For any set 8 & N, we denote by ¢, the characteristic
function of B, taking value 1 on members of £ and 0 on nonmembers.
By a finite initial function we mean a function w: @ — N such that
@An)(a = {&|x < n}). By Ih(w), w a finite initial function, we mean
the cardinality of dw. Such standard notations as p,, (m),, and g
(the “least number operator”) are used as in [6]. If e is any natural
number and w any total or finite initial function, the notation {e}*
shall have the meaning given it on page 5 of [17]. We use the
notation f(x) (for any f, partial or total, such that f is defined at
least for all y < x) according to the convention of [17, p.4]. As in
[6], we shall say that n is a sequence number = (At)(Af)[n = f(t)]. We
shall employ boldface notation for Turing degrees; more particularly,
if « £ N then a denotes the Turing degree of a, if f is a function
from N into N then f denotes the Turing degree of f, and notations
such as D and C stand simply for Turing degrees. < denotes the
ordering relation on Turing degrees. Qur notations for the jump and
(finitely) iterated jump operations are those of [17]. Henceforth, we
shall refer simply to degree when Turing degree is meant. If « is
an infinite subset of N, we denote by p, the principal function of «,
i.e., the function from N into N which enumerates « in order of
magnitude. We shall refer to any strictly increasing function /1 N— N
as a principal fumction. Let f be a principal function with range
a, and suppose that h is a partial recursive function such that a S oh,
h(f(0)) = f(0), and (vr)(h(f(n + 1)) = f(n)). Then we say that f is
retraceable, also that « is retraceable, and that h retraces f and also
a. A partial recursive function 4 is a retracing function < h retraces
at least one principal function. The basic properties of such pairs
(f, h) have been considered in [1] and [2]. A retracing function f is
special = pf S of & (Yn)(medf = f(n) < m). If f is a special retracing
function, then f(n) is finite for all n e df, where f(n) denotes the set

{n, f(n), f(f(n)), ---}. It is easily seen that if a is retraced by . then
« is retraceable via some special retracing subfunction of A.

A finite-to-one special retracing function is called basic. If f is a
special retracing function and » € df, we denote by f*(n) the number
py(fi'(m) = f**(n)); here f¥n) is defined inductively by f’(n) = n,
Fr(m) = f(f*(n)). Number- and function-predicate levels IS, 35, I1.

t, for arbitrary n = 0, are defined as in [16, p.383]. As is well
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known, every [} predicate of one function variable can be expressed
in the form (va)R(f(x)) where R is a primitive recursive predicate of
numbers. If a []} predicate P of one function variable can be expressed
in the form (v2)Q(f(x)) with @ a number predicate of degree < O,
then we say that P is a strong ]S predicate; this is equivalent to ex-
pressibility of P in the form (vx)(3y)R(f(%), y), R recursive. For [} pre-
dicates in general, various “normal forms” are available. In this paper
we find it convenient to observe that every []; predicate of one function
variable can be expressed in the form (Va)(3¥),-.(¥2).=.R(f(2), (%)),
R recursive; such an expression we refer to as a [[S normal form.
(To verify this equivalence the reader should proceed in easy steps,
as follows: (i) a TJ predicate P(f) can be represented in the form
(v2)(3y)S(f(x), f(y)), S recursive, as may be seen by considering >
predicates and taking into account the uniformity, in an extra number
variable, of the corresponding fact about [[¢ predicates; (ii) a predicate
of the form (v2)(3y)S(f(z), f(¥)), S recursive, is easily seen to be
equivalent to a predicate of the form (va)(3y),-.Q(f(x), f(¥))), Q recursive;
and finally (iii) (v2)3y),-.Q(f(®), f(¥)), @ recursive, is evidently equiv-
alent to (V&)(3y),-.(V2),.R(f(2), fy)) for a suitable recursive R.) A
function f: N— N is said to be []° definable (I]3 definable) = f is the
unique solution of some [[? predicate of functions (some [[j normal
form). A predicate P of functions is said to be countable (unique) =
there are at most W, functions f such that P(f) holds (exactly one
function f such that P(f) holds); a retracing function is countable
(unique) < it retraces < W, sets (exactly one set).

We now turn to some preliminary remarks on solution classes for
function predicates. Let &# be a set of functions f: N— N. By the
closure, K ., of & , we mean the set of all functions g: N— N such
that (vn)3f)fe# & (Ym)n<.(g(m) = f(m))]. (This, of course, is
exactly the topological closure of .# in Baire Space.) To say that
& is closed means, of course, that .&% = K .. Let P be a predicate
of one function variable; and let . (P) denote the set of “solutions”
of P:.# (P)={f]|P(f)}. We shall say that a predicate @ is a finite
restriction of P < there are numbers m,, n,, +--, m;, n;, k > 0, such
that [Q(f) = (P(f) & fim) =n, & --- & flm,) =n,)]. We note the
following very simple proposition:

THEOREM 1.1. Suppose &7 (P) is closed, nonempty and countable.
Then 7 (P) contains a function f such that, for some finite restriction

Q of P, 7 Q) ={f}.

The proof of Theorem 1.1 consists either in appealing to the fact
that a nonempty, closed, countable set in a complete metric space has
an isolated point, or else in a few simple direct observations about
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branching in % (P) (as in [12, proof of Theorem 7]); we omit details.

COROLLARY 1.2, Ewery countable strong [[> predicate which has
at least one solution has a solution which s the unique solution
either of the given predicate or of some finite restriction of it; and
every countable retracing function extends a unique retracing function.

Proof. Observe that the set of solutions of a strong []S predicate
P is closed. This allows us to apply Theorem 1.1 to P (if P does not
itself have a unique solution), and the first statement of the corollary
follows. As for retracing functions, first note that the collection of
principal functions retraced by a given retracing function f is the
solution set of a strong []S predicate P, of functions; and it is clear,
moreover, that from a finite restriction @ of P, we can obtain a partial
recursive restriction f, of f such that f, retraces precisely those
principal functions which are solutions of @. Thus the second state-
ment of the corollary follows from the first.

In §2, we shall find the exact position in the Kleene hierarchy
of the index set corresponding to the class of countable retracing
functions. In § 3, we construct a degree D, 0 < D < 0", such that no
function which is of degree > O but =< D satisfies a countable ]S normal
form. In §4, we obtain various results relating retracing functions
(countable and otherwise) to a class 57 of degrees whose represen-
tatives form a “thick skeleton” for the hyperarithmetical hierarchy.
Finally, in § 5 we prove a theorem which has the following corollary:
for every degree De 57 such that O < D, there is a function fe D
with the properties that (i) f satisfies a countable ]! predicate but
is not JI! definable and (ii) D > O’ = pf is retraced by a general
recursive, countable, basic retracing function but is not retraced by
any unique retracing function and indeed is not definable by any
strong []: predicate.

2. In [20], Yates has shown that the index set G(Ret) associated
with the class of all retracing functions is a complete >+ set of natural
numbers; i.e., every >, set of natural numbers is 1-1 reducible to
G(Ret), and G(Ret) is itself expressible in 3! form. In this section
we shall prove, partly on the basis of a simple modification of Yates’
argument, that the following two index sets are complete []! sets:

(a) G(C-Ret) = {e| @, is a countable retracing function};

(b) G(U-Ret) = {e|p, is a unique retracing function}.

THEOREM 2.1. G(C-Ret) and G(U-Ret) are complete [[: sets.
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Proof. We first show that G(C-Ret), G(U-Ret) are J[!. Let us
consider first the case of G(C-Ret). It is a well known fact that if
a > predicate of functions has only countably many solutions, then
it has only hyperarithmetical solutions. But the statement that f is
retraced by @, is easily seen to be a []: predicate of f and e, and
hence a >t predicate of f and e. Thus, if e € G(C-Ret) then ¢, retraces
only hyperarithmetical sets. It follows that the predicate e e G(C-Ret)
can be expressed in the form:

(37) [f is hyperarithmetical & f is strictly increasing & f is retraced
by @.] & (vf) [f is a strictly increasing function such that ¢, retraces
f=f is hyperarithmetical.]

But “f is hyperarithmetical” is a [[! predicate of f ([7], [16]);
“f 1is strictly increasing and ¢, retraces f” is a [[S predicate of f
and e; and, by a well known theorem of Kleene ([7, Lemma 1]), any
predicate of one number variable of the form (3f) [ f is hyperarithmetical
& A(f, z)], where A is arithmetical, is equivalent to some []! predicate
of 2. Thus, we see that the above expression for e ¢ G(C-Ret) can be
put into J[! form as a predicate of e. To verify that e¢ec G(U-Ret)
can be expressed in []; form, we merely note that

¢ e G(U-Ret) = ec G(C-Ret) & (vf)(vg) [(f and ¢ are strictly

increasing and ¢, retraces both f and g) = (va)(f(z) = g(®))];
since the second conjunct on the right-hand side of this last equiva-
lence is [[!, we have that G(U-Ret) is [[:.

We next show that for any [[: numerical predicate P there exists
a recursive function %, such that

(Va)[P(x) = hp(x) € G(U-Ret)) & (7 P(x) = @4 pim

retraces 2% functions)].

Let P be given by (3f)(Vx)R(f(x), z), R recursive. Let « be a set
of numbers, and f a partial recursive function, such that:

(1) f is a unique retracing function which retraces «, and

(ii) of = {2n + 1|ne N}.
Let a function 2 be defined on N-{0} by the relation

hi(n) = {2n + 1, 2n + 2} .

We define a two-place recursive function g by cases, as follows: (a)
g(z, n) = f(n) if n is odd; (b) g(z, 2¥71) = 28+ if R(2%*', 2);
(¢) gz 2070« .. plntipiniilh) = kot oo plnit
provided that (ci) e(j)eh™(c(f — 1)) for 1 <j < m + 1 and

(cli)  (V&),zmu R(II 2377, 2) 5
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and (d) g(z,n) =0 in all other cases. (The idea of part (¢) in our
definition of ¢ is, of course, to produce a retracing function whose
graph has plenty of binary branching in case — P(z); at this point
in our argument we are merely adding binary branching to Yates’
proof of [20, Th. 1].) For each fixed z, let g, denote the function
g(z,m). Now, if — P(2) then (3f)(Va)R(f(%), z); let f, be a particular
funetion such that (Vo)R(I];<. p/9*, 2). Let {r,}7-, be any sequence
such that r, = 2700+ & r, ., = r, po" "+ where ¢ € h~'(w) with p, being
the largest prime dividing »,. It is clear from the definition of g,
that g, retraces {r,};,; moreover, since % is two-to-one with ok < ph,
there are 2% such sequences {r,};_,. If, on the other hand, P(z) holds,
then — (3f)(V2)R(f(x), z). But if g, retraces a set @ then, clearly,
either 8 = a or else the exponents in the prime-power factorizations
of the elements of B provide the values for a function f, such that
(Va)R(f,(x), 2); hence g, retraces only a if P(z) holds. Thus, letting
hy be any one-to-one recursive function such that (vz)(g9, = @), we
have that {z| P(z)} is simultaneously 1-1 reduced to G(U-Ret) and to
G(C-Ret) via hp.

REMARK 2.2. {e|p, retraces uncountably many functions} is a
complete > set. It is >} since both {e|¢p, is a retracing function}
and {e|p, is not a countable retracing function} are 3!; and it is
complete by the proof of Theorem 2.1.

REMARK 2.3. It is easily seen that Theorem 2.1 continues to hold
if G(C-Ret) and G(U-Ret) are replaced by the index sets corresponding
to the classes of countable special retracing functions and unique
special retracing functions. Furthermore, the class of retraceable
functions can be replaced by the more extensive class of regressive
functions as defined in [1]. This last observation is general for the
present paper: those of our theorems which make universal assertions
about retraceable sets and functions can easily be generalized to cover
regressive sets and functions, via recursive equivalence mappings (see

[xh.

3. Our principal concern in this section is to prove the existence
of a nonzero degree D, with D < O”, such that 0 < C < D= C contains
no function which satisfies a countable [J: normal form. We shall
begin by proving a small but helpful theorem which is quite possibly
known, although we are unable to supply a reference for it; apart
from whatever interest it may have in its own right, this theorem
has the virtue of reducing the technicalities which enter into the
proof of Theorem 3.3.
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THEOREM 3.1. If P 1is a ][] normal form, then there is a J[°
predicate Q, of one function variable, such that there exists a degree-
preserving one-to-one correspondence between the solutions of P and
the solutions of Q.

Proof. The idea is simply to use the fact that a T[]} normal form
has certain “Skolem functions” associated with its solutions. Let P be
a I? normal form; thus P(f) < (V2)(3¥),>.(V2).<.R(f(2), f()), for some
recursive predicate E. For every function f which satisfies P we
define f, as follows:

Fe@x) = flo); fo2a + 1) = pyly > @ & (V2).<.R(f(2), F(»)].

If f satisfies P, then f, is obviously a total function having the same
degree as f. The mapping f— f, is the desired degree-preserving
one-to-one correspondence; it remains to construct the corresponding
predicate Q. First, for every function g: N-— N we define a function
gz by gz(x) = g(2x). Thus P(f)=(f.): = f. Q is defined as follows:

Q(9) = (vo)[g2x + 1) = py(y > = & (V2),<,.B(G:(2), 5:(¥)))] .

Clearly, Q can be expressed as a [[? predicate of g (i.e., the p-operator
can be eliminated), so it remains only to see that the solutions are
precisely the functions f, such that P(f) holds. But if P(f) holds,
then f, satisfies @ because of the definition of f, and the fact that
(fo)e = f. And if Q(g) holds, then P(g.) and so (gz). = g.

COROLLARY 3.2. (1) Ifadegreecontainsa I]sdefinable function,
then it contains a [[° definable function.

(2) If adegree contains a function which satisfies some countable
TIS normal form, then it contains a function which satisfies some
countable T% predicate of functions.

(3) If a degree contains a [[; definable function, then it contains
only TI: definable functions.

(4) A countable [ normal form has a [I5 definable solution.

Proof. Both (1) and (2) are obvious consequences of Theorem 3.1.
As for (8), let P be a J]} predicate of functions having f as its unique
solution; and let numbers ¢, ¢, and a function h, be given such that
{e)}) = h, and {e}* = f. Let Q(h) be the predicate: {e}" is total &
P({e}") & h = {e}'v*. Then it is easy to see that Q(h) is a []} predicate
having h, as its unique solution. (4) follows from (3) together with
Theorem 3.1, via Corollary 1.2 (noting that [} predicates are strongly

I12).

THEOREM 3.3. There exvists a degree D such that
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(i) O0<D<LKO", and
(ii) [0<C < D&(P is a countable I3 normal form) & feCl=
—P(f).

Proof. By Corollary 3.2(2), it will suffice to find a D such that
(i) and (ii) hold with “countable TI} normal form” replaced by “countable
II! predicate of functions” in (ii). But a function f which represents
such a D can be defined in stages by an ordinary diagonal procedure,
as we shall now show. At the end of each stage s in the definition
of f, the portion f of f which has thus far been obtained will be
a finite initial function. We let {R;};>, be a recursive enumeration of
all primitive recursive predicates of one number variable (we could,
equally well for present our purposes, employ a 0”-enumeration of all
general recursive predicates of one number variable); and we fix a
recursive wellordering of N x N.

Stage 0. Set f9 = Q.

Stage 2s +1,s = 0.

Case I. There exist a number n and a finite initial function w
extending f© such that if % is any finite initial function extending
w then {(s),}*(r) is undefined.

Letting (n,, w,) be the first such pair (n, w), set f**™ = w, and
proceed to Stage 2s + 2.

(Thus if Case I holds at Stage 2s + 1, we define f**" in such a
way that (s), will not be an index of a function recursive in f.)

Case II. Case I fails to hold; in addition, there exist a number
n and a finite initial function w extending f®* such that [m=n &
(w,, w, are finite initial functions extending w) & ({(s)}**(m) and
{(s)o}*2(m) are both defined)] = {(s)o}**(m) = {(s)o}"*(m).

Letting (n,, w,) be the first such pair (n, w), set f®* = w, and
proceed to Stage 2s + 2.

(Thus if Case II holds at stage 2s + 1, we define f®*" in such
a way that {(s),}/ will, if total, be a general recursive function.)

Case III. Cases I and II both fail to hold; in addition, there
exist a number n and a finite initial function w extending f** such
that (i) {(s)o}*(k) is defined for all k < n, and (ii) — R, ({(s)}"(n)).

Letting (n,, w,) be the first such pair (n, w), set f** = w, and
proceed to Stage 2s + 2.

(Thus if Case III holds at stage 2s + 1, we define f®*" in such
a way that if {(s),}/ is total then it is not a solution of (V)R , (3(x)).)

Case IV. Cases I-III all fail to hold. Then, as is easily seen, the
following holds for every n: [(w is a finite initial function extending
£ & ({(s)o}(k) is defined for all k& =< n)] = (VE)isnBin),({(s)o}"(K)).

In this case, set f®+" = f©® and proceed to Stage 2s 4 2.

(If Case IV holds at stage 2s + 1, then (vZ)R, ({(s)}’(x)) holds



COUNTABLE RETRACING FUNCTIONS AND II; PREDICATES 75

for every function g such that (a) ¢ extends S and (b) {(s)}* is
total. But since Cases I and II both fail to hold, there must in fact
be a family & of 2% functions ¢, each extending f®, such that
(9., 9. € F and g, # g,) = {(s),}”* and {(s),}’ are total and distinct. Thus,
in Case IV, (v®)R, (7(»)) has 2% solutions.)

Stage 2s,s > 0.

Case A. o, is a total function.

Letting & be the least number not in 67", set

fo = Fem Uk, Jk) + 1)}

and proceed to stage 2s + 1.

(Case A is dealt with so as to insure f # ¢,.)

Case B. o, is not total.

In this case, set f® = f®~Y and proceed to stage 2s + 1.

This completes the description of the general stage in the definition
of f; we of course set f= U, /. It is easy to see that each of
Cases I-IV and A, B presents us with a decision problem of degree
< 0"; hence f < 0”. Moreover O = f because of Case A.

Let (v2)R,(G(x)) be any []! predicate of one function variable and
¢, any natural number; and let 2s + 1 be a stage such that (s), = e,
(s), = e;,. Then, from the parenthetical remarks following the descrip-
tions of actions taken under Cases I-IV, we see that if {e,}/ is total
and satisfies (vx)R,,(G(x)) then either (va)R.(g(x)) has 2% solutions or
{e.}’ is recursive. So it remains only to verify that f < 0”. But as
is well known, O” contains functions that are ]! definable; hence

f=+0".

REMARK 3.4. Analogues of Theorem 3.3 for larger numbers of
quantifiers can be proved; in the present paper, however, we are
interested only in the [[} case.

COROLLARY 3.5. There exists a degree D such that

(1) O<D<KO".
and

(ii) O0< C £ D= no function belonging to C can be retraced
by a countable retracing function.

Proof. For any o« & N and any number ¢, the statement that p,
is retraced by ¢ is a []! statement—indeed, a strong [][° statement—
about p,.

REMARK 3.6. Suppose « is a set of numbers such that « is generic
(in the sense of Feferman) for 2-quantifier prenex arithmetical
statements; and suppose D < O” where D = a. Then D meets the
requirements of Theorem 3.3: given such a generic « to start with,
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the proof follows the pattern of Cases I-IV in our definition of f in
the above proof of Theorem 3.3. But there are also degrees satisfying
Theorem 3.3 that are far from having generic representatives; in par-
ticular, there are examples D with D minimal (constructed, of course,
by mixing our argument with Spector’s construction of a minimal
degree.)

4. In this section we shall prove several theorems which serve
variously to extend, refine, or supplement some of the contents of
Yates’ papers [19] and [20]. We begin by characterizing those pairs
(f, @) such that f is a special retracing function and « is retraced by
a basic subfunction of f. For our characterization, as well as for later
theorems, we need the notion of D-boundedness:

DEerFINITION 4.1. Let D be a degree, f a total function from N
into N, and « an infinite subset of N. Then

(1) f is D-bounded = there exists a function 2: N— N such that
h is recursive in D and (vn)(h(n) > f(n));

(2) «ais D-bounded = p, is D-bounded. (In the literature, infinite
sets which are not O-bounded have been ecalled hyperimmune.)

THEOREM 4.2. Let f be a special retracing function, and let «
be a set retraced by f. The following three statements are equivalent:
(i) @F)F is a basic retracing function & f retraces «);

(ii) @) is a basic retracing function & f < f & f retraces «);
(iii) « 7s O'-bounded.

Proof. (i) = (ii) is immediate since the intersection of any two
special retracing functions which retrace at least one set in common
is again a special retracing function. To see that (iii) = (ii), assume
a to be 0’-bounded; then there exists a function & of degree < O’ such
that h(n) > p.(n) for all n. A well known convergence theorem states
that if C £ D’ then [g a one-place function belonging to C]= [there
exists a two-place function § such that g < D & (vn)(lim,_.. §(s, »)
exists and is equal to g(n))]. Consequently there is a two-place recursive
function A such that (vn)(lim,.. h(s, n) exists and is equal to h(m)).
We define a function f as follows:

f@) =y =fl@) =y & @s)(x = h(s, f*())) .
It is obvious that f is a partial recursive subfunction of f. Moreover,
it follows easily from the definition of f that f—'(y) is finite for every
yeof; for if yeof then [f(o) =y & v #y & f*y) = n]=f*@) =
n + 1, so that f~'(y) must be finite since lim,_.. i(s,n + 1) exists.
That f retraces « is also easily verified: we have, for every =, that
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F*(p(n)) =n and also that p,(n) < h(n) = h(s(n), n) for a suitably
chosen number s(n); thus p.(n) < k(s(n), f*(p.(n))), so that the condition
for including the pair (p.(n), f(p.(n))) in f is met. It follows that if
pof S 6f then f meets the requirements of (ii); otherwise, they are
met by the function 7, = {(x, %) | (2, ¥) € f & f(x) S 6f}. Finally, suppose
that f is a basic retracing function which retraces a. Then

{z|zedf & F*(2) =n}[neN)

is a sequence of finite sets; and it is easily seen that the function A
defined by the identity

h(n) = max {x|cecdf & f* @) < n)

is recursive in O’ and dominates p,. Thus (ii) = (iii) and the proof is
complete.

COROLLARY 4.3. Let G be the index set corresponding to {f|f s
a retracing function which retraces at least one O-bounded set}. Then
G is a complete S8 set of numbers.

Proof. Theorem 4.2 and the remark following Theorem 8 in [12].

Yates observed in [20] that the Kreisel-Shoenfield basis theorem
([18, Theorems 1 and 2]) relativizes routinely to any degree D and
its jump D’ (further on in this section we shall explicitly state the
relativized Kreisel-Shoenfield basis theorem as a part of Lemma 4.9);
and he further observed that the resulting relativized basis assertion
easily implies the following lemma (= Theorem 2 of [20]):

LEMMA 4.4 (Yates). Ewvery basic retracing function retraces at
least onme set of degree strictly less than O”.

COROLLARY 4.5. (1) If a retracing function f retraces no set
of degree < 0", then f retraces only sets which fail to be O'-bounded.

(2) If a countable retracing function f retraces no set of degree
< O, then f retraces only sets which fail to be O'-bounded.

Proof. (1) follows immediately from the combination of Theorem
4.2 with Lemma 4.4. Suppose now that f is countable, and that f
retraces at least one O’-bounded set. By Theorem 4.2, f extends a
basic retracing function 7. Since f is countable, f is countable. But
by [12, Theorem 7] (or by Corollary 1.2 and |20, Theorem 5.2]), a
countable basic retracing function retraces at least one set of degree
< 0'. Since f < f, (2) is proved.
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REMARK 4.6. The converse of Corollary 4.5 (2) is obviously true;
in fact a considerably stronger assertion than the converse of Corollary
4.5 (2) is true, namely [20, Theorem 8] (which we obtain below as
Corollary 4.19). By way of contrast, the converse of Corollary 4.5
(1) is false for the class of unique retracing functions, as we shall
demonstrate further along in this section.

THEOREM 4.7. (1) To every T[S predicate P of one function
variable there corresponds a general recursive retracing function ¢p
such that ©f &p s the collection of principal functions retraced by
g, then there is a ome-to-one degree-preserving correspondence Fp:
Z (P)— Zp.

(2) If g is a general recursive retracing function and & 1is
the collection of principal functions retraced by g then T = F (P)
for some TI° predicate P; likewise if we omit “general recursive”’

and replace “I[2 by “strong [I3°.

Proof. (1) Let P be a ]S predicate of functions. By Theorem
3.1 there is a predicate Q@ of the form (vx)R(k(x)), R recursive, whose
solutions are in one-to-one degree-preserving correspondence with those
of P. Let 2: % (P)— & (Q) be such a correspondence. Suppose f
is a solution of Q. Let a(f) = {f(®)|xe N}. Obviously a(f) and f
have the same degree; and p,, is retraced by the general recursive
function g defined as follows:

w(z + 1), if Qw) [w is a finite initial function &
g@) =4 h(w)=2+2 & ¢ =0+ 2) & (V¥),z.R(@W(Y));
x, otherwise.

Moreover, if p; is retraced by g then 8 must be of the form {i(z)|x ¢ N}
where h solves Q; so the required correspondence F,: & (P)— &, is
given by Fu(f) = Daweim, and (1) is proved. The proof of (2) is rather
obvious and will be omitted.

DEFINITION 4.8. Let a degree D and a function f: N— N be given,
and let H={h|he N¥ & (vo)(h(x) > f(x))}. [ is uniformly D-major-
reducible = there exists an operator @ from partial functions to partial
functions such that (i) @ is partial recursive in D (under the definition
of relatively partial recursive operators given in [16]) and (ii) he H=
&(h) is defined and = f.

LEMMA 4.9. Let D be a degree and D a predicate of one number

variable such that D has degree = D.
(1) (Relativized Kreisel-Shoenfield basis theorem.) If (va)D(f(x))
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has a D-bounded solution, then it has a solution of degree < D’.

(2) (Relativized Kuznecov-Trahtenbrot-Myhill reducibility lem-
ma.) If (v&)D(f(x)) has a unique solution f,, then f, is uniformly
D-majorreducible.

Proof. As Yates has noted in [20], the proof of [18, Theorems
1 and 2] relativizes without essential change to become a proof of (1).
We obtain (2) as an application of Konig’s Lemma. Suppose, then, that
f» is the unique solution of (va)D(f(x)) and that (vn)(g(n)>fu(n)). If w
is a finite initial function, we say that w is g-bounded = g(n) > w(n) holds
for all n € 6w. For the remainder of this proof, we use v and w as vari-
ables over the set of g-bounded finite initial functions. Let S =
{w](An)[n=1h(w) & no u of length » extending w satisfies (vz),.,D(@(x))]}.
S is recursively enumerable in D and ¢ (under a recursive coding of
all finite initial functions) because for each % there are only finitely
many w's of length n. We claim that (vw)we¢S <= w < f,]. The
implication from right to left is obvious. Assume w¢S; then for
every n = lh(w) there is some u of length % extending w such that
(V2),<.D(#(x)). By Konig’s Lemma, w can therefore be extended to
a total function (necessarily f,) which satisfies (va)D(f(x)). Thus
weS=wE fr. So for each n there is exactly one w such that li(w) =
n+1& weS. We define w, = the unique w satisfying lh(w) =n + 1
& weS. Since w, can be recursively computed from D and g simply
by listing S, and since (v#n)| f1(n) = w,(n)], we see that f, is recursive
in D and g. Moreover, the procedure which we have indicated for
reducing f, to Lu.b. {D, g} is obviously uniform in g; thus the required
relatively partial recursive operator exists, and (2) is proved.

LeEMMA 4.9 (2), in nonrelativized form (i.e., with D = 0) and
phrased in term of effective closure in Baire Space, seems to have
been first noticed by Kuznecov and Trahtenbrot [9]; later Myhill [14]
independently proved an equivalent theorem (see [14, p.207]). We
have included our own proof because (a) [9] apparently exists only
in Russian-language synopsis form and (b) the proof which can be
assembled from theorems and comments in [14] is comparatively
circuitous. Lemma 4.9 (2) provides us with half of the next theorem.

THEOREM 4.10 ([9]; [14]). The II° definable functions are pre-
cisely the uniformly O-majorreducible functions.

Proof. Taking D = O in Lemma 4.9 (2) gives uniform O-major-
reducibility of []! definable functions. The reverse inclusion is easily
seen to follow from [14, Theorems 4 and 8].
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REMARK 4.11 The following simple consequence of Theorem 4.10
illustrates the extent to which Lemma 4.9 depends upon domination of
a solution rather than domination merely of the range of a solution:

THEOREM. FEwvery degree which contains a []! definable function
contains a [[} definable permutation of N.

For the proof, let a function f of degree f be the unique solution
of a T[! predicate P; we may assume that N-pf is infinite and also
(see the proof of Theorem 4.7) that f is strictly increasing. Let g
be the strictly increasing function such that pg = N-of. If for any
two functions h and k we define [A D k](2n) = h(n) and [APk](2n + 1) =
k(n), then in particular we have f@ g = a permutation of N; moreover
it is obvious that f@Pgef. We claim that f@Pg is uniformly O-major-
reducible. First,it is clear that there exists a recursive operator @:
N¥-— N¥ such that if » dominates f@ ¢ then @(k) dominates f. Next,
by application of Theorem 4.10 to P we see that f is uniformly O-
majorreducible. But F@ g = f. Hence fP ¢ is uniformly O-major-
reducible, and so by Theorem 4.10 f&p g is T]¢ definable.

We now wish to define a special class 57 of degrees. In stating
our definition of 57 we shall make use of the particular hyperarith-
metical sets H,, v e (), defined by Kleene in [8]; and we shall abbreviate
H, by v.

DEFINITION 4.12. 227 ={D|@N(vec O & vy = D £ ¥)}.

TeHEOREM 4.13. If De 57, then there exists a uniformly O-
magjorreducible function of degree D.

Proof. Suppose y< D<¢',ve (. We first observe that ¢ contains
a uniformly O-majorreducible function f; for by [3, p.200] ¢ contains
a JI; definable function and hence (by Corollary 3.2 (1)) contains a JJ°
definable function, so that Lemma 4.9 (2) applies. Let g be a function
of degree D. Since y < D<¢, it follows from the convergence theorem
cited in the proof of Theorem 4.2 that there exists a two-place function
g such that § is recursive in f and (va2)[g(x) = lim,_... §(s, )]. As in
the proof of [11, Theorem 1.2], we define a function 2 by the identity

h(n) = ps(va).<.l5(s, ) = g(@)] .

Since g=D & Gf v & y< D, we have h £ g.We now claim that
there is a partial recursive operator @ such that if k¥ is a function
which majorizes both f and % then @(k) is defined and = g. For
suppose k& majorizes both f and h; i.e., suppose that
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(vn)[k(n) > max {f(n), h(n)}] .

Let a = ph. By the relativized form of [15, Theorem 21] there is a
function p such that (i) p £ k and (ii) {D,.};-, is a disjoint sequence
of finite sets each term of which has nonempty intersection with a.
Moreover we may assume with no loss of generality that

(vr)(vo)[x e D, =« > h(n)] .
We shall verify the following equivalence:
(™) g(x) =y = @n)[n = x & (Vs)(s€ Dyiy = §(s, %) = ¥)] .

Since p<k & g=<f & f=s k (recall that f is uniformly O-major-
reducible), (*) provides a procedure for calculating g recursively in k;
furthermore, this procedure is uniform in % sinee (i) f is computable
uniformly from k£ and (ii) the construction of p from k% is uniform in
k (as is clear from the proof of [15, Th. 21]). Thus verification of
(*) is sufficient for proving the existence of the indicated operator @.
The = half of (*) is obvious since g(z) = lim,_... §(s, ). For the = half,
suppose that «, y and n are such that n = « & (vs)[s€ D,,, = §(s, ) =
y]. Choose a number s, such that s,€ D,,, N @. Then s, > h(n); so,
since h is nondecreasing, we have s, = h(u) for some w = x. Therefore,
by the definition of 7, §(s,, ) = g(x) = y and the verification of (*) is
complete. Now define k,(x) = max {f(z), h(x)} + 1. We claim that %,
is a uniformly O-majorreducible function of degree D. In the first
place, k, does indeed have degree D. For since k, majorizes both f
and h, we have D = g = @(k,) = k,, while on the other hand k, = ¢
since f< g & h<g. Finally, if k majorizes k, then @(k) = g; so, since
k, < g, there is a partial recursive operator ¥ such that ¥(k) = k, for
any k which majorizes k,. The proof is complete.

It is easy to strengthen Theorem 4.13 so that it applies to all
those relativizations of the hyperarithmetical hierarchy which arise
from uniformly O-majorreducible functions: suppose that s is uniformly
O-majorreducible and that ve (O’ (where (O = the set of Kleene
notations for ordinals recursive in f; see [8]), and let ¢, denote the
degree of the f-hyperarithmetical set H/; then o, < D < ;= D contains
a uniformly O-majorreducible function. It is a consequence of this
extended version of Theorem 4.13 that there exist uniformly O-major-
reducible functions of degree incomparable with O, so that the converse
of Theorem 4.13 is false.

THEOREM 4.14. (1) If De 57 then D contains a set a with
the properties: (la) p, 1s retraced by a general recursive unique
retracing function; and (1b) C 2 D = p, is not C-bounded.
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(2) For every n = 2 there exists a [[5 predicate P of one number
variable such that if B = {n|P(n)} then B has the properties: (2a)
BeO0™; (2b) p; is retraced by a general recursive unique retracing
Sfunction; and (2¢) C Z O™ = p; is not C-bounded. ((2) provides the
answer to a question raised in [20].)

Proof. (1a) It is clear from Theorems 4.7, 4.10 and 4.13 that if
De 57 then D contains a set « such that p, is retraced by a general
recursive unique retracing function.

(1b) Suppose that « is a set belonging to D with the property
that p, is retraced by a general recursive unique retracing function.
Suppose further that p, is C-bounded. By Theorem 4.7, p, is []}
definable; hence (by Lemma 4.9 (2)) p, is uniformly O-majorreducible.
Therefore D = p, < C.

(2a—b) Myhill has shown in [14, Th. 11] that for each n = 2
there exists a uniformly O-majorreducible function f such that the
set a = {2°8Y| f(x) = y} is a complete T]% set of numbers. Given such
a function f, define B = {f(n)|ne N}. The [[% expressibility of B
easily follows from the [[% expressibility of «; moreover, it is clear
that @ < 8 and hence 8¢ 0. Since f is uniformly O-majorreducible,
Theorem 4.10 implies that f is J]° definable; but from the []° definability
of f it follows as in the proof of Theorem 4.7 that p, is retraced by
a general recursive unique retracing function.

(2¢) The proof here, for any B8 satisfying (2a—Db), exactly parallels
the proof of (Ib).

COROLLARY 4.15. The converse of Corollary 4.5 (1) is false
relative to the class of unique retracing functions.

Proof. Apply Theorem 4.14 (1) to any degree D such that
0O<DLO".

DEFINITION 4.16 Let P be a J]S normal form; say,

P(f) = (V0)@Y)s>(V2). . R(f(2), F(9)) .

By a P-sequence we mean a sequence {w,}r_, of nonempty finite initial
functions satisfying the following two conditions:

(1) (vr)V9);zllh(w,) > n & R(@,(5), w.(h(w,))] ;

(ii) (vo)(lim,_. w,(x) exists) .
By a pseudosolution of P we mean a function f for which there exists

a P-sequence {w,}y., such that (vz)(f(z) = lim,_. w,(x)). Finally, by
a strongly countable 13 predicate of functions we mean one which is
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equivalent to (i.e., has the same solutions as) some J]) normal form
having only countably many pseudosolutions.

THEOREM 4.17. (1) If P is a ][5 mormal form and f is a
solution of P, then f ts a pseudosolution of P.

(2) Any strong ] predicate P of one function variable can be
expressed as a [[2 normal form Q such that the solutions of @ = the
pseudosolutions of @ (and hence Q 1is strongly countable tf P is

countable).
(3) If P is a [[5 normal form, thenm there is a strong IS

predicate @ such that the solutions of @ = the pseudosolutions of P.

Proof. We omit the routine verifications of (1) and (2). Suppose
that P(g) = (V&)(3y),-.(¥2),<.R(F(?), G(v)), R recursive. If u is a sequence
number, we set L(u) = max {n|(u), > 0}; and, for any two sequence
numbers u, and %, we say that u, extends u, provided

L(u,) = L(u.) & (V2).2r0p)((W). = (w).) .
Let a predicate @ be defined as follows:
Q(g) = (vx)B(g(v)) ,

where B is defined by
B(w) = w is a sequence number & (3w,) [w, is a sequence number
& w, extends w & (R(w,, w,) holds for every sequence
number w, such that w, is extended by w)].
Clearly, B< 0'; so @ is a strong T[] predicate. It is straightforward
to verify that @Q’s solutions are exactly P’s pseudosolutions, completing

the proof of (3).

THEOREM 4.18. Let f be a special retracing function and P a ]]5
normal form. Denote by (P) the collection of principal functions
which are solutions of P, by 7,(P) the collection of principal functions
which are pseudosolutions of P, and by & the collection of principal
functions retraced by f. Then f has a partial recursive subfunction
f such that

% N.SP) S P S 2N FP)

where .7 is the collection of principal functions retraced by f.
(Since for every e “p, retraces f” is a strong []; predicate of f, it
follows from Theorem 4.17 (2) and Theorem 4.23 that the inclusion

P .F(P) S .5 cannot in general be replaced by equality.)

Proof. Suppose P(g) = (V&)(3Y),>.(V2). . B(G(2), G(y)). Let w, w,



84 C. G. JOCKUSCH JR., AND T. G. MCLAUGHLIN

w, --+ be a fixed recursive enumeration of all nonempty finite initial
functions. We define a partial recursive subfunection f of f, as follows:

F@) = u = flo) = u & @An)[w,(h(w,)) €df & xe Fw,(lh(w,))

& (w, extends the finite initial function which enumerates {y |y < 2} N
Flw,(lh(w,))) in order of magnitude) &

(vz)zéf*(m)R(w'n(z)i wn(lh(wn)))] .

We claim that f meets the requirements of the theorem. Suppose
first that B8 is a set such that P(p,;) holds and p, is retraced by f.
We wish to show that f(p;(n)) is defined for all n. Now, f*(ps(n)) = n.
Let w, be a finite initial function such that

w(lh(w,) € B & pa(n) € flw,(Ih(w,) &

[w, extends the finite initial function which enumerates
FawUh(w) N {y |y < pa(n)}

in order of magnitude] & (vz),<.R(@,(2), w.(lh(w,))); such a w, certainly
exists since p; is a solution of P. In view of the stipulated properties
of w,, the condition for setting f(pﬂ(n)):f(pﬂ(n)) is met; hence
ps(n) € 6f. So we have p;e . For the remaining inclusion, suppose
that p, is a principal function retraced by f. We wish to show that
ps € F(P). This means that we must define a P-sequence {w, 7.,
such that (va)(p,(2) = lim;_.. w, (%)). ﬁ&s w,, we may take any w,
satisfying the defining condition for f(ps(0)) = p;(0). Suppose that
Wagy * %y Wa; have been defined; and assume, as part of the inductive
hypothesis, that, for 0 < 7 < 7, we have

w, (Lh(w,,) € 3f & py(i) € flw, (1h(w,))) .

Since f(ps(k)) is defined for all %k, there must exist a finite initial
function w, with the following properties: w,(lh(w,))edf;{ylyveB &
¥ < po(i + D} = flw,(W(w) N {y |y < ps(7 + 1)}; w, extends the finite
initial function which enumerates f(w,(lh(w.)) N {y|y < ps(j + 1)} in
order of magnitude; and (v2),c;,R(W.(2), ®.(lh(w,))). Let w,  be the
first such w,. Clearly, the sequence w,, w,, --- defined inductively
in this way has the property: (va)@j)(vk)k = j= w, (2) and w, (x) are
defined and are both equal to p,(x)]. Moreover it is clear that {w, }i,
is a P-sequence. Thus p, e . Z(P), and the proof is complete.

We now exhibit [20, Th. 8] as an application of Theorems 4.2, 4.17
(2) and 4.18.

COROLLARY 4.19 (Yates). Let f be a retracing function, and p,
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a principal function of degree < O such that f retraces p,. Then
P, 18 retraced by a basic unique retracing function f such that f < f.

Proof. It is easily seen that since p, has degree <0’ it is the
unique solution of some strong [[ predicate P. Hence, by Theorem
4,17 (2), we can conclude from Theorem 4.18 that p, is retraced by
some unique retracing function ¢ such that ¢ & f. But by Theorem
4.2, any such function g must have a subfunction f such that f is a
basic retracing function which retraces p,. (The portion of Corollary
4,19 which asserts that f < f can, of course, be obtained simply by
intersecting f with any basic unique retracing function A& such that
h retraces p,.)

THEOREM 4.20. (1) If a countable []? predicate (countable strong
TIs predicate) of functions has a O-bounded (O'-bounded) solution, then
it has a recursive solution (a solution of degree = O).

(2) If a basic retracing function f retraces p, and p, solves a
countable strong [[5 predicate, then f retraces at least one principal
function of degree < 0.

Proof. (1) Let P be a countable strong J[S predicate of func-
tions; and let %~ be a function, recursive in O’, such that 2 bounds
some solution of P. Then the predicate

Q) = [P(f) & (vn)(fir) < hn))]

has at least one solution and not more than W,; moreover, all solutions
of @ are O’-bounded. By Corollary 1.2 some solution f, of Q is the
unique solution of a strong []J predicate Q*. Since f, is O'-bounded,
it is recursive in O’ by Lemma 4.9(2) applied to @*. The argument
for J[! predicates is similar.

(2) follows from (1), Theorem 4.7 (2), and the fact that the
conjunction of two strong [[S predicates is strong [[%; for if p,. is
retraced by a basic retracing function then p, is G'-bounded. (Alter-
natively one can apply Theorem 4.17 (2), Theorem 4.18 and [12, Th. 7}.)

The following lemma is implied by an elaborated version of {13,
Th. 1] to be published elsewhere; we shall therefore confine ourselves
to giving a brief informal account of its proof.

LEMMA 4.21. Let f be a basic retracing function. There exists
a basic retracing function g, such that

(1) g, retraces p,= (3B) (f retraces p, & a < B)
and

(ii) g, retraces p,—a = O,
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Proof (in outline). We construct g, from f by a straightforward
priority scheme. For each =, let H, ={x|xcof & f*(x) =n}. Since
f is basie, {H,}3_, is a recursive sequence of disjoint finite sets. We

add pairs (x, y) to g,, adding only finitely many pairs at any given
stage of the construction, in such a way that

@m)3q)lce H, & ye H, & (m=q=0 or m>q) & ye f(»)];

moreover, if (x,y) is added to g, at stage s, and if xe H,, then
subsequently we add (z,y) to g, provided z ¢ H,, unless x is “injured”
at some point after stage s. If x s injured after stage s, we then
fix upon a new set H, from which to draw g¢,-preimages of y. But
the construction is so arranged that only finitely many g,-preimages
of a given y are ever injured, and so g, turns out to be a finite-to-
one function satisfying (i). A number « is said to be <njured at
stage s of the construction if by stage s we have (1) (z,y)eg, for
some y and (2) (3€),<, ()25 (AW(E, u) € ) & w = ]. Once a number
is injured, we eventually get around to killing off (i.e., halting at a
finite level) all potential solutions of the predicate “g, retraces p.”
which pass through the injured number. Thus every surviving infinite
branch in the graph of g, must dominate (eventually) any given partial
recursive function. As is well known, this implies that all surviving
infinite branches have degree = O’, so (ii) is also satisfied.

A major part of our next theorem was established by Yates in
[20], namely: there exists a basic retracing function f; such that f,
retraces no function of degree < 0’. We shall include our own proof
of Yates’ theorem as part of the proof of Theorem 4.22. It seems
to us that our argument is a little more straightforward than the
argument in [20]; however, it should be noted that in [20] Yates
proved directly the (equivalent) theorem stating that there exists a
basic retracing function which retraces no [ set of numbers.

THEOREM 4.22. There exists a general recursive, basic retracing
function f such that (Vva) (f retraces p, = a > 0').

Proof. We first show the existence of a function f, as in the
remarks preceding the statement of the theorem. We begin by defining
a three-place partial recursive function ¥ (with recursive domain) as
follows:

@y (max {t| p¥'(t, ) is defined}, ), if
Ve, x,s) = {t| p¥(t, x) is defined} = @&
undefined, otherwise .
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I:IOW let f, be the function defined by fi'(x) = {2z, 2¢ + 1}, and define
f from f, by the following equivalence:

J@) =y =fi®) =y & (V2).cl,0(3M)pz,(3S)s2, [either
U(f*(z), m, s) is undefined or ¥(f*(2), m, s) # ¢;,,(m)].

It is immediately clear that f is a partial recursive subfunction of f
such that of < 8f, whence f is special. Next, it is easy to see that f
can retrace no function of degree = O’. For suppose f retraces p,
and p, has degree < 0. Then there must be a two-place recursive
funetion @2 such that, for every z, lim,_.. @¥s, z) exists and = cx(2).
Let b be that element of B such that f*(b) = e. Let x be an element
of B such that x >b & v = u = w, where w and w are numbers such
that d < b= @>*(w, d) is defined and (vr)(r Z w & d < b= @i(r,d) =
lim,_.. s, d)). Then, clearly, we cannot include z in 6f; thus 8 is
not retraced by f. It remains to prove that f does retrace some set.
We show how to define a strictly increasing sequence {r,}7, so that
7 retraces the range of {r;}7,. Let », be any fixed point of f; since
f#(ry) = 0, it follows from our convention that ¢} is the empty function
(§ 1) that there are infinitely many s for which Z(f*(r,), 7o, s) is
undefined. Now suppose 7,, ---, 7, have been defined in such a way
that ro < ++- <7, ({1 >0,1l=J5 > 0= f(r;) =r;_, and, for 0 <j <I,
there exist m; < r; and infinitely many s such that either ¥(j, m;, s)
is undefined or ¥(j, m;, s) # c5y (M), Let qo, ¢, be the two numbers
g such that fi(¢) = r,. Because of the inductive hypotheses concerning
To, + o, 7y, it suffices to show that either (3m = ¢,)[for infinitely many
s either ¥(l + 1,m,s) is undefined or ¥(l + 1, m, s) # cp,(m)] or
(3m < q)[for infinitely many s either (I + 1, m, s) is undefined or
Tl + 1, m, s) # c5,(m)]. But suppose, e.g., that ¢, > g,; then the
only alternative to the validity of at least one of the above existential
statements is to have both

lim?%(1+1,q,8)=0 and lm¥%(l +1,q,s) =1,
an obvious impossibility. Similarly if ¢, > ¢,. Thus, we can continue
the induction from [ to ! + 1, and the existence of the required
sequence {r;}, follows. (Indeed, it is not difficult to show that—as
also in Yates’ proof —there is a surviving branch of every degree
> 0”.) Thus J serves as f,. Notice that every set retraced by f is
O-bounded. (This is also a feature of Yates’ construction.) To obtain
the theorem as stated, we must (in view of Lemma 4.9 (1)) sacrifice
the O-boundedness of the solutions. Let gy be related to f as in
Lemma 4.21. By Lemma 4.21 (i) and the fact that retraceable sets
are introreducible ([2]), for every set B retraced by g; there is a set
B, retraced by f such that 8 = B,; while by Lemma 4.21 (ii) every
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set retraced by g; has degree = 0’. But no set retraced by 7 has
degree = O'; hence every set « retraced by g; satisfies @ > 0. Now
by applying two successive recursive equivalences, the first one being
onto N and the second being as in the proof of [1, Proposition 5 (b)],
we obtain a retracing function % such that (a) the graph of & is
recursively equivalent to that of gy and (b) 0k is recursive. Hence
there exists a basic retracing function % such that 6% = N and the
graph of % is recursively equivalent to that of g;. Then each set
retraced by % is recursively equivalent to one retraced by gy. But
any two recursively equivalent retraceable sets have the same degree,
s0 we may take f = h.

THEOREM 4.23. There exists a degree C strictly between O and
0" such that [D = C & D contains a [[} definable function] = [there
exists a [IS normal form Pp with the properties:

(i) Pp has a unique solution, call it fp;

(ii) fpeD;

(iii) fp is retraced by a general recursive retracing function;

(iv) any [I; nmormal form having fp as a solution has 2%
pseudosolutions.]
(In particular, by Theorems 4.10 and 4.13, (i)—(iv) hold for any D = C
such that De 57.)

Proof. Let f be as in Theorem 4.22. Then [20, Th. 2] implies
that f retraces at least one set a such that O' < @ < 0"”. Let a, be
one particular such set. Let g be a general recursive basic retracing
funection which retraces at least one set from each degree; e.g., we
can take g to be the function f, defined by f'(x) = {2x,2x + 1}. Let
D be a Turing degree = a,; and let v, be a particular set of degree
D such that g retraces v, By [2, Proposition P4] there exists a
retracing function ~ which retraces the range of the function p, (p, (%)).
Moreover, a close look at the proof of [2, Proposition P4] shows that
we can demand of A that it be general recursive and basic and retrace
only sets which are of the form p[p,[p,(x))] where f retraces a and
g retraces v. Since v, = @, and «, is introreducible, we see that the
range, 8, of p,(p, (%)) is a set of degree y,(= D). Suppose there exists
a strongly countable [} normal form P such that P(p;). Then, by
Theorem 4.17 (3) and Theorem 4.20 (2), h retraces at least one set, say «,
of degree < O'. But 7 = p[p.(p,(x))] where f retraces « and g retraces
v; so, since « is introreducible, we have that a £ 7 £ 0. This,
however, contradicts the properties of f. Thus p; (i.e., P, (2:(%))) can
satisfy no strongly countable [[; normal form. Suppose D contains a
function % such that % is the unique solution of a []? predicate. Then
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by Corollary 3.2 (3) D contains only functions which are [} definable.
So let P, be a T[]} normal form such that p, is the unique solution of
P,. If Q is any []) normal form such that p,; solves @, then @ has
uncountably many pseudosolutions. But by Theorem 4.17 (3) the set
of all pseudosolutions of a ]} normal form is closed in Baire Space;
hence the pseudosolutions of Q@ are 2% in number and we may take

Py =P, fp = ps.

REMARK 4.24. The functions S, obtained in the above proof of
Theorem 4.23 are not O-bounded. However, by using the analogue for
strong [[% predicates of Theorem 5.1 below, we can obtain Theorem
4.23 with the functions S, O-bounded. In fact, an alternative proof
of Theorem 4.23 can be given in which instead of Theorem 4.22 we
use (a) the strong ]} analogue of Theorem 5.1 and (b) the fact (obtained
by a minor variation on the proof of Theorem 3.3) that for any degree
D, there exists a degree C such that D < C < D’ and some function
belonging to C has the property of not satisfying any countable predi-
cate of the form (v&)D(f(x)) where D has degree = D. If question
Q3 at the end of the paper has an affirmative answer, then the range
of degrees D in Theorem 4.23 can be extended to cover precisely all
D £ O which contain []¢ definable functions.

5. In this section a function f will be called countably 1} if f
satisfies some countable T[¢ predicate. A set a will be called countably
I} (I} definable) if p, is countably TI° (T]? definable.) If « is non-
recursive and []! definable, then it follows immediately from Theorem
4.10 and |5, Corollary 3.4] that N-a cannot be J[! definable. The
countably []¢ sets differ radically in this respect from the [[° definable
sets, as the following theorem shows.

THEOREM 5.1. If « is countably T} and B is equivalent to «
via (unbounded) truth tables, then B is countably TI°.

Proof. We first prove a lemma which shows that we may replace
principal functions by characteristic functions.

LEMMA 5.2. If v is an infinite set, then p, 1s countably [} of
and only if ¢, is countably T]°.

Proof. Assume p, is among the countably many solutions of
(v@)R(f(x)), R recursive. In this proof we use w as a variable for
strictly increasing finite initial functions. Define a new []) predicate

Q(f) by
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(vo)[f(@) e {0, 1}] & (vw)(vylow = {z|» =y & flw) =1}
— B(w(l(w)))] .

Clearly, Q(c,) holds. Also, whenever Q(f) holds, then f is the charac-
teristic function of a set ¢ such that either o is finite or p, satisfies
(v)R(f(x)). Hence @ is countable, so ¢, is countably J[¢. The proof
of the converse is similar,

The proof of the theorem is similar to the proof of Corollary 3.2
(3). Assume « = ,6. Then by a theorem of Nerode [16, p.250],
there exist numbers ¢, ¢, such that {e}« = ¢,, {e}°s = ¢,, and for every
total function 4 the functions {¢}* and {e,}* are total. Assume also that
¢, is among the countably many solutions of (vz)R(g(x)), R recursive.
Consider the following predicate Q(h):

(vo)R({fe}"(2)) & (e} =h .

Q(h) can be written as a []? predicate because all the functions
mentioned in it are total. Clearly Q(c;) holds. Now any function %
such that Q(h) holds has the same degree as {e}*, where {e]}" is a
solution of the countable predicate (vx)R(g(x)). Thus @ is countable,
80 ¢; is countably [[¢. The theorem now follows from the lemma.

Since (by Lemma 4.9 (1)) nonrecursive J]° definable sets are not
O-bounded, the following theorem demonstrates the existence of a
variety of sets which are countably ]! but not ]! definable.

THEOREM 5.3. If D contains a [[° definable set then D contains
a O-bounded set B such that B 1s countably T[%. (Hence, in particular,
D contains such a set B provided Dc 57; a similar remark applies
to Theorem 5.4 below.) If D is a recursively enumerable degree then
D contains a recursively enumerable set o such that a« s countably []°.

Proof. Suppose aeD,a # ¢, and « is []° definable. Let 8 =
{2°8" |z e & ye N}. Then B is truth-table equivalent to «; hence,
by Theorem 5.1, A is countably [[!. Obviously, & has an infinite
recursive subset and is therefore O-bounded. If D is recursively
enumerable then by [19, Th. 2] D contains a recursively enumerable
set « such that N-« is retraced by a general recursive unique retracing
function. By Theorem 4.7 (2) N-a is J]! definable. Hence « is
countably J[? by Theorem 5.1.

THEOREM 5.4. Let D be a degree containing a ][] definable set
and such that DZ 0. Then D contains a set o such that p, is
retraced by a general recursive, basic, countable retracing function
but p, does mot satisfy any unique strong [[3 predicate (and hence,
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wn particular, p, 1s not retraced by any unique retracing function).

Proof. Assume D % O’ and D contains a [[} definable set. By
Theorem 5.3 there is a O-bounded, countably J[? set 8 of degree D.
Let a = {ps(n)|me N}. p, is O-bounded since B is O-bounded. By
the proof of Theorem 4.7 (1), p. is retraced by a general recursive,
countable retracing function f. Since p, is O-bounded, it follows by
a trivial adjustment of the proof of Theorem 4.2 that f has a basic
retracing subfunction f such that f retraces p, and 4f is recursive.
Hence there is a general recursive, basic, countable retracing function
h such that % retraces p,. Let P be a unique strong []; predicate.
Then by Lemma 4.9 (2) we have that P(p.,) = a - O'; therefore, since
O 2 D and D = a, we conclude that — P(p,). (If we examine carefully
the proof of Theorem 5.1 we see that Theorem 5.4 can be proved
subject to the added condition that all functions other than p, which
are retraced by 4 are recursive.)

The sets which we have thus far shown to be countably JI% but
not []? definable are all O-bounded; and indeed, the proof that these
sets are not []! definable is precisely that they are O-bounded but
not recursive. However, our last theorem provides examples which
are not O-bounded.

THEOREM 5.5. 0L Dg O = D contains a set a which is countably
T1% but is neither [I definable nor O-bounded.

Proof. If O< DZ0, then by [4, Theorems 4.2 and 5.2] D
contains a set a such that a is semirecursive, splits every infinite
recursive set, and is not O-bounded. (A semirecursive set is a set 5
for which there exists a general recursive function f(x, y)—called a
selector function for S—such that (va)(vy)|f(z, y)ef{z, ¥y} & ((xef or
ye B)=flx,y)e P)].) If flx, y)is a selector function for a semirecursive
set B and B splits every infinite recursive set, then every set = & for
which f(x,y) is also a selector function is either finite or cofinite.
From this it follows that every such S-—and hence in particular our
set a—is countably []!; we omit details. It is clear from [5, Corollary
5.4] and the proof of [5, Th. 5.2] that « cannot be introreducible and
hence (Th. 4.10) cannot be J[! definable.

Among the many questions relating to this paper which we have
so far been unable to answer, the following three strike us as being
of greatest interest:

Q1. Must a function which satisfies a countable ]} normal form
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be [I; definable? We forcefully conjecture a negative answer, and
remark that the negative answer to the corresponding question for
the class of strong [[; predicates is contained in Theorem 5.4,

Q2. Does there exist a set «, recursively enumerable in 0’, such
that p, satisfies no countable []? predicate of functions? (or, even,
fails to be ]} definable?)

Q3. Is it the case that if D and C are degrees satisfying C £ D
then C contains a set B such that p, solves no countable predicate
of the form (vx)D(f(x)) where D is of degree < D? It seems very
plausible to us that this is true.
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