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We study the algebra Lι(G, A) of Bochner-integrable func-
tions from a locally compact topological group G to a Banach
algebra A. First we characterize closed ideals in L^G, A) as
subspaces that are translation invariant in a certain sense
(Theorem 2.2). After that we establish some generalizations
of Wiener's tauberian theorem. The class of algebras under
consideration consists of strongly semi-simple and completely
regular Banach algebras. After this, in §3, we deal with
spectral synthesis. Our main result (Corollary 3.6) states that
if A does not admit spectral synthesis then neither does
Lι(G, A) In §4 we apply the theory of completely regular,
strongly semi-simple Banach algebras to obtain some conditions
sufficient to ensure that a given ideal is the intersection of
the maximal regular ideals containing it.

An introduction to the theory of tensor products of vector spaces
can be found in several places, for instance in [16] or [5] The
question of norming a tensor product is treated in the references
mentioned the greatest cross norm Ύ is defined there. We include a
definition for completeness.

DEFINITION 1.1. Let E^E2 be normed vector spaces and suppose
t e Eι§§ E2. We define the greatest cross norm 7 by

Ύ(t) = inf Σ I Xi I I Vi I

with inf taken over all representatives Σ #* ® 2/i = t- The completion
of EL 0 E2 with respect to 7 is denoted by Et 0 r E2.

The following structure theorems will be used extensively in this
paper, sometimes without explicit mention. Proposition 1.4 provides
one of the major justifications for the study of vector valued group
algebras.

PROPOSITION 1.2 [5]. Let G be a locally compact group and A
a Banach algebra. Then

L\G, A) = L\G) <g> rA

where = denotes an isometric isomorphism.

REMARK 1.3. In [5, p. 59] proposition 1.2 is proved when A is
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a vector space. However, it is not difficult to extend the validity of
the result to algebras.

PROPOSITION 1.4. Let G and H be locally compact groups. Then

U(G x H) = U(G) <g) jL\H) .

Proposition 1.4 is a special case of Proposition 1.2 via the identi-
fication U(G x H) = L\Gf L\H)) (Cf. [20]).

2* Ideal structure* Tauberian theorems* If G is a locally
compact group the following theorem about closed one-sided ideals in
Lι(G) holds (Cf. e.g., [14, p. 374]):

A closed subspace I of Lι(G) is a left (right) ideal if and only if
it is invariant under left (right) translations, i.e., if and only if
x(-)el=>x(go-)el(x(-go)el) for every goeG.

Grove [6] has shown that this assertion is not valid in a gener-
alized group algebra. Here we show that if we consider a different
concept of translation the theorem is true. We make the following
definition.

DEFINITION 2.1. We say that a subspace I of Lι(G, A) (G is a
locally compact group, A a Banach algebra) is left A-translation in-
variant if

(i) x(-) e I => x(go ) e I for every goeG
(ii) x( ) G / => ax(-)el for every ae A .

Analogously, we define right ^.-translation invariance by replacing

(i) by
(i') x(') e I=> x( g0) e I for every gQeG

and (ii) by
(ii') x( ) e/=> x( )ael for every ae A.

We can then prove the following

THEOREM 2.2. Let G be a locally compact group and A a Banach
algebra with approximate identity. A closed subspace I of L\G, A)
is a left (right, 2-sided) ideal if and only if I is left (right, left
and right) A-translation invariant.

Proof. We prove this for a left ideal. So let I be a closed left
ideal. Using the notation xg for the function x(g*) and letting {ua}
be an approximate identity for L\G, A) we have (as in the numerical
case) that
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(u"tS-i*x)(g) = \ ua(g^g')x{g''ίg)dg'
JG

= \ ua(g')x{g'-ιgQg)dg'
JG

= (ua*x)gQ(g),

so that for xe I

xH = lim (u"*x)go = lim (ga

go-i*x) e I.

This shows that xe I=> xge I for every g e G. The proof of (ii),
Definition 2.1 is as follows

x e Z, a e A => aua*x e I

lim aua*x e I

a lim ua*x = axe I.

Thus we have shown that a closed left ideal in LX{G, A) is left
^.-translation invarient.

The proof of the converse implication is based on approximation
by means of a sort of Riemann sums.

Let I be a closed subspace of LX(G, A) such that I is left A-
translation invariant. We must show that xe I,y e Lι(G, A) ==> y*x e I.
Since I is closed and continuous functions with compact support are
dense in Lι(G, A) it suffices to show that xel=>y*xel for any con-
tinuous y e L\G, A) with compact support. So let y be such a func-
tion with support K. From what is given about / it follows that

^y(go)x9o e I for any goeG and aeC .

But

S r
y(g')xg.-idg' =

G JK

and the last term can be approximated arbitrarily well by sums of
the form

This can be seen in the following way: as in the numerial case we
can show that xg is a continuous function of g with respect to the
norm in U(G, A). Since y is continuous it follows easily that y(g)xg

is continuous (here we use pointwise multiplication). Moreover, y(g)xq = 0
outside K. From the compactness of K and the uniform continuity
of y{g)xg on K it follows that corresponding to a given ε > 0 there
are finitely many measurable disjoint sets K{(i — 1, 2, , n) such that
g', g" e K{ => | y(g')xg, - y(g")xg,, \ < e. If we choose gi e Kiy and define
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φ(g) =
Σ U
i = l

0

geK

where 1^ is the characteristic function of K^i = 1, •••,?&) then φ is
clearly integrable moreover, an application of Fubini's theorem yields
that

y(g')xg,~i(g)dg' - Σjky(gk)xg^(g)μ(Kk) dg
K

y(g')xg,-i(g) - y(gk)χg^(g) I dg' \ dg

I y{g')xg,-ι(g) - y(gk)xgτι(g) \ dg'dg

y(g')xg,-i(g) - y(gk)χg^(g) I dg dg'— 2-ίA;

<Σ*

Kk JG

>κk
κk

dg'= eμ(K) .

Since I is closed this shows that y*xel, i.e., J is a left ideal. This
proves the theorem.

From the proof of Theorem 2.2 we get

COROLLARY 2.3. // x19 x2 e Lι{G, A) and e > 0 is given then there
is a finite sum h of A-translations of x1 such that | xλ*x2 — h \ < ε.

Later, when we get to the spectral synthesis we shall make use
of Theorem 2.2. However, as a kind of introduction to the spectral
synthesis we shall concern ourselves with a special case, namely vari-
ous formulations of Wiener's tauberian theorems and the extensions
of these to generalized group algebras. It is well known that an im-
portant step in one standard proof of the so-called generalized Wiener's
tauberian theorem is a proof of the fact that if G is a locally compact
abelian group then every closed proper ideal in &{G) is contained in
a maximal regular ideal. A necessary condition that Z/(G, A) have
this property is that the range algebra A have it (see Corollary 3.5).

Therefore, we are led to the theory of the so-called tauberian alge-
bras which we define as follows (cf. [21]).

DEFINITION 2.4. A Banach algebra A is tauberian if every closed
proper 2-sided ideal has a nonempty hull, i.e., if every proper closed
2-sided ideal is contained in a maximal regular 2-sided ideal.

Apparently the theory of these algebras is not yet very extensive;
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the results that are of interest in this context make one or two other
assumptions about the algebras in question. Consequently, we start
out by considering these concepts, i.e., that of strong semi-simplicity
and that of complete regularity.

DEFINITION 2.5. Let A be an algebra. The strong structure
space RS{A) is the collection of all maximal regular 2-sided ideals in
A with the hull-kernel topology. The strong radical, RS(A) is defined
by

RS(A) = Π M .
MeBS(A)

If RS(A) — {0}, A is strongly semi-simple.

Let B1 and B2 be Banach-algebras, B3 = B, (g) rB2. Following [4]
we define

1 I Ji X J2 * ^ 3

where J{ is the collection of closed 2-sided modular ideals in B^ί — 1, 2, 3)
and

f: RSiBJ x RS(B2) • RS(Bλ <g) rB2) .

Let (I1912) e Jλ x J2 and define

R: B, (g) rB2 > BJI, (g) rBJI2

by

* = Σ Xi ® Vi e Bλ ® rB2 = > Λ(ί) - Σ Xi/Ii ® WΛ e 5

Then

Γί/j, I2) = kernel(β) .

It is not difficult to see that T(I19I2)eJ3. If

(M19 M2) e RSiBJ x RS(B2) c J, x J2

then let M3 e RS(B10 rβ 2) be a maximal modular ideal containing
T(M19 M2) and define

T(M19 M2) = M3 .

T and Γ are defined in [4] without use of the blanket assumption
of that paper that Bλ and B2 have identities. Clearly, therefore,
Lemma 2 [4] holds moreover Theorem 1 [4] shows that f is closed
when the hull-kernel topology is used. If Bλ and B2 have identities
T is injective [4] if Bx or B2 is commutative f is injective and sur-
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jective even when no identities are present [12]. It is not known to
the author whether T has these two properties in general. Generally,
we shall assume T to have these properties, i.e., to be bijective.

About strongly semi-simple generalized group algebras we have
the following immediate generalization of [12, Corollary 1]:

THEOREM 2.6. Let G be a locally compact group, A a Banach
algebra. Assume f: RS(L\G)) x RS(A) -»RS(L\G, A)) to be bijective.
Then L\G, A) is strongly semi-simple if and only if L\G) and A
are strongly semi-simple.

Next, we turn to the completely regular algebras. Following [21]
we have

DEFINITION 2.7. A Banach algebra A is completely regular if
RS(A) satisfies these conditions:

(i) RS(A) is Hausdorff
(ii) For every MeRS(A) there is an open set 0 such that

MeOczRS(A) and such that k(0) is a regular ideal (here k denotes
kernel).

In [21, p. 178] it is shown that the above conditions are equiva-
lent to the single condition that RS(Ά) be Hausdorff, where A is the
smallest Banach algebra with identity containing A.

We first prove

THEOREM 2.8. // Bι and B2 are completely regular Banach alge-
bras and if T is injective then

f: RSiB,) x RS(B2) > RSiB, <g> rB2)

is a homeomorphism so that if f is bijective then J5X (g) rB2 is com-
pletely regular.

Proof. Let 0* be an open set in RS(Bi) for which k(Oi) = I* is
a regular ideal, i = 1,2. Such sets exist in abundance by Definition
2.7 ii). The closure of O{ = h(k(Oi)) = λ(7<) is a compact set [15, Th.
2.6.4]. Let 0 = T ^ x 02). We first show that 0 has compact closure.
Again using [15, Th. 2.6.4] this will be accomplished by showing that
fc(0) is a regular ideal. We use the mapping T and Lemma 2 of [4]:
T(IU I2) is a regular ideal and if we can show that T(IU I2) c Jfc(O) then
λ (O) is regular. But
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T(Ilt It) S Π T(MU Mt)
M i e O i
i = l,2

S Π T(MltMt)M% e °%
i = l,2

= Γl M= k(0) .
if 60

Therefore h(k(0)) is a compact set. Now, since Bly B2 are com-
pletely regular /^(OJ) x h(k(02)) is Hausdorff. TQiik^) x
is closed in the relative topology of T(RS(By) x RS(B2)) so

Π

is compact in this topology. Moreover,

T-\h(kφ)) Π TiHkφd) x h(k(02))))

is a Hausdorff space with interior:

(M19 M2) e 0, x 02 ==> T(MU M2) e h(k(0)) Π nHkφ,)) x h(k(02))
=> (ML1 M2) e f-\h(k(0)) Π ΆHkφ,)) x h(k(02)))) .

It follows that f\ψ-vkim))Γ]γih{k{0i))xkik{02)))) is continuous so that
Γ|Olxo2 is continuous. 0λ x 02 is open; we have shown that T is a
homeomorphism.

If T is surjective, then clearly RSiB, (g) rB2) is Hausdorff. If
M = T(Mlf M2) e RS{Bι (g) rβ2) then there are open sets Oi with regular
kernels such that MiβOiii = 1, 2). T ^ x 02) = 0 is an open set con-
taining M and k(0) is regular by the first part of the above argument.

Consequently, Bι 0 γB2 is completly regular.

Theorem 2.8 will be used in Theorem 2.10. Just as in the nu-
merical case it is of importance in our proof of the Wienertauberian
theorem to be able to conclude that the elements vanishing outside
compact sets in the strong structure space are dense. This notion
will be made precise by means of the following definiton [21].

DEFINITION 2.9. Let B be a Banach algebra for S c RS(B) define

J(S, B) = {x G B; x(M) = 0e B/M

for all M in some open set containing S}

and

J(oo, B) = {x 6 B; x(M) = 0e B/M

for every M outside some compact set in RS(B)}.

If no confusion seems likely, we use the notation J(S) and J(oo).
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THEOREM 2.10. Let Bλ and B2 be completely regular Banach
algebras and suppose T is bίjective. Using — to denote norm closure
we have the following implication:

Proof. The proof of this statement is not hard. Since B, 0 B2

is dense in B, 0 rB2 it suffices to consider elements of the form x®y.
So let ε > 0 and x®yeB1(g)B2 be given. From the assumptions we
get that 3 xx e B and a compact set F1 c RSiB^) such that x^M,) = 0
for M1 g Fλ and such that | x — xλ | < ε. Similarly, 3 yλe B2 and a com-
pact set F2 c RS(B2) such that ^(ΛQ = 0 for M2 $ F2 and | y - yλ \ < ε.
7 being a crossnorm we get immediately that

ε).

Now, since Bλ and ΰ 2 are completely regular

T: RS(B) x i?S(52) > RSiB, 0 r52)

is continuous (Theorem 2.8) so f(Fί x F2) is compact.
If Mi T(F1 x F2) and M = TiM.M,) then it follows first that

Mλ £ F, or M2 $ F2 and next that x, ® ̂ (Jlί) = ̂ (AfJ (g) ?/i(M2) = 0.
From this the theorem follows.

Now we are ready to combine the three concepts mentioned so
far (tauberianism, strong semi-simplicity and complete regularity) in
a proof of a ideal theoretic formulation of Wiener's tanberian theorem.

THEOREM 2.11. Let G be a locally compact group such that
Lι(G) is strongly semi-simple, tauberian and completely regular and
let A be a strongly semi-simple, completely regular, tauberian Banach
algebra. Suppose T is bijective. Then Lι(G, A) is strongly semi-
simple, completely regular and tauberian.

Proof. Theorems 2.8 and 2.6. show that L\G, A) is strongly
semi-simple and completely regular. In [21] it is shown that under
these circumstances J(°c, Lι(G, A))~ is the uniquely determined minimal
closed 2-sided ideal with empty hull [21, Th. 1.2]. By the same token,
J(co, A)~~ is a closed 2-sided ideal with empty hull. Since A is tauberian
e7(oo, A)" cannot be proper, i.e., J(^, A)~ — A. Similarly,

But then (Theorem 2.10) J(oo, L\G, A))~ = L\G, A), i.e., no closed
proper 2-seided ideal in Lι(G, A) has an empty hull. Thus L\G, A)
is tauberian.



IDEAL STRUCTURE IN GENERALIZED GROUP ALGEBRAS 163

T is bijective if G is locally compact and abelian [12]. Con-
sequently, we also have

COROLLARY 2.12. [20]. If G is a locally compact abelian group
and C is a compact group, then the conclusion of Theorem 2.11
holds for L\G x C).

Proof. Lι(C) is strongly semi-simple, completely regular and
tauberian [21].

3. Spectral synthesis* A well known interpretation of 2.11 views
it as an answer to a special case of the question of spectral synthesis:
is a closed 2-sided ideal in a Banach algebra the intersection of the
maximal regular 2-sided ideals containing it ? Using the hull-kernel
terminology and notation, Theorem 2.11 says that with certain con-
ditions on Lι(G) and A our ideal IcZ/(G, A) satisfies I = k(h(I)) if
h(I) = 0 (because then / = L](G, A)).

If I = k(h(I)) for every closed 2-sided ideal in a Banach algebra
B we say that B admits spectral synthesis. Schwartz (in [17]) has
shown that L\E6) does not admit spectral synthesis. In this section
we shall prove some results along these lines for U(G, A). The main
result is that if A does not admit spectral synthesis then Lι(G, A)
does not, either.

LEMMA 3.1. Let G be a locally covipact group and A a Banach
algebra. Let I be a closed 2-sided ideal in A and define

J, = {fe D(G, A); f(g) e I a.e. g e G)

Jj is a closed 2-sided ideal.

REMARK 3.2. The definition of JL should be interpreted as fol-
lows : Pick a function representative / ' of the equivalence class of
functions / e Lι(G, A) if f'(g) e I for a.e. geG then / e JΣ.

PROOF OF LEMMA 3.1. Clearly Jx is a subspace. If fn—*f in
Lι(G, A)-norm then there is a subsequence fnjc converging to / a.e.
Since / is closed this implies that J1 is closed.

Consequently, to show that JΣ is an ideal we need only check
the A-translation invariance of /, (Theorem 2.2). (Note that no ap-
proximate identity is needed when we use Theorem 2.2 here.) But the
^-translation invariance of J 7 is an immediate consequence of the de-
finition of JΓ and the fact that / is an ideal.
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REMARK 3.3. Clearly, in Lemma 3.1, " 2-sided " could be replaced
by " le f t " or " right " .

LEMMA 3.4. With the assumptions of Lemma 3.1, let I be a
proper closed 2-sided ideal in A and Jj the corresponding ideal in
L\G, A).

Then

T(RS{L\G)) x h(I)) S h{Jr) .

If T is bijective, then

h(Jj) = TiRSφiG)) x h(I))

so that

k(h(Jj)) = Jz — k(h(I)) = I.

Proof. We shall show that if I, S U{G) is a modular 2-sided
ideal and if 72 3 I is a modular 2-sided ideal in A, then T(I^ J2) 3 Jτ:

We make the following observations: If J " is any closed 2-sided
ideal in A, then we can consider U(G, Ajl"). Any fe Lλ(G, A) induces
a mapping f-+fΓ, by

fv>(9) = f(9)II" a.e. geG.

Clearly,

JI,, = {feLί(G,A)\fI,, = 0}.

If /' is a closed 2-sided ideal in Lι{G) and B is any Banach algebra,
we have a mapping

al\ U(G) ®γB > L\G)IΓ (g> rB ,

i.e., a mapping

U(G, B) > L\G)IΓ ® rB

defined by

*l(Σ %i ® Vi) = Σ Xi/Γ (8) Vi

for any Σ «< ® 2fc e LX(G, 5).
If (I', J") is a pair of modular ideals, then

T(Γ, Γ) = kernel(α//r' o (/ >/,„)) .

Now the above claim follows easily: If IY c L^G) is a modular
2-sided ideal and J2 3 7 is a modular ideal, then
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/ 6 / , = » / e kernel(/ > /,)

—/ekernel(/ >/,2)

==» /6 kernel«" o (/ > /,,))

With this proved, the lemma follows from the general properties
of T and f:

If M2eh(I), M.eRSiL'iG)) then

ΐ(Mlt Mt) 2 Γ(M"lt ikf2) 2 J,

so

( * ) T[RS(Lι(G)) x h(I)) S Λ(«/i)

If T is bijective, then it is a simple matter to show that if
Mseh(J,), then

f-ι(M9) = (Mu M2)

has the property that M2 3 /, so that

(**) f-'iHJj)) S RS(L'(G)) x ft(/) .

Combining (*) and (**) the second claim of the lemma follows:

(***) h(Jt) = TiRSiUiG)) x h(I)) .

To get the last statement of the lemma, we replace / by k(h(I))
in (***):

,/,,) = T(RS(U(G)) x

= T(RS(L\G)) x

Therefore

= k(h(Jj))

from which we conclude immediately that if

then

The following corollaries are straightforward.
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COROLLARY 3.5. // T is bijectίve and if I is a closed 2-sided
ideal in A which is contained in no maximal regular ideal then the
same is true about JI%

COROLLARY 3.6. // f is bijective, then U(G, A) does not admit
spectral synthesis if A does not.

COROLLARY 3.7. Let G be a locally compact group and En n-
dimensional Euclidean space {considered an additive group). U(G x En}
does not admit spectral synthesis if n ^ 3.

Proof. [17], Proposition 1.4, and Corollary 3.6.
If we add the assumption that G be abelian, Lemma 3.5 can be

strengthened.

LEMMA 3.8. Suppose G is a locally compact abelian group and
A is a Banach algebra. If I is a closed proper 2-sided ideal, then

k(h(Jr)) — Jf if and only if k(h(I)) = / .

Proof. It is not difficult to show that if M1 is a maximal regular
ideal in Lι(G) and χ the corresponding character on G then Mx defines
a mapping

φMί: V(G, A) > A

given by

for every Σ^®2/»e L\G) ® rA = L\G, A) and that this mapping
has the integral expression

ΨMW - \ f(g)X(Q)dg for all fe U(G, A) .

Next, we note that if MeRSiL'iG, A)) and T(M) = (M19 M2), then

/Gl«^/el2. [12].

To complete the proof we must show that

fe k({T(Mu M2); M2 e h(I)}) ==> fe J£

under the assumption that k(h(I)) = I. Using the definition of J1 and
k(h(I)) = / we see that we must prove the following implication:

φMl(f) e I for any M, e RS(U(G))

=> f(g) 6 / for a.a. geG .
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So, suppose

φMι{f) = [ f(g)χ(g)dg e I
JG

for every character χ on G. By means of the approximation theorem

for abelian groups (cf. e.g., [14, Corollary 4, p. 406]) we get that

(*) \Λg)Ψ(g)dgeI

for every continuous function ψ: G —• C with compact support. If /
is continuous a well known argument will show that f(g) e I for every
geG.

To cover the general case we let {ua} be an approximate identity
in Lι{G) consisting of continuous functions with compact support.
Using standard results from the numerical case and Proposition 1.2.
we conclude first that ua*f—+f in U(G, A)-norm and next that ua*f
is continuous for every a. From {ua*f) we can pick a sequence and
from this a subsequence converging a.e. to /. Consequently, it suf-
fices to show that (ua*f)(g)el for every geG. But

ua*f(g) = I ua(gι)f(g71g)dg1
JG

= \ ua(gh~l)f{h)dh e I
JG

because of (*). This completes the proof.

Just as in [8] we can extract the following corollaries.

COROLLARY 3.9. // G is abelian and A is a Banach algebra, the
only maximal regular 2-sided ideals containing JM2 with M2 e RS(A)
are of the form T(M, M2) where M, is an arbitrary regular maximal
2-sided ideal in Lι(G).

COROLLARY 3.10. Same assumptions as in Corollary 3.9. Sup-
pose M'2, Mϊ e RS(A) and Mf

2 Φ M'2
f then

(T(Mly M'2) + JMί>)~ = U(G, A)

(where — denotes norm closure) for any Mx e

4* On sets of spectral synthesis. Turning to more positive as-
sertions about spectral synthesis we shall study I/(G, A) in the case
where Lι(G) and A are strongly semi-simple and completely regular.
The situation in which a certain weak form of spectral synthesis
holds will dominate this section.
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DEFINITION 4.1. Let A be an algebra. A closed set SaRS(A)
is said to be a set of spectral synthesis if S uniquely determines a
closed ideal I such that h(I) = S. Clearly then / = k(S), i.e.,

DEFINITION 4.2. A Banach algebra A in which singleton sets in
RS(A) are sets of spectral synthesis is called an iV*-algebra [21]. An
ideal I for which h(I) consists of just one point is a primary ideal.
Consequently, an iV*-algebra is a Banach algebra in which closed
primary ideals are maximal regular.

The following proposition generalizes Theorem 4 in [8] and will
be used to investigate conditions under which LX(G, A) is an iV*-algebra.

PROPOSITION 4.3. Let G be a locally compact group and A a
commutative Banach algebra. Suppose /cL ι (G, A) is a closed 2-sided
ideal such that Iz>IMo for some MQeRS(A). Let h(I) = {T(Mf, M")}.
IfW= {Mf; T(M', M") e h(I) for some M" e RS(A)} is a set of spectral
synthesis then h(I) is a set of spectral synthesis, i.e. I — k(h(I)).

Proof. From Lemma 3.4 (i) we get that

c h{IM) c {T(M19 M2); M2 e h(M0), M1 e

= {T(M1,M0);M1eRS(U(G))}.

= T(W,MQ)

with a slight abuse of notation.
Now, using the notation of the proof of Lemma 3.8 MQ e RS(A)

defines a homomorphism

φM(i:U{G,A)->U{G)

by

/ = Σ x< Θ Vi e L\G, A) - ΨuJ = Σ Modfcte e L\G) .

We consider the image of I under φM , i.e., let

K = φMa(I) .

We wish to show that if is a closed 2-sided ideal in L^G). Since
φMo is a homomorphism onto it is clear that K is an ideal to show
that K is closed we prove that if u0 is an identity modulo Mo then

K = {xeL\G);x<g>uoeI} .

If this equation holds it is elementary to show that K is closed:
{xn} c K, xn —* x0 => xn 0 u0 —> x0 0 uQ e I (since I is closed) => x0 e K.
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So suppose x 0 uQ e I then φMΰi
χ &) u0) = x e K. Conversely,

x e K=> 3/ 6 /such that φMof — %• Consider / — x®u\ f(g) —x(g)u0 e Mo

for a.a.g e G since if / = X %% 0 Vi then

M0(f(g) -

- Σ XiiΰWM - MQ{yi)Xi{g) = 0

From the definition of IMQ it follows that / — x ® u0 e IMo, i.e.,
f — x(&uQeI (note, incidentally, that / — £>^0/ ®W O G / ^ for every
felSiG, A)). But since / e i " it follows that a?®u o e/. This proves
that K = {x e L^G); x <%) uoe I}, and thus that K is a closed 2-sided
ideal (not necessarily Φ {0}).

The above characterization of K together with the definition of
the mapping T readily yield the fact that h{K) — W. But since
/ G / if and only if φMJ e K = k(W) it follows that fel if and only
i f M<g)M0(f) = M { M J ) = 0 f o r e v e r y M e W, i . e . , f e l i ί a n d o n l y
if fek(h(I)). This proves the proposition.

Using proposition 4.3. we can obtain a sufficient condition for
L\G, A) to be an N *-algebra.

THEOREM 4.4. Let G be a locally compact group such that Lι(G)
is completely regular, strongly semi-simple and tauberian and let A
be a commutative, completely regular, (strongly) semi-simple Banach
algebra. If Lι(G) and A are N*-algebras, then so is Lι(G, A).

Proof. We must show that if / is a primary closed 2-sided ideal,
e.g., h(I) - {Mo = T(M'O, MΌ')} then / = Mo. Since Lι{G, A) is strongly
semi-simple and completely regular (Theorems 2.6 and 2.10) we can
assume without loss of generality that / = (J(M0) Π J(°°))~ [21, p. 180].
We wish to apply Proposition 4.3 consequently, we must show that

So let / e IM'o
f we first show that we can approximate / by means

of continuous functions in IM'Q\ feIM'Q'=>f(g)eM" for a.a.g eG. If
{ua} is an approximate identity in L\G) consisting of continuous func-
tions then

is continuous and

u%f—*f as a—> oo .

Moreover, since ΐ(g) e MΌ' for a.a.g. e G, v>a(g9)f(g'~ιg) e M'o' for
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a.a.g, gr e G. An approximation argument similar to the one employ-
ed in the proof of Theorem 2.2. then yields that u*f(g) e M" for
a.a.geG, i.e., u*feIM>0>.

Since we want to show that / e IM'o
f => fe I and since I is closed

we can assume therefore, without any loss of generality, feIM

r

Q' to
be continuous.

So let feIM'o' be a given continuous function and let also e > 0
be given. 3 compact set EaG such that

f \f(g)\dg<^-.
JG\E £

Let g0 e E and consider f(g0) e M" (f(g) e M" for every geG since
/ i s continuous). A is assumed to be a semi-simple completely regular
ΛΓ* -algebra so 3 ygQ such t h a t

\f(9o)-ygo\< £

2μ(E)

and M"{yg) = 0 for all M" in a neighborhood NgQ of M" and outside
a compact set Cσ oci2S(A). Let

S9o = {#; 1/(0) - ygo\ <
1
I

Since / is continuous Sff0 is an open neighborhood of g0. Clearly,
{Sg0, go£ E} is an open cover of E and so has a finite subfamily
covering E.

Let the open sets covering E be {SJ?=1, let the appropriate points
2/*0 be {2/<}Γ=i and let the corresponding neighborhoods and compact
sets in RS(A) be {-WJ U and {C<}?=1, respectively. Define

Tt = S.f] E

) ) E i = 2, ••-,%;

then Tt f] T3- 0 if i Φ j and U?=i T i = ̂  Let lτ. be the characteristic
function of T^i = 1, , w). If we define

/ ' = Σ l Γ ί ® 2/i

then, clearly, / ' 6 !/((?, A). Moreover, M(ff) = 0 for every

Me jf(Mr, M")\ W e RS(L\G)), M" e (f\ ̂ ) U (RS(A)\ (J cλ

i.e., M(/ r) vanishes in a neighborhood of ikΓ0.
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\f- f'\ = \ \f(9)~ f'(9) \dg=\ I f(g) - Σ lΓi(ff)2/i I dg

+ [ \f(g)\dg<Σi\ I f(9) - Σ lrt(9)Vi I dflr + ε/2

= Σ ( 1/(0) - Ifc I dg + ε/2, since Γ{ Π Tj = 0 if iφ j
i hi

It remains to note that each 17. can be approximated by an element
Xi from J(oo9L

ι(G)), (because Lι{G) is tauberian) i.e., ±Ti®Vi can be
approximated by x{ Cξ) y{(i — 1, •••,%). Since the sum is finite it follows
that Σ Xi <g> 3/i e J(co,U(G, A)) Π J(M0, L^G, A)).

We have shown that 7^ c J. From Proposition 4.3. we get that
since {M'Q} is a set of spectral synthesis (L\G) is an iV*-algebra)
I = k(h(I)) = Mo.

This proves that Lι(G, A) is an iV*-algebra.

REMARK 4.5. In [10] it is shown that if G is a locally compact
abelian group and C is a compact group then Lι(G x C) is an JV*-
algebra. This result is contained in Theorem 4.4.

Incidentally, if the tensor product B 0 rC of two Banach algebras
is an iV*-algebra then it is possible to give a direct description of the
mapping f: RS(B) x RS(C) -> i2S(S (g) r C).

PROPOSITION 4.6. Suppose B®rC is an N*-algebra, and suppose
f is bijective. Let Mx e RS(B), M2eRS(C) and consider

IM2 = {xζ&y xeB^ye M2} .

Let M = T(M19 M2). If we use the symbol [ ] to denote the ideal
generated by the set inside the brackets then

M = [IMι + IMi]- .

SKETCH OF PROOF. Because of the assumption on B (g) rC it suf-
fices to show that [IMl + IM2]~ is primary (clearly [/Jίl + / J f J - c i l f ) .
To show that [IMl + IMX~ is a primary ideal a slight variation of the
argument used in the proof of Lemma 4.7. can be used. Therefore,
we omit all further details.

With the notation of Proposition 4.6. we have the following

LEMMA 4.7. Suppose B and C are strongly semi-simple and
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completely regular Banach algebras, and suppose T is bijectίve. Let
M = T(Mlt M2) e RS(B <g) ,C) be given. Then

i0 = [JiMd n J(oo,B) <g> J(oo,c) + J(oo,B) (8) J(M2) n / ( -

= (J(M)nJ(oo,B®7C)).

Proof. Since B and C are completely regular T is a homeo-
morphism (Theorem 2.10). Therefore, if

x <g> y e (J(Λfi) Π J( - , B)) <g> J( - , C)

it is clear that a; (g) y e J( oo, β 0 rC). Moreover, x e J(M1) n / ( T O , ΰ ) c
3 open neighborhood N(Mγ) such that #(Mί) = 0 for all

TiNiM,) x RS(C)) is an open neighborhood of M in

TC) and x 0 ^/(lί') = x(M[) ® τ/(ikfθ - 0 for every

M ; = T(M[, Mi) e T(iV(M0 x RS(Q) .

This shows that /(ΛQ Π J( oo, β) ® J( co, Q c J(Af) n J( °°, B (g); C).
Repeating this argument we get that

J o c J ( M ) Π J(oo,5(g) rC) .

Because of the remark at the bottom of p. 180 of [21] to prove
equality it suffices to show that Io is a primary ideal. So suppose
xφyeM' = f(M[,M'2) for all xeJ(M1)nJ(o°,B),yeJ(oo,Q. We
can choose τ/0eJ(co,C) such that yo$M2 [21, Corollary 1.2.2.]. Since
x Cg) 2/0 G Λί' for all x e J(Mi) Π «/(°°, -B) it follows that M[ = ilίi (since
/(Mi) Π J(oo, 5) is a primary ideal [21, Th. 1.2.]).

Repeating this argument for J(°o, 5) (g) J(ilf2) Π J(°°, Q) we get
that M2 — Λίg and therefore that Io is primary.

[21] has transferred Ditkin's condition, condition (D) to the non-
commutative case. Here we shall consider the following version.

DEFINITION 4.8. A Banach algebra B satisfies condition (D) if
for every Me RS(B) (Mmay be all of B) 3 bounded net {ha} c J(M) Π J(°°)
such that for every fe (J(M) f] J(°o))- 3 subnet {K} such that fh'a->f.

LEMMA 4.9. Let B and C be strongly semi-simple completely
regular Banach algebras, and suppose T is bijective. If B and C
satisfy condition (D), then so does Bξξ)rC.

Proof. First, let Me RS(B ® rC), M = f(Mu M2). By assumption
3 bounded nets {hM.} c J(Mi) Π J(°°) so that for every xi e J(Mt) Π J(°°)
3 subnet {hfM) for which xih'M.—+x; (i = 1,2). Moreover, 3 bounded
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nets {h~1} cJ(co,S), {h°°2} cJ(oo,C) so that xhT —> x for every
xe J(oo, B) or J(°o, C) (where {fcΓ} is a subnet of {h™1}). The net we
shall use in B 0 C is {&1 0 A:2} where ¥ is defined as follows.

¥ e {hMι} => k2 e {hM2} or {/r2}

k1 G {h001} =>k2 e {h~2} .

It is not difficult to see that {kι 0 k2} c J(M) Π /(^o, B 0 rC). Because
{fc1 0 &2} is uniformly bounded and because of Lemma 4.7 it suffices
to consider elements of the form x®y with, say, x e J(Mi) Π J ί 0 0 , J3)
and y eJ(oo, C). Corresponding to this element we pick the appropri-
ate subnets {h'M) c {hM), {h°°'2} c {h°°2} and see immediately that

0 Ẑ 002) = a ? ^ 0 yh-* ->x®y .

A slight variation of this argument will handle the case M —

We are now ready to state the strongest result concerning spec-
tral synthesis that we know of in this context. Being essentially an
application of Corollary 2.6.1 in [21] we shall simply state it as

COROLLARY 4.10. Let G be a locally compact group and A a
Banach algebra so that Lι(G) and A are strongly semi-simple, com-
pletely regular and satisfy condition (D). Assume further that
Lι(G, A) is an N*-algebra, and that T is bijective. Let I be a closed
2-sided ideal in Lι(G, A). If the boundary of h{I) in RS(L\G, A))
contains no perfect set (Φ 0), then I — k(h(I)).

Proof. By Theorem 2.6, Theorem 2.8 and Lemma 4.9 L\G, A)
fulfils the hypotheses in Corollary 2.6.1 of [21]. Therefore the con-
clusion follows.

5* Concluding remarks* A comparison between this paper and
[9] or [8] will quickly reveal some similarities. Both of these papers,
however, deal with commutative algebras exclusively. While [8] has
served as a starting point for the investigations of §3, [9] was un-
known to the author at the time §2 was being developed.
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