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In this paper we construct singular integral transforms
of the Calderόn-Zygmund type for Kd where K is a nondiscrete
zero dimensional locally compact field and d is a positive integer.
The transforms have the form

Lf = lim ψk*f,
Jc-*oo

where the kernel ψk vanishes in a neighborhood of 0,

I ψh{x)dx = 0 ,
J 1*1=1

and Ψu satisfies certain smoothness conditions.

The results generalize the results of [6] in several ways: the p-
adic and p-series fields are replaced with Kd, pointwise convergence
is proved, and the hypothesis on the kernels is weakened. Many of
the methods also apply in other settings; see, e.g., the second author's
forthcoming paper on multipliers [11], and the argument in Lemma 10
[12, p. 201].

We let Z denote the integers, Z+ the positive integers. The
complement of a set S is denoted by S', its characteristic function by
ξs. In general, our notation for the locally compact field K is as in
[9]. The second section of [9] also includes a good summary of that
elementary analysis on K which we will need; Kd is treated in the
first pages of [12]. Let m be the modular function for K(X(aS)) =
m(α)λ(iS), λ Haar measure for (K, +)). We also let | x | = m(x). The
sets

φ° = {x: I x I ̂  1} and ψ = {x:\x\< 1}

are the ring of integers of K and the unique maximal ideal of β̂°,
respectively. Let o(ψ/ψ) = pa = q (p prime) and 3̂L = (π). For se Z,
I τrs I = q~s. Every aeK\{0} has a unique representation

a = 7rsα* with s = s(a) e Z and | α* | = 1 .

The vector space Kd is all ώ-tuples of elements of K. We use
the norm

N(x) = I x I = sup {| xi |: 1 ^ i ^ d}(x = (x,)) ,

w h i c h is easily seen to be non-Archimeadean: | x + y \ ̂  m a x [\x\, \y\~\.
Any x € Kd\{0} can be w r i t t e n uniquely in t h e form

209
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x = πsx* with s = s(x) e Z and | x* | = 1 .

we let

φ n = {x e Kd: I x | ^ q~n) £}* = {x: \ x | = q~n} .

Each ^n is a subgroup of Kd and {̂ βπ}~=0 is a neighborhood basis at 0.
We use the inner product

d

There is a character χ on (ϋf, +) which is identically one on 3̂° but
is nontrivial on the group ty*1 = {a: \ a | ^ g}. If we let χβ(a) = %{aβ),
then the mapping β—*χβ is a topological isomorphism of (iΓ, +) onto
its dual D(K, +); we thus identify (if, +) and i)(iί, +). Letting
Xy(χ) = XitpfVy) for x,yeKd, it follows that y—>χy is a topological
isomorphism of i ^ onto D(Z"d). The anihilator in jD(iΓd) of φw is A(ψ) =
fe: Zv(«) = 1 for all x e 5β*} Hence,

Normalization of Haar measure λ on Kd so that the companion Haar
measure on D{Kd) making inversion theorems and PlanchereΓs theorem
valid is again λ requires that X(A(?βn))X(?βn) = 1. (This is an easy
calculation. See also (2.3) of [6]). In particular, λ(5β°) = 1. The
Fourier transform of a function / on Kd is denoted by / ; it is
initially defined on Sx by f(y) — \ f(x)χ{(x, yy)dx. The inverse Fourier
transform is denoted by /:

f(v) = t /(»)χ«α;, y»dx .
JKd

The symbols (£, ©0, and Sr(l ^ r ^ oo) denote the usual function
spaces, defined for (Kd, λ) if not otherwise indicated; (£00 is the con-
tinuous functions with compact support. In this and in any unexplained
notation, we follow [4]. For 1 < r < oo, r' denotes the numbers such
that 1/r + 1/r' = 1. The function space @ is all φ e (£00 for which
there is some n such that φ(x + ?βn) = φ(x), all xeKd.

Some often used computational principles are worth mentioning
at the outset. First, if fe21(Kd

1X)J we can write

Second, since λ is the product of d factors of Haar measure for K and

since the multiplicative Haar integral for if is /—> 1 (//m)dλ, we have
JK
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if aeK\{0} and fe21(Kd,X). Combining these, we have that

[f(x) I x \-ddx = Σ ( f(π~jx)dx .

We also often use the fact that

= 0 when | x \ > q~j .

2* Lebesgue set; maximal functions* The proof of pointwise
convergence in § 3 depends strongly on the Lebesgue set of a function
and on maximal functions. Both of these ideas can be developed in
in considerable generality, and we will do this in a section which is
independent of the rest of the paper, § 4. However the facts for Kd

are considerably easier and we present them here. The set of x for
which (2.1.i) holds will be called, as in the classical case, the Lebesgue
set for f.

THEOREM 2.1. Let fe 2rylQC(Kd), r > 1. For almost all x, we have

( i ) l i m — ί - ί \f(x±y)-f(x)\rdy = 0;

(ii) lim—1- \ \f(χ + y)+f(χ-y)-2f(x)\*dy = 0.

Proof. By differention of indefinite integrals (see (2.9) of [3]), we
have

lim * \ \f(x + y) -a\rdy =\f(x) -a\r a.e .

for each complex number a with rational coordinates. The proof of
(i) is completed as in the classical case (see, e.g., [13], p. 65); (ii)
follows from (i).

REMARK 2.2. The result of Edwards and Hewitt used above
applies to a general class of locally compact groups, and the proof is
fairly involved. The situation is much simpler for Kd (or for any first
countable zero dimensional group), as described in the next few lines.

The equality we want is

for fe2ltl0C(Kd,X). We will prove (*) using (2.3), below.
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Let feS>ϊΛoc(Kd,\). For maximal functions, we use the notation

MJ{x) =

For a function # ̂  0 and t >̂ 0, let 2?ί[#] = {a?:

THEOREM 2.3. // / e S;(ifd) (1 ̂  r < oo)

( i )

ί > 0,

Proo/. If x G ^[Af/], there is a φ%- ŝ 6c/̂  ίfeαί ί fdx >

Since y + φ n * = x + Sβ** if 7/ e x + φ%^, we have a; + ^ cz Et[Mf]. A
pair of cosets are either disjoint or one is contained in the other. It
follows that there is a pairwise disjoint family {xn + $β**}n-=i such that
Et[Mf] = UΓ=i (ί»n + P̂* ) and

\ fdX> tX{ψ-) .

The equality (i) follows.
We now prove (*). We may assume that fe 8 l e Choose ί > 0, and g

a continuous function that \\g — f\ < f/4. Then

£c) = lim sup

^ lim sup

(f(y) - f(x))dy

(g(y) ~

+ lim sup — 1 — ί I f(y) - g(y) \ dy + \ f(x) - g(x) \

From (2.3) it follows that

X(Et[H]) £ X(Em[M\f- g {]) + X{Em[\f - g [])

It follows that H(x) = 0 a.e. and the equality (*) follows.

2.4. Maximal function inequalities.

( i ) | | J | f / | | r ^_^ | | / | | r if fe2ΐ (1< r < oc),
r — 1

(ii) \ [Mf]dX ^ —X(E) + 1 \ f[log+f]dx, for any feLΐ,
JE k 1 — k Jκd
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any άe]0,1[, any λ-measurable E.

(iii) \[Mf\rdX£ MEY~rf[ /dλY for re]O,l[, a n y / e S * , and
J 1 — r \jκ<t J

any λ-measurable E.
These inequalities follow from (2.3.i); see, e.g., (2.2), (3.1), (3.2),

and (3.4) of [7].
For equations dealing with point wise convergence, we need some

more technical results about maximal functions, which follow. The
reader might prefer to read on to part IV of the proof of (3.1), where
the results are first needed.

Let ζ = f̂ o, for convenience. The average Mnf for feLΐ(l ^
r < oo) can be written

Mnf{x) = _ J _ J ^ ζ ( τ r - % - x))f(y)dy .

Replacing ζ with a measurable function η, we define (formally)

Mn(V, /)(*) = - T L V \v(π~n(y ~ x))f(v)dy; M(ηy f) = sup | Mu(y, f) \

T E C H N I C A L LEMMA 2.5. For a measurable function rj on Kd, let

φ(x) — φ(\ x I) — sup {) Ύ]{z) \:\z\ = ] x )}. We have

( i ) M(η,f) ^ \\φ\\,M(\f\) for / e 8 r ( l ^ r < oo).

If V e ^i α ^ satisfies

( π ) Σ I I ί?W Γ dx X(^3)llr < CXD /or some re]0, oo[,

for / e S r , ^ e ^αvβ

(iii) limMn(τ],f)(x) = f(x)\τjdX a.e.;

(iv) \M(η,f)(x) I ̂  6[Λf(|/Γ)(»)]1/r a.e., ^fcerβ 6 is α constant.
If φ>e2u then (ii) ΛoZds /or all r > 1, α̂ cZ so (iii) cmd (iv) feoϊd in this
case also.

Proof. Suppose first that ηett, and satisfies (ii). Write

Mn(η,f)(x) = _ A ^ j ^ π - % - χ))[f(y) -

to see that

M%(η,f)(x) - I/(a?
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< Σ [ (

= Σ Γ( ._J V Γ dλΊ1 / r /λ(P'—)1 / r

1 f
Lλ(5β') Jo'1

The last bracketed term-[ ]1/r-is bounded by | | / | | r + \f(x)\ if j < 0;
and, for x in the Lebesgue set for/, it is bounded for j ^ 0. Suppose
x is in the Lebesgue set, let c bound the term for all j e Z, and let
Sj be its supremum over j ^ J, Je Z. The last term in (1) is thus
dominated by

oo jrr -ll/r' J-n-lΓΓ ηi/r'

Sj Σ \V\r' dx\ X(ψ)llr + c Σ I ̂ 7 Γ' I λ(5βθ1/r .

The second term goes to 0 as % goes to oo, because of (ii); and, the
oo Γj* Ίjl/r'

bound becomes Sj Σ \ I ̂  Γ d λ λ(ίβ3")1/r A s ^ s:oes t o °° > t h i s

expression goes to 0; and (iii) is established.
To prove (iv), use the same kind of estimates to write

\Mn{ηJ){x)\
oo r r -ii/r' Γ 1 f l 1 / r

^ Σ I I I ̂  Γ i λ(P J ~ % ) 1 / r \ I /(α; + T/) | r dy

~ iί^ooLJπ ί-^ J L λ(5B0 JQJ J

To prove (i), estimate as follows:

Σ φ{π^')\{P^)-^~\ \f(x + y)\dy

Finally, 'V e Si" can be stated "Σ"=-~ {sup,I|=s-j | )y(a;) |}λ(Oί-) <
If this holds, then

sup
\χ\=q-

so that (ii) holds. Obviously φe21=>ηe2L1 so (iii) and (iv) hold.

REMARK. The preceding lemma is local a field variant of Lemmas
1, 2, and 3 of Chapter II in [2].
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3* Singular integrals. Our main theorem is stated and proved
below. In (3.2) and (3.3) we give variants. In (3.4) there is a discussion
of various aspects of the hypothesis and an indication of a simpler
proof for smoother ω.

THEOREM 3.1. Suppose ωeS^K0), ω(πsx) = ω(x) for seZ, and

\ ω(x)dx = 0. Define

If the condition

( i ) sup Σ \ I ω(χ + πjv) ~ ω(χ) I dχ < °°
2/ejQ° 3=1 JC°

is satisfied, then for each re]l, oo[there is a constant Ar such that

(ϋ) \\f*ψk\\r^A

holds and Lf= limk^f*ψk exists in £r-norm for fe Sr. If fe 2ly then
there is a constant At such that λ(i7ί[/*ψ\fe]) ̂  Aj^WfH (the convo-
lution operators are uniformly weak type (1,1)), Lf = lim ,̂*, / * ψk

exists in measure, and \(Et[Lf]) fg A{t~
If in addition to (i), the condition

(iii) Σ sup jϊ I ω(x + πsy) - ω(x) | dy\

is satisfied, then for each re[l, oo[the sequence (ψk^f)^=1 converges
pointwise a.e. for fe Sr and for re ]1, oo[there is a constant Br such
that L*f = supfte^+ \ψk*f\ satisfies

\\L*f\\r^Br\\f\\r, all feLr.

The operator L* is weak type (1,1).

Proof. I. ^-convergence. The proof of 82-convergence is based
on inversion of 82-Fourier transforms, and this argument depends on
uniform boundedness of (φk)ΐ=i. (The functions ψk are in Ss for
se]l, oo]; see (2.1) of [6]). For n < 0 and k ^ 0, let

Each wψ^ is in &t (because ω e £«). Since A(φ%) = φ~%, (2.3) of [6]
implies that

( 1 ) {ψo(x - v)}A(y) = lim 1 ψo(c

a.e. in i/ for each v e Kd.
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(The notation {fQ{x — v)} means the function with value ψo(x — v) at
x). Thus,

( 2 ) {ψo(x - v ) - fo(x)}A(y) = [χ«y, y)) - l ] f 0(y) a.e. in y.

For v 6 3̂°, the functions {ψo(̂  — v) — ψQ(x)} are in SL and have uniformly
bounded S rnorms (see (i)). Thus {ψo(% — v) — ψo(x)}A e (£0 are uniformly-

bounded when I v | ^ 1. If | y | > 1, the function v —• | χ«^>, ?/» — 11
attains a positive maximum M, say at vy, on 3̂°. The same value is
attained for (π~sy, πsvy)(s ^ 0). Thus, for each ye (φ0)' for which (2)
holds there is a ^ e φ° such that

I Uv) \ = M~ι\ {ψo(x - vy) - fo(x)}A(y) I .

The right side of || ψQ(x - vy) - ^ 0 ^)} Λ IU ^ || {ψ,(x - vy) - ^{x)} \\, is
bounded (by (i)), so there is a constant B such that

( 3 ) I iro(y) I ̂  B a.e. in (φ)' .

(This boundedness argument is a modification of one appearing in
Hormander [5]). We have

( 4 ) ψo(y) - fo(π~sy) = Σ \ ω(x)χ(π/x~yy)dx a.e. in y, s e Z+ .

If ye£ls~\ (4) shows that ψo(2/) = Ψo{^"sy)\ and, π~syeΏr\ Thus, by
(3), ΨΌGSL.

The equality ^fc(i/) = fo{πky) shows that {|| ψk ||oo}?=o is uniformly
bounded and that

min(-l,k+ s(y))

Σ
i

Σ ω(α;)χ(7z:χa;, 2/*»da? a.e.
Γ

Thus,

9>(l/) = lim ^ t (y) = Σ ί ω(x)χ(πj<x,

exists a.e. Finally, the equality ψk(y) — nψk(y) = ψo(πn~ιy)(n < 0, fe ^ 0)
shows that {|| ^ Λ — %^ fc H :̂ w < 0, & ̂  0} is bounded by any constant
bounding {|| ψk ||«,: fc > 0}.

The S2-convergence argument stemming from the above bounds is
well known (see [2] or [6]) and goes as follows. If / e 8 2 , then nψkf
converges (82) to <frkf, inversion gives {ψkfY = τK*/a.e., fkf converges
(82) to φf, and inversion gives convergence of ψk*f. The bound
Il^**/l l2^ II9ΊUII/H2 holds; put A2 = \\φ\U to obtain (ii).

II. Measure estimates; weak type (1,1). Suppose 1 <̂  r ^
2, / e S+, fc G Z + , and ί > 0. Let ^ = ^ [ t * * / ] . The covering
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lemma (3.12) of [6] states that there is a mapping (m, n) —* xmn of a
subset Pt of Z+ x Z into Kd such that {xmn + *§n: (m, n) e Pt} is pair-
wise disjoint and the following relations hold:

(a) ί ^ _ L _ ( fdX£tqd;

( b) if Dt = U K . + 5β": (m, n) e Pt}, then λ(ΰ() < oo (t > 0)
/ 5 \ and lim λ(Dt) = 0 ,

( c) fix) ^ ί a.e. in D; .

(d) tX(Dt)^ \ fdX^qdt\(Dt) .

As in [6] and [2], we will prove that there are constants ^ and c2

depending only on Kd and α> such that

( 6 ) (Et)^
t

where, [f]t(x) = f(x) if f(x) ^ ί and [/]t(a?) = t if /(a?) > t. This will
also prove that ψk*f is uniformly weak type (1,1). We split / by
writing f(x) = Jt(a?) + g(x)9 where h(x) = f(x) if xeD[ and

i f » e a?mil + 5β" .

To estimate λ(£r

ί), consider

^ = {i»: | f**M«)l>- |-} and E} = {x:\φk*g(x)\> ± } .

The function Λ is bounded by (a), is in 8+ by (b), is in S2 (\\h\\\ <

l | λ | | ! r r | | λ | | ; ) , and satisfies (part I)

Since ί h2dX ^ q2dfX(Dt) + ( [f]2

tdX (c above), we have

( 7 ) XiEt1) ^ -^ ί [/]fdλ + bX(Dt) [c, and δ constants] .

Since g = 0 on DJ, we have

iM0θ*O = Σ ]ξ*mn+φ»(v)Q(yHk(x - v)dy , a? e Kd .

(The equality I Σ ^ — Σ P 4 \used here is valid by Lebesgue's dominated
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convergence theorem: in ξ[JFXmn+ψn(y)g(y)ψk(x — y), let the finite set F
expand to Pt.) Consider the terms of the series for x e D[. If y e xmn +
ψ, then:

(a) (xmn + T) C\(x + ψ+1) = 0 -=> I x - y \ = I x - χmn \ > <r(*+1);
(β) (xmn + ^n) n (x + ψ+1) Φ 0 =~x- yeψ+ί.

Thus, using \ gdX = 0, we have

*)= Σ
k

where S(x, k) = {(ra, n)\ (xmn + β̂%) Π (x + ^3fc+1) = 0}. Integration over
D' and Fubini's theorem give

\ψk*g(x)\ dx

Translating by a;ww in the inner integral gives

Σ \ I ω(x + ^(««» ~ 2/)*) -
i^ s( ; cm«-2/)-% + 1 J O 0

for that integral. Since s(xmn — y)^n, the hypothesis (i) gives a
bound, say M, for this series. Thus,

[ \ψk*g(x)\dx ^ M\ \g\dλ.
)n't jDt

The bound

( \g\d\^2\ fdX g 2qHX(Dt)

now implies that X{D[ Π JE?) < 4Λί^dλ(D,). Thus, λ ^ 2 ) ^ αλ(A), a
independent of t,k, and /. This estimate and (7) give (6).

If fe&ΐ, then the first term on the right in (6) is less than
^"MI/lli a n d the second term is less than c^WfW^ by (5.d). Thus
the operators f—+ψk*f are uniformly weak type (1.1). (Our proof is
for / ^ 0; for arbitrary /, uniform weak type (1,1) follows by writing
real / as max [/, 0]-(-min [/, 0]) and complex / as /,. + i/2.)

The equality (8) can also be used to prove that lim^^ ψk * g exists
in D[. Since the series on the right in (8) converges absolutely when
S(ίc, k) is replaced by Pt (as we proved above), the relations S(x, k)cz
S(x, k + 1) and \Jΐ=1 S(x, k) = Pt shows that we actually have

limψk*g(x) = Σ'Smn(x) ,
k-+oo P,
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summands as in (8), for all xe Ώ[. We will use this fact later.
III. ^^convergence, 1 < r < °o. The fact that the operators /—•

φk*f are uniformly weak type (1,1) and uniformly weak (in fact strong)
type (2,2) implies (by the Marcinkiewicz interpolation theorem; [13],
vol. II, p. 112) that they are uniformly strong type (r, r) for every
r e ] l , 2]; i.e., there are constants Ar such that (ii) holds for fe2r.
(The existence of Ar for r e ]1, 2] can also be proved directly from (6),
using a function/* on]0, oo[that is equimeasurable with /€&+ and the
function βf(s) = s~Λ β(u)du. For this method, see [6].) For r > 2,

Jo

the bound (ii) is obtained by a duality argument, which we now outline.
Suppose fe Sr, r > 2, and keZ+. Define a functional Tf on (£00 by

g(x)(ψk*f)(x)dx, and use Fubini's theorem to prove that Tfg =
(^*^)(?/)^(^ f (^)=^(-^)) ThϊsgiveslΓ^X^A^Π/IMi^iU,,

so that Tf has a unique norm preserving extension to Sr,. By duality,
the extension is given by an 2r function, which has to be ψk*f. The
norm of the extension is || ψk*f\\r. Hence, || ψk*f\\ ^ Ar, \\f\\r

To prove 8 r convergence of ψk*f for all fe @, it suffices to prove
it for all functions f^m, ze Kd, me Z. Dominated convergence gives
the equality

( 9 ) Jπn^ ]ξy«(y)ξ,+%n(y)ψk(x - y)dy = J Jrk{x - y)dy

ψk(~y)dy

Suppose

Tfg = i

for all x and k. It x + ze φ w , (9) equals zero for all k. If x + zg ̂ 3W,
then (a? + «) + φ m c (φm)'. Since t^(-2/) = ψm-i(-y) when -» 6 (^w)'
and Λ ̂  m — 1, we see that ψk*ξz+<$™(%) = ̂ m- ί̂ί+ίβwίίzj) if A: ̂  m.
Convergence in 8 r for ^Λ*fβ+?gw follows at once, and Sr-convergence
for all 2r functions (1 < r < <χ>) is now immediate since @ is dense
in Sr. Note that we have proved the additional result: if cre@ is
constant on cosets of ^?w, then Lσ — ψk*σ for k >̂ m — 1. Using this
fact and the weak type (1,1) estimate, we get a proof that ψk*f
converges in measure to a function Lf, if fe2ι; and, L/satisfies the
weak type (1,1) estimate. (We will also use the italized assertion in
the proof of point wise convergence.) We have now established all the
assertions of the first paragraph of the theorem.

IV. Pointwise convergence and maximal singular integral. Sup-
pose / e 8 r ( l < r < oo). First, we summarize some limiting relations:

( a) lim MnLf{x) = Lf(x) a.e. and

MmM%{ψk*f)(x) = ψk*f(x) a.e.

(b) \imMn(ψk*f)(x) = MnLf(x).
( c) lim lim Mn(ψk *f)(x) = Lf(x) a.e .

k
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The equalities in (a) are by (2.9) of [3] (or our Remark (2.2), or
(2.5. iii)), (b) is a result of

I MnLf(x) - Mn(ψk*f)(x) I £ — | - || ζ(τr«(y - x) ||r, \\ Lf - γh*f\\r

and (c) combines (a) and (b). (Interchange of limits in (c) gives the
statement of pointwise convergence.) Using Fubini's theorem and
appropriate translations, (b) can be written

MnLf(x) — lim — \ f(w)\ ζ(π~n(x — y))ψk(y — o))dydw

— lim _ l f(w)\ ζ(y)irk(π~n(x — w) — y)dydw .

The inner integral in the last expression is ψk*ζ(π~n(x — w)). Since
ζeS with m = 0, Lζ = ψk*ζ = ψQ* ζ for all k ^ 0. Thus

(11) = 1 /(iί;)[Lζ(7Γ %(x — w)) — ^(^""^(a; — w)]dw

where η{x) = Lζ(x) — ψo(»). Supposing that (2.5.iii) holds and letting
n go to oo in (11), we have

/(a;) = f(x)\ ηdX + Lf(x) a.e. ,

proving that \ηdX = 0 and that l i m ^ o o ^ * / ^ ) = L/(a;) a.e. A con-

dition for the validity of (2.5.iii) is simply "φeίϋ". Since

1 f
1 [ω(x — y) — ω(x)]dy if x e (ψ)' (I a? I > 1)

# | d J^B0

(12)
( y ) y { ) if i a i = i

0 if xeP1 , (I a? I < 1)

the condition "φ e SL" is seen to be implied by our hypothesis (iii).
Using (11) and (2.5.i), we have

\ψn*f(x)\£ Il9>lli^(l/I) + MJ\Lf\)(x) .

The bound (iv) follows from (2.4). That the operator L* is weak type
(1.1) goes much as in part II of the proof. For fe 8X, we split / into
h + g as before and obtain the inequality



SINGULAR INTEGRALS 221

4 \ \.fv

from the fact that L* is strong type (2,2). The supremum of the
absolute value of the left side of (8) over k > 0 is dominated by

The argument following (8) is then unaltered if ψk*g is replaced by
L*g, and results in

X(L*g(x) >t)< cX(Dt) .

By the sublinearity of L*, we have

{L*f(x) > t] c {L*g(x) > i-ί} U {L*M®) >

Hence, L* is weak type (1,1).
It remains to prove pointwise convergence for Sx-functions. For

fe2t and t > 0, decompose / as when obtaining measure estimates:
f = g + h. Thus, φk*f = ψk*h + ψk*g. We know that lim^*, ψ^ * A,
exists a.e., because he22. We have proved that lim^^ ^ * ̂  exists
in JD/; hence, for every ί > 01imfc_>oo'̂ rA.*/(.τ) exists a.e. in D/. Let
ε > 0. By (5.b) there is a £ such that X(Df) < ε. Hence,

X({xeKd: limψk*f(%) does not exist}) < ε .

Thus lim^α,^*/exists a.e., if /eSA

+. Clearly the pointwise limit
will also exist for arbitrary feΆL, and the proof is complete.

A variant of the the theorem follows.

THEOREM 3.2. Under the hypothesis of (3.1) with (3.1.iii) replaced
with

00 ΓΓ Γ Ί 1 / 2

(3.2. iii) Σ I I I ω(χ + πjv) — ω(χ) I2 dxdy < 00
^lLJvβOj^O J

ίfeβ operators ψk*f converge pointwise a.e. /or fe2r, 1 fg r < 00.

Proof. Parts I, II, and III of the proof are unchanged. In IV,
we use (3.2.iii) to verify (2.5.ii) for the function η = Lζ — ψ0 and r =
2. Condition (2.5.ii) is equivalent to

f [ωjx - y) - a**)]
φ \ x \ d

and the terms of this series are dominated by those of (3.2.iii). The
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argument of IV thus proves pointwise convergence a.e. of φk*f for
fe&2. If 1 <ί r <£ 2, pointwise convergence follows for / e S r , as in
the last paragraph of IV (that argument is valid for fe 2r, 1 ^ r ^ 2).

If r > 2, then condition (3.2.iii) implies the same condition with
2 replaced by r'; and, the condition with r' implies (2.5.ii). Thus,
(2.5.iii) is again valid, and pointwise convergence follows.

The condition (3.2.iii) together with (2.5.iv) and (2.4) yield a certain
L2-estimate for the maximal singular integrals. If we assume a little
more, we get the estimate for all Lr funcnions, as follows.

THEOREM 3.3. Under the assumptions of (S.I) with (3.1.iii) replaced
by

(3.3. iii) Σ Γ j ί \ω(x + πjy) - ω{x) \ dxdyΎ* < oo ,
i-iLJφOjQ0 J

we have

D. i L"mxT s ίτME) + α ^ L l / r l o s + t / r ί λ Γ
+ *.ιι/ιu

For each r e ] l , oo[, the k/s are constants and the inequality is valid
for fe&r,E measurable, and k e ]0,1[.

Proof. The condition (3.3.iii) gives (2.5.ii) for r' and η = Lζ — ψ0,
as above. Hence (2.5.iii) and (2.5.iv) hold, so that limn^>c<)ψn^f exists
pointwise a.e. and

I ψn*f(x) - MnLf(x) I ̂  b[M(\f\r)(x)]llr , b constant .

This gives

l i M / l ^ 6[Λf(l/lr)]1/r + MJ\Lf\) , all n

and so [\L*f\ - M(\Lf\)]r ^ 6Λf(|/|r). Using a subscript E to denote
norms taken over the set E, we have

\L*f\ - M(\Lf\) \\r,E £

\\L*f\\r,E £ b[^M(\fndxγ" + \\M(\Lf\) \\r .

Application of (2.4.ii) to the 2ί function | / | r together with (2.4.i)
completes the proof.

REMARKS 3.4. ( a ) Condition (3.1.iii) can be written
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f y(π Hx))^x < ^ . 7(^) Ξ s u p f

The function 7 is somewhat analogous to the 7 used in [6] to prove
8r-convergenee. Here we use the Li-norm for [ω(x + π3'y) — ω(x)] on
Sβ°, so the condition | ω(x + y) — ω(x) | <̂  X(y) [used in [6]] does not
necessarily hold. Use of the 8Γnorm clearly gives us a weaker hy-
pothesis. Both (3.1.i) and (3.1.iii) are implied by the condition

( i ) Σ S U P {| ω(x + πjy) — co(x) |: y e 3̂°, x e O0} < 00 ,

S I

{ω(t)}/(t)dt < 00 , in a convenient
0

local field form.
( b ) It would be interesting to weaken the hypothesis to one

condition:

(ii) Σ t \ I ω(x + πJ'v) — ω(x) I dydx < 00 .

This condition implied by each of (3.1.i), (3.1.iii), (3.2.iii), (3.3.iii), and
(3.4.i).

( c ) The hypothesis in (3.13) of [6] is equivalent to the following
statement: There is an m e Z+ such that ω(x + ^3m) = {ω(x)} for all
x e £}°. This condition and homogeneity imply that ω(x + *βm+w) z= {ω(x)}
if x e £Γ. In particular (i) above is trivial, and the 8r-results of [6]
are included in (3.1). For such an ω the proof of point wise convergence
simplifies, as follows. Again write MnLf — ψn*f= Mn(τ},f), with rj
given by (12) of the proof. If x e £ιw with w ^ — m, then ω(x + β̂°) =
{o)(x)}. Thus, (12) shows that η = 0 on ψ U (^β~w+1)'. We have

= τ τ ^ r ( + + + \v(^-nv) I \f(χ + y ) ~ f(χ) 1 d y

Since rj is bounded, the limit as n goes to ©o of the right side is zero
for x in the Lebesgue set. This proves that limw_oβ'^Λ*/(5c) exists a.e.

3.5. Singular integrals with 21-kernel. In (3.1), the condition
ω 6 2co(Kd) can actually be replaced with the weaker condition
to 6 S^Q0, λ), but at the expense of using Fourier transforms and convo-
lutions of distributions, and other complications. In this subsection
we will outline this method, which is due to Hormander [5] in the Rn

case.
The fundamental space of test functions for distributions on Kd
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is @; its dual is denoted by ©'. The assumption ω e S^Q0, λ) implies that

Ψk £ £1,100 k ^ 0, but we do not know, from general principles, that

ψk*f is well defined for / e £ r . The cancellation property I ωdx — 0

can be used to prove the existence of ψk*f. Let ψ = ψQm Then, ψ

defines an element <ψ > of @' by <o/0K<p) = \ ψφdX and <ψ> has a

KdψφdX. Let τv denote trans-

lation by v: τvf(x) — f(x — v). Some elementary computation establishes

the equality

<Tvψ - ψ>A(φ) = if >A(φSv), φ e S ,

where sυ(x) = χ(x, v) — 1. The hypothesis (3.2.i) implies that

(τvψ - f) G ^{Kd) for v e ψ

since ω e δ^Q0, λ), ( τ ^ - ψ) is therefore in Si^K*) for all v. Thus

(τvf - ψ)A e &0(Kd) and <{τvψ - ψ)A> = <τvf - ^ > Λ

for each v. Furthermore, (τvψ — ψ)A(y) is uniformly bounded for
(v,y)e?β0 x Kd. There is a constant M such that for any x Φ 0 there
is a neighborhood £/(#), not containing 0, such that | sv(y) | ^ ikΓ for
all ?/ e ί/(^). Clearly the choice of v for small x must be large. But,
if x e ($β0)', then v can be chosen in 3̂°. Define

( 1 ) SΎ= <£<*LzJr)l on U(x) .
sv

Then Sx is a bounded continuous function on U(x) and <^)>A = (Sxy
on [/(x) (i.e., <-f>Λ(^) = <S,>(^) if suppφ c C7(x)). The function
S(x) = Sx(x)(x Φ 0) satisfies S(x) = Sy(x) if x e U(y). Thus S is a
continuous function on Kd\{0} such that for all x e Kd\{0} there is a
a neighborhood of x such that <(ψ/>Λ — <(S)> on the neighborhood. The
function S is bounded on [^β0]', for if ye(ψo)f then the corresponding
v in (1) can be in Sβ°. The denominator is bounded away from zero-
uniformly in v. If y e β̂°\{0}, say y e Q8-1, then an elementary argument
shows that we must have S(π~sy) = S(y). Thus S is bounded on
Kd\{0} and defines a distribution <S> on Kd such that < t > Λ =
locally on Kd\{0}. It follows that <ψ>Λ = <S> everywhere on JΓd

and hence that supp [<(ψ^Λ — S] c {0}. The cancellation property
= 0 can now be used to prove that <(^>Λ — <S> = 0; i.e., that

Λ = <S> on Kd.
Arguments analogous to those given in the proof of (3.1) show

that KΨ*JC>Λ}Γ=I is actually a uniformly bounded sequence of functions
which converge to a function Φ, and that the differences (ψky

A — nψk
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are uniformly bounded. The inversion argument proves the S2-existence
of Lkf — lim^.oo nψk*f and Lf = lim Lkf for fe 22 and also the bound

In obtaining weak type (1,1) and other measure estimates, we
don't know that ψh*g (or even Lkg) exists for ge Sr(l <; r < 2). How-
ever, we actually proved, using only (3.1.i) and α) e ̂ (Q0, λ), that the
infinite series

Σ ( I g(v) I ( J{Xmn+^Λ
X —

is finite, (see II of proof of (3.1)). "Fubini" arguments combined with
the analysis already given in II show that

exists absolutely for almost all xeD't. Thus

® - v)dy

exists (the integral is proper) a.e. in D't for each t > 0 and satisfies

1 \Ψk*g(x)\dx ^ M\ \g\d\.

It is apparently difficult to handle g directly on Dt, but if we let
fe @, then α/r^^/and ψk*g exist everyplace and, by the above analysis,
the weak estimate

(2) \{Et[ψk*f])^±-11/11,

is satisfied (fe @). For arbitrary fe Sx, let l im,^ | | / - fn\l = 0, fn e @.
The estimate (2) implies that (ψk*fn) converges in measure; call its
limit Lkf. Then Lkf also satisfies (2), and we get the operators Lk

uniformly weak type (1,1).
For 1 < r < 2, the Marcinkiewicz interpolation theorem applies as

before to give the estimates \\Lkf\\r <Ξ Ar | | / | | r . The Lr-convergence
argument is the same, for "ψk e 219 loc" is all that was required. The
duality proof is the same. Point wise convergence is also valid; we
needed only ω e ̂ (Q0, λ), (3.1.iii), and 8r-convergence.

3.6. Two examples, (i) If d = 1, O° is a multiplicative group

whose Haar measure is λ. For a nontrivial character ω of £}°, I ωdλ =

0 holds. Extend ω to K\{0} by ω(a?) = α>(a?*). Since Q° is zero-
dimensional, ω vanishes on some neighborhood of 1 (see [4] or [9]).
It follows that ω(x + φw) = {ω(x)} for all x e O°, for some m. Hence,
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all hypothesis' of (3.1) hold for ω (see also (3.4.c)). The analogue of
d° for the complex numbers is the circle group T; a character eint

of T defines a two-dimensional Calderόn-Zygmund singular integral.
In the case of the real numbers, the analogue of Q° is the multiplicative
group { — 1,1}; the real analogue of the singular integral is the Hubert
transform.

(ii) Let P be a subset of Kd satisfying

P Π - P - 0 and PΌ -P= K\{0} .

If ω satisfies ω( — x) = — ω(x), then I ω(x)dx — 0. The convolutions

are then given by

1 ^ *) - f(v - *)]dχ .

In particular, we could set ω(x) = 1 if x e P and ω(x) = —liΐxe—P,
and get another (different) analogue of the classical Hubert transform.
The conditions (3.1.i) and (3.1.iii) become conditions on P. For a
further discussions of kernels of this type in the p-adic and ^-series
cases, see [6], (4.1) and (4.2).

4* Appendix by Keith Phillips* Maximal functions for a class
of noncompact groups. In this section we give a general treatment
of maximal functions. The entire section is independent of the rest
of the paper. Our standing hypothesis is that G is a locally compact
group (written multiplicatively) with left Haar measure λ and {Un: ne Z)
is a family of relatively compact Borel sets in G satisfying

( i ) Un+1 g Un for all neZ and lim λ(E7n) = oo;

(ii) {Un: ne Z+} is a neighborhood base at e;
{ } (iii) \{UnU-λ) < CX(UJ, C constant, neZ.

(iv) For each neZ there is an integer l(n) such that

Ulin)-DU^Un and UaU~ιUn if j > l(n) .

And, there is a constant a such that λ(Z7iu)) < aλ(Un) for
all neZ.

Conditions (i)-(iii) are those for a Borel D"'-sequence in [3], except
that we use a "doubly infinite" sequence. If the £7/s are symmetric or
G is Abelian condition (iv) implies (iii), with C — a. We call a sequence
satisfying (4.1) an M-sequence.

The following theorem is similar to (2.2) of [3]; the main difference
is that the sets Un need not have bounded measure. The proof uses
only (4.1.i)-(4.1.iii).

COVERING THEOREM 4.2. Let ^ = {xUn: xeG, neZ}. Suppose
EdG and ^ c <%S satisfy
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( i ) X(EUn) < oo for all neZ;
(ii) for each xeE, there is an n such that xUne%Su,
(iii) {n:xUne

c^rt for some xeE} is bounded below.
Then, there are sequences {xk)k=1(l ^ μ ^ oo) in E and (nk)%=1 in Z
such that

(iv) {%Z7wJίfc=i i>s a pairwise disjoint family in ^ t ;

(v) ±

Proof. Let

nx — Min {n: xUne ^ for some x e E} ,

and suppose xJJnie ^/\ xλ eE. Inductively, suppose (xk)l=1 in E and
(nk)l=1 in Z satisfy

(1) {xkUnΛl=1 is pairwise disjoint in ^
Γk~ι Ύ

( 2 ) nk = Min {n: xUne ^ and xUn c \\J XiUn. for some x e E},
1 £ k ^ p.

Ifp = l, (1) and (2) are satisfied. If Ea \JUλ xkUnkU~ι

k1 we take μ =
p and see that the lemma is proved. Otherwise, take

and let j be the smallest integer such that xUόe^\ We will show
that xUsCLlUξ^XnUnJ. First, if (xUj) Π (^i^) ^ 0 , then

x e x.U^Uj1 c xJJnJJz\ but , a; e xJJnJJ^

is a contradiction. If there are k's such that (xUj) Π {xkUn) Φ 0 , let
q be the least among them (1 < q <J p). Then the inclusion xUjCZ
[\Jϊ=ϊxiU»iY holds. By (2), the inequality j^q holds, and this
inequality implies that xexgUn U~γ, a contradiction. We have thus
proved that the set

{j'.xUjG^ and xU5 c [Ul^xkUnJ for some xeE}

is nonvoid; and, we let np+1 be its minimum and xp+1Un +1 an element
of ^\ Our induction step is thus completed.

We will prove that S C | J L A ^ ^ . This inclusion, which is
already established if μ < oo, will clearly imply (v). First, we must
have lim^co nk = oo, for

Hence, for given xeE and xUp e ^ we must have (xUp) Π (α? Z7WA;) Φ 0
for some fc such that nk ^ p; iί not, # and p would have been selected
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instead of x5 and % as soon as % exceeded p. If q is any integer
such that (xUp) Π (%QUng) Φ 0 and nq ^ p, then we obtain x e xqUn U~\

Let ^f+ denote the positive (finite) regular Borel measures on G.
If / is locally integrable and μe^f+, let

neZ Mf(x) = sup{Mnf(x): neZ}

Mnμ(x) = μi^n) y U £ Z ; Mμ(x) = sup{Mnμ(x): neZ} .
μ( U n)

For a nonnegative function g and t > 0, let ^[ί/] = {x: g(x) > t}.

4.4. First weak type estimate. For an M-sequence {Un}nez,

( i ) \(Et[Mf]) £ £-\ ξEt(aίMπfdX
J G

(ii) X(Et[Mμ))^±-μ(Eίla[Mμ])
o

hold for all fe 2r(l ^ r < oo), μ e ^ T + , and t > 0.

Proof. We concentrate on the proof for Mf; Mμ is similar. Let
t be fixed and define

Un:tX(Un)<

Let 2? be any compact subset of Et[Mf]. It is clear that (4.2.i) and
(4.2.ii) are satisfied for the pair (^\ E). Condition (4.2.iii) is also
satisfied, for there cannot be sequences (Xi)7=1 and (%)Γ=i such that

r
l m v . o ^ = — oo and \ζXiU fdX >t\(U%r). This assertion is obvious if
r — 1 (and also for μ) and is a consequence of Holder's inequality if
r > 1. We thus obtain

(1) ME)^C±X(Unk)<

where (xkUni)k=ι is the sequence guaranteed by (4.2) and V = UΓ=i %
If xe V, then x^x e Ϊ7w/c for some fc, so that x^xUi^^i) Unjc. Thus:

a
— l

We have proved that VczEt,a[Mf]; hence, by (1),

(2) HE) £ j\ξ*t
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The inequality (i) follows, for the right side in (2) does not depend on
E and the supremum of the left side over compact E contained in
Et[Mf] is MEt[Mf}).

Before stating integral estimates, we first show how to get a
different measure estimate, from (4.4).

4.5. Second weak type estimate. With the notation of (4.4),

MEt[Mf]) rg ^

holds for every k in]0,1[.

Proof. Let g = fξ{f>kt]. Since

Mf ^Mg + kt and Et[Mf] c E(1_k[Mg) ,

(4.4.i) gives us

X(Et[Mf]) £ C \ gdX = C \ fdX .
( 1 — k)t jE{1_k)tcύ~l[Mg-] ( 1 — k)t JSkt\fΊ

(Notice how conveniently a disappeared.)

4.6. Integral Estimates. Notation is an (4.4).

( i ) f e % i ( K r < o o ) ^r — 1
(ii) {fe Sί, k e ]0,1[, s e ]0,1[, E λ-measurable}

[ [Mf]dX £ *ψl + _ ^ _ ί /[log

(b) ( [M/]sc?λ g C g λ ( j g ) 1 "

J^ 1 — 5

Method of proof. In (i), the constant (O)1 / r is obtained using
estimates based on (4.5) and minimization with respect to k; Car~ι is
obtained using estimates based on (4.4.i). See the proof of (3.2) in
[7]. For (ii), (4.5) is used; see (3.4) of [7].

4.7. Ergodic groups. In [1], Calderόn calls a locally compact group
ergodic if there is a family {Nr} of compact open symmetric neighbor-
hoods of the identity, indexed by the real parameter r > 0, such that
NrNsczNr+s and X(N2r) < aX(Nr),a constant. If we take Un = N2-n

we clearly get an M~sequence from an ergodic family {Nr}, for which
a — C. Let

M*f(x) = sup j_L-j^ V r /dλ: r > θ} .
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If 2rn < r ^ 2~n+1, then

- — [ξ*N fdX < — - — [ξxU fdX .
MNr)

Thus, M*f ^ aMf, and we get a theorem like (4.6) for M*f, but with
an additional constant on the right. Actually one can do a little
better, and obtain the same constant for M* as for M. To see this,
observe that the inequality M*f ^ aMf implies that Et[M*f] c Etla[Mf]
for each t > 0. Hence, we have

MEt[M*f]) <£ MEtla[Mf]) <: °L

fdλ .

The second inequality holds by (4.4.i) and third because M*f ^ Mf.
We thus have a constant β > 0(β = α~2) such that

This inequality yields (4.6) with no additional constant a on the right,
as indicated in (4.6).

Maximal functions for (Kd, +) are of course of the ergodic type.
The additional condition that the Un's are groups makes the theorems
simpler.

4.7. Metrics groups. If the topology of G is given by a left
invariant metric p, then {Sr(0): r > 0} forms an ergodic family provided
that λ(S2r(0)) ^ aX(Sr(0)). Maximal functions defined over spheres thus
give a version of (4.4) and (4.5). In [10], K. T. Smith defines maximal
functions for a class of metric spaces admitting measures satisfying
certain conditions, namely (a), (b), (c), and (d) on the top of p. 159 of
[10]. Smith's conditions (a), (c), (d) are satisfied for any locally
compact metric group and a left Haar measure. The condition (b)
[there is a constant K such that X(S(x, 4r)) ^ Kx(Sx, r))] implies that
{Sr(0)} is an ergodic family. Hence, for a locally compact metric group
G with left invariant metric, the proofs of (4.4) and (4.6) are different
proofs of Smith's Theorem 1, 2, and 3.

Maximal functions for certain metric spaces are also studied in
[8], where the main interest is in applications to harmonic and analytic
fuctions on relatively compact sets in Cn. The sets over which Rauch
takes averages have bounded measures.
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