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The purpose of this paper is to furnish a proof of the
following theorem:
TaeoreM. D, and D; are two disjoint open sets in the xy-

plane having the open arc ¢ as a common boundary. L, in
D;, 1 =1,2, are defined as

Lm(¢> = ai¢zx + 2b1¢xy + ci¢yy + d1¢x
+ eipy + 9:P, a.c; — bf >0.
Functions u; satisfy L,(u;) = f; in D;, with w;€C? in D, and
eC! in D,Us; on o,u; = u, and 0u,/O0N, = k(s)0us/0N,, where
s is arc length on o, k(s) > 0, and 0u;/0N; denotes the conormal
derivative of w.. If, on D;Us, a;, b, c;€ Cat% ds, €4, g5, fi€Chs
keCr™® and o€ Cy™% then u;c C*% on D;Us for n =0, If all
indicated quantities are analytic functions of their arguments
and ¢ is an analytic arc, then u; is analytic on D;Uo,

Here w e C* on G means the nth order derivatives of w satisfy a
uniform Holder condition with exponent a on every compact subset of
G. The conormal derivative

ou;/oN; = (a;r + b;s)u, + (br + ¢;8)u,, 1 + s =1,

uses the same unit normal (r,s) to ¢ for ¢+ = 1 or 2; this normal may
point into D, or it may point into D,.

Such elliptic equations occur in physical problems involving con-
tinuous media of different properties. Smoothness of solutions plays
an important role in the numerical analysis of such problems [7], [6].

Oleinik [5] has investigated the smoothness of solutions to such
problems in several dimensions starting with weaker differentiability
hypotheses on the wu;. This work differs from hers in that here
analyticity is proved, and no restriction on g, is required for uniqueness
of solutions is not required in the proof. The proof here is also along
different lines since the restriction to two dimensions allows the use of
conformal mapping and the Beltrami differential equation to bring L, to
normal form, allowing previous results of the author [8] to be applied.

2. Since the proof of the theorem is based on coordinate transfor-
mations it is essential to examine how the various coefficients and the
problem as a whole are altered under point transformations. With

the symbolism
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0
oz b, V. a b
sz = ’ J = ’ H= ’
(1) 0 (m «/fy) (b 0)
0y
Ve = IVey s J nonsingular , AT = transpose of A,

the second-order terms (principal part) in
VL, HY ,)u

give au,, + 2bu,, + cu,,. Under the transformation & = 4(z, y), 7 =
v, y),

(2) VeV oy = (JV o) HIV ¢

Thus the principal part of the right side in & — 7 coordinates is as-
sociated with the matrix J'HJ. An arc ¢ in the xy-plane h(z,y) = 0
become k*(e, ) = 0 and the normals 7,k and V.,h* satisfy

V:ﬂyh = JVfﬂh* .
Thus the conormal direction in the xy-plane

(3) Y mph-nN
7k ||

becomes in the &7 plane

1 1
N*=—— _J'HJVh* = ———J"Hrh .
I7R* i TRl

And the conormal derivative N7V, u becomes (N*)V.u with

1
NHV 4 = —————Fh)"H'"JIV,,
(N*)V ey TR h) %
) [7h ]
=L _L_NTp,
B
where || || is the usual Euclidean length of a vector.

Under a transformation of class C? with nonvanishing Jacobian
an arc of class Cr is transformed into an arc of class C» and corre-
sponding arc length parameters are connected by an invertible transfor-
mation of class C?, if n = 1.

Thus in the theorem, if D,UD,Uo is subjected to a (nonsingular)
transformation of class C»*% the problem transforms into a problem
of the same type. A similar statement holds in the analytic case if
the transformation is analytic.

The plan of proof is to map ¢ into the x-axis and the principal
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parts of L, into Laplacian operators, then apply the results of [8].
In [8], the theorem has been proved for Laplacian principal parts for
k constant, but the proof carries through for % variable, though the
second derivatives of %k will appear in the coefficients of first order
derivative terms of the modified equations.

The theorem is proved for a neighborhood of a point on ¢; then
a Heine-Borel argument extends the result to a neighborhood of o.

3. If o is analytic and p, is a point on o, there is a conformal
map (nonsingular) taking p, into the origin and a neighborhood of p,
onto a neighborhood of the origin in such a way that the points on
o are mapped onto the z-axis. Since the mapping is one to one and
analytic both ways, the problem becomes one of proving the analytic
case of the theorem when ¢ is the z-axis and D, is the region y > 0, D,
the region y < 0.

As is known, L(w) = au,, + 2bu,, + cu,, may be brought to a
form with Laplacian principal part by a transformation & = ¢(x, ¥)
N = P(x, y) if ¢, satisfy the Beltrami system

_ by, + ey
%—T
(5) o' =ac—b >0
_ _ oy, + by,
Py = — 5

and are at least twice continuously differentiable. Indeed
(6) L(w) = (ay’ + 209,94, + cy3)(FE,u) + lower terms,

where the lower terms involve the second derivatives of + and first
derivatives of wu.

With 62 = a,;c; — b2 > 0 and the notation of the theorem, we solve
the initial value problems

0 (@i + by 0 (i + Vi _ 0

(7) o0x ( 0; ) + 0y ( 0; >

With (@, 0) = 0, vy (z, 0) = 2% i =1,2.
e

Since a;, b;, ¢;, 0; are all analytic, (7) is an elliptic second order linear
equation with analytic coefficients with presecribed analytic initial data.
By the Cauchy-Kowaleski theorem there exists in a neighborhood of
the w-axis a unique analytic +; satisfying the initial value problem.
Both +, and +r, are two-sided solutions since the a;, etec., are analytic
in a two-sided neighborhood of ¢. From (7) it follows that the right-
hand side of (5) are components of the gradient of a scalar ¢, which
may be constructed from the gradient by a line integral
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(=,9) Poalp. Al AP Al
(8) 9'1(90, y) — S(O , bﬂtfw ;_ Cz"tfw dﬂ? — al"/fm _Oj_ bz"lrw dy .

K3

Since by (7) the integral is independent of path, the path for computing
é:(x, 0) is the wz-axis. Since +r;.(¢,0) = 0 from the initial values,
6 (x,0) =2,7 =1, 2.

The transformation & = ¢,(x, ¥), 7 = ¥, ), 2,y in D;Uc maps a
neighborhood of the origin in the wzy-plane onto a neighborhood of the
origin in the &n-plane with the wx-axis mapped onto the é&-axis. The
portion y > 0 is mapped onto » > 0; and y < 0 onto » < 0.

The Jacobian

Dix Diy
I
Vie Viy

C;

on y =0 and, therefore, the mapping in each region, analytically
continuable into the other, is invertible, the inverse being analytic.
The problem in the theorem is now reduced to one in which the
equations have Laplacian principal parts (after division by (a3, +
20:rirs, + Ci,) as indicated in (6) with ¢ =1 for » > 0,7 = 2 for
7 < 0) and o is the &-axis. By [8], the solutions have the analyticity
property on the &-axis, i.e., the solution in the region » > 0 is analyti-
cally continuable into the lower region » < 0 and conversely. Since
every mapping from the original problem to this canonical problem
has nonvanishing Jacobian on o, the inverses are also analytic in a
neighborhood of p, on ¢ and, therefore, the solutions of the equations
have the analyticity property on o.

Since with each point on ¢ there is a neighborhood of the point
in which the solutions are analytic, it is possible to cover any closed
subarc of ¢ with a finite number of such neighborhoods which overlap.
The solutions are analytic in the union of these neighborhoods.

4. In the nonanalytic case of the theorem, there is a mapping
of class C»* with nonvanishing Jacobian taking p, on ¢ into the
origin and a neighborhood of p, into a neighborhood of the origin in
such a way that ¢ maps onto the z-axis with D, mapped into y > 0
and D, into y > 0. This is by definition of ¢ € C:**. Thus, as before,
we may assume in the theorem that ¢ is the z-axis. Again we use
the Beltrami system to bring L,(u) into Laplacian principal part by
solving (7). (7) is a linear second order elliptic equation with coef-
ficients in C»*'. However, the Cauchy-Kowaleski theorem cannot be
used to establish the existence of the desired mapping because the
data is not analytic. Instead, the Schauder theory gives the existence.
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We let K, be a curve in D,Us of class C’™® coinciding with a
segment of the x-axis containing the origin in the middle of the
segment. From the Schauder theory there exists +,(z, y) of class C»+
in the closed region bounded by K, satisfying (7) and assuming on K,
the boundary values +, = y. By Hopf’s theorem [2], +r,(x, 0) > 0.
The ¢ in (5) is again reconstructed from its gradient by a line integral
as in (8), the curve being confined to the closure of the region bounded
by K,. The Jacobian of the transformation & = ¢,(x, ¥), 7 = . (x, ¥) at
x=0,y=01Is

P1e Py

]
Vi, Yy

. C
= Quq."fly = sl"ﬂl"fy > O .
1

The function pair ¢, v, can be extended into D, as class C2** functions
[1]. (This can easily be done for xe K, No. If
n+3 QG " j
W,y = 5, SYERD U
i=0 oy’ J!

then v(z, y) = ¥.(x, y) — h(x,y) vanishes with its y derivatives of
order < n + 3 for y = 0. Thus v defined in D, is easily extended into D,
by v(x, —y) = v(z, y). If V(x, y) is the extended v, Ve C:**in D,UcUD,.
W@, y) = Vix,y) + h(z,y) is therefore the desired extension of +,.)
Therefore, there is a class C*** transformation mapping a neighborhood
of the origin in such a way that the xz-axis goes into the &-axis, L,
transforms into an operator which has principal part equal to a
(nonvanishing) scalar times the Laplacian, as in (6), and the Jacobian
does not vanish in the neighborhood. L, is also transformed into a
linear second order elliptic operator. Both new equations are now
divided by the coefficient of the Laplacian. Thus the theorem is now
reduced to the case in which L, is the Laplacian and ¢ is the x-axis.
We now use the Beltrami system to bring the current L, to
Laplacian principal part, proceeding initially as above to obtain ¢,(x, ¥)
and (2, %) in D,Uc such that +r(x,0) = 0. Then the following
transformation is applied to a neighborhood of the origin:

£ = ¢2(x7 y) <0- ¢ = ¢2(x, 0)

Y= y=0.
7 = Pro(, Y) N =1y

(9)

The mapping of D, has a C:'® extension into D, and the mapping of
D, has a C**? extension into D,. Both mappings agree on ¥y = 0 and
have nonvanishing Jacobian at (0, 0).

L,(w,) = [ex(, 0)vrg,(c, 0)/05(, 0)[Prhyee + iyy
+ derivatives of u, of lower order
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Ly(u,) = (a3, + 2bz¢‘2x"/"zy + Capriy) (Veaths)
+ derivatives of u, of lower order .

Thus

Li(u,) = h*(E)tyee + Wppy + <+

(10)
Ly(u,) = g(&, DWWty + =+ -

where h and g are positive and e C**?. On account of (9) and (4), the
k(&) for (10) is still of class Cz**. (It is at this point that Ci*®
transformations are required, rather than C”*2 because of the degrading
of the differentiability of & at this step by introducing factors depending
on the first derivatives of the transformation.) Division of the upper
equation in (10) by 4*¢&) and the lower one by g(&, ) yields

Ly(w) = Uiee + @(E) Uiy + <=+

(11)
Ly(u,) = Veytes + -+

the dots indicating terms involving % derivatives of order less than
two. The k(&) for (11) is just the k for (10) multiplied by g(&, 0)/h*(&).
Thus the theorem has been reduced to the case (11) with o the é-axis.

Returning to # — y variables to avoid excessive notation we make
the variable change ¢ = &,y = 9/q(§) for n Z 0,z = &,y =7 for p < 0.
This leaves L, unchanged, and brings L, into

(12) L,(w,) = %y, + 20(@)Yty,y + (P + Doty + - -

where r(x) = —¢’/q. Thus the coefficients in the principal part of L,
meet with those of L, to make them Lipschitz continuous throughout
C(0, a), a circle in D,UcUD, centered at (0,0) with radius a.

As in [8] we write u, = w + kw, u, = w + w where u is even, w
odd, and bothe C* in C(0, a). This leads to an elliptic system as in
[8], but somewhat more complicated. However, the coefficients of
second order derivative terms are Lipschitz continuous, and as in (12),
the z-derivative of those coefficients are Lipschitz in C(0,a). By
Theorem 4.3 in [3], u, we C; in C(0,a). Now the proof of Theorem
4.5 in [3] can be applied, modified to use only derivatives and difference
quotients in the z-direction, noting that the v in that proof is of class
C! with one even component, one odd, but that in any case v,€ C..
That proof puts w,, w, in C! in C(0,a). u,, and w,,, for y = 0, are
expressed in terms of quantities which are of class C, from the
differential equations. Thus, for y = 0, % and w are of class C:.

The further differentiability properties on % and w are obtained
by differentiating the equations with respect to x (using always the
known interior differentiability properties) and observing that wu,, w,
satisfy an elliptic system like » and w with the same boundary con-
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ditions on ¥y = 0. Thus %,, w, e C? for y = 0. The equations for y = 0
are then differentiated with respect to y and solved for u,,, and w,,,
in terms of quantities which are class C,. The process may be repeated
as often as is possible to differentiate the coefficients. The differenti-
ability properties of w; then follow.

This result gives three orders of differentiability more than the
results in [5].

5. The theorem is valid if the solution pair u,, u, are initially
known only to be in H}. (Classes H™ are defined in [4], pp. 62-63.)
By this, here, is meant that for any closed subset S* of S = D,UcUD,
there is a sequence of function pairs (4!, uf), ui{ € C* in D,Uo, satisfying
the conormal derivative condition of the theorem, such that «i con-
verges in the mean of order two to u; on S* N D, while the first order
derivatives form a Cauchy sequence in mean of order two on S* N D,.

The proof will be merely sketched for the analytic case. The
nonanalytic case is similar. Clearly the H, hypotheses hold for the
transformed problem, so it is sufficient to prove the result for the
canonical form above, as in [8]. As there, u, =4 + v,u, = u + kv
where u is even, v is odd; and u, v satisfy in S, which may be taken
as the open circle C(0, a) centered at (0, 0) with radius a,

S % go = S Fdady S 9 g = S Fdady
R* ON R R* OM R

for almost all closed cells R in C(0,a) [3]. Here F, and F, are linear
combinations of w, v, fi, f;, and the first order derivatives of w and v
as in [8] with bounded coefficients. By Theorem 4.3 in [3], » and v
are of class C! in C(0,a). Thus u; is of class C! on D,Uc. The
further results then follow.
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