A CONTINUOUS PARTIAL ORDER FOR PEANO CONTINUA

VIRGINIA E. WALSH KNIGHT
A THEOREM OF R. J. KOCH STATES THAT A COMPACT CONTINUOUSLY PARTIALLY ORDERED SPACE WITH SOME NATURAL CONDITIONS ON THE PARTIAL ORDER IS ARCWISE CONNECTED. L. E. WARD, JR., HAS CONJECTURED THAT KOCH'S ARC THEOREM IMPLIES THE WELL-KNOWN THEOREM OF R. L. MOORE THAT A PEANO CONTINUUM IS ARCWISE CONNECTED. IN THIS PAPER WARD'S CONJECTURE IS PROVED.

1. Preliminaries. If Γ is a partial order on a set X we will write $x \leq y$ or $x \leq^\Gamma y$ for $(x, y) \in \Gamma$. We will let $L(a) = \{x: (x, a) \in \Gamma\}$. If X is a topological space, then Γ is a continuous partial order on X provided the graph of Γ is closed in $X \times X$. If Γ is a continuous partial order on the space X, then $L(x)$ is a closed set for every $x \in X$. A zero of a continuously partially ordered space X is an element 0 such that $0 \in L(x)$ for all $x \in X$. An arc is a locally connected continuum with exactly two noncutpoints. A real arc is a separable arc. A Peano continuum is a locally connected metric continuum.

We will use the following statement of Koch's arc theorem.

Theorem 1. If X is a compact continuously partially ordered space with zero such that $L(x)$ is connected for each $x \in X$, then X is arcwise connected.

We will show that Peano continua admit such partial orders by proving the following:

Theorem 2. If X is a compact connected locally connected metric space, then X admits a continuous partial order with a zero such that $L(x)$ is connected for all $x \in X$.

The proof of this theorem will use some definitions and results due to R. H. Bing [1]. An ε-partition \mathcal{P}, of a subspace K of a metric space M is a finite set of closed subsets of M, each with diameter less than ε, the union of which is K, and such that the interiors in M of all the elements of \mathcal{P}, are nonempty, connected, dense in the closed subset, and are pairwise disjoint. The subspace K is partitionable if for each positive number ε, there exists an ε-partition of K.

Lemma 1. Let M be a compact connected locally connected metric space. For each positive number ε there exists an ε-partition \mathcal{P}, of
Bing proves this lemma in [1].

The proof of the Theorem 2 will follow in two parts. In the first part a relation \mathcal{A} will be constructed on the Peano continuum X. The second part will be concerned with proving that \mathcal{A} is the desired partial order on X. We will let d denote the metric on X.

2. The construction of the relation \mathcal{A}. We will define inductively a sequence $\{\mathcal{F}(i)\}_{i=1}^{\infty}$ of finite partitions of X. With each partition we will associate a relation δ_i. The set $\{\delta_i\}_{i=1}^{\infty}$ will be a nest of closed subsets of $X \times X$ and $\Delta = \cap \delta_i$ will be the desired partial order on X.

First choose an arbitrary element of X. Call this element 0. This will be the 0 of the partial order to be constructed on X.

We will now construct the relation δ_i as the first step of the induction.

Let $\mathcal{F}(1)$ be a finite partition on X such that for $F \in \mathcal{F}(1)$, $\text{diam} (F) < 1/2$, and such that F is partitionable. We will classify the elements of $\mathcal{F}(1)$ according to how "far away" they are from 0. Let $\mathcal{F}(1,0)$ be the set $\{F \in \mathcal{F}(1): 0 \in F\}$. If $\mathcal{F}(1, i)$ has been defined for $i = 1, 2, \ldots, t - 1$, let

$$ \mathcal{F}(1, t) = \{F \in \mathcal{F}(1) - \bigcup_{i=0}^{t-1} \mathcal{F}(1, i): F \cap (\bigcup \mathcal{F}(1, t - 1)) \neq \emptyset\} . $$

If F is an element of $\mathcal{F}(1, t)$ we will say F has order t. Because $\mathcal{F}(1)$ is a cover of the connected set X with connected sets, there is a chain of elements of $\mathcal{F}(1)$ between any two points of X. That is, if F is an element of $\mathcal{F}(1)$ then there exists some integer t and a set $\{F_i\}_{i=0}^{t} \subset \mathcal{F}(1)$ such that $0 \in F_0$, $F = F_t$, and for $i, j \in \{0, 1, \ldots, t\}$ $F_i \cap F_j \neq \emptyset$ if and only if $|i - j| \leq 1$. This is the condition necessary for F to have order t. Thus order is defined for all elements of $\mathcal{F}(1)$.

We now define sets $J(F)$, for $F \in \mathcal{F}(1)$, which will be in a sense "predecessors" of the elements of F. For $F \in \mathcal{F}(1, 0)$ let $J(F) = F$. If $J(F)$ has been defined for $F \in \mathcal{F}(1, t - 1)$ and if $F_i \in \mathcal{F}(1, t)$ let

$$ (2.1) \quad J(F_i) = F_i \cup \cup \{J(F): F \cap F_i \neq \emptyset, F \in \mathcal{F}(1, t - 1)\} . $$

We now define the relation δ_i on X by defining for all $x \in X$ the set $L_i(x) = \{y: (y, x) \in \delta_i\}$. Set

$$ L_i(x) = \cup \{J(F): x \in F \in \mathcal{F}(1)\} . $$

The relation δ_i is reflexive but not anti-symmetric or transitive.
In order to define the relations $\delta_2, \ldots, \delta_n$, it will be useful to introduce some additional notation. Let F be an arbitrary fixed element of $\mathcal{F}(1, t)$ for some nonnegative integer t. Let ∂F denote the boundary of F. For $t = 0$, let $\mathcal{C}_*(F) = \{0\}$, and for $t > 0$, let

$$\mathcal{C}_*(F) = \{E \in \mathcal{F}(1, t - 1): E \cap F \neq \emptyset\}.$$ \hfill (3.1)

Notice that $\mathcal{C}_*(F)$ is not empty by (1) since $F \in \mathcal{F}(1, t)$. Let

$$\partial_*(F) = F \cap [\cup \mathcal{C}_*(F)].$$ \hfill (4.1)

Except for the case when $t = 0$ and $\partial_*(F) = \{0\}$, $\partial_*(F)$ is that part of the boundary of F which is also part of the boundary of sets of order $t - 1$. Let

$$\mathcal{E}(F) = \{E \in \mathcal{F}(1): E \neq F \text{ and } E \cap F - \partial_*(F) \neq \emptyset\}.$$ \hfill (5.1)

That is, $\mathcal{E}(F)$ is the set of elements of $\mathcal{F}(1)$, other than F itself and the sets of order $t - 1$, whose intersection with $F - \partial_*(F)$ is not empty. Note that the elements of $\mathcal{E}(F)$ either have order t or order $t + 1$. Let $\mathcal{E}^*(F)$ be the set $\{E \in \mathcal{E}(F): F \in \mathcal{E}^*(E)\}$ and let

$$\partial^*F = \cup\{F \cap E: E \in \mathcal{E}^*(F)\}. \hfill (6.1)$$

Then $\mathcal{E}^*(F)$ is the set of sets in $\mathcal{F}(1)$ which have order $t + 1$ and have a nonempty intersection with F. The sets $\mathcal{E}(F)$ and $\mathcal{E}^*(F)$ may be empty. For $E \in \mathcal{E}(F) \cup \mathcal{E}^*(F)$ let $\partial_*(F) = E \cap F$.

If $\mathcal{E}^*(F)$ is not empty, let $\rho(F)$ be $d(\partial_*(F), \partial^*F)$. Thus $\rho(F)$ is the infimum of the distances between the points of F which are also in the sets of order $t - 1$ and those points of F which are also in sets of order $t + 1$. This distance is positive since, by (1), for each $E \in \mathcal{E}^*(F), \partial_*(F)$ and ∂^*F are disjoint closed sets. If $\mathcal{E}^*(F)$ is empty, let $\rho(F)$ be $\text{diam}(F)$.

The remainder of the construction of δ_2 generalizes directly to the construction of δ_n. Thus we will assume that $\mathcal{F}(n)$, a partition of X, and the sets $\mathcal{F}(n, t)$ have been defined for $t = 0, 1, \ldots$, and that for $F \in \mathcal{F}(n), \partial_*(F), \mathcal{E}_*(F), \mathcal{E}(F), \mathcal{E}^*(F), \partial^*F$ and $\rho(F)$ have been defined and that for each $E \in \mathcal{E}(F) \cup \mathcal{E}^*(F), \partial_*(F)$ has been defined. We will now define some special subsets of each $F \in \mathcal{F}(n)$ which we will use to define the relation δ_n.

In order for the final relation Δ to be transitive it will be necessary that the elements of $\partial F - (\partial_*(F) \cup \partial^*F)$ have no successors in the relation Δ. To this end we want to find for each $E \in \mathcal{E}(F) \cup \mathcal{E}^*(F)$ a partitionable subset of F which contains $\partial_*(F)$ and ∂^*F but contains no points of ∂F which are not "close" to $\partial_*(F)$ or ∂^*F. We use the following lemma.
Lemma 2. Let $\varepsilon > 0$ and let F be a partitionable compact subset of a metric space X such that the interior of F is connected and locally connected. Let B_0 be either a nonempty closed subset of ∂F or a point in the interior of F. Let $\{B_i\}_{i=0}^m$ be a finite set of nonempty closed subsets of ∂F, such that $\bigcup_{i=0}^m B_i \supseteq \partial F$. Then there exists a set $\{C_i\}_{i=0}^m$ of partitionable subsets of F such that for $i = 0, 1, \ldots, m$ C_i is closed, $(\text{int } C_i) \cup B_i \cup B_0$ is connected, $B_i \subset C_i$ and if $x \in \partial F \cap C_i$ then either $d(x, B_i) < \varepsilon$ or $d(x, B_0) < \varepsilon$. Further $C_0 \subset C_i$, $i = 0, 1, \ldots, m$ and $F = \bigcup_{i=0}^m C_i$.

Proof. By Lemma 1, F is partitionable so let $\mathcal{P}(F)$ be a partition of F such that for $P \in \mathcal{P}(F)$, $\text{diam } (P) < \varepsilon/2$ and P is partitionable.

For $x \in \text{int } F$ let U_x be a connected open set containing x whose closure misses ∂F. Let $\mathcal{U} = \{U_x : x \in \text{int } F\}$. For each $P \in \mathcal{P}(F)$ choose $x(P) \in \text{int } P \cap \text{int } F$ and let

$$Q = \{x(P) : P \in \mathcal{P}(F)\} \cup \{P \in \mathcal{P}(F) : P \cap \partial F = \emptyset\}.$$

Let \mathcal{U}_1 be a finite cover of the closed set Q by elements of \mathcal{U}. We can write $\mathcal{U}_1 = \{U_i\}_{i=1}^k$. Now fix some element $P_0 \in \mathcal{P}(F)$ such that $P_0 \cap B_0 \neq \emptyset$. The interior of F is connected by the connected open sets of \mathcal{U}, so that for each $U_i \in \mathcal{U}_1$ there exists $\{U_{ij}\}_{j=0}^{k(i)} \subset \mathcal{U}$ such that $x(P_0) \in U_{i0}$, $U_{ik(i)} = U_i$ and $U_{ij} \cap U_{kl} \neq \emptyset$ if and only if $|j - l| \leq 1$. That is, there is a finite chain of sets of \mathcal{U} connecting each element of \mathcal{U}_1 with $x(P_0)$. Let

$$\mathcal{U}' = \{U_{ij} : i = 0, \ldots, k ; j = 0, \ldots, k(i)\} \cup \{P \in \mathcal{P}(F) : P \cap B_0 \neq \emptyset\}.$$

Note that $\bigcup \mathcal{U}'$ is a connected subset of F and that if $x \in \text{Cl}(\bigcup \mathcal{U}')$ and $d(x, B_0) > \varepsilon/2$, then $x \in \partial F$. This is because the boundary of each element of \mathcal{U} misses the boundary of F, so that if x were in ∂F, x would be an element of P for some $P \in \mathcal{P}(F)$ such that $P \cap B_0 \neq \emptyset$ and we have that $\text{diam } (P) < \varepsilon/2$. Also note that

$$F \subset (\bigcup \mathcal{U}') \cup \{P \in \mathcal{P}(F) : P \cap \partial F \neq \emptyset\}$$

since $\mathcal{U}_1 \subset \mathcal{U}'$ and \mathcal{U}_1 is a cover of $\bigcup \{P \in \mathcal{P}(F) : P \cap \partial F = \emptyset\}$.

Now consider $\mathcal{U}_2 = \{U \in \mathcal{U}' : \text{Cl } U \cap \partial F = \emptyset\}$. Let

$$\nu(F) = \min \{\varepsilon/2, \min \{d(\text{Cl } U, \partial F) : U \in \mathcal{U}_2\}\}.$$

For each $P \in \mathcal{P}(F)$ let $\mathcal{E}(F, P)$ be a partition of P such that if

$$F' \in \mathcal{E}(F, P), \text{ then } \text{diam } (F') < \frac{\nu(F)}{4}$$

and F' is partitionable. Let
We are ready now to define the sets $C_i, i = 0, 1, \cdots, m$. The set C_0 will meet ∂F only "close" to B_0 and $C_i, i = 1, \cdots, m$ will meet ∂F only "close" to B_i or B_0. Let $D = [(\cup \mathcal{X}') - \partial F] \cup B_0$. The set D is a connected subset of $(\text{int } F) \cup B_0$. Let

$$C_0 = \bigcup \{F' \in \mathcal{X}(F): F' \cap D \neq \emptyset \}.$$

Because D is connected and covered by $\mathcal{X}(F)$, C_0 is a closed and connected subset of F. Also, if $x \in C_0 \cap \partial F$, then $d(x, B_0) < \varepsilon$, for if $x \in C_0 - B_0$ then $x \in F' \in \mathcal{X}(F)$ such that $F' \cap D \neq \emptyset$. Consequently there exists a $U \in \mathcal{X}'$ such that $F' \cap U \neq \emptyset$. It then follows that if x were in ∂F then, by definition of $\nu(F)$, $U = P$ for some $P \in \mathcal{P}(F)$ such that $P \cap B_0 \neq \emptyset$, and

$$d(x, B_0) \leq \text{diam } F' + \text{diam } P < \frac{\nu(F)}{4} + \frac{\varepsilon}{2} \leq \frac{\varepsilon}{8} + \frac{\varepsilon}{2} < \varepsilon.$$

If we let $C'_0 = [(\text{int } F) \cap C_0] \cup B_0$, then C'_0 is connected because C_0 contains D and

$$C'_0 = \bigcup \{[F' \cap (\text{int } F)] \cup [F' \cap B_0]: F' \subset C_0\},$$

which is a union of connected sets which cover D and each of which has nonempty intersection with D.

Now let

$$C_i = C_0 \cup \bigcup \{\bigcup \mathcal{X}(F, P): P \in \mathcal{P}(F), P \cap B_i \neq \emptyset \}.$$

We see that C_i is a closed subset of F and it is connected because C_0 and each $P \in \mathcal{P}(F)$ is connected and $x(P) \in P \cap C_0$. Let $C'_i = [(\text{int } F) \cap C_i] \cup B_i \cup B_0$. Then C'_i is a connected subset of F, for

$$C'_i = C'_0 \cup \bigcup \{[P \cap \text{int } F] \cup [B_i \cap P]: P \in \mathcal{P}(F), P \cap B_i \neq \emptyset \},$$

and C'_0 and $[P \cap \text{int } F] \cup [P \cap B_i]$ are connected and $x(P) \in C'_0 \cap P \cap \text{int } F$ for each $P \in \mathcal{P}(F)$.

Further note that if $x \in C_i \cap \partial F$, then either $d(x, B_i) < \varepsilon$ or $d(x, B_0) < \varepsilon$. Also F is a subset of $\bigcup_{i=0}^{m} C_i$.

This completes the proof of Lemma 2.

To apply this lemma to the theorem we let $\varepsilon = \rho(F)/3, B_0 = \partial \ast F$ and\

$$[B_i]_{i=1}^{m(F)} = \{[F^* E]: E \in \mathcal{X}(F) \cup \mathcal{X}^*(F)\}.$$

Thus for $F \in \mathcal{T}(n)$ we get sets $C_i, i = 0, 1, \cdots, m(F)$ satisfying the conditions of the lemma. For clarity we will sometimes write $C(F)$ for $C_0(F)$ and use $C(F, E)$ for $C_i(F)$ when $B_i = \partial \ast F$ for $E \in \mathcal{X}(F) \cup \mathcal{X}^*(F)$. We will also use $C'(F)$ for C'_0 and $C'(F, E)$ for C'_i.

We will now define the relation δ_n on X. First we inductively
define sets $J(F)$ and $J(F, E)$ for each $F \in \mathcal{T}(n)$, $E \in \mathcal{C}(F) \cup \mathcal{C}^*(F)$. The elements of $J(F)$ and $J(F, E)$ will, in a sense, be "predecessors" of the elements of $C(F)$ and $C(F, E)$ respectively.

For $F \in \mathcal{T}(n, 0)$, let $J(F) = C(F)$ and for $E \in \mathcal{C}(F) \cup \mathcal{C}^*(F)$ let $J(F, E) = C(F, E) \cup J(F)$. Then suppose $J(F)$ and $J(F, E)$ have been defined for all $F \in \mathcal{T}(n, t - 1)$, $E \in \mathcal{C}(F) \cup \mathcal{C}^*(F)$. Let F be an element of $\mathcal{T}(n, t)$. Define

$$J(F) = C(F) \cup \{J(F_*, F) : F_* \in \mathcal{C}_*(F)\}$$

and let

$$J(F, E) = C(F, E) \cup J(F) \text{ for } E \in \mathcal{C}(F) \cup \mathcal{C}^*(F).$$

Thus we can define $J(F)$ and $J(F, E)$ for all

$$F \in \mathcal{T}(n), E \in \mathcal{C}(F) \cup \mathcal{C}^*(F).$$

The sets $J(F)$ and $J(F, E)$ are each closed since they are a finite union of closed sets. Also $J(F, E)$ is connected if $J(F)$ is connected since for each $E \in \mathcal{C}(F) \cup \mathcal{C}^*(F)$, $C(F, E)$ contains $C(F)$. But $J(F)$ is connected since if $F_* \in \mathcal{C}_*(F)$ then for each $P \in \mathcal{T}(F_*)$ such that

$$P \cap F \neq \emptyset, P \cap \partial F \cap C(F_*, F') \neq \emptyset.$$

Thus $C(F)$ is not separated from $C(F_*, F)$ for any $F_* \in \mathcal{C}_*(F)$.

We will let $L_n(x) = \{y : (y, x) \in \delta_n\}$ and define δ_n by defining the sets $L_n(x)$ for all $x \in X$. Let $x \in X$ and $F \in \mathcal{T}(n)$. If $x \notin F$, let $K_F(x) = \emptyset$. If $x \in F$ and $x \in C(F)$, let $K_F(x) = J(F)$. If $x \in F$ and $x \in \bigcup \{C(F, E) : E \in \mathcal{C}(F) \cup \mathcal{C}^*(F)\} - C(F)$ there exists some $E \in \mathcal{C}(F) \cup \mathcal{C}^*(F)$ such that $x \in C(F, E)$, so let

$$K_F(x) = \bigcup \{J(F, E) : x \in C(F, E), E \in \mathcal{C}(F) \cup \mathcal{C}^*(F)\}.$$

Then let

$$L_n(x) = \bigcup \{K_F(x) : F \in \mathcal{T}(n)\}.$$

Then $L_n(x)$ is closed and connected for each x, for it is a nonempty finite union of closed sets, and the nonempty sets comprising that union are each connected and contain x.

The relation δ_n is closed because

$$\delta_n = \bigcup \{C(F) \times C(F') : F \in \mathcal{T}(n)\}$$

$$\cup \bigcup \{C(F', E') \times C(F, E) : F \in \mathcal{T}(n),$$

$$E \in \mathcal{C}(F) \cup \mathcal{C}^*(F), C(F', E') \subset J(F, E)\}$$

which is a finite union of products of closed sets.

To complete the induction we will assume δ_n has been defined and we will define the sets, $\mathcal{T}(n + 1)$, $\mathcal{T}(n + 1, t), t = 0, 1, \ldots$, and for
each \(F \in \mathcal{F}(n+1) \) we must define \(\delta_\ast F, \varepsilon_\ast(F), \varepsilon(F), \varepsilon_\ast(F), \delta_\ast F, \rho(F) \) and for each \(E \in \mathcal{C}(F) \cup \varepsilon_\ast(F), \partial E \).

First let \(\mathcal{F}(n+1) = \bigcup \{ \mathcal{C}(F); F \in \mathcal{F}(n) \} \) where \(\mathcal{C}(F) \) is as defined in (5).

As in the initial induction step, we will assign to each \(F \in \mathcal{F}(n+1) \) an order which will, in a sense, classify the sets of \(\mathcal{F}(n+1) \) according to how “far away” they are from 0. But since we want to assure that \(\delta_{n+1} \subset \delta_n \), or, what is the same thing, \(L_{n+1}(x) \subset L_n(x) \) for all \(x \in X \), we must take more care in defining the order of an element \(F \) of \(\mathcal{F}(n+1) \). Because each \(F \in \mathcal{F}(n+1) \) is contained in an unique element of \(\mathcal{F}(n) \), the “predecessors” of the elements of \(F \) must be contained in the set of “predecessors” of that unique element of \(\mathcal{F}(n) \) which contains it.

We will partition \(\mathcal{F}(n+1) \) into the sets \(\mathcal{F}(n+1, t) \), \(t = 0, 1, \ldots \), and if \(F \in \mathcal{F}(n+1, t) \) we will say \(F \) has order \(t \). First we let

\[
\mathcal{F}(n+1, 0) = \{ F \in \mathcal{F}(n+1); 0 \in F \}.
\]

Let \(F_n \) be an element of \(\mathcal{F}(n, s-1) \) and suppose that order has been defined for the elements of some subset of \(\mathcal{C}(F_n) \) which contains at least \(\{ F \in \mathcal{C}(F_n); F \cap \partial F_n \neq \emptyset \} \). Let \(F \) be an element of \(\mathcal{C}(F_n) \) such that \(F \cap C'(F_n) \neq \emptyset \) and such that order has not yet been defined for \(F \). We will let \(F \) be an element of \(\mathcal{F}(n+1, t) \) and say \(F \) has order \(t \) if \(t \) is the smallest positive integer such that there exists \(F_\ast \in \mathcal{C}(F_n) \) such that \(F_\ast \subset C(F_n) \), \(F_\ast \) has order \(t - 1 \), and \(F_\ast \cap F \cap \text{int } F_n \neq \emptyset \). Let

\[
(3.2) \quad \mathcal{C}_\ast(F) = \{ F_\ast \in \mathcal{C}(F_n); F_\ast \in \mathcal{F}(n+1, t-1), F_\ast \subset C(F_n) \}
\]

and \(F_\ast \cap F \cap \text{int } F_n \neq \emptyset \).

Notice that this is enough to define order for all \(F \in \mathcal{C}(F_n) \) such that \(F \cap C'(F_n) \neq \emptyset \), since \(C'(F_n) \) is connected and covered by the connected sets \([F \cap \text{int } F_n] \cup [F' \cap \partial F_n] \). Now suppose \(F \in \mathcal{C}(F_n) \) but \(F \cap C'(F_n) = \emptyset \). Then \(F \subset P \) for some unique \(P \in \mathcal{P}(F_n) \), where \(\mathcal{P}(F_n) \) is as defined in the proof of Lemma 2. Let \(F \) be an element of \(\mathcal{F}(n+1, t) \) and say \(F \) has order \(t \) if \(t \) is the smallest positive integer such that there exists some \(F_\ast \in \mathcal{F}(n+1, t-1) \) such that \(F_\ast \subset P \) and \(F_\ast \cap F \cap \text{int } P \neq \emptyset \). Let

\[
(3.3) \quad \mathcal{C}_\ast(F) = \{ F_\ast \in \mathcal{C}(F_n); F_\ast \in \mathcal{F}(n+1, t-1), F_\ast \subset P \}
\]

and \(F_\ast \cap F \cap \text{int } P \neq \emptyset \).

This is enough to define order for all \(F \in \mathcal{C}(F_n) \) since for each \(P \in \mathcal{P}(F) \), \(\text{int } P \) is connected and covered by the connected sets \(F \cap \text{int } P \) for \(F \in \mathcal{C}(F_n, P) \) and \(P \cap C'(F_n) \neq \emptyset \).
Suppose order has been defined for all $F \in \mathcal{F}(F_n)$ where $F_n \in \mathcal{F}(n, s - 1)$. Let $F_{n,s}$ be an element of $\mathcal{F}(n, s)$ and let F be an element of $\mathcal{E}(F_{n,s})$ such that $F \cap \partial*F_{n,s} \neq \emptyset$. We will let F' be an element of $\mathcal{F}(n + 1, t)$ and say F' has order t if t is the smallest positive integer such that there exists $F* \in \mathcal{F}(n + 1, t - 1)$ such that

$$F* \subseteq F_{n,s} \in \mathcal{F}(n, s), \quad F_{n,s} \in \mathcal{E}_*(F_{n,s})$$

and $F \cap F* \cap \partial*F_{n,s} \neq \emptyset$. Let

$$\mathcal{E}_*(F') = \{F* \in \mathcal{F}(n + 1, t - 1): F* \subseteq F_{n,s} \in \mathcal{F}(n, s - 1), \quad F_{n,s} \in \mathcal{E}_*(F_{n,s}), \quad F \cap F* \cap \partial*F_{n,s} \neq \emptyset\}.$$

With this we have defined a unique order for each $F \in \mathcal{F}(n + 1)$ and we have $\mathcal{F}(n + 1) = \bigcup_t \mathcal{F}(n + 1, t)$.

Now let F' be an element of $\mathcal{F}(n + 1)$ and suppose $F \cap F' \subseteq \mathcal{F}(n)$. As mentioned earlier, in order to make the relation Δ a transitive order, it will be necessary that the elements of $\partial F_n - (\partial*F_n \cup \partial*F_{n})$ have no successors. To ensure that this happens since $\partial*F'$ will have successors in the relation ∂_{n+1}, we must define $\partial*F'$ for $F \in \mathcal{E}(F_n)$ so that

$$\partial*F \cap [\partial F_n - (\partial*F_n \cup \partial*F_{n})] = \emptyset,$$

when $F \cap \partial*F_n = \emptyset$. Also, if $F \cap C(F_n) = \emptyset$ and $F \subseteq P \in \mathcal{P}(F_n)$, we want $\partial*F \cap \partial P = \emptyset$.

We do this as follows. If $F \in \mathcal{E}(F_n)$ and $F \cap F_{n,s} \neq \emptyset$, set

$$\partial*F = F \cap \partial*F_n.$$

If $F \cap \partial*F_n = \emptyset$, but $F \cap C'(F_n) \neq \emptyset$, for each $E \in \mathcal{E}_*(F)$ choose $p(F, E) \in F \cap E \cap \text{int } F_n$. Let

$$T(F_n) = \{p(F, E): F \in \mathcal{E}_*(F_n), \quad F \cap \partial*F_n = \emptyset, \quad F \cap C'(F_n) \neq \emptyset, \quad E \in \mathcal{E}_*(F)\}.$$

Since $T(F_n)$ is a finite set it is a closed subset of $\text{int } F_n$. Because F_n is normal, we can find $S(F_n)$, an open subset of F_n such that

$$\text{Cl}(S(F_n)) \cap T(F_n) = \emptyset \quad \text{and} \quad \partial F_n \subset S(F_n).$$

Then for $F \in \mathcal{E}_*(F_n)$ such that $F \cap \partial*F_n = \emptyset$ and $F \cap C'(F_n) \neq \emptyset$, set

$$\partial*F = \{F \cap (\cup \mathcal{E}_*(F)) \} - S(F_n).$$

Since $\mathcal{E}_*(F) \neq \emptyset$ and for $E \in \mathcal{E}_*(F)$, $p(F, E) \in S(F_n)$, it follows that $\partial*F$ is a nonempty closed subset of ∂F and $\partial*F \cap \{\partial F_n - \partial*F_n\} = \emptyset$. Similarly for $F \in \mathcal{E}_*(F_n)$ such that $F \cap C'(F_n) = \emptyset$, we know that $F \subseteq P$ for some unique $P \subseteq \mathcal{P}(F_n)$. Now for each $F \subseteq P$ such that $F \cap C'(F_n) = \emptyset$ and each $E \in \mathcal{E}_*(F)$, we can choose $p(F, E)$ to be an
element of $F \cap E \cap \text{int } P$. Let

$$T(F_n, p) = \{p(F, E) : F \in S(F_n, P), F \cap C'(F_n) = \emptyset, \text{ and } E \in \mathcal{E}(F)\}.$$

Since $T(F_n, P)$ is a finite set it is a closed subset of $\text{int } P$. Therefore we can find an open set $S(F_n, P)$ such that $\partial P \subset S(F_n, P)$ and

$$\text{Cl}(S(F_n, P)) \cap T(F_n, P) = \emptyset.$$

Now for each $F \subset P$ such that $F \cap C'(F_n) = \emptyset$, set

$$(4.4) \quad \partial* F = [F \cap (\cup \mathcal{E}(F))] - S(F_n, P).$$

It follows that $\partial* F \cap \partial P = \emptyset$ and $\partial* F$ is not empty.

For all $F \in \mathcal{F}(n + 1)$ let

$$\mathcal{E}*(F) = \{E \in \mathcal{F}(n + 1) : F \in \mathcal{E}(E)\}$$

and let

$$\partial* F = \cup \{\partial* E \cap F : E \in \mathcal{E}*(F)\}.$$

If $E \in \mathcal{E}*(F)$ let

$$\partial* F = \partial* E \cap F.$$

Let

$$\mathcal{E}(F) = \{E \in \mathcal{F}(n + 1) : E \neq F, (E \cap F) - (\partial* F \cup \partial* F) \neq \emptyset\}$$

and for $E \in \mathcal{E}(F)$ let

$$\partial* F = \text{Cl}[(E \cap F) - (\partial* F \cup \partial* F)].$$

If $\mathcal{E}*(F) \neq \emptyset$, let $\rho(F) = d(\partial* F, \partial* F)$ and if $\mathcal{E}*(F) = \emptyset$, let $\rho(F) = \text{diam } F$. If $F \cap \partial* F_n = \emptyset$ but $F \cap C'(F_n) \neq \emptyset$, let $\rho(F) = d(\partial* F, \partial F_n)$. If $F \cap C'(F_n) = \emptyset$, and $F \subset P \in \mathcal{P}(F_n)$, let $\rho(F) = d(\partial* F, \partial P)$; otherwise let $\rho(F) = \text{diam } F$. Finally let

$$(9) \quad \rho(F) = \min \{\rho, \rho(F)\}.$$

This completes the definitions necessary to define ∂_n for all positive integers n.

We now define a relation Δ on X by letting $\Delta = \bigcap_{n=1}^{\infty} \partial_n$. It remains to show that Δ is a partial order satisfying Theorem 2.

3. The relation Δ satisfies the hypotheses of Koch's Arc Theorem. The relation Δ is continuous on X since $\Delta = \bigcap_{n=1}^{\infty} \partial_n$ and we have shown in (7) that each ∂_n is closed in $X \times X$. Also 0 is a zero for Δ since $0 \in L(x)$ for all $x \in X$. We must further show that $L(x)$, the set of predecessors of each $x \in X$ under the relation Δ, is a
connected set. To do this it is enough to show that \(L_{n+1}(x) \subseteq L_n(x) \) for each \(x \in X \), since then the set \(\{L_n(x)\}_{n=1}^{\infty} \) will be a nest of continua and \(L(x) = \bigcap_{n=1}^{\infty} L_n(x) \) will be a continuum and thus be connected.

Because \(L_{n+1}(x) \), (6), is a union of sets of the forms \(J(F) \) and \(J(F, E) \) where \(F \in \mathcal{F}(n + 1) \), \(E \in \mathcal{E}(F) \cup \mathcal{E}^*(F) \) and \(x \in C(F) \) or \(x \in C(F, E) \) to prove \(L_{n+1}(x) \subseteq L_n(x) \), it is sufficient to show that if \(x \in F \in \mathcal{F}(n + 1) \) and \(F \subseteq F' \in \mathcal{F}(n) \), then \(F' \cup J(F) \) is a subset of either \(J(F') \) or \(J(F', E') \) for some \(E' \in \mathcal{E}(F') \cup \mathcal{E}^*(F') \). This proof is omitted but is a straightforward induction on \(t \) when

\[
x \in F \subseteq F' \in \mathcal{F}(n, t)
\]

using definitions (2.1-2) of \(J(F) \) and (3.1-4) of \(\mathcal{E}_*(F) \).

It is clear that \(\Delta \) is reflexive. That \(\Delta \) is a partial order on \(X \) will be established by the following lemmas.

Lemma 3. Let \(F_1 \) and \(F_2 \) be distinct elements of \(\mathcal{F}(n) \) and let \(x \) be an element of \(\partial F_1 - (\partial_* F_1 \cup \partial^* F_1) \). Then \(x \) is an element of \(\partial F_2 - (\partial_* F_2 \cup \partial^* F_2) \).

Proof. We will proceed by induction on \(n \). Suppose \(n = 1 \), and that \(F_1 \) is an element of \(\mathcal{F}(1, t) \). Then the order of \(F_1 \) is either \(t - 1, t \) or \(t + 1 \), using (1) since \(F_1 \cap F_2 \neq \emptyset \). If \(F_2 \in \mathcal{F}(1, t - 1) \) then by (4.1) \(x \in \partial_* F_1 \) and if \(F_2 \in \mathcal{F}(1, t + 1) \) by (4.1) \(x \in \partial^* F_1 \), and both of these situations contradict the hypothesis. Thus \(F_2 \in \mathcal{F}(1, t) \). Suppose \(x \in \partial_* F_2 \). Then there exists a set \(F_3 \in \mathcal{F}(1, t - 1) \) such that \(x \in F_3 \cap F_1 \). But also \(x \in F_1 \) so \(x \in F_1 \cap F_3 \subset \partial_* F_1 \) which is a contradiction. Similarly, if \(x \in \partial^* F_2 \) there exists a set \(F_3 \in \mathcal{F}(1, t + 1) \) such that \(x \in F_3 \cap F_2 \), so \(x \in F_1 \cap F_3 \subset \partial* F_1 \) and we get another contradiction.

We now suppose the lemma is true for \(n = 1, 2, \ldots, k - 1 \). Let \(F_1 \) and \(F_2 \) be distinct elements of \(\mathcal{F}(k) \) and suppose \(F_1 \subset T_1 \in \mathcal{F}(k-1) \) and \(F_2 \subset T_2 \in \mathcal{F}(k-1) \). By (4.1-4) we have for \(i = 1, 2 \)

\[
(10) \quad \partial_* F_i \cup \partial^* F_i \subset (\text{int } T_i) \cup \partial_* T_i \cup \partial^* T_i.
\]

So \(x \in \partial_* F_1 \cup \partial^* F_1 \) implies by (4.2) that \(x \in \partial_* T_1 \cup \partial^* T_1 \).

Now if \(T_1 \neq T_2 \), \(x \in T_1 \cap T_2 \) implies \(x \in \partial T_1 \cap \partial T_2 \). From the induction hypothesis \(x \in \partial T_1 - (\partial_* T_1 \cup \partial^* T_2) \). Therefore by (10) \(x \in \partial F_2 - (\partial_* F_2 \cup \partial^* F_2) \).

If, however, both \(F_1 \) and \(F_2 \) are subsets of \(T_i \), we will consider first the case when \(x \in C(T_i) \). If \(x \in S(T_i) \), where \(S(T_i) \) is as defined in (8) then by (4.3) \(x \in \partial_* F \cup \partial^* F \) for any \(F \in \mathcal{E}(T_i) \) such that \(F \cap C(T_i) \neq \emptyset \). In particular \(x \in \partial_* F_2 \cup \partial^* F_2 \). If \(x \in S(T_i) \), the argument that \(x \in \partial_* F_2 \cup \partial^* F_2 \) is analogous to the situation when \(n = 1 \).

The final case when \(x \in C(T_i) \) follows by a similar argument using that either \(F_1 \subset P_1 \) and \(F_2 \subset P_2 \) where \(P_1 \neq P_2 \) and \(P_1 \) and \(P_2 \) are in
\(\mathcal{P}(T_i) \); or \(F_i \cup F_2 \subset P \) for some \(P \in \mathcal{P}(T_i) \) and that
\[
\partial_* F_i \cup \partial* F_i \subset [P - S(T_1, P)] \cup \partial* T_i
\]
for \(i = 1, 2 \).

Note. It follows from Lemma 3 that for \(x \in (\text{int } F_i) \cup \partial_* F_i \cup \partial* F_i \) where \(F_i \in \mathcal{F}(n, t) \) and if \(x \in F_2 \) for some \(F_2 \in \mathcal{F}(n) \), \(F_2 \neq F_1 \), then \(x \in \partial_* F_2 \cup \partial* F_2 \). Further if \(x \in \partial_* F_1 \) then \(F_2 \in \mathcal{F}(n, t - 1) \cup \mathcal{F}(n, t) \), and if \(x \in \partial* F_1 \), then \(F_2 \in \mathcal{F}(n, t + 1) \).

Lemma 4. Let \(F \in \mathcal{F}(n) \) and \(x \in \partial F - (\partial_* F \cup \partial* F) \). Let \(m \) be an integer such that there exists \(E \in \mathcal{F}(m) \) such that \(x \in E \subset F \) and \(E \cap (\partial_* F \cup \partial* F) = \emptyset \). Then \(C(E, E^*) \cap \partial F = \emptyset \) for all \(E^* \in \mathcal{E}^*(E) \).

Proof. Let \(F_m = E \) and \(F_n = F \). Then there exists \(\{F_i\}_{i=1}^m \) such that \(F_i \in \mathcal{F}(i) \) and \(F_{i+1} \subset F_i \). Let \(l \) be the greatest integer such that \(m > l \geq n \) and \(\partial_* E - \partial_* F_i \neq \emptyset \) and let \(k \) be the greatest integer such that \(\partial_* E - \partial* F_k \neq \emptyset \). Then \(m > l \geq n \) and \(m > k \geq n \). Without loss of generality suppose \(l \geq k \). Since \(\partial_* E \subset \partial_* F_{l+1} \),
\[
d(\partial_* E, \partial F_l) \geq d(\partial_* F_{l+1}, \partial F_l)
\]
From (8) \(\partial F_i \subset S(F_i) \) and by (4.3) and (4.4) \(\partial_* F_{l+1} \subset F_i \setminus S(F_i) \). Therefore
\[
d(\partial_* F_{l+1}, \partial F_l) = \rho(F_l) \geq \rho(F_i)
\]
Thus \(d(\partial_* E, \partial F_i) \geq \rho(F_i) \). Similarly
\[
d(\partial_* E, \partial F_k) \geq d(\partial_* F_k+1, \partial F_k) \geq \rho(F_k)
\]
Also
\[
d(\partial* E, \partial F) \geq d(\partial* E, \partial F_k) \text{ and } d(\partial* E, \partial F) \geq d(\partial* E, \partial F_i).
\]
Thus
\[
d(\partial* E \cup \partial* E, \partial F) \geq \min \{d(\partial* E, \partial F_k), d(\partial* E, \partial F_i)\}
\geq \min \{\rho(F_k), \rho(F_i)\} = \rho(F_i) \geq \rho(F_{m-l}).
\]
From Lemma 2 if \(x \in \partial E \) and
\[
d(x, \partial_* E \cup \partial* E) > \frac{\rho(F_{m-l})}{3}
\]
then \(x \in C(E, E^*) \) for any \(E^* \in \mathcal{E}^*(E) \). Thus \(\partial F \cap C(E, E^*) = \emptyset \) for any \(E^* \in \mathcal{E}^*(E) \).

Lemma 5. Let \(x \in \partial F - (\partial* F \cup \partial* F) \) for \(F \in \mathcal{F}(n) \). Then \(x \) has no successors other than itself in the relation \(\Delta \).
Proof. Assume \(y \geq x \) and \(y \neq x \). Choose \(m > n \) such that \(d(x, y) > 2^{-m} \) and such that \(d(x, \partial^*_x F \cup \partial^*F) > 2^{-m} \). Then since for \(F' \in \mathcal{F}(m) \) we have \(\text{diam } F' < 2^{-m} \), \(x \) and \(y \) are not both elements of any one \(F' \in \mathcal{F}(m) \). Also, if
\[
x \in F' \in \mathcal{F}(m), \quad \text{then } F' \cap (\partial^*_x F \cup \partial^*F) = \emptyset,
\]
so that \(m \) satisfies the conditions of Lemma 5. However, since \(x \in L_m(y) \) and \(x \) is in no element of \(\mathcal{F}(m) \) containing \(y \), by (6) \(x \in C(F', F^*) \) for some
\[
F' \in \mathcal{F}(m) \text{ and } F^* \in \mathcal{C}^*(F').
\]
But by Lemma 4, \(C(F', F^*) \cap \partial F = \emptyset \). This is a contradiction and proves that such a \(y \) cannot exist.

In the next lemma we will use the following notation. If \(x \in \text{int } F \) for some \(F \in \mathcal{F}(n, t) \), set \(q_n(x) = t \). If \(x \in \partial^*_x F \) for some \(F \in \mathcal{F}(n, t) \), set \(q_n(x) = t - 1 \). By the note after Lemma 3, \(q_n(x) \) is well-defined and single valued for all \(x \in (\text{int } F) \cup \partial^*_x F \cup \partial^*F \) where \(F \in \mathcal{F}(n) \).

Lemma 6. The relation \(\Delta \) is anti-symmetric.

Proof. Assume there exist \(x \) and \(y \) in \(X \) such that \(x \neq y \) and \(y \leq x \). Choose \(n \) such that \(d(x, y) > 2^{-n+1} \). Then, since \(x \in L_n(y) \), there exists some \(F_1 \in \mathcal{F}(n) \) such that \(y \in F_1 \in \mathcal{F}(n, t) \) and \(x \in J(F_1) \). By Lemma 5, \(y \in (\text{int } F_1) \cup \partial^*_x F_1 \cup \partial^*F_1 \), so \(q_n(y) \) is defined and \(q_n(y) \leq t - 1 \). Now because \(d(x, y) > 2^{-n+1} \), \(x \in F_2 \in \mathcal{F}(n) \) where \(F_2 \in \mathcal{F}(n, s) \) and \(s < t - 1 \). Also by Lemma 5, \(x \in \text{int } F_2 \cup \partial^*_x F_2 \cup \partial^*F_2 \), so \(q_n(x) \) is defined and \(q_n(x) \leq s < t - 1 \). It follows that \(q_n(y) > q_n(x) \). But by a symmetric argument since \(y \in L_n(x) \), it can be shown that \(q_n(x) > q_n(y) \). This contradiction proves that \(\Delta \) is anti-symmetric.

Lemma 7. The relation \(\Delta \) is transitive.

Proof. Let \(x, y \) and \(z \) be elements of \(X \) such that \(x \leq y \) and \(y \leq z \). We will show \(x \leq z \). We can assume \(x < y \) and \(y < z \). Choose \(n \) such that \(\min \{d(x, y), d(y, z), d(x, z)\} > 2^{-n+1} \). It is enough to show \(x \in L_n(z) \) since we have shown \(L_{n-1}(z) \supset L_n(z) \). Since \(y \in L_n(z) \), \(y \in F_y \) for some \(F_y \in \mathcal{F}(n, t) \) where \(y \in J(F_y, E') \subset L_n(z) \) for some \(E' \in \mathcal{C}^*(F_y) \). By Lemma 4, \(y \in \text{int } F_y \cup \partial^*_x F_y \cup \partial^*F_y \). If \(y \in \text{int } F_y \) then since \(x \in L_n(y), x \in J(F_y) \subset J(F_y, E') \subset L_n(z) \).

If \(y \in \text{int } F_y \) then either \(y \in \partial^*_x F_y \) or \(y \in \partial^*F_y \). We will consider the case when \(y \in \partial^*_x F_y \). The argument is similar when \(y \in \partial^*F_y \). By the note after Lemma 3 if \(y \in F \in \mathcal{F}(n) \), then \(F \in \mathcal{F}(n, t) \cup \mathcal{F}(n, t - 1) \).
If \(y \in F_* \in \mathcal{F}(n, t - 1) \) where \(x \in J(F_*) \) then \(x \in J(F_*, F_y) \subset L_n(z) \). If we assume this is not the case then \(x \in J(F_*, F_y) \) for any \(F_* \in \mathcal{C}_*(F_y) \). Let \(\mathcal{A} = \{ F_* \in \mathcal{F}(n, t - 1) : x \in J(F_*, F) \text{ for some } F \in \mathcal{F}(n, t) \} \) such that \(y \in F \). The set \(\mathcal{A} \) is not empty since \(x \in L_n(y) \). Let

\[
 r = \min \{ d(y, F_*): F_* \in \mathcal{A} \}.
\]

Since \(y \in F_* \) for any \(F_* \in \mathcal{A} \), \(r > 0 \). Choose \(m > n \) such that \(r > 2^{-m} \). Now because \(x \in L_m(y) \subset L_n(y) \) there exists a set \(T \in \mathcal{F}(m) \) such that \(y \in T \) and \(x \in J(T) \). Either \(T \subset F \) for some \(F \in \mathcal{F}(n, t) \) or \(T \subset F_* \) for some \(F_* \in \mathcal{F}(n, t - 1) \). However if

\[
 T \subset F_* \in \mathcal{F}(n, t - 1), x \in J(T) \subset J(F_*, F_y)
\]

which contradicts our assumption. Thus there exists \(F \in \mathcal{F}(n, t) \) such that \(T \subset F \). Now by (2.2) \(x \in J(T) \subset T \cup \cup \{ J(T_*, T) : T_* \cap T \neq \emptyset, T_* \in \mathcal{C}_*(T) \text{ and } T_* \subset F_* \text{ for some } F_* \in \mathcal{F}(n, t - 1) \} \). By the choice of \(m \) and \(r \), \(F_* \in \mathcal{A} \). But \(x \in J(T) \subset J(F_*, F) \) implies that \(F_* \in \mathcal{A} \). This contradiction says that \(x \in J(F_*, F_y) \) for some \(F_* \in \mathcal{C}_*(F_y) \) and thus \(x \in J(F_y) \subset L_n(z) \). This completes the proof that \(\mathcal{A} \) is transitive.

References

Received December 9, 1968.

University of Victoria
Victoria, B. C.
Willamette University
Salem, Oregon
William Wells Adams, *Simultaneous diophantine approximations and cubic irrationals* .. 1

Heinz Bauer and Herbert Stanley Bear, Jr., *The part metric in convex sets* .. 15

L. Carlitz, *A note on exponential sums* .. 35

Vasily Cateforis, *On regular self-injective rings* .. 39

Franz Harpain and Maurice Sion, *A representation theorem for measures on infinite dimensional spaces* .. 47

Richard Earl Hodel, *Sum theorems for topological spaces* ... 59

Carl Groos Jockusch, Jr. and Thomas Graham McLaughlin, *Countable retracing functions and \(\Pi^0_1 \) predicates* .. 67

Bjarni Jónsson and George Stephen Monk, *Representations of primary Arguesian lattices* .. 95

Virginia E. Walsh Knight, *A continuous partial order for Peano continua* .. 141

Kjeld Laursen, *Ideal structure in generalized group algebras* ... 155

G. S. Monk, *Desargues’ law and the representation of primary lattices* ... 175

Hussain Sayid Nur, *Singular perturbation of linear partial differential equation with constant coefficients* .. 187

Richard Paul Osborne and J. L. Stern, *Covering manifolds with cells* ... 201

Keith Lowell Phillips and Mitchell Herbert Taibleson, *Singular integrals in several variables over a local field* .. 209

James Reaves Smith, *Local domains with topologically \(T \)-nilpotent radical* .. 233

Donald Platte Squier, *Elliptic differential equations with discontinuous coefficients* .. 247

Tae-il Suh, *Algebras formed by the Zorn vector matrix* .. 255

Earl J. Taft, *Ideals in admissible algebras* .. 259

Jun Tomiyama, *On the tensor products of von Neumann algebras* .. 263

David Bertram Wales, *Uniqueness of the graph of a rank three group* .. 271