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In this paper we construct singular integral transforms
of the Calder6n-Zygmund type for K¢ where K is a nondiscrete
zero dimensional locally compact field and d is a positive integer.
The transforms have the form

Lf =lim 9.« f,

k—oc0

where the kernel ¥, vanishes in a neighborhood of 0,
g Yil@dz =0,
la|=1

and v, satisfies certain smoothness conditions,

The results generalize the results of [6] in several ways: the p-
adic and p-series fields are replaced with K¢, pointwise convergence
is proved, and the hypothesis on the kernels is weakened. Many of
the methods also apply in other settings; see, e.g., the second author’s
forthcoming paper on multipliers [11], and the argument in Lemma 10
[12, p. 201].

We let Z denote the integers, Z* the positive integers. The
complement of a set S is denoted by S, its characteristic function by
&s. In general, our notation for the locally compact field K is as in
[9]. The second section of [9] also includes a good summary of that
elementary analysis on K which we will need; K? is treated in the
first pages of [12]. Let m be the modular function for K (A (aS)) =
m(a)\M(S), » Haar measure for (K, +)). We also let |z | = m(x). The
sets

P =folel=1) and P ={ofo| <Y

are the ring of integers of K and the unique maximal ideal of T,
respectively. Let o(B/P") = p* = ¢ (p prime) and P! = (7). For se Z,
j7*| = q°. Every a e K\{0} has a unique representation

X

a =7rma* with s=s(@)eZ and |a*|=1.

The vector space K¢ is all d-tuples of elements of K. We use
the norm

N(@) = |o| =supf{le;[:1 =7 = di@ = (@) ,

which is easily seen to be non-Archimeadean: [% + y| < max|[|z|, |¥]].
Any x e K%{0} can be written uniquely in the form
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¢ =mnw* with s=s(x)eZ and |a2*|=1.
we let
Pr={reK:|x|=q; Q' ={e:|e|=q¢"}.

Each P~ is a subgroup of K¢ and {P"};_, is a neighborhood basis at 0.
We use the inner product

d
<x, ?/> = ;ixz'yi .

There is a character ¥ on (K, +) which is identically one on PB° but
is nontrivial on the group P! = {a: |a| < q}. If we let y(a) = y(ap),
then the mapping 8 — y, is a topological isomorphism of (K, +) onto
its dual D(K, +); we thus identify (K, +) and D(K, +). Letting
L) = (K, y) for x, ye K¢, it follows that y— x, is a topological
isomorphism of K¢ onto D(K?). The anihilator in D(K?) of 3" is A(P") =
{Xy: xu(®) = 1 for all xe$P"}. Hence,

AR = Ly e BN (=P, neZ.

Normalization of Haar measure A on K¢ so that the companion Haar
measure on D(K%) making inversion theorems and Plancherel’s theorem
valid is again )\ requires that MA(B))NMPB") = 1. (This is an easy
calculation. See also (2.3) of [6]). In particular, M(P°) = 1. The
Fourier transform of a function f on K¢ is denoted by f; it is

initially defined on &, by f(y) = g ; F@)xKe, yD)dx. The inverse Fourier
v K
transform is denoted by f:

Fy = | F@uke, vdo .

The symbols €, €, and £.(1 < r < =) denote the usual function
spaces, defined for (K¢ \) if not otherwise indicated; €, is the con-
tinuous functions with compact support. In this and in any unexplained
notation, we follow [4]. For 1 < r < <, 7’ denotes the numbers such
that 1/» + 1/’ = 1. The function space & is all e, for which
there is some 7 such that o(x + $") = @(x), all xe K°.

Some often used computational principles are worth mentioning
at the outset. First, if fe &, (K% \), we can write

o

Sdedx: s ngfdx.

j=—e

Second, since ) is the product of d factors of Haar measure for K and
since the multiplicative Haar integral for K is f— XK(f /m)dx, we have
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Sde(am)dx = —I——Sde(x)dx

||

if e K\{0} and fe &(K% \). Combining these, we have that

[f@ olde = S Saof(n—ﬂ'x)dx.

j=—o0

We also often use the fact that
Smx(@c, y)dy =0 when |x]>q7.

2. Lebesgue set; maximal functions. The proof of pointwise
convergence in § 3 depends strongly on the Lebesgue set of a function
and on maximal functions. Both of these ideas can be developed in
in considerable generality, and we will do this in a section which is
independent of the rest of the paper, § 4. However the facts for K*¢
are considerably easier and we present them here. The set of « for
which (2.1.1) holds will be called, as in the classical case, the Lebesgue

set for f.
THEOREM 2.1. Let fe @, . (K%, r > 1. For almost all x, we have

(i) lim xém gw f@ = y) — f@)rdy = 0;

(i) Tim 2| 1@ 0+ @) 2@y = 0.

Proof. By differention of indefinite integrals (see (2.9) of [3]), we
have

1
AP
for each complex number « with rational coordinates. The proof of
(i) is completed as in the classical case (see, e.g., [13], p. 65); (i)
follows from (i).

lim 7 | 1@+ ) — @l dy = 7@~ al ae.

REMARK 2.2, The result of Edwards and Hewitt used above
applies to a general class of locally compact groups, and the proof is
fairly involved. The situation is much simpler for K¢ (or for any first
countable zero dimensional group), as described in the next few lines.

The equality we want is

(%) S)dy = f(x) a.e.

lim

for fe &, (K% N). We will prove (*) using (2.3), below.
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Let fe & .(K% \). For maximal functions, we use the notation

1
M)

For a function g = 0 and ¢ = 0, let E\fg] = {z: g(x) > t}.

M, f(x) =

g BN e 2 MF ) = sup M S (0)

THEOREM 2.3. If fe¥ (K9 1 £r < ) and t > 0, then

(1) MBI = 7 (e

Proof. If xe E[Mf], there is a PB"= such that S fdxn > (P =).
x—l—gB"’”
Since y + P = x + P= if yex + Pr=, we have x + P C E[Mf]. A

pair of cosets are either disjoint or one is contained in the other. It
follows that there is a pairwise disjoint family {x, + B*+};_, such that
E[Mf] = Uz (@, + B and

| > o)
a:,,ﬁ»ﬂﬁcﬂ

The equality (i) follows.
We now prove (x). We may assume that fe . Choose ¢t >0, and ¢
a continuous function that Sj g — fl < t*’/4. Then

| @ - sy
g

H(x) = lim sup YE)

n—oo

< lim sup f

n—rco

1
) ) — gtendy

. 1 ‘ N ol |
Flimsup || 1) — o) [y + @) — o)
SM(f—gh@) + [ f—gl@).
From (2.3) it follows that
MENH]) = ME LM f~gl]) + ME Ll f— gD

ZS‘ 2& 4 ¢
<Z\f—gl+E\f-9gl==22=t.
; f—ugl tlf gl P

It follows that H(x) = 0 a.e. and the equality () follows.

2.4. Maximal function tnequalities.

(i) [ Mf), = Tfl WL i Feli(l<r< o).
1

(ii) SE[Mf]dxg%x(EHﬁgﬂf[logﬂdx, for any felLf,
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any ke]0, 1], any A-measurable F.
(iii) S[Mf]’dx < M(S fdn) for re0,1f, any fegf, and
1 —7r \Jxd

any \-measurable E.

These inequalities follow from (2.3.i); see, e.g., (2.2), (3.1), (3.2),
and (3.4) of [7].

For equations dealing with pointwise convergence, we need some
more technical results about maximal functions, which follow. The
reader might prefer to read on to part IV of the proof of (3.1), where
the results are first needed.

Let { = €0 for convenience. The average M,f for feLi(l =
r < o) can be written

1
MB™)

Replacing { with a measurable function 7, we define (formally)

M, 7@) = —=| L@ — o)y -

M., @) = Dy — ©)f W)dy; M, f) = sup | M7, )| -

)
MEPBT)
TECHNICAL LEMMA 2.5. For a measurable function 1 on K¢, let

P@) = @p(lx]) =sup{|9()]:|2] = |x|}. We have

(1) M0, ) =llelM(f]) for fel,1 =r < o).
If nel and satisfies

.o hind ]IT’ -
(ii) j:z_m [Snj.ln(x) |~ dm] AMEBNT < o for some re 0, oo,
then for fef,, we have

(i) lim M,(p, f)(@) = f(cc)gpdx a.e.;

(iv) | M@, f)(x)| < b[M(| f|) ()] a.e., where b is a constant.
If pe &, then (ii) holds for all r > 1, and so (iii) and (iv) hold in this
case also.

Proof. Suppose first that »e €, and satisfies (ii). Write

M0, £)@) = < 10 = D) — F@ldy + £@)

to see that

M., £)@) — f@)|par| < L

< < [ 1@ + ) - f@) 1 dy
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1 =3 anwlvl*’dﬂ”"%?ﬂ

[7\(3115;) Sajif(w F ) - f@)f dy]”’
- jg.,. [ng_nl N dh]‘/”x(pj—n)llr
T e @ e ]

The last bracketed term-[ ]Y"-is bounded by || f]||, + |f(x)| if 7 < 0;
and, for « in the Lebesgue set for f, it is bounded for 7 = 0. Suppose
2 is in the Lebesgue set, let ¢ bound the term for all je Z, and let
S, be its supremum over j = J,Je Z. The last term in (1) is thus
dominated by

s, 3 [l o] ey [ i ] ey

The second term goes to 0 as n goes to oo, because of (ii); and, the
oo 1/r’
bound becomes S, > [Sm]?ﬂ" dx] MBI, As J goes to oo, this

j=—o0

expression goes to 0; and (iii) is established.
To prove (iv), use the same kind of estimates to write

| M7, /) (@) |
= oM@ .
To prove (i), estimate as follows:
1

|, 7@+ v) |y
L

]Mn(p,f)(x)| < jgw Q)(ﬂ'—'ﬂ—i—j))\,(Pj"”) )\J(EEJ)

= [{, o0 [ 706 -

Finally, “p € £,” can be stated “>.7_.. {SUp . j—¢—s | (@) ML) < 07,
If this holds, then

oo

S {[ o ey

j=—o0

= 3 { sup, 9@ v} v <

== =g~

so that (ii) holds. Obviously p€ & = ne g, so (iii) and (iv) hold.

REMARK. The preceding lemma is local a field variant of Lemmas
1,2, and 3 of Chapter II in [2].
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3. Singular integrals. Our main theorem is stated and proved
below. In (3.2) and (3.3) we give variants. In (3.4) there is a discussion
of various aspects of the hypothesis and an indication of a simpler
proof for smoother o.

THEOREM 3.1. Suppose w e L (K?Y), o(rz) = w(x) for s€Z, and
S @(@)dz = 0. Define
n()

@) = LD g s (), ke 7.
EXE
If the condition
(i) supi§ | (@ + Tiy) — @) | do < o
yeDD j=1 gl)

is satisfied, then for each v <€ ]l, o[there is a constant A, such that

holds and L f = lim,_. fx, exists in &,-norm for fe 8. If fe &, then
there is a constant A, such that ME,|[f++y.]) £ At || fll. (the convo-
lution operators are uniformly weak type (1,1)), Lf = lim,_ . f*,
exists in measure, and MEJLS]) < At~ fll.

If in addition to (1), the condition

(iii) i supo{s , | w(x + Ty) — w(x) | dy} < oo
1=1 ze i by

18 satisfied, then for each rc|l, «|the sequence (v, *f)i. converges
pointwise a.e. for fel, and for re]l, «{there is a constant B, such
that L*f = Sup,ez+ | ¥pxf| satisfies

I L*fll. = B, || fll., all felL,.
The operator L* 1s weak type (1, 1).
Proof. 1. ¥,-convergence. The proof of L,-convergence is based
on inversion of ¥,-Fourier transforms, and this argument depends on

uniform boundedness of ()i, (The functions +, are in 8, for
sell, co]; see (2.1) of [6]). For n < 0 and k£ = 0, let

w
Ve = Q//"L&B'ﬂ(: WSSIS”H(%B"“)’) .

Each ,v¥, is in ¥, (because we £.). Since A(P") = P, (2.3) of [6]
implies that

(1) e = 0@ = lim | 4 775 F o, v

a.e. in y for each ve K*.
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(The notation {y(x — v)} means the function with value +(z — v) at
x). Thus,

(2) e — ) = @) = Ky, D) — Lldo(y) a.e. in y.

For v € P, the functions {+r(x — v) — ¥ro(2)} are in &, and have uniformly
bounded &,-norms (see (i)). Thus {V(x — v) — P(x)}" € €, are uniformly
bounded when |v| < 1. If [y]|> 1, the function v— |x(v, ¥)) — 1|
attaing a positive maximum M, say at v,, on L. The same value is
attained for (z—*y, 7*v,)(s = 0). Thus, for each y < (B’ for which (2)
holds there is a v, € ¥ such that

[ Po(y) | = M [{yro(@ — v,) — Po(@)}N ) | -

The right side of [[¥(z — v,) — Yo} [l = |[{¥o(@ — v,) — Po(@)} ]|, is
bounded (by (i)), so there is a constant B such that

(3) [vo(y) | = B a.e. in (P).

(This boundedness argument is a modification of one appearing in
Hormander [5]). We have

(4) Fw) = dley) = 3 | 0@ Bl a.e. iy, seZr.
If ye Q' (4) shows that J,(y) = J(7°y); and, 7~y € Q~'. Thus, by
(3), Poel..

The equality +,(y) = +o(7*y) shows that {|| ¥, ||.}7= is uniformly
bounded and that

min(~1L,k+s(y))

Ty) = 2 Sgow(x)x(n'f(x, Yo de  a.e.

j=—co

Thus,
P) = lim o) = 3. | 0@, v

exists a.e. Finally, the equality v ,(y) — .4.(¥) = ¥ (T"y)(n < 0, k = 0)
shows that {|| ¥, — ¥ |le: % < 0,k = 0} is bounded by any constant
bounding {|| v ||.: &£ > 0}.

The %,-convergence argument stemming from the above bounds is
well known (see [2] or [6]) and goes as follows. If fe &, then ,v,f
converges (,) to 4, f, inversion gives (4,7)" = ¥, *f a.e., ¥, f converges
(&) to of, and inYersion gives convergence of +r,xf. The bound
= fll: = || @|l= |[f{l. holds; put A4, = || |l to obtain (ii).

II. Measure estimates; weak type (1,1). Suppose 1< r =<
2, fe&  keZ*, and t>0. Let E,= E][¢,xf]. The covering
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lemma (3.12) of [6] states that there is a mapping (m,n)— 2,, of a
subset P, of Z+ x Z into K¢ such that {z,, + L": (m,n) e P,} is pair-
wise disjoint and the following relations hold:

1
t <
() =S5 S%s
(b) if D, = U {®n, + B (m,n) e P}, then MD,) < oo(t > 0)
(5) and imx(D,) =0,

t—roo

(¢) flx)<tae. in D;.
(d) D) = S fin < ¢'t\(D,) .

Jan < tgt;

As in [6] and [2], we will prove that there are constants ¢, and ¢,
depending only on K¢ and @ such that

(6) ME) = S| [F1dn + D)

where, [f].(x) = f(z) if f(®) <t and [f].(z) = ¢t if f(x) > ¢t. This will
also prove that «,*f is uniformly weak type (1,1). We split f by
writing f(x) = h(x) + g(x), where h(x) = f(x) if xe D] and

1 fdn if zex,, + B.

h(x) = e, Lmﬂs”

To estimate M(E,), consider
B = {o: 1 2h@)| > £} and Bz = {o: |vuro@)| > L}

The function % is bounded by (a), is in & by (b), is in &, (J|2]| <
[l 2|17k |5), and satisfies (part I)

ME < ﬂg hidx .
t? Jxd
Since S dhzdk, =< ¢*t\(D,) + S [f:d\ (¢ above), we have
K D;,
(1) ME) < ;’_S LFFdN + BM(D,)  [e, and b constants] .
K

Since ¢ = 0 on D}, we have

Vikg@ = 3 [ @o@i@ - vy, we K-

Py

(The equality SEP‘ = >p, gused here is valid by Lebesgue’s dominated
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convergence theorem: in & remnt NIV @ — ¥), let the finite set F
expand to P,.) Consider the terms of the series forxe D,. Ifyewx,, +
P, then:
(@) @ +P)N (@ + P =D =2 —-y|=|0—,,| >q "
(B) (@ + PN (¢ + P #= @ =2 — ye P

Thus, using S gdn = 0, we have

xmﬁ‘B"

(8)  row = 3 | ]| SR e gy,

(k) |.’X/' — T ‘d

where S(z, k) = {(m, n): (®,, + L") N (x + P*+') = @}. Integration over
D! and Fubini’s theorem give

[ lrg@)| da

) lo@ —y) — 0@ — 2,,) | ddy .

J0@ || Eepge @ ERrm

=%, |

Tmn

Translating by «,, in the inner integral gives

| 0@+ @ — 97 - 0@ | do
J=8(Tp—y)—n+1 00

for that integral. Since s(x,, — ¥) = n, the hypothesis (i) gives a
bound, say M, for this series. Thus,

| s do = M| 1glar.
The bound
S g dn §2§ fin < 2¢°0(D))
Dy Dy

now implies that \D, N E?) < 4MgND,). Thus, MEY) < an(D,), a
independent of ¢, k, and f. This estimate and (7) give (6).

If fe&, then the first term on the right in (6) is less than
et || f]l, and the second term is less than ¢t~ || f||,, by (5.d). Thus
the operators f— 4, *f are uniformly weak type (1.1). (Our proof is
for f = 0; for arbitrary f, uniform weak type (1,1) follows by writing
real f as max [f, 0]-(-min [ £, 0]) and complex f as f, + if..)

The equality (8) can also be used to prove that lim,_.., v+ g exists
in D). Since the series on the right in (8) converges absolutely when
S(x, k) is replaced by P, (as we proved above), the relations S(x, k) C
S(z, k + 1) and U5, S(x, k) = P, shows that we actually have

- 7,
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summands as in (8), for all xe D,., We will use this fact later.

III. &,-convergence, 1 < r < o. The fact that the operators f—
i, * f are uniformly weak type (1,1) and uniformly weak (in fact strong)
type (2,2) implies (by the Marcinkiewicz interpolation theorem; [13],
vol. II, p. 112) that they are uniformly strong type (r,r) for every
re]l, 2]; i.e., there are constants A, such that (ii) holds for fe&,.
(The existence of A, for re]l, 2] can also be proved directly from (6),
using a function f* on]0, oo[that is equimeasurable with fe &} and the

function B,(s) = s~ S f¥wu)du. For this method, see [6].) For r > 2,

the bound (ii) is obtained by a duality argument, which we now outline.
Suppose fe&,,r > 2, and ke Z+. Define a functional 7, on €, by

Ty = S 9(x)(yr, * f)(®)dx, and use Fubini’s theorem to prove that T,g =

A y)(wk*g’)(y)dy (9'(@) =g(—w)). Thisgives| Ty(9) | < A || fll. 1l 9],
so that T, has a unique norm preserving extension to ¢,.. By duality,
the extension is given by an £, function, which has to be 4, xf. The
norm of the extension is ||y, xf]|,. Hence, [|vpxf|| < A, || fll.

To prove &, convergence of -, *f for all fe &, it suffices to prove
it for all functions ¢ .gms #€ K%, me Z. Dominated convergence gives
the equality

(9)  lim [ep@pm @i — vy = | e — iy

| Vi~ )y
(x+2)+P™

for all x and k. If © + ze P, (9) equals zero forall k. If o + z¢ P,
then (x + 2) + P (P™)'. Since ¥(—y) = ¥,,_,(—y) when —ye (H™)
and k=m — 1, we see that v, &  gn(x) = L e ) if k= m.
Convergence in £, for Yk & aqm follows at once, and £,-convergence
for all &, functions (1 < 7 < =) is now immediate since & is dense
in 8,. Note that we have proved the additional result: if 0e& 1is
constant on cosets of B*, then Lo = ,x0 for k = m — 1. Using this
fact and the weak type (1,1) estimate, we get a proof that o, xf
converges in measure to a function Lf, if fe &; and, Lf satisfies the
weak type (1,1) estimate. (We will also use the italized assertion in
the proof of pointwise convergence.) We have now established all the
assertions of the first paragraph of the theorem.

IV. Pointwise convergence and maximal singular integral. Sup-
pose fe (1 <r < ). First, we summarize some limiting relations:

(a) hmM Lf(x) = Lf(x) a.e. and
hmM APex @) = Jrx flx) a.e.
A0 (b lim M(yxf)0) = MLF@) .
(c) hm hm M, (v f)x) = Lf(x) a.e.
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The equalities in (a) are by (2.9) of [3] (or our Remark (2.2), or
(2.5. iii)), (b) is a result of

1
M)

and (c) combines (a) and (b). (Interchange of limits in (c) gives the
statement of pointwise convergence.) Using Fubini’s theorem and
appropriate translations, (b) can be written

| M, Lf (x) — M,(exf)@) | = NC@="(y — @) [l [| Lf — xSl

MLLf @) = lim s [ )| g@e - wynt - o)dydw
— 1 —N -
=lim | S fwia @~ w) — waydw

The inner integral in the last expression is +r,*{(7 "(x — w)). Since
e S with m =0, L = ¥, = +ox £ for all £ = 0. Thus

ML @) = 4,+f (@)
) = | SENLEE — w) = e — w)lde
= M, (@)

where n(x) = L{(x) — v¥,(x). Supposing that (2.5.iii) holds and letting
n g0 to o in (11), we have

lim 1/ @) = f@)| 7dr + Li@) ae.,

proving that gndx = 0 and that lim,_. ¥, xf(x) = Lf(x) a.e. A con-
dition for the validity of (2.5.iii) is simply “pe £”. Since

| JoE = 9) — 0@y if ey (o]>1)
| Jgo
12) (@) = S o@ — ydy — o@) if |z =1
ly—z|=1
lO if xe P, (lz] <1)

the condition “pe & is seen to be implied by our hypothesis (iii).
Using (11) and (2.5.i), we have

[y f@) | = @l M(SD + M(| Lf () .

The bound (iv) follows from (2.4). That the operator L* is weak type
(1.1) goes much as in part II of the proof. For fe &, we split f into
h + g as before and obtain the inequality
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ML h(z) > t) < _?.S [Fldn + (D))

Kd

from the fact that L* is strong type (2,2). The supremum of the
absolute value of the left side of (8) over k > 0 is dominated by

s | ol Lot —,?:;ﬁ; te gy

t Y mn™

The argument following (8) is then unaltered if +r,xg is replaced by
Lxg, and results in

MLFg(x) > t) < eMD,) .

By the sublinearity of L*, we have
(L*f@) > t) {L*g(m) > %t} U {L*h(m) > —é-} :

Hence, L* is weak type (1,1).

It remains to prove pointwise convergence for £-functions. For
fe& and t >0, decompose f as when obtaining measure estimates:
f =9+ h. Thus, ¥, xf = Pxh + . x9. We know that lim, . .=k
exists a.e., because he ¥, We have proved that lim,_ . v, *g exists
in D/; hence, for every ¢ > 0lim,_ . v, *f(x) exists a.e. in D/. Let
¢ > 0. By (5.b) there is a ¢ such that \(D,) < . Hence,

M{w e K lim 4« f(x) does not exist}) < ¢ .
Jo—o0

Thus lim,_., ¥, f exists a.e., if fe &’ . Clearly the pointwise limit
will also exist for arbitrary fe &, and the proof is complete.
A variant of the the theorem follows.

THEOREM 3.2. Under the hypothesis of (3.1) with (3.1.iii) replaced
with

(3.2. iii) S [g g o + m7y) — o) l%lxdy]l/z <o,
poJe

J=1

the operators r,xf converge pointwise a.e. for fel, 1< r < oo,

Proof. Parts I,1II, and III of the proof are unchanged. In IV,
we use (3.2.iii) to verify (2.5.ii) for the function » = L{ — 4, and » =
2. Condition (2.5.ii) is equivalent to

EX

and the terms of this series are dominated by those of (3.2.iii). The
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argument of IV thus proves pointwise convergence a.e. of «r,*xf for
fe&. If 1<r <2, pointwise convergence follows for fe &, as in
the last paragraph of IV (that argument is valid for fe&,, 1 < r < 2).

If » > 2, then condition (3.2.iii) implies the same condition with
2 replaced by 7’; and, the condition with +’ implies (2.5.ii). Thus,
(2.5.1i1) is again valid, and pointwise convergence follows.

The condition (3.2.iii) together with (2.5.iv) and (2.4) yield a certain
L,-estimate for the maximal singular integrals. If we assume a little
more, we get the estimate for all L, funcnions, as follows.

THEOREM 3.3. Under the assumptions of (3.1) with (3.1.iil) replaced
by

o w 1)r
@.3.d) 3 [S%BOSM 0 + Ty) — 0)] dwdy] < oo,

we have

[, 1zerran]" < [fnm + s isriost rran]”
+ N7

For each re]l, o[, the k;'s are constants and the inequality is valid
for fe &, E measurable, and k< ]0, 1].

Proof. The condition (3.3.iii) gives (2.5.ii) for »" and n = L{ — +,
as above. Hence (2.5.iii) and (2.5.iv) hold, so that lim,_. +,*f exists
pointwise a.e. and

| yaxf(@) — M,Lf(2)| < b[M(|f") ()], b constant.
This gives
[Yoxf| = LM f NI+ MJ(Lf]), all n;

and so [|L*f| — M(|Lf)I" < bM(| f]"). Using a subscript E to denote
norms taken over the set E, we have

r

L 7| = ML) s = 3 | MOFDA]"
1E*f s < Y | MO £ + [ MO LED -

Application of (2.4.ii)) to the ¢, function |f|" together with (2.4.i)
completes the proof.

REMARKS 3.4. (a) Condition (3.1.iii) can be written
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'\/(n—sm))d . —_ —3(x) .
& < ooy ¥(x) = sup| |+ 77 Y) — 0(z) | dy .
(B%” [ @ [‘i lzl=1) g0

The function v is somewhat analogous to the v used in [6] to prove
g,-convergence. Here we use the L,-norm for [w(z + 7'y) — w(x)] on
P°, so the condition |w(z + y) — @(x)| £ My) [used in [6]] does not
necessarily hold. Use of the ¥,-norm clearly gives us a weaker hy-
pothesis. Both (3.1.1) and (8.1.iii) are implied by the condition

(i) gsup{hw(x+nfy>—w(x)[:yeﬂsO,meWKoo,

which is the Dini condition of [2], Sl{w(t)}/(t)dt < co, in a convenient
local field form.

(b) It would be interesting to weaken the hypothesis to one
condition:

o

(ii) ZS S |w(x + wiy) — w(x) | dyde < = .
7= o) n?
This condition implied by each of (3.1.i), (3.1.iii), (8.2.iii), (3.3.iii), and
(3.4.1).

(¢) The hypothesis in (3.13) of [6] is equivalent to the following
statement: There is an me Z*+ such that w(z + P") = {w(z)} for all
x e L. This condition and homogeneity imply that w(x + £ ") = {w()}
if xeQ". In particular (i) above is trivial, and the ¥ .-results of [6]
are included in (3.1). For such an @ the proof of pointwise convergence
simplifies, as follows. Again write M,Lf — +,*f = M,(7, f), with
given by (12) of the proof. If xeQ* with w < —m, then w(z + P°) =
{@(x)}. Thus, (12) shows that » =0 on ' U (B—"*'). We have

M., £)(@) — f(@){nx |

=
= K(%”) (‘,B”'*'l)’ﬂiﬁ_m‘*’”""‘

A

| p(@="y) | | f(® 4+ y) — f(@)|dy .

Since 7 is bounded, the limit as n goes to o of the right side is zero
for z in the Lebesgue set. This proves that lim, ., *f(2) exists a.e.

3.5. Singular integrals with L-kernel. In (8.1), the condition
we . (K% can actually be replaced with the weaker condition
w e £(Q° \), but at the expense of using Fourier transforms and convo-
lutions of distributions, and other complications. In this subsection
we will outline this method, which is due to Hormander [5] in the R*
case,

The fundamental space of test functions for distributions on K¢
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is &; its dual is denoted by &'. The assumption w € £,(Q°, \) implies that
Ve €8 e, K =0, but we do not know, from general principles, that

vof is well defined for fe €,. The cancellation property S wdn =0
can be used to prove the existence of +r,xf. Let + = 4. QThen, A
defines an element {(y» of & by <{y)(p) = S Yepdn and (4> has a
Fourier transform defined by {y>"(p) = S qu/mpd)\, Let 7, denote trans-

lation by v: 7,f(x) = f(x — v). Some elementary computation establishes
the equality

oo — YN@) = YN @ps.), pe S,
where s,(r) = x(x,v) — 1. The hypothesis (3.2.i) implies that
(T, — ) e(K?) for ve;
since w € &,(Q° \), (v, — ) is therefore in L (K¢ for all ». Thus

(T — P) e Cy(K?) and {(z — )" =T — D"

for each v. Furthermore, (z,4» — ¥)"(y) is uniformly bounded for
(v, y) e P x K? There is a constant M such that for any « # 0 there
is a neighborhood U(x), not containing 0, such that |[s,(y)|= M for
all ye U(x). Clearly the choice of v for small x must be large. But,
if xe (), then v can be chosen in P°. Define

(1) S, = @V =" o U@ .

v

Then S, is a bounded continuous function on U(x) and <{y>" = {S,)
on U (x); (i.e., {y>N(p) =S ) if suppe < U(x)). The function
S(x) = S(x)(x;éO) satisfies S(zx) = S,(x) if xe U(y). Thus S is a
continuous function on K%({0} such that for all x € K\{0} there is a
a neighborhood of @ such that {4 >" = {S) on the neighborhood. The
function S is bounded on [¥°]’, for if ¥ € ()’ then the corresponding
v in (1) can be in PB°. The denominator is bounded away from zero-
uniformly in v. If y € B°\{0}, say y € Q*', then an elementary argument
shows that we must have S(z—*y) = S(y). Thus S is bounded on
K*\{0} and defines a distribution <{S)> on K? such that {y>" = <S>
locally on K*\{0}. It follows that {y>" = {S) everywhere on K“\{0},
and hence that supp[{y>" — S]c{0}. The -cancellation property
S @dn = 0 can now be used to prove that {y>* — {S) = 0; i.e., that
Gy = {8y on K.

Arguments analogous to those given in the proof of (3.1) show

that {{y,>"}7o: is actually a uniformly bounded sequence of functions
which converge to a function @, and that the differences {y,,>" — ¥
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are uniformly bounded. The inversion argument proves the £,-existence
of L,f =lim, _.. ,4.xf and Lf :klim L,f for fe &, and also the bound
I Leflle = Ao f e

In obtaining weak type (1,1) and other measure estimates, we
don’t know that +,* g (or even L,g) exists for ge (1 < » < 2). How-
ever, we actually proved, using only (8.1.i) and w e £,(Q° \), that the
infinite series

] 1901 | o) 2B =0 = 0@ 2| gy

7y | % — @ |

is finite. (see II of proof of (3.1)). “Fubini” arguments combined with
the analysis already given in II show that

Sptg(y)[ @ — y) — O@ = ¥y,) ]dy

Ix_xmnld

exists absolutely for almost all x € D,. Thus

Pk g(x) = SKdg(y)m(m = v)dy

exists (the integral is proper) a.e. in D) for each ¢ > 0 and satisfies
S hlfk*g(W)ldxéMS lg]|dn .
Dy D,

It is apparently difficult to handle ¢ directly on D,, but if we let
f €, then +, «f and +,*g exist everyplace and, by the above analysis,
the weak estimate

(2) ME[ypxf]) < % (171

is satisfied (f e ®). For arbitrary fe &, letlim,_ .|| f— f. 1. =0, f.€©.
The estimate (2) implies that (4, *f,) converges in measure; call its
limit L,f. Then L,f also satisfies (2), and we get the operators L,
uniformly weak type (1,1).

For 1 < r < 2, the Marcinkiewicz interpolation theorem applies as
before to give the estimates || L,f||, < 4, || f|l.. The L,-convergence
argument is the same, for “y, e &, .. is all that was required. The
duality proof is the same. Pointwise convergence is also valid; we
needed only e £(Q°, ), (3.1.iii), and £,-convergence.

3.6. Two ewvamples. (i) If d =1,Q° is a multiplicative group
whose Haar measure is v. For a nontrivial character w of Q°, Saoa)dx =
0 holds. Extend w to K\{0} by w(x) = w(x*). Since Q° is zero-

dimensional, ® vanishes on some neighborhood of 1 (see [4] or [9]).
It follows that w(x + P™) = {w(x)} for all x € Q°, for some m. Hence,
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all hypothesis’ of (3.1) hold for @ (see also (3.4.c)). The analogue of
£° for the complex numbers is the circle group 7; a character et
of T defines a two-dimensional Calderon-Zygmund singular integral.
In the case of the real numbers, the analogue of Q° is the multiplicative
group {—1, 1}; the real analogue of the singular integral is the Hilbert
transform.

(ii) Let P be a subset of K¢ satisfying

PN—-P=@ and PU—P= K\{0}.

If o satisfies w(—x) = —w(x), then S Oa)(m)doc = 0. The convolutions
are then given by =
wrf@ ==\ O ry ) - f - @)lda.
PRpEtY ||

In particular, we could set w(x) = 1if xe Pand w(z) = —1if xe — P,
and get another (different) analogue of the classical Hilbert transform.
The conditions (3.1.i) and (38.1.iii) become conditions on P. For a
further discussions of kernels of this type in the p-adic and p-series
cases, see [6], (4.1) and (4.2).

4. Appendix by Keith Phillips. Maximal functions for a class
of moncompact groups. In this section we give a general treatment
of maximal functions. The entire section is independent of the rest
of the paper. Our standing hypothesis is that G is a locally compact
group (written multiplicatively) with left Haar measure » and {U,: n e Z}
is a family of relatively compact Borel sets in G satisfying

(i) U,;, & U, for all ne Z and lim A(U,) = oo;

(ii) {U,:nmeZt}is a neighborhoga_?)ase at e¢;
i) U, U;YH < C\U,), C constant, ne Z.
(iv) For each n e Z there is an integer l(n) such that

U2 UU, and U; 2 U;U, if j>1ln).

4.1

And, there is a constant a such that M(U,.,) < ax(U,) for
all ne Z.

Conditions (i)-(iii) are those for a Borel D”-sequence in [3], except
that we use a “doubly infinite” sequence. If the U,’s are symmetric or
@G is Abelian condition (iv) implies (iii), with C = «. We call a sequence
satisfying (4.1) an M-sequence.

The following theorem is similar to (2.2) of [3]; the main difference
is that the sets U, need not have bounded measure. The proof uses
only (4.1.i)-(4.1.iii).

COVERING THEOREM 4.2. Let Z = {aU,: 2€G, ne Z}. Suppose
EcG and ' Z satisfy
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(i) MEU, < = for all ne Z;

(ii) for each xc E, there is an n such that xU, € Z";

(iil) {n:2U,e %" for some x e E} is bounded below.
Then, there are sequences (x.)i(1 < < ) in E and (n,)f—, v Z
such that

(iv) {2, U, i zs a patrwise disjoint family in Z";

(v) ME) = CZK(U”)

Proof. Let
n, = Min {n: 2U, € Z" for some x € E},

and suppose x,U, € Z'', x,€ E. Inductively, suppose (v,)}-, in E and
(n;)h=, in Z satisfy
(1) {x,U,}i-, is pairwise disjoint in Z';
(2) n,=Min{n:2U,eZ" and 22U, C[U% U, ] for some x € K},
1=k=p.
If p =1, (1) and (2) are satisfied. If EcU}i-, =, U, U,;, we take p =
p and see that the lemma is proved. Otherwise, take

ve BN [L’J .U, U“l]
k=1

and let 5 be the smallest integer such that xU;e Z'. We will show
that «U,; c[U /w2, U, . First, if (xU;) N (2,U,) # &, then

vexU,Ui'coU,U,; but, zewxU,U,’

is a contradiction. If there are %k’s such that (xU,) N (x,U,) # @, let
g be the least among them (1 < ¢ < p). Then the inclusion 2U; C
[Ui=iz;U,,]'’ holds. By (2), the inequality j = ¢ holds, and this
inequality implies that vex,U, U, a contradiction. We have thus
proved that the set

{7:2U;eZ" and 2U; C[U 2, U, ]’ for some xec E}

is nonvoid; and, we let n,, be its minimum and ,,,U, ,, an element
of Z7'. Our induction step is thus completed.

We will prove that Ec Ji-#,U, Us,. This inclusion, which is
already established if p < o, will clearly imply (v). First, we must
have lim,_., n, = o, for

kz: MU,,) = gl M U,,) < MEU,) < oo .

Hence, for given z € K and #U, € /" we must have (2U,) N (2 U,,) # @
for some % such that n, < p; if not, « and p would have been selected
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instead of x; and m; as soon as m; exceeded p. If ¢ is any integer
such that (xU,) N (=, Unq) # @ and n, < p, then we obtain zcx, U”q U.,-

Let _#*+ denote the positive (finite) regular Borel measures on G.
If f is locally integrable and pe._#Z ", let

M, f(x) = (U) S fin,meZ;  Mf(x) = sup {M,f(@): ne Z)
M, p(x) = —P%%, nes; Mp(x) = sup {M, p(x): e Z} .

For a nonnegative function g and ¢ > 0, let E,[g] = {x: g(x) > t}.
4.4, First weak type estimate. For an M-sequence {U,}.c,
(1) MEIMS) < S g Eryatin fON

(1) ME[Mp) = S M)

hold for all fe &,.(1 _§¢< ), pte #Z*, and t > 0.

Proof. We concentrate on the proof for Mf; My is similar. Let
t be fixed and define

7' ={oU: U < Sﬂ_nfdx} .

Let E be any compact subset of E,[Mf]. It is clear that (4.2.i) and
(4.2.ii) are satisfled for the pair (%', E). Condition (4.2.iii) is also
satisfied, for there cannot be sequences (z;)7, and (m;)7, such that
lim;..n; = —co and SEWW Sdx > t\M(U,,). This assertion is obvious if

r =1 (and also for p) and is a consequence of Holder’s inequality if
r > 1. We thus obtain

(1) ME) = C3 MU, < & Sfdk

where (v,U,,)7-, is the sequence guaranteed by (4.2) and V = U7, 2, U,
If xe V, then x;y'x e U, for some k, so that «;'2U,,,, > U,,. Thus:

1 SL at S
oty JAN = - an
7\:( Ul ""k ) ; Llwk,f - )\:(Unk) SJ l(’ﬂk)f
a!

I\

& e, . fan>at,
MU, Jéusrn S0 >

We have proved that V c E, [Mf]; hence, by (1),

(2) ME) < fj- gsm,mmﬂfdx .
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The inequality (i) follows, for the right side in (2) does not depend on
E and the supremum of the left side over compact E contained in
E|Mf] is ME[MS].

Before stating integral estimates, we first show how to get a
different measure estimate, from (4.4).

4.5, Second weak type estimate. With the notation of (4.4),

c
MBIMT) = s [Enanfdy

holds for every k in]0, 1].

Proof. Let g = f&;51,. Since
Mf=Mg+kt and EJ[MflcE, . [Mg],

(4.4.1) gives us

C C
MEJM) £ ——— dN = —L dx
(ELMS]) 1 — k) SE(I_k)tw—lwg]g 1 — k) SEktmf

(Notice how conveniently « disappeared.)
4.6. Integral Estimates. Notation is an (4.4).

(1) fe®i(l<r<eo)=|Mf], =

T min [(Cr)7, Car 1 £ -
(i) {fe%, kel0,1],se]0, 1], Frx-measurable} =

ME) €T fllogslin
(a) | 1mrian = 2B 4 € rllogerian ;

Method of proof. In (i), the constant (Cr)"" is obtained using
estimates based on (4.5) and minimization with respect to k; Ca’* is
obtained using estimates based on (4.4.i). See the proof of (3.2) in
[7]. For (ii), (4.5) is used; see (3.4) of [7].

4.7, Ergodic groups. In[1], Calderdn calls a locally compact group
ergodic if there is a family {N,} of compact open symmetric neighbor-
hoods of the identity, indexed by the real parameter » > 0, such that
N.N,c N,., and MN,,) < axn(N,), « constant. If we take U, = N,-.
we clearly get an M-sequence from an ergodic family {N,}, for which
a=C. Let

M*f(e) = sup{ Gy fdrir > o} .

o)
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If 2 < » < 27"+ then

1 o
Wgém,fdx S T [eur,tan .
Thus, M*f < aMf, and we get a theorem like (4.6) for M*f, but with
an additional constant on the right. Actually one can do a little
better, and obtain the same constant for M* as for M. To see this,
observe that the inequality M*f < aMf implies that E,|M*f]| C K, [Mf]
for each t > 0. Hence, we have

MEMSD) S MEMFD < S |85, 00

<&

E fdx .
t JByq2lrs]

The second inequality holds by (4.4.0)) and third because M*f = Mf.
We thus have a constant 8 > 0(8 = a~®) such that

MELM) = e o i

This inequality yields (4.6) with no additional constant « on the right,
as indicated in (4.6).

Maximal functions for (K¢, +) are of course of the ergodic type.
The additional condition that the U,’s are groups makes the theorems
simpler,

4.7. Metrics groups. If the topology of G is given by a left
invariant metric o, then {S,(0): » > 0} forms an ergodic family provided
that M(S,,(0)) < an(S,(0)). Maximal functions defined over spheres thus
give a version of (4.4) and (4.5). In[10], K. T. Smith defines maximal
functions for a class of metric spaces admitting measures satisfying
certain conditions, namely (a), (b), (¢), and (d) on the top of p. 159 of
[10]. Smith’s conditions (a), (c¢), (d) are satisfied for any locally
compact metric group and a left Haar measure. The condition (b)
[there is a constant K such that M(S(xz, 47)) < K\ (Sz, 7))] implies that
{S.(0)} is an ergodic family. Hence, for a locally compact metric group
G with left invariant metric, the proofs of (4.4) and (4.6) are different
proofs of Smith’s Theorem 1,2, and 3.

Maximal functions for certain metric spaces are also studied in
[8], where the main interest is in applications to harmonic and analytic
fuctions on relatively compact sets in C*. The sets over which Rauch
takes averages have bounded measures.
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