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A theorem of R. J. Koch states that a compact continu-
ously partially ordered space with some natural conditions on
the partial order is arcwise connected. L. E, Ward, Jr., has
conjectured that Koch’s arc theorem implies the well-known
theorem of R. L. Moore that a Peano continuum is arcwise
connected, In this paper Ward’s conjecture is proved.

1. Preliminaries. If I" is a partial order on a set X we will
write ¢ <,y or <y for (x,y)el’. We will let L(a) = {z: (x,a) e I'}.
If X is a topological space, then I" is a continuous partial order on
X provided the graph of I" is closed in Xx X, If I" is a continuous
partial order on the space X, then L(x) is a closed set for every z e X.
A zero of a continuously partially ordered space X is an element 0
such that 0e L(x) for all xe X. An arc is a locally connected con-
tinuum with exactly two noncutpoints. A real arc is a separable arc.
A Peano continuum is a locally connected metric continuum.

We will use the following statement of Koch’s arc theorem.

THEOREM 1. If X 1is a compact continuously partially ordered
space with zero such that L(x) is connected for each x€ X, then X
18 arcwise connected.

We will show that Peano continua admit such partial orders by
proving the following:

THEOREM 2. If X is a compact connected locally connected metric
space, then X admits a continuous portial order with a zero such
that L(x) is conmected for all xe X.

The proof of this theorem will use some definitions and results
due to R. H. Bing [1]. An e-partition 2. of a subspace K of a metric
space M is a finite set of closed subsets of M, each with diameter
less than ¢, the union of which is K, and such that the interiors in
M of all the elements of &7 are nonempty, connected, dense in the
closed subset, and are pairwise disjoint. The subspace K is parti-
ttonable if for each positive number ¢, there exists an e-partition of K.

LeMMA 1. Let M be a compact connected locally connected metric
space. For each positive number ¢ there exists an e-partition 7. of
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M such that each element of <7. is partitionable.
Bing proves this lemma in [1].

The proof of the Theorem 2 will follow in two parts. In the first
part a relation 4 will be constructed on the Peano continuum X. The
second part will be concerned with proving that 4 is the desired par-
tial order on X. We will let d denote the metric on X,

2. The construction of the relation 4. We will define induec-
tively a sequence { & (i)}, of finite partitions of X. With each par-
tition we will associate a relation é;. The set {6;}, will be a nest of
closed subsets of X< X and 4 = Nd; will be the desired partial order
on X.

First choose an arbitrary element of X. Call this element 0. This
will be the 0 of the partial order to be constructed on X.

We will now construct the relation 0, as the first step of the in-
duction.

Let % (1) be a finite partition on X such that for Fe & (1),
diam (F') < 1/2, and such that F is partitionable. We will classify
the elements of .# (1) according to how “far away” they are from 0.
Let 7 (1,0) be the set {Fle # (1):0eF}. If & (1,4 has been defin-
ed for t=1,2,.--,t —1, let

(1) LH)={Fesg ) -UFg QL) Fnus A, t-1)+0}.

If F is an element of & (1,¢) we will say F has order ¢. Because
“ (1) is a cover of the connected set X with connected sets, there is
a chain of elements of .&# (1) between any two points of X. That is,
if F is an element of .&# (1) then there exists some integer ¢ and a
set {F}\.,c & (1) such that 0c¢ F\,, F = F, and for 4,7¢{0,1, ---, ¢}
F,NF; = @ if and only if |¢ — 5] £1. This is the condition neces-
sary for F to have order ¢. Thus order is defined for all elements of
Z (1).

We now define sets J(F'), for Fe & (1), which will be in a sense
“predecessors” of the elements of F. For Fe 7 (1,0) let J(F) = F.
If J(F') has been defined for F e &# (1,t — 1) and if F,e & (1,t) let

21) JF)=FUU{JF):FNF,+@,Fes (1,t—1)}.

We now define the relation 4, on X by defining for all xe X the
set Li(x) = {y: (y,x)€d,}. Set

L(x)y =U{J(F)yovecFe7 (1)} .

. The relation 4, is reflexive but not anti-symmetric or transitive.
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In order to define the relations d,, -- -, d,, it will be useful to in-
troduce some additional notation. Let F' be an arbitrary fixed element
of % (1, t) for some nonnegative integer ¢t. Let 0F denote the boundary
of F. For t =0, let &, (F)=1{0}, and for ¢ > 0, let

(3.1) @ (F)={Ee 71, t—1:ENF - Q}.
Notice that Z,(F') is not empty by (1) since FFe & (1,t). Let
(4.1) 0. F=FN[UZ()].

Except for the case when ¢ =0 and 4, F = {0}, 0, F is that part of
the boundary of F' which is also part of the boundary of sets of order
t —1. Let

EF)={EFeF (1):E+F and ENF —0,F+ Q}.

That is, & (F') is the set of elements of & (1), other than F itself
and the sets of order ¢ — 1, whose intersection with F — 0, F is not
empty. Note that the elements of & (F') either have order ¢ or order
t+ 1. Let &*(F') be the set {Fe & (F): Fe &,(E)} and let

o*F = U{F N E:Eec &*F)} .

Then & *(F') is the set of sets in & (1) which have order ¢ + 1 and
have a nonempty intersection with F. The sets & (F) and & *(F)
may be empty. For Eec &(F)U £*(F) let 0,(F) = EN F.

If &*(F) is not empty, let o(F) be d(0,F,0*F). Thus p(F) is
the infimum of the distances between the points of F which are also
in the sets of order ¢ — 1 and those points of F' which are also in
sets of order ¢ + 1. This distance is positive since, by (1), for each
Eec ¥*(F), 0,F and 0, F are disjoint closed sets. If & *(F') is empty,
let po(F) be diam (F').

The remainder of the construction of &, generalizes directly to
the construction of 4,. Thus we will assume that . (n), a partition
of X, and the sets .# (w,t) have been defined for ¢ = 0,1, .-+, and
that for F'e & (n), 0,.F, &(F), & (F), &*(F), 0*F and p(F') have been
defined and that for each Fe & (F)U &£ *(F'), 0,F has been defined.
We will now define some special subsets of each Fe & (n) which we
will use to define the relation o,.

In order for the final relation 4 to be transitive it will be neces-
sary that the elements of 0F — (0, F U 0*F) have no successors in the
relation 4. To this end we want to find for each Fe & (F) U & *(F')
a partitionable subset of F' which contains 7, F and 0,F but contains
no points of dF which are not “close” to 9,F or d,F. We use the
following lemma.
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LEMMA 2. Let €¢>0 and let F be a partitionable compact subset
of a metric space X such that the interior of F is connected and
locally conmected. Let B, be either a monempty closed subset of oOF
or a point in the interior of F. Let {B}™, be a finite set of non-
empty closed subsets of oF, such that U™, B, D0F. Then there exists
a set {C;}r, of partitionable subsets of F such that for 1=0,1, .-+, m
C; is closed, (int C;) U B; UB, is connected, B, CC, and if x€dF N C;
then either d(x, B))<e or d(x, B)<e. Further C,CC;,1=0,1,-«+,m
and F = U:n:o Cq;.

Proof. By Lemma 1, F is partitionable so let <2(F') be a parti-
tion of F such that for Pe &2(F'), diam (P)<¢/2 and P is partitionable.

For xecint F let U, be a connected open set containing & whose
closure misses 0F. Let % = {U,:xcint F}. For each Pec F(F)
choose 2(P)cint PN int F' and let

Q={a@P);PcFFNUU{PeFF)PNoF=0}.

Let %, be a finite cover of the closed set @ by elements of Zr. We
can write %, = {U;}\.,. Now fix some element P,e &7(F) such that
P,N B, # @. The interior of F is connected by the connected open
sets of 77, so that for each U, e %, there exists {U,,;}}‘) © % such
that o(P) e Uy, Uyo=U; and U;NU; = @ if and only if |j—1] < 1.
That is, there is a finite chain of sets of Z connecting each element
of 7z, with z(P,). Let

7z ={Ugj:1=0,+-,k;3=0,++, k()}
U{Pe FZ(F): PN B, # ©}.

Note that U%Z’ is a connected subset of F' and that if xe Cl(UZ%")
and d(x, B,) > ¢/2, then x ¢ 0F. This is because the boundary of each
element of 2/ misses the boundary of F, so that if x were in 0F, x
would be an element of P for some P¢ &”(F) such that PN B, = &
and we have that diam (P) < ¢/2. Also note that

Fc(UZ')UU{Pe P(F): PNoF + @}

since %, C %' and 7, is a cover of U{Pe Z(F): PNJF = &}.
Now consider Z, = {UeZ": UNJF = @}. Let

V(F') = min {¢/2, min {d(T, 6F): Ue Z4}} .
For each Pe & (F) let < (F, P) be a partition of P such that if

F'e ©(F,P), then diam (F") <”_<fl

and F' is partitionable. Let
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(5) T (F) = U{<(F, P): Pc . 7(F)}.

We are ready now to define the sets C;,v = 0,1, ..., m. The set
C, will meet 6F only “close” to B, and C;, ¢ =1, ---, m will meet oF
only “close” to B; or B,, Let D=[(U%’)—06F]UB, ThesetDis
a connected subset of (int F') U B,. Let

Co=U{F'ec(F):F' 0D+ 0}.

Because D is connected and covered by < (F'), C, is a closed and
connected subset of F. Also, if xeC,N oF, then d(x, B)) < ¢, for if
xeC,— B, then xc¢ F'c & (F) such that F' N D # . Consequently
there exists a Ue %’ such that F' N U %= @. It then follows that
if © were in F' N oF then, by definition of y(F), U = P for some
Pe &2(F) such that PN B, # &, and

d(z, B)) < diam (F") + diam (P) < +e2=<¢e/84+¢/2<¢.

v(F)
4

If we let C; = [(int F)N C,] UB,, then C; is connected because
C! contains D and

Co= U{[F'n(int F)]U[F' N B]: F' < Cy} ,

which is a union of connected sets which cover D and each of which
has nonempty intersection with D,
Now let

We see that C, is a closed subset of F' and it is connected because
C, and each Pc . 2?(F') is connected and z(P)ePNC, Let C}=
[(int FY N C;JU B; UB,. Then C! is a connected subset of F, for

Ci=CiUU{[PNint FlU[B;N P]: Pe &(F), PN B; = 0},

and C; and [PNnint F]JU[PN B;] are connected and «(P)e C,NPNint F
for each Pe &°(F).

Further note that if zeC,NdF, then either d(x, B;)) <é&¢ or
d(z, B,) < e. Also F is a subset of UJr,C,.

This completes the proof of Lemma 2.

To apply this lemma to the theorem we let ¢ = o(F')/3, B, = 0, F
and (B} = (0,F: Ee &(F)U &*(F)}. Thus for Fe. 7 (n) we get
sets C;,,1=0,1, ---, m(F) satisfying the conditions of the lemma. For
clarity we will sometimes write C(F') for Cy(F') and use C(F, E) for
Ci{(F) when B, = 0,F for Ee & (F)U & *(F). We will also use C'(F)
for C} and C'(F', E) for Ci.

We will now define the relation é, on X. First we inductively
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define sets J(¥') and J(F', E) for each Fe & (n), Ec & (F) U & *(F).
The elements of J(F') and J(F, E) will, in a sense, be “predecessors”
of the elements of C(F) and C(F, E) respectively.

For Fe & (n,0), let J(F') = C(F) and for Fe & (F) U & *(F) let
J(F, E)=C(F, E) U J(F). Then suppose J(F') and J(F, ) have been
defined for all FFe & (n,t — 1), Ee&F)U L*(F). Let F be an
element of & (m,t). Define

J(F)=CF)U{J(F, F). F,e & (F)} and let
JF,E)=CF,E)UJ(F) for Ee&(F)U&*F).

Thus we can define J(F') and J(F, E) for all
Fe # (n),Ec&(F)UEHF).

(2.2)

The sets J(F') and J(F', E) are each closed since they are a finite union
of closed sets. Also J(F, E) is connected if J(F') is connected since
for each Ke & (F)U & *(F'), C(F, E) contains C(F'). But J(F') is con-
nected since if F, e &, (F') then for each Pe Z?(F.,) such that

PNF+@,Pni,FNCF,,F)+ Q.

Thus C(F') is not separated from C(F,, F') for any F, e & (F).

We will let L,(x)={y: (y, ©) € 6,} and define §, by defining the sets
L,(x) for all xe X, Let e X and Fe % (n). If x¢ F, let K.(x)= 0.
If xe F and e C(F), let Kp(z) = J(F). If xe F and

ve U{C(F,E): Ec&(F)U &*(F)} — C(F)
there exists some Ee & (F) U & *(F) such that ze C(F, E), so let
Ki(e) = U{JI, E):oecCFE), Ec & (F) U &*I)} .
Then let
(6) L,(x) = U{Ky(2): Fe 7 (n)}.

Then L,(z) is closed and connected for each z, for it is a nonempty
finite union of closed sets, and the nonempty sets comprising that
union are each connected and contain zx.

The relation 4, is closed because

0, = U{C(F) x C(F): Fe & (n)}
(7) UU{CF',E'Y X C(F,E). Fe & (n),
Ee&s(FYu £*F), C(F',E")C J(F, E)}
which is a finite union of products of closed sets.

To complete the induction we will assume ¢, has been defined and
we will define the sets, & (n +1), ¥ (n+1,%),t=20,1,.--, and for
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each Fe & (n+ 1) we must define o, F, & (F), &(F), &*(F),o*F,
o(F) and for each Ee & (F) U 5 *(F), 0, F.

First let &% (n + 1) = U{C(F): Fe 7 (n)} where < (F) is as de-
fined in (5).

As in the initial induction step, we will assign to each F e &% (n+1)
an order which will, in a sense, classify the sets of &% (n+1) accord-
ing to how “far away” they are from 0. But since we want to as-
sure that §,,,Cd,, or, what is the same thing, L,.,(x) C L,(x) for all
ze X, we must take more care in defining the order of an element F'
of # (n + 1). Because each F'e & (n + 1) is contained in an unique
element of & (n), the “predecessors” of the elements of F must be
contained in the set of “predecessors” of that unique element of & (n)
which contains it.

We will partition .& (n+1) into the sets & (n+1,1),t=0,1,---,
and if FFle & (n + 1,t) we will say F has order ¢. First we let

F(n+1,0={FeF(n+1:0cF}.

Let F', be an element of 5 (n,s—1) and suppose that order has been
defined for the elements of some subset of < (F',) which contains at
least {F'e &< (F,): FNo.F,+@}. Let F be an element of < (F,) such
that FF N C'(F,) = @ and such that order has not yet been defined
for F. We will let F' be an element of % (n + 1,t) and say F has
order ¢ if ¢ is the smallest positive integer such that there exists
F,e < (F,) such that F,cC(F,), F', has order ¢ —1, and F, N FNint
F,# @. Let

)y ={F,eoF,)F,es (n+1,t—-1),F, cCF,)

(3.2) )
and F,NFNnintF, + @} .

Notice that this is enough to define order for all F'e & (F',) such that
FnC(F,) # @, since C'(F,) is connected and covered by the con-
nected sets [FNint F,]U[FNJ,.F,]. Now suppose Fe £ (F,) but
FnC'(F,)=®. Then F C P for some unique P ¢ <°(F,), where <2(F,)
is as defined in the proof of Lemma 2. Let F be an element of
& (n-+1,t) and say F has order ¢t if ¢ is the smallest positive integer
such that there exists some F, € # (n+1,¢t—1) such that F', c P and
FNF,Nnint P+ @. Let

ZW(F) ={F,ec(F):F,esn+1t-1),F.CP

(3.3) )
and F, N FNint P = @} .

This is enough to define order for all Fe & (F,) since for each
Pec.2”7(F), int P is connected and covered by the connected sets F'(int
P for Fe < (F,,P) and PN C'(F,) + O.
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Suppose order has been defined for all Fe £ (F,) where
F,e # (n,s—1). Let F,, be an element of & (n, s) and let F' be an
element of < (F,,) such that FnNo.F,,# @. We will let F be an
element of % (n + 1,t) and say F' has order ¢ if ¢t is the smallest
positive integer such that there exists F, € & (n + 1,¢t — 1) such that

F,cF.,,e & (n,s—1),F,. ¢ &, (F,.,
and FNF, No.F,,+ @. Let

@ (F)={F,e s m+1,t—1:F,cF,, e (ns—1),

3.4
(3.4) F..e &(F,,), and FNF,NoF,,#* D}.

With this we have defined a unique order for each F'e & (n+1) and
we have & (n + 1) = U, & (n + 1, ¢).

Now let F' be an element of % (n+1) and suppose F'CF,e F (n).
As mentioned earlier, in order to make the relation 4 a transitive
order, it will be necessary that the elements of 6F, — (0, F, U 0*F,) have
no successors. To ensure that this happens since 0,F will have suc-
cessors in the relation 4,,,, we must define 6, F for F e & (F,) so that

0 F'N[oF, — (0. F, Ud*F,)] = @ ,

when FFNo,.F,=@. Also, if FNC(F,) = @ and FFC Pe Z#(F,), we:
want 0, FNoP = @.

We do this as follows. If Fe & (F,) and FNo.F,#* O, set
(4.2) 0. F =FNo.F,.

If Fno,F,= @, but FNC'(F,) # @, for each Ec &, (F) choose
oF,E)e FNENint F,. Let

I(F,) = {p(F, E): Fe (F,), FNo.F, = 0,
FNC(F, # @ and Ee &, (F)}.

Since T(F',) is a finite set it is a closed subset of int F,. Because
F, is normal, we can find S(F,), an open subset of F, such that

(8) ClU(S(F,)) N T(F,) = o and oF,c S(F,) .
Then for F'e & (F,) such that FNod, F,=@ and FNC(F,)+ @, set
(4.3) 0. F = [F N (UZ(F)] — S(F,) .

Since &, (F')+= @ and for Fe & (F), p(F, E) ¢ S(F,), it follows that
0., F is a nonempty closed subset of 0F and 0,F N [0F, — 0.F.] = @.
Similarly for Fe Z(F,) such that FnC'(F,) = @, we know that
FcP for some unique Pe . #(F,). Now for each F ' P such that
FNC(F, =@ and each Ec «,(F), we can choose p(F, E) to be an
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element of FFnN ENint P. Let
T(F, p)={pF,E)Fe<(F,P),FNC(F, = @,and Ec & (F)}.

Since T(F',, P) is a finite set it is a closed subset of int P. There-
fore we can find an open set S(F,, P) such that 6P < S(F,, P) and

CUS(F., P)YNT(F,,P)= D .
Now for each FFc P such that FFn C'(F,) = &, set
(4.4) 0. F =[F N (U &) — S(F,, P) .

It follows that 0, F NoP = ¢ and 0,F is not empty.
For all Fe # (n + 1), let

SHE) ={FeF (n+ 1) Fe & ()}

and let

0*F = U{o , ENF: EecZ*(F)}.
If Ec&*(I") let

0 F=0,ENF.
Let
SHF)Y={FeF mn+ 1 E+F,(EnNF)— 0, FUF) # O}

and for Ee & (F) let

0, F =CI(ENF)— (0, FUd*F)].

If «“*F)= 2, let p,(F)=d(0,F,0*F) and if &*(F)=0, let p.(F) =
diam F. If Fno.F,=@ but FnC(F,) # 0, let 0(F)=d(0,F,oF,).
If FnC(F,) = @, and Fc Pe Z°(F,), let 0,(F) = d(0,F, 0P); other-
wise let p(F') = diam F. Finally let

(9) o(F) = min {0,(F), 0(F)} .

This completes the definitions necessary to define o, for all positive
integers n.

We now define a relation 4 on X by letting 4 = N2, 0;. It re-
mains to show that 4 is a partial order satisfying Theorem 2.

3. The relation 4 satisfies the hypotheses of Koch’s Arc
Theorem. The relation 4 is continuous on X since 4 = (5., 0, and
we have shown in (7) that each 4§, is closed in X x X. Also 0 is a
zero for A since 0¢ L(x) for all xe X. We must further show that
L(z), the set of predecessors of each x¢ X under the relation 4, is a
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connected set. To do this it is enough to show that L,..(x) & L,(x)
for each x ¢ X, since then the set {L,(x)}7., will be a nest of continua
and L(x) = N2, L,(x) will be a continuum and thus be connected.

Because L,.,(x), (6), is a union of sets of the forms J(#) and
JI,E) where Fe & (n+1), Ee&(F)UZL*F) and xeC(F) or
xeC(F, E) to prove L, (»)c L,(x), it is sufficient to show that if
xeFe s (n+1) and FCF'e & (n), then FUJ(F) is a subset of
either J(F’') or J(F', E’) for some E’'e & (F') U & *(F’). This proof
is omitted but is a straightforward induction on ¢ when

xeFCcF'e. ¥ (n,t)

using definitions (2.1-2) of J(F') and (3.1-4) of &, (F).
It is clear that 4 is reflexive. That 4 is a partial order on X
will be established by the following lemmas.

LEMMA 3. Let F, and F, be distinct elements of F# (n) and let
x be an element of OF, — (0, F, U 0*F,). Then x is an element of 0F, —
(0, F, JUo*F,).

Proof. We will proceed by induction on #. Suppose n = 1, and
that F| is an element of . (1,t). Then the order of F, is either
t—1,¢t, or t +1, using (1) since FFNF,= . If F,be s 1,t—1)
then by (4.1) xed, F, and if F,e & (1,¢t + 1) by (4.1) x€o*F,, and
both of these situations contradict the hypothesis. Thus F,e .&# (1,1t).
Suppose x €0, F,. Then there exists a set F,e &# (1,t— 1) such that
xeF,N F,. But also xc€ F, so xc¢ F, N F,C0,F, which is a contradic-
tion. Similarly, if xeo*F, there exists a set F,e &% (1,t + 1) such
that x e F,NF,, so xe F,NF,C0*F, and we get another contradiction.

We now suppose the lemma is true for n = 1,2, ...,k — 1. Let
F', and F, be distinct elements of & (k) and suppose F,.c T, ¢ . & (k—1)
and F,c T,e # (k —1). By (4.1-4) we have for 7 =1, 2

(10) 0, F; Uo*F, (int T) U8, T, Ud*T, .

So x¢ 0. F, Uo*F, implies by (4.2) that x¢d, T, Uo*T,.

Now if T\ # T,, xe T'N T, implies 2 € 0T, N 0T,. From the induction
hypothesisx € 0T,— (3, T, U 0*T,). Therefore by (10)x € 0F,— (3, F,U0*F),).

If, however, both F, and F, are subsets of 7,, we will consider
first the case when e C(T,). If x¢ S(T,), where S(T,) is as defined
in (8) then by (4.3) #¢d,FUJ*F for any Fe 2 (T) such that
FNC(T) # @. In particular ¢ 0, F, U o*F,. If x¢ S(T)), the argu-
ment that z¢4d, F, U 0*F, is analogous to the situation when » = 1.

The final case when « ¢ C(T),) follows by a similar argument using
that either F, C P, and F,C P, where P, # P, and P, and P, are in



A CONTINUOUS PARTIAL ORDER FOR PEANO CONTINUA 151

GF(T); or F, U F,c P for some Pec 2”(T,) and that
0. F; Uo*F; [P~ S(T, P)]Uo*T,
for = =1, 2,

Note. It follows from Lemma 3 that for z e (int F))Uo, F,Uo*F)
where F, e &% (n,t) and if xec F, for some F,c & (n), F, # F,, then
veo F,Jo*F, Further if x€d F, then F,e & (n,t — 1) U.F (n,t),
and if x€o*F,, then F,e & (n,t) U Z (n,t + 1).

LEMMA 4. Let Fe . (n) and xeoF —(0,F U 0*F). Let m be an
integer such that there exists Ke 7 (m) such that xe ECF and
EnN@FU0*F)= @. Then C(E,E*YNoF = @ for all E*e & *(K).

Proof. Let F,, = E and F, = F. Then there exists {F,}", such
that F,e & (i) and F,,,CF,. Let | be the greatest integer such that
m>1l=zmn and o0, F — 0, F, +# @ and let k be the greatest integer such
that 0*E — 0*F, #+ @. Thenm >1=nand m >k = n. Without loss
of generality suppose | = k. Since 0, K C 0. F,.,,

d(0.E, 0F) = d(0,F,,,, 0F")
From (8) 0F, < S(F,) and by (4.3) and (4.4) ¢, F,., € F\S(F,). Therefore
d(3.F 11, 0F) = 0(F) = o(F)) by (9) .
Thus d(0.E, 0F,) = o(F,). Similarly
0. E, 0F,) = d(0*F,, 0F,) = o(F}) .
Also
d(0*E,0F) = d(0*E, 0F,) and d(0.K,0F) = d(0.E,0F)) .

Thus

d(6*E U 0*E, 0F) = min {d(6*E, oF}), d(6,E, 0F))}
> min {o(F}), o(F)}) = p(F) = o(F,_,) .

From Lemma 2 if x ¢ 0F and

d(x,0,E U*E) > P(F;)M)

then z ¢ C(E, E*) for any E*c & *(K). Thus 0F N C(E, E*)= @ for
any F*e & *(H).

LEMMA 5. Let xcoF — (0*F U0, F) for Fe % (n). Then x has
no successors other than itself in the relation 4.
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Proof. Assume y =,z and y % x. Choose m > m such that
d(xz,y) > 2™ and such that d(x,0,F U0d*F) > 2", Then since for
F'e # (m) we have diam F’ < 2 ™, x and y are not both elements
of any one F’e.# (m). Also, if

xeF'e # (m), then F'N @ FUF)=Q,

so that m satisfies the conditions of Lemma 5. However, since x € L,,(y)
and z is in no element of .# (m) containing y, by (6) x € C(F’, F*)
for some

F'e # (m) and F*e &*(F').

But by Lemma 4, C(F', F*) N oF = ¢. This is a contradiction and
proves that such a y cannot exist.

In the next lemma we will use the following notation. If x € int
F for some F'e & (n,t), set ¢q,(x)=t. If x€0,F for some Fe & (n,t),
set ¢, () =t — 1. By the note after Lemma 3, ¢,(x) is well-defined
and single valued for all x e (int F') U 0,F U 0*F where Fe # (n).

LEMMA 6. The relation 4 is anti-symmetric.

Proof. Assume there exist  and y in X such that z=#y, 2 <, vy
and y <,x. Choose » such that d(x, y) > 2-"*'. Then, since x ¢ L,(y),
there exists some F,e. % (n) such that yec F,e &+ (n,t) and x e J(F)).
By Lemma 5, ye(int F)) U0J,F, U d*F,, so q,(y) is defined and ¢,(y)=
t — 1. Now because d(z, y) > 2"+, xc F,e . (n) where F,ec & (n, s)
and s <t — 1. Also by Lemma 5, xcint F,U 0, F, U 0*F,, so q,(%) is
defined and ¢,(x) < s <t — 1. It follows that ¢.(y) > q.(x). But by
a symmetric argument since ye L,(x), it can be shown that q,.(x) >
q.(y). This contradiction proves that 4 is anti-symmetric.

LEMMA 7. The relation 4 1s transitive.

Proof. Let z,y and z be elements of X such that © <,y and
Y =<,2. We will show x <,z. We can assume z < y and y < z. Choose
n such that min {d(x, y), d(y, ?), d(x, 2)} > 2=, It is enough to show
v e L,(z) since we have shown L, ,(z) D L,(z). Since ye L,(z),y€e F,
for some F, € &% (n, t) where y e J(F,, E’) C L,(z) for some E’' ¢ & *(F,).
By Lemma 4, yeint F,Ud,F, U o0*F,. If yeint F, then since

we L,(y),veJ(F,) CJ(F,, E') C L,(2) .

If yeint F, then either yed,F, or yco*F,. We will consider the
case when y€d, F,. The argument is similar when y c0*F,. By the
note after Lemma 3 if ye FFe & (n), then FFe # (n,t) U .Z (n,t—1).
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If yeF,e & (n,t —1) where x¢ J(F,) then xec J(&F,, F,) C L,(z). If
we assume this is not the case then = ¢ J(F,, F,) for any F, e & .(F,).
Let &7 = {F.e & (n,t — 1):xeJ(F,, F) for some Fe. & (n,t) such
that y € F'}. The set .7 is not empty since x e L,(y). Let

r = min{d(y, F,): F,.e.>}.

Since y¢ F, for any F, e .oz, r>0. Choose m >n such that r>2",
Now because z ¢ L, (y) < L,.(y) there exists a set T € & (m) such that
ye T and ze J(T). Either T C F for some F e & (n,t) or TC F, for
some F,e & (n,t —1). However if

TcF,e & (n,t—1),ceJ(T)YCJF,, F,)

which contradicts our assumption. Thus there exists F'e & (n,t) such
that TcF. Now by (2.2 zeJ(T)cTUU{J(T,, T):T. NT=+* @,
T.c &.(T) and T, F, for some F,ec &% (n,t — 1)}. By the choice
of m and r, F_ e¢.o/. But xzeJ(T)cC J(F,, F) implies that F, € o~
This contradiction says that xe¢ J(F,, F,) for some F,e &, (F,) and
thus ze J(F,) © L,(z). This completes the proof that A is transitive.
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