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HOMOMORPHISMS OF ANNIHILATOR
BANACH ALGEBRAS, 1II

GREGORY F. BACHELIS

Let A be a semi-simple annihilator Banach algebra, and
let v be a homomorphism of A into a Banach algebra, In this
paper it is shown that there exists a constant KX and dense
two-sided ideals containing the socle, I; and [z, such that
lvxzy) |l < K ||« - ||y | whenever xcI; or ye Iz, If A has
a bounded left or right approximate identity, then v is continu-
ous on the socle. Thus if A = L,(G), where G is a compact
topological group, then any homomorphism of A into a Banach
algebra is continuous on the trigonometric polynomials,

In [1] we considered the problem of deducing continuity pro-
perties of a homomorphism v from a semi-simple annihilator Banach
algebra A into an arbitrary Banach algebra. The main theorem
there (Theorem 5.1) had a conclusion more restrictive than the one
stated above and required the additional hypothesis that I R(I) = A,
for all closed two-sided ideals I, where R(I) = {x|Ix = (0)}. The
main theorem of this paper applies when A = L,(G), 1 < p < = or
C(G), where G is a compact topological group and multiplication is
convolution, and when A is topologically-simple, whereas the earlier
theorem did not.

Any terms not defined in this paper are those of Rickart’s book
[10]. For facts about annihilator algebras, the reader is referred to
[4] or [10].

Given the left-right symmetry in the definition of annihilator
algebras, it follows that, given any theorem about left (right) ideals,
the corresponding theorem for right (left) ideals also holds. Specific-
ally, this is the case for the theorems in [4, §4] and [1, §4]. We
will make tacit use of this fact throughout this paper.

2. Structural lemmas. In this section several lemmas are
established which will be used later in proving the main result.
Throughout this section, we assume that 4 is a semi-simple annihilator
Banach algebra.

Lemma 2.1, If {x, ---,x,} s contained in the socle of A, then
there exist idempotents e and f such that x;ceAf, 1 <1 < n.

Proof. By [1, Corollary 4.9], for each ¢ there exist idempotents
e; and f; such that xz;ce¢, AN Af,CeAf;. By [1, Th. 4.8], there
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284 GREGORY F. BACHELIS

exist idempotents e¢ and f such that e¢d4 + --- +¢,4A =¢A and
Af, + -« + Af, = Af. Thus z,€¢,Af;, = ee, AfifCeAf, 1 < i < n.

LeMMA 2.2. Suppose A s topologically-simple, and e s a
minimal idempotent in A. Then there exists a constant L such
that:

Given f= f*e A and xceA, there exists g = g°€ A such that:

1) 21— flg=ol—f)=ug

2 fg=9f=0

3) llgll =@+ [ fIDL.

The corresponding statement holds for xe€ Ae.

Proof. Let F, denote the bounded operators on Ae of finite
rank., Then via the left regular representation, we may regard A
algebraically as a subalgebra of the uniform closure of F, which
contains F, (see [4], Ths. 9 and 10).

If aced, uc Ae, then au = eaue = re = ¢, (w)e, and a — ¢, defines
an isomorphism and homeomorphism between ¢4 and the bounded
linear functionals on Ae [4, Th. 13]. Hence there exists a constant
L such that ||al]| < (L/2) || ¢, || for all aceA.

Let xced and f= f*e A. Then z(1 — f)ced, and e is minimal,
so range(x(l — f)) is one-dimensional. Let M = (x(1 — f))~*(0). Then
M is a closed subspace of co-dimension one in Ae, so there
exists a bounded linear functional 8 on Ae such that |8 =1 and
B70) = M. Let we Ae such that [|w]l £2 and Bw) =gl =1.
Now w =1 — fHw + fw, and fwe A — )~ 0) = M, so B(1 — fHrw) =
B(w) = 1.

Let G(u) = Bu)1 — f)w, wec Ae. Then G is a bounded operator
on Ae with one-dimensional range and G = G?, so there exists an
idempotent ge A such that gu = Bw)(A — flw, uecde. If ue Ae,
then u — Bw)(1l — HweB0) = M = (x@ — )0, so z(1 — fHu =
21 — B — fHw = 2Bw)1 — f)w = xgu. Therefore z(1 — f) =
xg. Thus 2(1 — f)g = 2¢9* = xg = «(1 — f). This establishes (1).

To prove (2), we see that (1 — flwe f'(0), so fg =0, and
range(f) = (1 — f)7(0)c M = g7(0), so gf = 0.

To establish (3), let heed such that ¢, = 8. If uwc Ae, then

(1 — Hwhu = 1 — flrwBw)e = )l — flwe = Bu)l — flw = gu.
Therefore (1 — f)wh = g, so
Holl =A@+ FINw]l = (L/2)A + {1 fID2 = LA + || £]) -

3. The ideals I, and I;. In this section we discuss the ideals
which enter into the main theorem. Throughout this section, we
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assume that A is a Banach algebra and that vy is a homomorphism
of A into a Banach algebra.

DEFINITION 3.1. Let I, = {xc A|y—v(zy) is continuous on A}
and let I, = {x € A |y — v(yz) is continuous on A}.

These sets were introduced by Stein, who shows they are two-
sided ideals in A [11]. Another useful concept is that of the separat-
ing ideal, S, which is defined to be the set of seecl (¥(4)) such that
inf,. {|x|| + ||s — v(®) ||} = 0. The separating ideal was introduced
in the form above by Yood [13]. It is a closed two-sided ideal in
cl (v(4)).

In [12], Stein notes that I, c{re A|v(x)S = (0)} and similarly
for I,. One actually has equality: For suppose v(z)S = (0). If
z,—0 in A, then by [8, Lemma 2.1], v(z,) + S— S in el (v(4))/S.
Hence there exists {s,} © S such that v(z,) +s,— 0. Thus v(zz,) =
v@)p(x,) = v@)@,) + s,)—0, so xel,.

4. Homomorphisms of annihilator algebras. In this section
we establish the main results of this paper. We will make frequent
use of the “Main Boundedness Theorem” of Badé and Curtis.

THEOREM 4.1. Suppose that A is a Banach algebra, and that v
is a homomorphism of A into a Banach algebra. Let {x,} and {y,}
be sequences in A such that x,y, = 0, n = m. Then

Ip@u) ||
T TP

Proof. This is Theorem 8.1 of [5]. The statement there in-
cludes the unnecessary hypothesis that y,y. = 0, n # m.

Throughout the remainder of this section, A will denote a semi-
simple annihilator Banach algebra with socle F, and v will denote
a homomorphism of A into a Banach algebra. We first prove:

LeMmMmA 4.2, If A is topologically-simple, and e is a minimal
idempotent in A, then v|eA and v| Ae are continuous.

Proof. (For v|eAd). Let L be as in Lemma 2.2. Suppose the
conclusion fails. Choose w,€ed such that ||v(z)| > L] «]|. By
Lemma 2.2, with f = 0, there exists g, = g A such that ||g,|| < L
and z,9, = x,. Thus |[v@) || > [[«.]] ]| g.].

Assume that elements x;€ed, g;€ A have been chosen such that
X:gi = Ty
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9:9; =0, 1#7,

and || v(x) || > i@l [l g:l, 1 <4, § < m.
Let f =9, + --- + g,. Then f=f* g.f=9;= fg; and x;ceAf,
1 <47 <mn. Since f can be expressed as the sum of minimal idempotents
[1, Th. 4.5], eAf is finite-dimensional, so let K be the norm of v |eAf.
Now choose u € eA4 such that [|v(w) || > 1+ fI)L(n+1)||w|| -+ K| £l [|w]|.

Then
v || = [[v@f) ]| + |[v@@ — )
= Kllwl[[[fI] + [[v(w@ — NI,
80

@ — NI > A + [ AL + Dl w]|
= (L + [[FIDL(n + Difu@d = £) 1] .

Let ©,,, = u(l — f)eceA. By Lemma 2.2, there exists ¢,., = ¢%..€ 4

SuCh that xn—%lgfrH—l = anrlv gn+1f: fgnJ.—l = 07 and Hgn+1 |] é L(l + Hf”)'
Thus

9ns19s = 0 = 90,41, 117

and

1Y@,) [| > 0+ D[ @i [ sl -

Thus by induction there exist sequences {z,}, {g,} such that x,g, =

2u9.9n = 0, n=%m and [|v(z,9,) ]| >nl|l2,!1l¢g.]l, which contradicts
Theorem 4.1.

We now show that I, and I, are dense in A:
LEMMA 4.3. FcI,NnlI,.

Proof. If e is a minimal idempotent, then ¢ is contained in a
minimal-closed two-sided ideal M, M is a topologically-simple semi-
simple annihilator Banach algebra, and eM = ¢A. The preceding
lemma gives that v|eA is continuous. Thus x -— y(ex) is continuous
on A, so ecI,. Hence I, contains all the minimal idempotents of A.
Since I, is an ideal, this implies that I, D F. Similarly, I,D F.

LemMmA 4.4. If |lvxy) | > vzl |y, and if xel, or yel,
then there exist x, y, € F such that || v(xy) !l > v|la ||| v.]l.

Proof. Suppose weI,. Since w— v(xw) is continuous on A and
F is dense in A, there exists y, ¢ F such that |[v(xy) |l > rllz|| || v.ll-
Now w, € I, so there exists x, € F such that [[v(xy) || > rl|x || .1l
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We can now prove the main theorem:

THEOREM 4.5. Let A be a semi-simple annihilator Banach
algebra, and let v be a homomorphism of A into a Banach algebra.
Then there exists a constant K such that

lv@y) [l = K]yl

for all ©x and y in A such that xe€ I, or ye I

Proof. In view of the preceding lemma (or by symmetry con-
siderations), it is enough to show that there exists a K such that
lv(y)|| = K||z]|l||y|| whenever ®e I,. Suppose this is not the case.
By the preceding lemma, there exist x, and %, in F such that
o@y) || > 2]yl

Assume that elements w;, ¥, € F' have been chosen such that
xy; =0, ]
and
v@y) || > 2l [l 1=4,5=5n.
By Lemma 2.1, there exist idempotents ¢ and f such that
(X, + oy @0y Yy, +++, Y} CeAf. By [1, Th. 4.5], e and f are in F, and
by Lemma 4.2, Fc I, N I,. Now an idempotent is in I, (I;) if and
only if the restriction of v to the right (left) ideal it generates is
continuous, so let L be the maximum of the norms of the continuous
mappings v | Ae, v|eA, v|Af, v|fA, and let
K" = L¥|el + [IF1I*+ el £ .
If «,ye A, then
[v((x — we)(y — fy)) || = |[v(xy) — v(veey) — v(xffy) + v(xzefy) ||
= [|vy) || — [[v(xe) || [| v(ey) ||
= [lv@A) () | = l[o@e) ([ [[v(fy) ]
= [y || — K'|[x][|ly]l .
By the preceding lemma, there exist u, v € F' such that

lv(o) || > {(n + 1) + [[e[D@ + ||f1) + K} w|l{[v]] .

Let ®,., = u — ue, Y,.. = v — fv. By the above, we have that

| v(@0Yns) [| > (0 + DA+ [Te|D][ul[@ + [ FIDI]]
=+ D[ @ | gnell -
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Also, 2y, = @, f(v — fv) =0, v,.,¥; = (w — ue)ey; = 0,1 < i =< n, and
Tuiry Yuia €F.

Thus by induction there exist sequences {w,}, {y.} such that
2Yn =0, n=m, and ||v@,¥.) ]| > nl|lx.||||¥.]l, which contradicts
Theorem 4.1.

REMARK 4.6. If xzel,, let K(x) be the norm of the mapping
y—v(@y). Then [[v@y)| = K@/|xIDl«|lllyll, yeA. The above
theorem shows that {(K(x)/||«|]) |z < I} is bounded.

The following corollary is an analog for annihilator algebras of
a theorem by Badé and Curtis on homomorphisms of commutative,
regular semi-simple Banach algebras [2, Th. 3.7]; it gives Theorem
5.1 of [1] as a special case.

COROLLARY 4.7. Let A be a semi-simple annihilator Banach
algebra, and let v be a homomorphism of A into a Banach algebra.
Then there exists a constant K such that.

@) |l = Kll=|[[v]]

for all x and y in A such that yx = x or ay = «.

Proof. If yx=a or xy=2x, then by [1, Corollary 4.12],
xeFclI, NI

DEFINITION 4.8. A Banach algebra A is said to have a bounded
left (right) approximate identity if there exists a norm-bounded net
{e.} © A such that e, o — 2 (ve,— x) for all x e A.

COROLLARY 4.9. Let A be a semi-simple annihilator Banach
algebra with a bounded left or right approvimate identity, and let
v be a homomorphism of A into a Banach algebra. Then v s
continuous on the socle of A.

Proof. Suppose that A has a bounded left approximate identity.
Let ze F. By Cohen’s factorization theorem [6], there exists a
constant L (independent of 2z) and elements x and y such that
z=uwy, |lz—yl|| = |2, ||2]| £ L, and y is in the closed left ideal
generated by z. By [1, Corollary 4.9], there exists an idempotent-
generated left ideal, J, containing z. Since J is closed, we have
yeJc Fcl,. Thus if K is as in the above theorem, then

@[ = llv@y |l = K[| [y]| = KL(|z|| + ||z — y}) = 2KL|| 2] .
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We conclude this paper with several remarks:

REMARK 4.10. Let G be a compact topological group and let A =
L,(G), 1 < p < o, or C(@), with convolution for multiplication. Then
Theorem 4.5 applies to A and the above corollary applies to L.,(G).
Here F is the set of trigonometric polynomials, that is, the set of
linear combinations of component functions of strongly continuous
irreducible unitary representations of G (see [10, p. 330]).

REMARK 4.11. If X is a reflexive Banach space, if F denotes
the bounded operators on X of finite rank, and if AcCcB(X) is a
Banach algebra containing F' as a dense subset, then Theorem 4.5
applies to A [10, pp. 102-104]. Here the socle of A is F.

If A is the uniform closure of F' in B(X), if A has a bounded left
or right approximate identity, and if X has a continued bisection, then
Johnson has shown that every homomorphism of A into a Banach
algebra is actually continuous [8, Th. 3.5]. His theorem is stated
for the algebra of compact operators on X (which may indeed always
coincide with A), but his method of proof works equally well for A.!

REMARK 4.12. Although examples do exist of discontinuous
homomorphisms of annihilator algebras (see [2, p. 597, p. 608] [3,
p. 853], and [9]), it is still the case for these examples that I, = A.
One might conjecture that this is always true. As a small move in
this direction, we show below that, in two special cases, I, properly
contains F' the socle of A.

(1) Let M ={M,|»ne 4} denote the minimal-closed two-sided
ideals of A and suppose that I% forms an unconditional decomposition
for A. Then xe¢ A implies © = X,x,, where z, ¢ M,, and an equivalent
Banach algebra norm for A is given by |x| = sup{|| Xics 2 []: 4, is
a finite subset of 4}. [1, pp. 231-232]. Thus |@|==sUDsc/| Dires 1]
For MM, let AMN) denote those x in A whose summands are all in
N. If N, and N, are disjoint subsets of M, then A(N) - AN,) = (0).
If tc AM) and x¢l,, then given K there exists yc A such that
Hv(ey)|| > K|z ||y|. Since removing the summands of y that are
not in members of N does not increase its norm and does not affect
xy, we may assume that ye AM) as well. Thus if {N,}r_, is any
sequence of disjoint subsets of IR, then Theorem 4.1 implies that
AN, c I, for all but finitely many n.

If A is strongly semi-simple, we can say a bit more. In this
case, each Me M is finite-dimensional [1, Proposition 4.7]. Let .Z2(MN)
denote the set of subsets of I, let . # denote the set of finite sub-
sets of I, and let [N] denote an element of the Boolean algebra

! See “Added in proof.”
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M)/, If AR)c I, and N, c[N], then N, N Ne F, so AN) C I,.
Thus >, AQY) C I.. (Here “3” denotes the algebraic sum. Note
that F = Sip. ~AN).) Let 7 ={N]e »M)/F | AN) c1,}). Then
# is an ideal in M)/ #. If [N]+* .4, then there exists & =+
[9U] < [R] such that [W,]e._#: Otherwise, we could find a pairwise
disjoint family {%,}, with A(R,) ¢ I, for any %, which would contradict
Theorem 4.1. But this says that the annihilator of _# is &/, and
thus _# corresponds to a dense open set in the dual space of
P(M)], BIN) — M, where MM has the discrete topology® (see [7],
pp. 76, 84, and 88). Since dividing by # in effect “mods out the
socle”, we see in this case that I, is significantly larger than F.

(2) Suppose that A has proper involution 2 —z* and that
ISP RU)* = A for all closed left ideals I. Let {e; | » € 4} be a maximal
family of orthogonal hermitian idempotents. Then xze¢ A implies
= e = Yywe,, and we may assume |2 = SuDycql| ey 62|
[1, pp. 231-233]. For A, A, let A1) ={vxcA|ve,=0,red}. If
ve A(4,) and |[v(xy) || > K| x|y, let y, = ZXe/II ¢;y. Then ay, =
2, 1yl < llyll, and o'y, =0 if 2'€ A(4,) and 4, N4, = @. Thus,
given any sequence {/4,} of disjoint subsets of 4, Theorem 4.1
implies that A(4,) c I, for all but finitely many n. (Of course there
may exist € F' such that ze, = 0 for infinitely many X\, but clearly
A(4) ¢ F if A, is infinite.) Since v | Ae, is continuous, remarks
similar to those in the above paragraph can be made in this situa-
tion, with I replaced by {Ade, |\ e 4].

Added in Proof. (continuation of Remark 4.11) If X is a Hilbert
space and A = ¥, the algebra of trace class operators, or §,, the
algebra of Hilbert-Schmidt operators, then the methods of [8, Th. 3.3]
can be adapted to show that A*c I,. The statement in [8] that these
methods imply continuity is in error. The following example (com-
municated to the author by Professor Johnson) illustrates this: If v
is a discontinuous linear functional on $, which vanishes on ¥ (=%,),
then by defining zero multiplication in the complex numbers, one ob-
tains a discontinuous homomorphism of ..
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AN EXPLICIT FORMULA FOR THE UNITS OF
AN ALGEBRAIC NUMBER FIELD
OF DEGREE 7 = 2

LEON BERNSTEIN AND (IN PARTIAL COOPERATION WITH) HELMUT HASSE

An infinite set of algebraic number fields is constructed ;
they are generated by a real algebraic irrational w, which
is the root of an equation f(w) =0 with integer rational
coefficients of degree n = 2, In such fields polynomials P,(w) =

aow® + w4+ e 4 QW + s and
Qs(w> = bows + b1w841 + et + bsalw + bs
(s=1,---,n—1; a; b, rational integers) are selected so that

the Jacobi-Perron algorithm of the n — 1 numbers
Pn—l(w), Pn—z(W), ] Pl<w>

carried out in this decreasing order of the polynomials, and
of the n — 1 numbers

Q:1(w), Qx(w), -+, Qu—1r(w)

carried out in this increasing order of the polynomials both
become periodic.

It is further shown that » — 1 different Modified Algorithms
of Jacobi-Perron, each carried out with # —1 polynomials
P,y(w)y Py—s(w), -++, P(w) yield periodicity. From each of
these algorithms a unit of the field K(w) is obtained by means
of a formula proved by the authors is a previous paper,

It is proved that the equation f(xr) =0 has n» real roots
when certain restrictions are put on its coefficients and that,
under further restrictions, the polynomial f(z) is irreducible
in the field of rational numbers, In the field K(w) n —1
different units are constructed in a most simple form as
polynomials in w; it is proved in the Appendix that they are
independent; the authors conjecture that these n —1 in-
dependent units are basic units in K(w),

1. Algorithm of # — 1 numbers. An ordered (n — 1)-tuple
(1) (@”, ai”, -+, ail)), (n = 2)

of given numbers, real or complex, among whom there is at least
one irrational, will be called a basic sequence; the infinitely many
(n — 1)-tuples

(2) (b{v)’ bév)y Tty bgmvll y (’U =0, 1) M ')

will be called supporting sequences. We shall denote by

293
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( 3 ) A(aimy aéﬂ)’ Yy a;?ll

the following algorithm connecting the components of the basic
sequence with those of the supporting sequences:

{v) (v)
; afl, — b
a;ﬁ”*l):__—_—_k*'l k+1’ (k:l,.-.,n—z;’vzo,l,-..);
a(v) ___b(v)
1 1

; 1
alth = s a® £ b v=20,1,-+4).
a(v) _ b(v)
1 1

(4)

The (n — 1)-tuples (¢!, al, ---,al”,), (v=0,1, ...) will be called
generating sequences of the algorithm. A(a!®,a!®, --.,al?,) is called
periodic, if there exist nonnegative integers s and natural numbers ¢
such that

(5) a =qa», =1, ,m—1;v=s8,8s+1,--).
Let be

(6) mins = S; mint = T ;

then the S supporting sequences

(7) &P, by o0, ), v=01,..--,8S—1)

are called the primitive preperiod of the algorithm and S is called
the length of the preperiod ; the T supporting sequences

(8) (biv),bév),"‘,bﬁl), (v:S,S+1,"',S+ T'—l)

are called the primitive period of the algorithm, T is called the
length of the period; S + T is called the length of the algorithm.
If S = 0, the algorithm is called purely periodic.

Two crucial questions emerge from a first look at such an
algorithm :

(a) can a formation law be defined by whose help the support-
ing sequences could be obtained from the basic sequences and the
generating sequences ?

(b) under what condition is A(a®, ai", ---, al,) periodic; what
is then the nature of the basic sequence and what is the correspond-
ing formation law for the supporting sequences ?

For » = 3 an algorithm A(a®, ai”) was first introduced by Jacobi
[17] and a profound theory of an algorithm of # — 1 numbers for
n =2 was later developed by Oskar Perron [18]; in honor of
these great mathematicians the first author of this paper -called
A(a®, a, -+, a ) the algorithm of Jacobi-Perron; they both used
the following formation law for the supporting sequences: let a{” be
the components of the generating sequences; then
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(9) biv):[a'(iv)]’ (i:l,---,n—l;v:O,l,---)

where [x] denotes, as customary, the greatest integer not exceeding
2. For m =2 the algorithm of Jacobi-Perron becomes the usual
Euclidean algorithm.

One of Perron’s [18] most significant results is the following

THEOREM. Let the supporting sequences b6 (1 =1,---,m —1;
v=0,1, .-.) be obtained from the basic sequence a{” (1=1, .-, n—1)
of real nmumbers by the formation law (9). If the mnonnegative
integers A are formed by the recursion formula

0 [A=1An=0; (G#v;4,0=0+,n—1
APt = AP + S nmibmAPD o 3 =0, 0o, —1,v=10,1,--)
then A(a®, ay, ---, al.)) converges in the sense that
1) © = Jim AL G=1,e,m—1)
a;’ = P Aém . — ’ .

Moreover, this theorem can be generalized, as was done by the
First author ([8], [10], [11], [12]) in the following way :

Let the supporting sequences be obtained from the basic sequence
by any formation law ; if the a!”, b are real numbers such that

a:lv)>0; (?::1,"',’)’1/—1)
(12) b =0; (1=1,--,n—2 0<b?, <C;
b b, < C; C a positive constant, (v=20,1,.-%)

and the numbers A{” (here not necessary integers) are formed as in
(10), then A(al”, al, ---, a!®,) converges in the sense of (11).

2. Previous results of the first author. Perron [18] has
proved that if A(al”, a!”, ---,a,) becomes periodic then the a
(t=1,---,n — 1) belong to an algebraic number field of degree < #.
However, he did not succeed to construct, in a general way, algebraic
fields K and to select out of K such n — 1 numbers whose algorithm
would become periodic. This was achieved by the first author for
an infinite set of algebraic number fields K(w), w being a real
irrational root of an algebraic equation f(w) = 0 with rational coef-
ficients. In his papers ([1]-]7]) he used (9) for the formation law
of the supporting sequences, thus operating with the algorithm of
Jacobi-Perron, though heavy restrictions had to be imposed on the
coefficients of f(w) in order to achieve periodicity. The first author
succeeded to remove these restrictions by introducing a new formation
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law that generalizes (9) and is defined in the following way :
The a{” and, subsequently, the o, ({=1,---,2—1; v=0,1,.-.-)
being numbers of the field K(w) have, generally, he form

(13) a}lv):a?)(w)s (?::1,"',%—1;7):0,1,"')
as long as the b are rationals. Let be
(14) [w]=D;

then the formation law of the supporting sequences is given by the
formula

(15) b = a(D) , (¢, v as in (14)) .
In previous papers of the authors the a” had the form
(16) a” = Py(w) , (t=1.,n-1),

thus being polynomials in w with rational coefficients; now the
second author of this paper asked the question, whether the algorithm
of Jacobi-Perron or any other algorithm

A(inl(w), Pn—~2(w)y ) Px(w))

of polynomials of decreasing order would yield periodicity, too. This
challenging problem could not be solved at first, with the exception
of a very few numerical examples, w being a rather simple cubic
irrational. Only recently the first author ([13], [14]) could give an
affirmative answer. He achieved this by means of a highly com-
plicated formation law for the supporting sequences. But while the
new model works well for an infinite set of algebraic number fields
K(w); and though in certain cases it is identical with the Jacobi-
Perron algorithm—its application does not, at least in this initial
stage, seem to go beyond narrow limitations.

In this paper an algebraic number field K(w) is constructed where
w is a real algebraic irrational of highly complex nature; but just
here it is possible to select polynomials in w such that the algorithms
of Jacobi-Perron, viz. for the given (n — 1)-tuples

(Pn—i(w)’ P _2(71)), M Pl(w)) ’
(Qn—-l(w)) Qn—-2(w)! ] Ql(w))

both become periodic.

3. The generating polynomial. We shall call the polynomial
of degree n = 2, viz.
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J@) =@ — D)@ — D)@~ D,) -+ (x — D,) — d;
17 D, D,, d rational integers; d > 1;
D>Di; dI(D—Dz)r (7/:1, "':n—'l)r

a Generating Polynomial, to be denoted by GP.
In what follows we shall need two theorems regarding the roots
of the GP.

THEOREM 1. The GP has one and only one real root w in the
open interval (D, + o). This root lies in the open interval (D,
D +1).

Proof. The two assertions are immediate consequences of the
following three inequalities which follow from the conditions in (17):

.]‘.(D):*d<07
o 1 1,1
f(W)—(f(x)+d)<m_D+x_Dl+ +x_Dn_1)>0
for > D,
fD+1)=D+1-D)YD+1-D)+--(D+1-D,)—d
>@+)—d=@d+1)—d=1>0.

THEOREM 2. Let the integers D, D, occuring in the GP satisfy,
i addition to (17), the conditions

(18) D:D0>D1>"'>Dn—1y
and in the special case d = 1 moreover

D, —D,=2o0r D,— D, =4, for n=3;
(19) D —D,=z2o0r Dy— D, =3 or D,— D, =3 or
D,— D, D,— D, =2, for nw =4.

Then the GP has exactly n different real roots. Of these lie

1 in the open interval (D,, + ), more exactly in the open
interval (D,, D, + 1),

2 in each of the open intervals (D,;, D,;_)), more exactly 1 in
the open left half, 1 in the open right half of these intervals with
2<2t<n—1,1 in the open interval (—,D,_)) if n is even.

Proof. Since the total number of roots asserted in the latter
three statements is exactly equal to the degree n of the GP, it
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suffices to prove the existence of at least 1,2,1 roots respectively
within the indicated open intervals. For the first interval this has
been done in Theorem 1. For the other intervals it suffices, besides
the obvious facts

fD) = —d <0 (i=0,1,-s,m—1)
and

lim f(x) = + if = is even,

to verify the inequalities
Sle) >0 R=s2r=n-1),
i.e.,
fle) +d = (¢; — D)e; — D) -+ (¢; — D,,) >,
with 2< 2 <% — 1 and ¢; = (D,;_, + D,;)/2. Now according to (18)

¢, —D; <0 for j=0,1,.--,20 -1,
¢ —D; >0 for 7=2¢,20+1,.--,0—1,

and as the 7 in the first line are in even number, certain at least
Je) +d>0.

According to (17) and the obvious consequence d|(D;, — D;) one has
more precisely

Ici_Dj[zd_i_fzi:%d for j=+2i—1,2i,

lci—Dj]g%d for j=2i—1,2i,

and hence
fle) + d = Baj2r-@2y = S /2y .
Observing that 2 <2/ <n — 1 implies » = 3, one obtains thus for
d = 2 the desired inequalities
fle) +d=3d/2>d.

In the special case d =1 still more precise lower estimates are
required, viz.,
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l¢, — D, | _2_(2i—1—j)d+i;l—:2i—1—j+% for j=0,1,+++,2i—1,

|ci—D,-lg(j—2i)d+%-=j—2i+% for j =26, -, m—1.

The lower bounds have values from the sequence 1/2,3/2,5/2, .--
For each relevant 7 two values 1/2 and, if » = 5, at least two values
3/2 and one value 5/2 occur. For n = 5 therefore certainly

o 1= (2)(2)(8) 1.

In the remaining cases d = 1 with n = 8,4 there is only one relevant
1, viz., © = 1. One verifies easily that the desired inequality

fle)+1>1

is true under the conditions (19).
We shall now rearrange f(x) in powers of x — D. We shall
first prove the formula

SE @)=kl 3@ —-D;)+- (@ —D;, _,),
(20) 04 <4< - <i=n-—1,
E=1,.---,n—1.
We shall denote

9@) =@ — D)@ — D,) -+ (x — D,_)); flx) = glx) —d .
(21) f(@) = g'(®) = g(x) 3 (1/(x — D))
=U3@— D) — D) ---(x— D, _)
0S4 << e <ty =n—1.

Thus formula (20) is correct for & = 1. Let it be correct for k = m,
namely

F™@) =m 5@ — D)@~ Dy) - (e — D, ),
0= <<ty e <lym=n—1

or, in virtue of (21)

(m) = m! 1
- f™(x) = ml g(z) 3 @ — D)@ —Dy) - (@ — D;)

057, <5i<fH< " <jun<n-—1.

Differentiating (22) we obtain
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@)
1
¢ = D)e —Dy) -+ (» - Djy,)
0§j1<.7.2<.7.3< e <jm§n_1

=g'(®) X (

1 ’
+ g(x)(z (x _ Djl)(x _ Diz) e (Q; — D]m)>
057,<5:<73< <Jn<n—1
_ n—1 1 1
=IO S T D, G- D@ - D) @ Dy

0§.71<.72<.73< M <.7m§n"_1
1
¢—D;)+-(@—D; )ax—D,;)x—D; )+ (@—D;)"

Ip—1 Iyr+1

~g(w)é2(

But it is easily seen that

1
=0y — D, (# — D)@ — Dj) -+ (x — D;)
0=57,<5<h< +<Juo=n-—-1

1
= — D, (@ — D,—l)(x - D]-Z) cee (@ — Djm)
S:'éjly"'yjm; 0§.71<.72< M <.7m§n—1
1
(@ —D;)-++(®—D; _)o—D;)@—D; ) (@— D)
057, <5:<fh< +<Jun=n-—-1.

Therefore
1 iy
=t 1 1
= g(x) 3, 2
=0 x — D, (@ — Djl)(x — sz) cee (@ — D,»m)
S;&jl) “'yjm; 0§j1<j2<j3< e <9m§n—1
1
= (m + Lg(x) >}
(® — D,)x~D,)---(x—D,, )
0§t1<tz<t3< e <tm+1§n“1
1
z— D, ) — D) - (2 _-Dtm+1)
0t <t <t <o <tpu=n-—1
=m+>@—D)e—D;)---(@—D;,_,.,)
0§i1<7:2<7:3< o < lpemiy =N —1

b

Fri(e) = (m + 1)! g(x) E(
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which proves formula (20).

From (20) we obtain for x = D, = D, taking into account that
D— D, =0 for 4, =0

fOD)y =k 3D — D )D - Dy)---(D~-D,,_,),
(23) 1=, << o <y =n—1,
E=1,...,n—1.

From (17) we obtain

(23. a) fD) = —d; f"(D) =n!,

and, combining (23), (23. a) and using Taylor’s formula for develop-
ing f(x) in powers of x — D,

ﬂm:m—lm+(ghm—pwﬁ—d,

(24) k.,=>OD ~D;)D—-D,;)---(D-D,),
1<, <iy <o <, En—1.

4. Inequalities. In this chapter we shall prove the inequalities
needed for carrying out the Algorithm of Jacobi-Perron with a basic
sequence a{” (1 =1, ---,n — 1) chosen from the field K(w).

We obtain from Theorem 1 and D<w < D + 1

(25) [wl=D.
In the sequel we shall find the following notations useful
Pi,i:Pi:w_Di, (1:21,"',%—1)
(26) .
P,,=PP. - P; 112k n—1.

One of the basic inequalities needed in the following

(27) {[(w B D)I.Dilpiz o Pif‘] -9
12, << e <= — 2.
To prove (27) we have to verify
(28) 0<(w—-DPP,--- P, <1,
From (25), (26) we obtain
P=w—-D;>D—-D;>0.
Thus the left-hand inequality of (28) is proved. From (17) we obtain

d
P,

(29) w—D=
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Therefore

(w - ,l))P,Ll.P,,/2 e Pik == dP'hP":z e Pik/Pl,n
=d/P, P - P, <d/(D—Dy )D —Dy_,):--(D—D,,_);

Tt1” ikt

but, as was proved before, D — Di]. =d; (7=1,+++,n — 1) therefore

IA

(W — D)P, P, -+ P, < -2 %:1,

*k dn—k—l

which proves the right-hand inequality of (28).
From (27) we obtain easily, since d = 1

o LZichs St
We further obtain, in virtue of (25)

(31) [P]=D — D, (t=1,--,m—1).
From (31) we obtain, sinece d|D — D;,

(32) [Pi/d] = (D — D))/d (t=1--,n—-1).

5. Jacobi-perron algorithm for polynomials of decreasing
order.

DEFINITION. An (n — 1) by (n — 1) matrix of the form

0 0-.--0 A4

0 0---0 A4
(33)

0 0-.--0 A,

will be called a fugue; the last column vector
A,
A,
A,y

will be called the generator of the fugue.

THEOREM 3. Let f(x) be the GP from (17) and w its only real
root im the open interval (D, D + 1). The Jacobi Perron Algorithm
of the decreasing order polynomials
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af = 2@ = DP,Prs, (8=1,001,n—3)

34) am=%m—MAH

'aif)—x = Px,l ’
18 purely periodic and its primitive length is T = n(n — 1 for d # 1,

and T=n—1 for d =1. The period of length n(n — 1) consist of
n fugues. The generator of the first fugue has the form

D — D,
D—-D

(35) .
D-D,,.

The generator of the r + 1 -th fugue (r =1, -+, n — 1) has the form
D — D,
D — D,

(36) <D _ D,
d

D — -D'n.—x

The period of length m — 1 consists of one fugue whose generator
has the form (35).

Proof. In the sequel we shall use the notation

u; v=umn—-1+)v; w=01---;v=01,... n—2)
u;n—-1=u+1;0.

(37)
Because of (26) the formula holds
(38) P, /P, = 1/P, ,;; 1si1=ss<k=n-1.
Since, from (17),
(w - D)(w —-D)w—Dy)++-(w—D,_))—d=0,

we obtain



304 LEON BERNSTEIN AND HELMUT HASSE

Lw-DPuPr = 515 (5=1,-+,n—3)
d P2,1+s
(39) 1 1
—(w — D)P,, =
g D=5
We shall substitute these values for a” in (34), so that
a® = 1 : (s=1,¢-c,m—2)
(40) P,,.,
ay), = 1,1 e
We obtain from (34), in virtue of (30), (31)
(41) b =0; (s=1,+,m—2) b, =D —D,.
We obtain from (31)
P,—[P;]=w- D,
(42) Pi,i_[Pi,i]:w_D (t=1,+,m—1).
d d d
From (40)—(42) we obtain
(0) 0 — 1 .
Qs _bs)“—_—y (8—1"":71’—2)
P2,1+s
a, — b, =w-—D;
1
al® — po — .
1 1 -I)Z,2 ]
all, — b, = —1—; (s=1,--,n —3)
P2,2+s
a®, — b, =w—D,
so that, in virtue of (4)
P,
a® = 22 (s:]_,...,n—?,)
P2,2+s
al), = (w — D)Pz,z ’
al’, = P,,.
From these formulas we obtain, in virtue of (40)
al’ = 1 , s=1,--+,m —3)
P3,2+s
(43)
afnllz = (w - D)Pz,z ’
al, = P,

Since
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1Py, = + D)PP,
3,2+s'—'d—(w— )PP, ,

we obtain, from (43) and in virtue of (30), (27), (31)
b =0; (s=1,+--,m—2) b, =D-D,,

and from (43), (44), in virtue of (42)

a® — b = 1 ,
P3,3
(45) o, — b, = L (s=1,-,n—4)
P3,3+s
a(nl)~2 — by, = (w - D)Pz,z y
a, — b, =w—D.
Frow (45) we obtain, in virtue of (4) and (38)
a;2>:_P3’3 , (s=1,++,n —4)

3,3+s
aif’_3 = (w et D)P2,2P3,3 y
aif’_z = (w - D)Ps,s ’

al, = Py ;
o =L (=1, — 4)
P4,3+s
(46) @ty = (w — D)P,g
al, = (w — D)P,
a2, =P,,.

We shall now prove the formula

By _

a = 1/Pyisiris » s=1,---,n—k—2)
(k _

@ pari = (W — D)Py gy 44,
B

il = Ppiigi

k=2,--e,m—3.

(47)

Formula (47) is valid for £ = 2 in virtue of (46). We shall prove its
validity for £ + 1. Since

1/Pyisiires = é‘(w — D)P, ;.. ,

we obtain from (47), in virtue of (30), (27), (31)
(48) b =0; (j=1,---,n—2) b =D — Dy, ,
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and from (47), (48), in virtue of (42)

a’.sxk) - bék) = 1/Pk+2,k+1+s ’ (S = 11 e, M — k — 2)
e ars — 0y ors = (W — D)Pyy; 4,y (1=1,-+,k)
a®, — b, =w—D;
a® —bF =1/Pyis 44z,
at’y — 0% = 1/Ppisisors » (s=1,---,m—k —3)
i gri — b gri = (W — D)Py iy (1=1,--+,k)
aP, —b®, =w—D,

so that, in virtue of (4)

aft = Piigpss/Prioiars (s=1,-++,n—k—3)
af oy = (W — D)Piyi i Priogise (t=1,---k)
af = (w — D)Ppysprs s

a;’fiq” = Pk+2,k+2 ’

and, in virtue of (42),

al ™ = 1/Pyig t2+s » (s=1,+-+,m— kE—3)
(49) af s = (W — D)Pyj e (=1, k+1)
aft = Prigpre -

With (49) formula (47) is proved.
We now obtain from (47) for k =n — 3

"™ =1/Ppyns s

(50) aﬁ?s) = (’M) - D)Pl-ki,n—z ’ (?’ = 17 e, — 3)
afn’n—_ls) - Pn—z,n——z .

From (50) we obtain, in virtue of (30), (27), (31)

(51) b =0; (s=1,.--,n—2) b5"=D-D,,,

and from (50), (51), in virtue of (42)
ain—-a) - b{’n—3) = l/Pn—l,n—-l ’

(52) a{i}%) - b:(li::}) - (w - D)Pl-l-i,ﬂ—Z ) (Z = 1! cee, M — 3)
al"® — b =w—D.

From (52) we obtain, in virtue of (4),
a’gn_Z) = (w - D)P1+i,n—2Pn—1,n—1 y (7; = 1y e, N — 3)
a’(lb”-L—_ZZ) = (w - D)Pn—L,n—1 y

(m—2) .
an—l - Pn—l,n—l ’
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or

(53) {Z - gv—D)P , (=1, n—2)
From (53) we obtain, in virtue of (27), (31),

(54) b2 =0; (s=1,---,n —2) br»=D—-D,_,,

and from (53), (54), in virtue of (42),

a™® — b = (w — D)P1+s,n—1 ’ (s=1,--+,m—2)
a5 — b = w — D

a"® — b = (w — D)P,,,_, ,

al(.:-;m - bii:z) = (w - D)P2+s,n-—1 ’ (S = 11 e, M — 3)
ay? — by =w — D,

so that, in virtue of (4),

al"™ = Pz+s,n~1/P2,n—1 ’ (6 =1,0eeym— 9
afn’n—_;) = 1/P2"”"‘1 '
a;ri—ll) — 1/(’[,() — D)Pz,n—l )

but, from (39) we obtain
1/(w - D)Pz,n—l = 1,1/d;
therefore,

a;n-—l) — 1/P2,1+s y (s = 1’ e, n — 2)
ayy = P,/d;

thus, with the notation of (37),

{agl;O) =1/P, .., , s=1,--,m—2)

(55) a) = P,,/d .

From (55) we obtain, in virtue of (30), (32), and since
1
1/P2,1+s = E(w - D)P2+s,n—1

D — D,

(56) bf,l;o) :0; (S:l’ "',’"/—2) bg;ol) — y

and from (55), (56), in virtue of (42)
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a” — b0 =1/P, ., , (s=1,--+-,m—2)
apy — by = oL
or
' — b = 1/P,, ,
afi? — B = LPrs (s=1,:,m—3)
g — b =0 =D,
d b
thus, in virtue of (4),
alt = P,,/P;;s (s 1,..-,m —3)
al) = (w - D)Pz,z/d y
ay) = Py
or
a(slzl) = 1/P3,2+3 y (S 1; ce, M — 3)
(57) ayy = (w — D)P,,/d ,
alll = P2,2 .
From (57) we obtain, as before,
(58) B =05 (s=1,---,n—2) b} =D~ D,
and from (57), (568), in virtue of (42),
a‘s“” — bgl:l) = 1/P3,2+s ’ (S 1’ R 3)
all® — b = (w — D)P,,/d ,
al™ — b =w — D ;
or
ail:l) _ b;l;l) — 1/P3’3 s
(59) aiy — b = 1/Pysys (s=1,+--,mn—4
alll) — by = (w — D)P,,/d
al — b =w — D .
From (59) we obtain, in virtue of (4),
al® = Pyo/Pyysis (s 1,.e,m— 4

ai® = (w — D)P2,2P3,3/d ,

a'lty = (w — D)Ps; ,
ays = P3,3 ’

or
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a(sl:z)zl/PA,H—s! (3:1, ...,n_4)
ayy = (w — D)P,/d ,

ay = (W—D)P,, ,

ait) = Py

(60)

We shall now prove the:formula

i = 1/Py iy pirs (s=1,---,n—k—2)
ayfly = (w — D)Py,.,/d

(61) ayl i = (W — D)Pyyj ey (t=1,---,k—1)
) = Py

k=2,--,m—3.

Formula (61) is correct for k = 2, in virtue of (60). We shall prove
by induction that it is correct for &k + 1.
We obtain from (61), as before,

(62) " =0; (s=1,+--,m—2) b =D— Dy,
and from (61), (62), in virtue of (42)

ad? — B = 1/Ppis pi1es (s=1,+,n—k—2)
ayt)_, — by = (w — D)P,,,/d
agzl—:-kk)-wi - bgzl—;-kk)-—-l-f—i = (w - D)P2+i,k+1 (7‘ = 1; ° -,k - 1)

al® — bR = w — D ;
or

ait® — b" = 1/Ppis e s

aliy — by = 1/Ppispiats » (s=1,+-,m—k—3)
(63) api — b, = (w — D)P,i/d

al) i =R = (W — D)Poyiiss s (t=1,-++,k—1)

0l — bk = w — D

From (63) we obtain, in virtue of (4),

al "t = Py o/ Priairots (s=1,++,n—k—3)
al i) = (w—D)Py i Prio,rie/d

i = (w — D)PoyiiiPrisire (t=1---,k—1)
aps = (W — D)Prigese

(13k+1) — .
a5 = Pyigpis s

or



310 LEON BERNSTEIN AND HELMUT HASSE

altFh = 1/Piisiiors (s=1,--e,m—k —3)
(64) jagikkﬂz) = (w — D)P,y,42

ai = (W — D)Pyyips (t=1,---,k)

it = Py -

With (64) formula (61) is proved.
We now obtain from (61) for k = n — 3

a3 = 1/P,_i e s

aft"= = (w — D)P,,_,/d

al?™® = (w — D)Pyyjps @=1-n =4
az™ = P, .

(65)

From (65) we obtain, as before,
(66) b} =0; (s=1,.++,n —2) bln= =D —D,_,.
From (65), (66) we obtain as before

i — prn=d = l/P —1,n—1 9
a;m‘_a) _ b;xm—s) — (w — D)Py,n~2/d ’
it — bt = (w — D)Pyisns, (i=1, -+, 1 —4)

allin=® — pilin= = w — D ;

(67)

and from (67), in virtue of (4),
at "t = (w — D)P2,7L—2Pn—1,n——-1/d ’
a{{;?—Z) = (w - D)P2+i,n—2Pn—l,n—1 y (/I: - 11 ctty n — 4)
afrbl;—z_Z) - (w - D)Pn—-l,n—l ’
\aizl—:ji_z) = Pn—-—l,n—l ;
or
af* ™ = (w — D)P,,,/d ,
(68) air™ = (w — D)Pyiin—s » (t=1,--+,m—3)
a;‘l—::r;—Z) = Pn—l n—1 *
From (68) we obtain, as before,
(69) pin=d =0; (s=1,.--,n — 2) blin= = D —D,_,,
and from (68), (69), in virtue of (42)
@t — b = ( — D)Py,ifd
(70) afir=? — bt = (w — D)Pyripuy, (E=1,-22,m—=3)

alnd — plin =w — D .
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From (70) we obtain, in virtue of (4) and (39)

2;0) __

a®” = APy gns/Pouy s
2:0) __

) = d/Py,,y

aﬁfiof = P1,1 H

or

&0 =d/Pyys,
(1) {a' | Py,+

(2;0) —
Aply = P1,1 .

From (71) we obtain, as before,

(72) bEO =0; (s=1,---,m—2) b =D — D,

and from (71), (72), in virtue of (42)

A — O = APy,
alZ) — b =w — D ;
or
aiz;O) - biz'.O) — d/szz ,

(73) a%y — b = d/Py,.,
aZ) —bEY =w — D .

From (73) we obtain, in virtue of (4)

afsm) = Pz,z/P2,2+s ’
aiy = (w — D)Pys/d ,
Ay = Poofd ;

or
agz:l) = 1/P3,2+s y

(74) aiy = (w — D)Py,/d ,
ayt] = Pyold ;

and from (74), as before,

(S‘—‘ly°"rn_3)

(821,"','”,—2)

,

(s=1,.-+,m — 2)

(s=1,++,m —3)

(s=1,--,m—3)

(s=1,---,m —3)

(75) b =0; (s=1,---,m —2) b = (D — Dy)/d .

From (74), (75) we obtain, in virtue of (42)

a® — b = 1/Py .y, ,
ay — by = (w — D)P,/d ,
0 — b = (w — D)/d;

or

(s=1,.--,mn—3)
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a(z:l) . (2;1) —_ 1/P3 -
(76) aﬁls’ - 2 1) = 1/P3 3+s 9
A — by = (w0 — D)d .

From (76) we obtain, in virtue of (4),

a(2:2) = 33/P3 3+s
22) = (w - D)Pzzpss/d
a3 = (w — D)P;,/d ,

i2)

n—-l - 3,3 ’
or
af® =1/P, 4, ,
a®) = (w — D)P,,/d ,
) (w )P,/

aly = (w — D)Py;/d ,
aZy = P,,.

From (77) we obtain, as before,

(78) bEH =03 (s=1,-++,m — 2)

and from (77), (78) and in virtue of (42),
ad® — b7 = 1P, ,

(s=1,--,m —4)

awy—wgzavnDﬂmM,

(s=1,---,m— 4

s=1,:---,n—4)

bz_zl):D _D3,

(s=1,-,n— 4)

al® — b2% = (w — D)P,/d ,
G/;zizzj — b;sz s (w — D)Ps,a/d ’

aly — o =w— D,

or

a(2;2) _ 6{2;2) — 1/P4’4 ,

afy — b2 = 1/Pya. (5=1,:,n—5)
(19) a3 — by = (w — D)Pyyd,

%y — b2 = (w — D)P,s/d ,

aBy — b =w-—D.

From (79) we obtain, in virtue of (4), and
and multiplication as before,

ad? = 1/Ps s

a= = (w — D)P,,jd ,
(80) a®y = (w — D)P,,.Jd ,

a?) = (w — D)P,,,

(233)
al® = P,,.

carrying out cancellation

(s=1, .-, n — b)
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We shall now prove the formula

al® = 1/Pyizprres » (s=1,---,n—k—2)
i, = (w — D)Py4/d ,

(81) ai = (w — D)Py,./d ,
i) s = (W — D)Pyyipn,y (t=1,---,k—2)
alZ® = Pt pr k=8,-+v,n—3.

The proof of (81) is by induction like that of formula (61) or (47).
First we see that (81) is correct for # = 3; then we show that it is
correct for k + 1.

We now obtain from (81) for k =n — 3

"™ =1/P, 0y,
"™ = (w — D)P,,, /d
(82) a" " = (w — D)Py,,,/d
@it = (w — D)Psripns (t=1,--+,m —5)

aZn™ = Py g s
and from (82), as before,
) b0 =0; (s=1,---,n—2 b =D-D,,.
From (82), (83) we obtain, in virtue of (42),

al(z:n—3) _ bl(z;n—s) — ]_/1_:>n_1,n_1 ,
A — b = (w = D)P,fd

(83) @ — b = (w — D)Py,,fd
afft™ — b = (W = D)Pyrsus
A — by = w — D

n—

From (83) we obtain, in virtue of (4) and carrying out multiplication
as before,

ot = (w — D)P,,../d ,
a7 = (w — D)P,,,./d ,
afii™ = (W — D)Pysipy t=1,---,n—4

(23n—2)
a/n——l - Pn~—1,’n—1 .

(84)

From (84) we obtain, as before,
(85) bErD =0; (s=1,---,m—2) b#» =D —D,_,,
and from (84), (85), in virtue of (42),
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@™ — b = (w — D)P,,ifd

@ — b = (w — D)P,,ufd

afr™® — b = (w — D)Py iy (i=1,++-,m—4)
agis? — bt = w — D.

(85a)

From (85a) we obtain, in virtue of (4),

ai*" = Py, [Py, ,

af) = dPsyis/Pyucs s (t=1,---,m—4)
a3 =d/P,, .,

ap) = df(w — D)Py,y ;

or, after carrying out the necessary cancellation and multiplication
o = 1/P,, ,

(86) al? =d/P,,.; , (t=1,+-+,m—3)
af) =P, .

From (86) we obtain, as before,

(87) bF" =0; (s=1,---,m—2) &Y =D —D,,

and from (86), (87), in virtue of (42)
a® — b = 1/P,, ,

(88) aif? — b3 = d/Pspui (t=1+-,m—3)
al) — b =w — D .

From (88) we obtain, in virtue of (4), and carrying out the necessary
cancellation

a?:l) = d/P3,2+vI ’ (?/ = 1! e, — 3)
(89) a’ = (w — D)P,, ,
a = Py, ;
and from (89), as before,
(90) ¥ =0; (s=1,---,m—2) b =D — D,.
From (89), (90) we obtain, in virtue of (42),
a/i3;1) . bl(.3;1) — d/P3’3 ,
af%y — biY = d[Pysis (t=1,--,n—4
apy — b5 = (w — D)P,;
al®® — b)) =w —D.

(91)
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From (91) we obtain, in virtue of (4), and carrying out the necessary
cancellation and multiplication

af® = 1/P, o.i it=1,n—4)
Y = (w — D)P,./d ,
(92) (w ) 3/
= (w — D)P,/d
n]_—Ps'a‘/d

and from (92), as before,

O3 =05 (s=1-m-2 by = D=L
From (92), (93) we obtain, in virtue of (42)
32) _ b(32 — 1/‘P44 ,
a’? — b5? = 1P, ., (t=1,---,m—5)
93 _
©32) 0 b2 = (0 — DIP.yfd, a2 — by = WD),
a®? — bi¥% = (w — D)/d .
From (93a) we obtain, in virtue of (4),
af® = 1/P; i , (t=1,.--,n —5)
a5 = (w — D)P,Jd ,
(94) ayy = (w — D)Py,/d ,

33) = (w - D)P44/d
ar = P,, .

From (94) we obtain, as before,
9) bV =05 (s=1,---,m—2 b =D-D,,
and from (94), (95), in virtue of (42),
a®® — b = 1/P,,
afy — b%P = 1/Py 4y, t=1---,m—6)
{aif_i) — b2 = (w — D)P, Jd ,
ay — by = (w — D)P; Jd

afy — by = (w — D)P,Jd
ey — by =w — D .

(96)

From (96) we obtain, in virtue of (4), and carrying out the necessary
cancellation and multiplication
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af = 1/P, ., , (i=1,+,m —6)
a3 = (w — D)P,/d ,

a2 = (w — D)P,/d ,

@, = (w — D)P,/d ,

a2 = (w — D)Ps, ,

(3:4) __
\ast) = Py .

97)

We shall now prove the formula

a = 1/Pyipprisi (t=1+-+m—k—2)
ai s = (w — D)Py;./d

a2 = (w — D)Pyi/d

(98) 1025 = (w — D)P,,./d

¥ is = (W — D)Py s (s=1,--+,k—3)

(33k)
Aply = Pk+1,k+1 ’

k=4,---,m—3.

Formula (98) is correct for © = 4 because of (97). We then prove
as before, that it is correct for %k + 1, so that (98) is verified. We
obtain from (98), as before,

(99) b =0; (s=1,.--,n — 2) b8 = D — Dy,
and again from (98), for k=n — 3,

ai " = l/P'n—l,n—l y
aﬁ{i?_m = (w - D)P1+i,n—2/d ’ (/L = 1y 21 3)
a/i:ifj?~3) = (w - D)P4+s,n—2 ’ (8 = 17 e, M — 6)

(3im—3) —
an—-l - Pn—z,n-—z .

(100)

From (100) we obtain, as before,
(101) b =0; (s=1,+,m—2) b= =D —D,_,,
and from (100), (101), in virtue of (42)

aﬁa:n—-S) _ b§3;n-—3) — l/Pn—l,n—l ,

A = b = = DPriifd,  (=1,2,3)
Q™ — b = (= DPyssy, (8= 1,,n—6)
an= — b = w — D .

(102)

From (102) we obtain in virtue of (4), and carrying out the necessary
cancellation and multiplication
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a#" ™ = (w — D)Py1iyud/d (t=1,2,3)
(103) %y = (w — D)Pysypny (s=1,-+-,m —5)
A = Py ns
and from (103), as before,
104) B2 =0; (s=1,---,n— 2) bin® =D —~D,_,.
From (103), (104) we obtain, in virtue of (42),
ais;n—z) - bis:n—z) — (w _ D)sz_l/d ,
afn — Pt = (w — D)Py,ifd
(105) a9 — b= = (w — D)P,,d ,
agr> — B = (W = D)Pprps s (8=1,-,n—5)

Q@nn — pEr = — D,

and from (105), in virtue of (4),

a;4'.0) —_ 1/P2,2 ,
40 = 1/P,,
(106) @™ = 1/P.
a9 = d/Pyas, (s=1,- e n — 4
) = Py, .

The reader will easily verify, on ground of previous formulas, that
the 4(n» — 1) supporting sequences

B, bER, wee, DR (B =0,+++,n—2; i =0,1,2,8)

generate the first four fugues whose form is that as demanded by
Theorem 3.

The complete proof of Theorem 3 is based on the following
LEMMA 1. Let the generating sequence
alko s=1,---,n—1;k=38,.---,n—2)
have the form
a" = 1/P, i, (t=1,---,k—2)
(107) alFD = d/Py iy (s=1,.--,n —k)

(k:0) .
\an~1 - Pl,l »

then the n — 1 supporting sequences

k30 k30 ks A
L T i (t=0,-+,m—2)

generate a fugue which has the form of the k + 1 -th fugue as demanded
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by Theorem 3, and the generating sequence alf+:” (s =1, ..., m — 1)
has the form of (107), where k is to be substituted by k + 1.
Proof. In virtue of formula (86), the generating sequence
aik;O)y a;k;m! Tty a/;k-;-ol)

has the form as in (107) for k¥ = 3. The n — 1 supporting sequences
b.(3; 0), b,(3;0), ---, b(3;0) form the fourth fugue of the period as
demanded by Theorem 3. The generating sequence

(k+1:0) - (k+150) (k+1:0)
a, y Qg gty Aply

too, has the form as in (107) for & = 3, in virtue of formula (106).
Thus the lemma is correct for & = 3. Let it be correct for k = m.
That means that the n — 1 supporting sequences

bim;i)’ b;m:i)y N b(nwilw ’ (7’ = 07 s, — 2)

form the m + 1 -th fugue as demanded by Theorem 3, and that the
generating sequence

aim+1;0)’ a;m+1;0)’ cese, ai:ﬁ-(l»l;o)
has the form
aé’rn+1;0) = 1/P2,x+i y ('L = ly e, M — 1)
(108) an i) = APy s (s=1,---,n—m—1)

amttt =P,
From (108) we obtain, as before,
(109) bt =0; (s=1,.-+,m —2) britY = D — D,
and from (108), (109), in virtue of (42),
@O — b = 1P,
110 QTP = B = P (=1, ,m—2)

a%n—ﬁl-eios) - b'(mm—jll? = d/Pz,m+s ’ (S = 17 e, B — M — 1)
A — b = gy — D

From (110) we obtain, in virtue of (4)
a;" = P2,2/P2,2+7: y (@ =1,.-,m — 2)
Y = APy Pomys » (s=1,---,n—m— 1)
s = (w — D)P,,
i = Py,

or
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(@D = 1Py, (i=1,,m —2)
Aty = d/Py s s=1,«c,m—m—1
(111) ’2 A / 3ym+s 9 ( ’ ’ )
a*it = (w — D)P,, ,
a," ' = Py, .
We shall now prove the formula
a;" Y = 1Py it (t=1,---,m—1t—1)
a/;'ﬂm—tl—;—i?f»s = d/Pt+2,m+s ’ (S = 1’ ct Y n—m — 1)
Wiy = (W — 145,41 s j=1, .-
(112) {m+415t) ( D)P ( 1 t)

Y = PH-l,H—l ,
t:ly..-,m__z.
Formula (112) is correct for ¢ =1, in virtue of formula (111). We

shall prove that, being correct for ¢, it is correct for ¢ + 1. From
(112) we obtain, as before,

(113) b+ =0; (s=1,---,n—2) b =D — D,

n—1

and from (112), (113), in virtue of (42)

Q"D — om0 = 1Py,

ag:ni;h” - bx(+mi+lm = 1/Pt+2,t+2+i y (7/ = 1: cee,m—1— 2)
(114 QR = B = AP, (=1, —m 1)

i =0 = (w = D)Pn . (U=1,0000)

airinh — byt = g — D,

From (114) we obtain, in virtue of (4)

" = Pt+2,z+2/Pz+z,t+2+i ) ('L. = 1; cee,m — 1t — 2)

(m-+1; Y — —
Q51 = APyysio/Prismis , (8=1,--0,m —m — 1)

s N .
(115) a5 = (w — D)P i Poisire (3=1,---,0)
a3t Y = (w — DYP s
At = Py

and from (115), carrying out the necessary cancellation and multi-
plication

a;m+1;f+l) = 1/Pt+3,z+2—:£ ’ (7/ = 1, cee,m — t— 2)

R = AP,y (s=1, - m—m—1)
(116) e e .

A, = (w — D)P\i ;40 (3=1,---,t+1)

AT = Pos s

With (116) formula (112) is proved. We now obtain from (112), for
t=m — 2,

31¢
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afrin = 1P, ,

a§m;—1;m—-2):dpmms, 3:1,...’n_m_1

(117) o [P (6 =1 )
arin Y = (w — D)P,ijms G=1,c00,m—2)
a:ﬁrnm—z) - Pm—-l m—1 3

and from (117), as before,
(118) prrm P =0; (s=1,+-,mn—2) b2 =D-D,,.
From (117), (118) we obtain, in view of (42)

{a§m+1:m—2) . b§m+1;m—2) — 1/Pm’m ,

(119) airFim — bR = 4Py (s=1,+--,m—m—1)
a iy — bt = (w — D)Piyjmy,  (G=1,000,m — 2)
a;w:;—l:m—?) - b(n'ri-i—l;m—ﬂ) — W — D;

and from (119), in virtue of (4), and after carrying out the necessary
cancellation and multiplication

e (s=1,-+,n—m—1)
(120) {armiinsd = (w — D)P,s, . (j=1,:+,m—1)
arrm = P
From (120) we obtain, as before,
(121) bim+tm—b =0; (s=1,++,m — 2) pimitm=t = D — D, ,
and from (120), (121), in virtue of (42)

qimrhmel  pimtlmet — (P s s (s=1,+--,n—m—1)
a(yf"_fyfff:;” - bsﬁjpf—??f = (W - D)P1+j,m ’ (.7' = 1, e, M — 1)
gimime) _ pimisime — gy )
or
aim«!—l:m—l) — pimtum—n) — d/‘l)mﬂym%_1 ,
122 alrfrm ) — pirftm Y = /P miss s (S =1, 000, m — m — 2)
(22) 1 gmismoy _ ppmiin=d = (w0 — D)Pyeyn,  (G=1,-0e,m— 1)
gimtim-l _ pimitimed — g )

From (122) we obtain, in virtue of (4) and after carrying out the
necessary cancellation and multiplication

amtm = 1P (s=1,:-+,m—m — 2)

(128)  dampims = (w — D)Pyij mei/d G=1,--+,m)

a/;zﬂi_lfl;M) = Pm+1,m+1/d .
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From (123) we obtain, as before,

(124) b;m+1:m) =0 ; (S = 1, cee, M — 2) b;wi-{q;m) — D — Dm+1

d ’
and from (123), (124), in virtue of (42),
. R 1)
(125) a’iﬁg—i"” - bi:’fjllm) = l/Pm+2,m+2+s ’ (S = 1y * '.r n—m— 3)
afmtim . — bimtim = (w — D)Pi i/ d (F=1,..+,m)

Qg — bs = (w — D)fd .

From (125) we obtain, in virtue of (4) and after carrying out the
necessary cancellation and multiplication,

a/.(smﬂ)-l;m+l) = 1/Pm+3,m+2+s ’ (S = 1, e, — M — 3)
(126) <@ LmE) = (w — D)Piyjmes/d (=1,--+,m+1)
Y = Poamea o

From (126) we obtain, as before,
127 pmtimty =0; (s=1,--+,m—2) bimttmt) = D — D,y
and from (126), (127), in virtue of (42)

a§m+1:m—l~1) _ b§m+1:m+1) — l/P'm+3,m+3 .

H (m-+1; — —
Qi = oY = 1 Pryamests s, (8=1, 000, —m — 4)
a5l = b = (W — D)Piyjmee/d, (G=1,---,m +1)

ayﬂ—lzmﬂ) _ b;:i%l-l;m-i—l) = W — D .

(128)

From (128) we obtain, in virtue of (4), and after carrying out the
necessary cancellation and multiplication

a§m+1:m+2) = l/Pm+4,m+3+s ’ (S = 17 e, — M — 4)
aiﬂ:nl—zb—:yz) =(w — D)P1+J',m+3/d ’ (.7 =1,.. ,m + 1)
a;ﬁ§1:m+2) = (w - D)Pm+3,m+3 y

(m+1im+2)
an—~l

(129)

= Pm+3,m+3 .

We shall now prove the formula

QTR = 1P s m kbt (s=1,--,n—m—k—2)
a5 = (W — DY)Piijmisni/d (g=1,-,m+1)

(130) @i = (W — D)Ppssrsymeiss (t=1,--+,k—1)
a7 = Pttt

k=2, ,m—m — 3.
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Formula (130) is correct for k£ = 2, in virtue of (129). Presuming it
is correct for k£, we shall prove its correctness for & + 1.
From (130) we obtain, as before,

(81) Brrmit =05 (s=1,--e,m—2)  bEUY = D = Doy
and from (130), (181), in virtue of (42)

g{mrlimTh) _ pmilimtk) — 1/Pm+k+2,m+k+2 ,
aii”?“”*’” - b&n:l;mw) = 1/Pm+k+2,m+k+2+s ’ (3:1; °c -,n—m—k—3)
(132) <RI — bt = (W — D)Prjmirn/@, (=1,+0-,m+1)
amim’“ - bib"ﬁliﬁtk) (w - D)Pm+2+t,m+k+1 ’ (t = 1, b ‘,k - 1)

a';»/ﬂ—l:m‘Tk) _ bi:ﬂ-l;mfk) =w—D.

From (132) we obtain, in virtue of (4) and after carrying out the
necessary cancellation and multiplication

) = 1P s m kit s (s=1,,n—m—k — 3)
ain ity = (w — D)Piyjmirse/@ (=1, m+1)
A e Y = (W — D)Pisriyminte t=1,---,k)
AT = P o mtke

which is formula (130) with %k being replaced by % -+ 1; this proves
formula (130).
We now obtain from (130) for k = n — m — 3

a"t Y = 1/P, i,

(134) aif—b'j"'lm——@ = (w - D)P1+j:”“2/d ! (J | ly S 1)
ainmjzﬁ?_s) = (w - D)Pm+2+t,n—2 y (t = 1, s, — M — 4)
a;:,i-(;l:n*\'” = Pn_z n—2 9

and from (134), as before,
(185) pimtin =0; (s=1,--+,m — 2) bmtvn= = D — D, ,,
From (134), (135) we obtain, in virtue of (42),

a§m+l;n—3) _ bim+1:n—3) — l/Pn—l,n—-l ,
aiffinm? — byt = (w — D)Pyyjnsfd, (5 =1,--,m + 1)
a;nm-%—-;i?_w - bw—:&i?—s) - (w - D)Pm+2+t,n—-2 ] (t - 11 M yn -—m — 4)

(m+1;n—3) (m+13n—3) —
anyf—l - bn——l =w— D ’

(136)

and from (136), in virtue of (4), and after carrying out the necessary
cancellation and multiplication
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a" ™ = (w — D)Ppijufd (G=1+,m+1)
(137) et = (W — D)Ppisisn t=1.--,m—m—3)

A =Py
From (137) we obtain, as before,
(188) bimttmH =0; (s=1,--+,m — 2) briv® =D —D,_,,
and from (137), (138), in virtue of (4),

a§m+1:n——2) _ b;m+1;%—2) — (w _ D)szn_l/d ,
Az b = 0~ D)Pagfd s (G =1, m)
Q77 = bty = (W — D)Pyigygnn, (E= 1,-+-,n—m —3)

+1,n—2 {m-+1in—2) __
agtrY it = — D

(139)

From (139) we obtain, in virtue of (4), and after carrying out the
necessary cancellation and multiplication

a;m+2;0) = 1/P2,1+.7' ’ (.7 = 11 Tty m)
(140) a7 %) = d/Pymiise (t=1,++-,m —m—2)

(m+2;0)
a/n-—l - Pl,l A

According to formula (109) (one line of the period), formula (113)
(m — 2 lines of the period), formula (121) (one line of the period),
formula (124) (one line of the period), formula (127) (one line of the
period), (131), (w — m — 4 lines of the period) and formula (138) (one
line of the period-totally 1 +m —2+14+14+14+0n-—m—4+1=
n — 1) the m — 2 -th fugue has the form as demanded by Theorem
3. Since (140) is formula (107) for & = m + 2, the Lemma 1 is
completely proved.

In view of the Lemma 1 we obtain that the (n — 5)(n — 1) lines

bik:o)’ b:gk'O)y R} bf,,,k,_(i ’ (k = 4! ey M — 2)

form n — 5 fugues, beginning with the fifth fugue, as demanded by
Theorem 3; we further obtain, applying the lemma for k& = n — 2,
k + 1 =mn — 1, that the generating sequence a¢{" ", ({ =1, -+, n — 1)
has the form, following (108)

a0 = 1/P, ., , t=1,+-+,n —3)
(141) aﬁ{‘:g“‘” = d/Pz,n—l ’
ai::lzo) — Pl L.

From (141) we obtain, as before,
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(142) b =0; (s=1,---,m—2) b3 =D-D,,

and from (141), (142), in virtue of (42)
artn — =10 — ]_/pz’2 ,
ait7 Y = BT = 1/Py (t=1,c2,n—4)
@S — b5 = d[Pyy,

AP — br = w — D .

(143)

From (143) we obtain, in virtue of (4), and after carrying out the
necessary cancellation and multiplication

amiy = ]./P3,2+i ’
@ = dfPyy
a;n:zr.l) — (w — D)Pz,z ’
@yt = Py

(144)

We shall now prove the formula

A" = 1Py parri s t=1,+-,m—k—3)
a;n:klil;) = d/ Pk+2,n—1 ’
(145) a/g’f:}‘cl_lél-s = (w - D)P1+s,1+k ’ (S = 1’ Tt k)

{a;n_?l:k) = Pryiisr
k=1,.--,n—4.
In virtue of (144) formula (145) is correct for & = 1. We prove, by
completely analogous methods used to prove previous, similar formulae

that it is correct for k& + 1, thus verifying its correctness. We now
obtain from (145), as before,

(146) bén—l.'k) =0; (S =1, — 2) bﬁf‘_‘ll;k) =D —Dyyy,
and again from (145), for k = n — 4,
a," N = 1/P, s,
Saén_un—@ =d/P,_sn_s s

a5 = (w — D)Pysyuy (s=1,--,m — 4)

(n—lin—4) __
\a'n—d. - Pn—3,n—3 .

(147)

From (147) and (146) (for £k = n — 4) we obtain, in virtue of (42),

arlnd - pin—tin—d — 1/Pn—2,n-—-2 y
aén—-lm—li) _ bé’”"‘“"‘—‘” = d/Pw,—2,n—~1 ’
(n—1;n— P —
G = b = (w = D)Prsiaes, (3

(n—1:in—4) (n—1l;n—4) _. .
An_y - bn-—l =w — D ’

(148)

Il

1L, .---,m — 4)
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and from (148), in virtue of (4), and carrying out the necessary
cancellation and multiplication,

a7 = APy ney
(149) ;" = (W — D)Pisy s (s=1,++,2—3)

st = P gues o
From (149) we obtain, as before,
(150) bt =0; (s=1,.--,m — 2) by =D —D,_,,
and from (149), (150), in virtue of (42)

al(.n~1;n~—3) _ bin—l;n-—:&) — d/Pn—l,n—-l ,
(151) Aaf ™ — b = (0 = D)Prps,  (5=1,000,m = 3)

a[;n_:i:n—& _ b;n_—ll;n-—w = w — D .

From (151) we obtain, in virtue of (4), and carrying out the necessary
cancellation and multiplication

a2t = (w — D ot
(152) {as (w )P1+s,n—1/d ’ (S l, , N 2)

aysir = P, ../d,
and from (152), as before,

b(n—;l:'n—Z) — D - Dn—l
n— _

(153) b;w~1‘n~2) =0 ’ (S - 1: e, — 2) d

From (152), (153) we obtain, in virtue of (42),

ain«l:n——Z) - b{‘ﬂ—'l‘”_z) = ('w — D)Pz,n—l/d ’
(154) aii;l;n~2) _ b{f_‘;’l;"_z) = (w — D)Pz+s,n—1/d ’ (S = 1’ R (e 3)
ai::l;n—Z) _ b;b"i_“ll:"“z) = (w _ D)/d ,

and from (154), in virtue of (4),

alm = P2+s,n—1/P2,n—l — 1/P2,1+s , (s=1,«--,m — 3)
a;’:g) = l/Pz,n——l ’
a'lr? =d/(w— D)P,,,_, = (w — D)P,,,_[(w — D)Pz,n—l =P, .

Thus

aén;o) — 1/P2,1+s , (S = 1’ e, M — 2)

(ni0)
aty =P, .

(155)
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Comparing (40) with (155) we see that
al*" =al, (s=1,---,m—1)
i.e.,
(156) atv = gl s=1,---,n—1)

which proves that, in case d % 1, the Jacobi-Perron Algorithm of the
basic sequence a (s =1, ---,n — 1) from (34) is purely periodic and
its length T = (n — 1)n. Since, in virtue of (142), (146), (150), (153)
the n — 1 supporting sequences

bl(n~1:k)’ b;n~1:k), tt Y b;n»ﬁl]:k) (k - Oy 17 e, N — 2)

form a fugue which is the » -th fugue of the period, we see that

this last fugue, together with the 4 + (n — 5) = n — 1 preceding

ones form the n fugues of the period, as demanded by Theorem 3.
In case d = 1, we obtain from (55)

(157) al" =1P, ., (s=1,---,m — 2); ! =P,
so that, comparing (157) with (40), we obtain
(158) al" " =al, s=1,.--,m—1)

so that the length of the period is here T =% — 1; from (41), (44),
(48) (54) we obtain that in the case d = 1 the period has the form
as demanded by Theorem 3.

The reader should note that proving case d =1 we presumed
n = 6. The special cases n = 2, 3, 4,5 are proved analogously.

We shall now give a few numeric examples. Let the generating
polynomial be

flw) =2 — 15a* + 542> — 3 =0,
which can be easily rearranged into
Jf@)y=(x — 9@ —6)x’ -3 =0
and has the form (17) with

D=9 D =6,D,=D,=D,=0; d=3;
9<w<10; (w—9)(w —6)w* —3=0.

The Jabobi-Perron Algorithm of the basic sequence
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w—Nw —6)w (w—w—6w (w— 9w — 6)

’ ,w—'G
3 3 3

or

w* — 15w° 4+ 54w® w® — 1bw? + bdw  w® — 15w -+ 54
3 b 3 b 3 b

w— 6

is purely periodic with period length 7T = 20. The period has the
form

[==R e B e TN o O O O o O o O o O o O o O O O
S O © O o © © O S O © O S O O O o © O ©
o o © O o O o O S O o <O o o © O S O ©o ©
W W Y W W W O W O O W W NelNoJRN I O O © W

Let the generating polynomial be

flx) = x® — 32® — ba* + 1560° + 4a* — 120 — 1 =0,
which is easily rearranged into

f@y=(@ -3 —-2)(z—De@+)@+2 —-1=0
and has the form (17) with
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D=3 D=2, D,=1,D,=0,D,= -1, D, = -2;d=1;

3 <w < 4 ’

(w— 3)(w — 20w — (w + 1) (w + 2)yw —1=0.
The Jacobi-Perron algorithm of the basic sequence
a® = (w — 3)(w — ww + )(w + 2) = w° — 2w* — Tw® + 8w + 12w ,
a = (w— 3)(w — 2w + D(w + 2) = w'— 2w — Tw* + 8w + 12,

a® = (w — 8)(w — 2w + 2) = w — 3w — 4w + 12,
) = (w — (w — 2) =w - 5w+6,
a;")zw—z :w—zy

is purely periodic and the period length is 7 = 5. The period has
the form

S O O O O
S O O o o
S O ©O o o
S O O o o
Ol = WO b =

Let the generating polynomial be
fl)y=2a*— 160 —2 =0,
which is easily rearranged into
@)= —4xx+4)—-2=0

and has the form (17) with

D=4, D =0,D,=—4;d=2;

4<w<5b,

(w—4H(w+Hw —2=0.
The Jacobi-Perron algorithm of the basic sequence

(w — Hw :w2—4w’ w

2 2

is purely periodic and the period length 7 = 6; the period has the
form

S O O O O o
B> i 00 DD 00 W=
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6. The Jacobi-perron algorithm for polynomial of increasing
order. In this section we shall show that, by imposing further
conditions on the coefficients of the GP from (17), one can select
increasing order polynomials from the algebraic number field K(w)
generated by f(w) =0, D<w< D+ 1, such that their Jacobi-
Perron algorithm is purely periodic. This result is stated in

THEOREM 4. Let the coefficients of the GP in addition to (17)
Sulfil the imequalities D — D, = 2d(n — 1), t.e., altogether
D, D;, d rational integers; d =1; n=2;

(159) .
adl(D—-D); D—D; =2d(n —1); (t=12,.--,mn—1);

Let w be the only real root im the open interval (D; D + 1). Then

the Jacobi-Perron algorithm of the basic sequence
agm(w):,z;:'-roks(w_p)i—s: (Szly"'vn_l); ks:]-;

(160) k,=>O—-D;)(D~D;)---(D~-D;), (s=1,:---,n—-1),
155, <4<+ <j,=n—-1

1s purely periodic and its length T =n for d >1, and T =1 for
d =1. The period has the form

bO = (=1, n—1);
(0: = k; t=1,---,m—1—3),

(161) lbo = ky/d (i=m—s oo, m—1;8=1, s, —2):
bt — ky/d (i=1,ce0,m—1);
d>1.

(161a) b =k (i=1,--,m—1):d=1.

Proof. This is essentially based on the simple formula
(162) [a”(w)] = k; (t=1,-+,m—1).

Since, as will be proved later, w is irrational under the conditions
(159), we have to verify the two inequalities

(163) k; < a®(w) <k, +1 {(t=1,---,m — 1),
or, in virtue of (160)
164) O<(w—-—DY+k(w—DyY"*+ e + k. (w—-—D)<1.

The left-hand inequality of (164) follows from w > D and k; > 0.
We shall prove the right-hand inequality

(165) (w— D) + k(w — D)yi* + ++o + k;_(w—D)<1.
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Since 0 < w — D <1, we obtain (w — D))< w — D, and we shall
prove, since

(w — D)’ + k(w — D)™ + «++ + k;_y(w — D)
< (w— D)+ k(w— D) + -+ + ki (w — D),
(166) (w—D)YL +Fk +ky+ - +E_)<1.
From w > D, (w — DY(w — D) +-++- (w — D,_,) — d = 0, we obtain

(167) w—D=d/(w— D)w— D)+ (w— D,,))
<d/(D - D(D —D,) --- (D — D,)) .

We shall now prove the inequality

(168) k(w — D) < 2=»=t=9) | (s=1,+++,m —2).
Let the D, be arranged in nondecreasing order, so that

(169) D-D,=2zD-D,z:--=2D-D,_,.

In virtue of (169), and taking into account the values of k, from
(160) we obtain

k(w = D) S (0 = D) (D — D)D — D)) -+ (D — D)
= ("5 Hw - DD - D)YD - D) -+ (D - D)

("5 )@ -D)D - D) (D - D)
D - D)D - D)+ (D - D,

("5 e

(D - Ds+1)(D - Ds+2) e (D - -Dn—l) )

<

’

in virtue of (17). Therefore

(170) k(w — D) <

But D — D; = 2d(n — 1) ; therefore we obtain from (170)

e
S
bl = D) < Ggm =y

n—1 n—1 " n—1
_ ( 8 > < < s ) _ (n — s — 1)
2%—5—1(,” __ 1)n—s—ldn—2—s - 2n—s—l(n . l)ﬂ—-s—-l 2n—s—l(n _ 1)n—s—l
_ 1 =»n-1 =»n-2 s+ 1 < 1
2=t —1 2 — 1) (m—s—1)(n—1) " 21’

which proves formula (168).
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We further obtain from (167)

d _ 1 2 1
(2d(’n _ 1))%—1 2n—~1(,n _ 1)n—ld'n——2 = gn—1 °

w—D <

In virtue of this result and of (1€8), we now obtain from (166)

1 1 1
D)L+ dy e+ K S '
(W =D)L+ k4 v k) < g+ o s
1 1 1 1
< PP —_— = 1 —_ —_— 1 .
Samtmato ot st <

Thus (162) is proved.
In virtue of (163), we obtain the inequalities

a®(w) k; +1 < k

k. .
i < 1
d < d < d ~— d L
so that
(171) | ] - &
d d

(162) and (171) provide the key to our proof of Theorem 4. The
further course of the proof is similar to methods used in previous
papers ([10], [12]) and we shall, therefore, give here only a very
general outline of same. Denoting in the sequel

(173) a™(w) = a (t=1,---,m—1)
we obtain from (160), (162)

aﬁzl:(w_D)aﬂ(lO)—f—kiJrly (Z:O’ "’7n_2)aé0):1,
a1(3(-)£1 - bgjﬁ)l = aégr)l - ki+1 ’
(174) al, — b, = (w — D)al® (G =0, ., n—2).

We further obtain from (24), for f(w) = 0,

(w — D) + kw — D)* + Ie(w — Dy 4 +++ + by _(w— D) —d =0,
1 _ (0= Dyt kw— D)t e ke, al
w—D d d ’

since, from (174), a® — b = w — D, we obtain

0
1 av,
a® — b0 d

(175)

We shall now carry out the Jacobi-Perron algorithm of the basic
sequence (160) and obtain from (162)
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(176) b =k, , (s=1,--+-,n—1)
and from (174), (175), in virtue of (4)

{a{‘”—b{“’ =w-—D,

af, — b, = (w — D)a;” , (t=1,++,m—2)
177 a’ = a, (7::1!""%_2)
1477 all, =al,/d.

From (177) we obtain, in virtue of (162), (171)
(178) b =k,; (s=1,---,m—2) b, =k, /d,
and from (177), (178), in virtue of (174), (175)

a — b =w— D,

ol — b = (w — D)af? (i=1,++,n—3)
all, — b, = (w — D)al,/d ,
a'SZZ):a«EO)y (7::1!""%_3)
(178a) ayl, = ayl,/d ,

al, =al/d.
It will now be easy to prove formula

a =a, t=1,+v,m—s—1)
(179) @nloiii = @7l yusd G=1,--+,9
s=1,.e,m—2,

Formula (179) is correct for s = 1,2 in virtue of formulas (177), and
(178a). It is then presumed that it is correct for s = m and proved
that it is correct for s = m + 1.

We now obtain from (179), in virtue of (162), (171)
b =k, ; t=1---,m—s—1)
(180) b‘;ls_H_j = ku—_”_ﬂ ; (=1,---,9)

We further obtain from (179), (180) for s = n — 2

a"® =a”; a7 =a/d; (G=1--+,m—2)
bi" ™ =k, ; biZ;Z) = kH—j/d ’ (G=1-,m—2)

so that, in virtue of (174), (175), (4)
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{a{”‘z’ —brv =w—D,

ait7® — b4 = (w — D)ay’/d (=1 ,n—2)
(181) am = a®/d (G=1,-+o,m—1).

From (181) we obtain, in virtue of (171)
(182) b = ki/d (t=1,---,m—1)

and from (181), (182), in virtue of (174)

a"™" — b = (w — D)/d ,
alyi? — b = (w — D)ai”/d (t=1,---,m—2)

+1 1414
so that, in virtue of (4) and (175)
(183) " =a, (t=1,.--,m—1)

which proves that the Jacobi-Perron algorithm of the basic sequence
a® (t=1,---,n — 1) is purely periodic and its length T = un for
d > 1. We further obtain from (177), for d =1,

a’ = af” , (t=1,.--,m—1)

so that in this case the Jacobi-Perron algorithm is purely periodic

and its length T = 1.
From (176), (180), (182) we conclude that the period of the

algorithm has the form as demanded by Theorem 4, for d = 1.

We shall take up the numeric examples of §5 to illustrate
Theorem 4.

1. flw) =2 — 16x* + 540> — 3 = (x — 9 (@& — 6)x* — 3 =10.
Developing f(x) in powers of * — 9 we obtain

Jf(x) = (x — 9)° + 30(x — 9)* + 324(x — 9)°
+ 1458(x — 9)* + 2187(x — 9) — 3 =0.
The basic sequence has the form
a® =(w -9 +30=w+ 21;
a? = (w— 9)* + 30(w — 9) + 324 = w* + 12w + 135;
a® = (w — 9)® 4+ 30(w — 9)* + 324(w — 9) + 1458
= w® + 3w® + 2Tw + 243 ;
(w — 9)* + 30(w — 9)® + 324(w — 9)* + 1458(w — 9) + 2187

= w*— 6w,

Il

a”
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The period of the Jacobi-Perron algorithm of these numbers has the
form

30 324 1458 2187

30 324 1458 729

30 324 486 729

30 108 486 729

10 108 486 729 .

2. flx) = o — 32° — ba* + 152° + 4o — 120 — 1
=@ —3r — 2)(x — D@+ @ +2)—1=0.

Developing f(x) in powers of x — 3 we obtain

f®) = (¢ — 3)° + 15(x — 3)°+85(x — 3)* + 225(x — 3)°
+ 27T4(x — 3)* + 120(x — 3) — 1 = 0.
The basic sequence has the form
a” = (w—3) + 156 = w + 12;
a” = (w — 3P+ 15(w — 3) + 85 = w* + 9w + 49;
al” = (w — 3)* + 15(w — 3)* + 85(w — 3) + 225
= w® + 6w’ + 22w + 78;
a” = (w — 3)* + 15(w — 3)* + 85(w — 3)* + 225(w — 3) + 274
= w' + 3w® + 94w* — 258w + 40 ;
a)” = (w — 3)* 4+ 15(w — 3)* + 85(w — 3)* + 225(w — 3)*
+ 274(w — 3) + 120 = w® — 5w® + 4w .

The period of the Jacobi-Perron algorithm of these numbers has the
form

15 85 225 274 120 .
3. f)y=o"—16c —2=(x —4)a(x +4) —2=0.
Developing f(x) in powers of 2 — 4 we obtain
fl@)y=(x — 4 + 12(x — 4)* + 32(x —4) —2=0.
The basic sequence has the form

a® = (w—4) + 12 = w + 8
al = (w — 4)* + 12(w — 4) + 32 = w* + 4w .

The period of the Jacobi-Perron algorithm of these numbers has the
form
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12 32
12 16
6 16 .

We shall now return to formula (11) in order to calculate w and
obtain for Theorem 3:

42, = w — D, = lim (A2, /AP)

V00

for Theorem 4 :
a =w— D + k, = lim (A"/A{) ,

Y0

where the A", AY, from Theorem 3 are not the same as A", A"
from Theorem 4. Yet, as the first author has proved, there are
always indices v, for the A" from Theorem 3 and indices v, for the
A from Theorem 4 such that

AP0 = AP0

7. Units of the field K(w). Let the coefficients of the GP
f@)y=@—D)x—D)-+-(x—D,,) —d

now fulfil the conditions (17), (18), (19) from Theorems 1, 2 and the
supplementary inequalities from Theorem 3, i.e., altogether

D,, d rational integers; d =1; n = 2;
D0>D1>"'>Dn—1; d’(Do_Dm)y
D,—D;z2dn—-1), 1=1,---n—1);

(184) and in the special case d = 1 moreover

D —D,=z2o0r D,— D, =4 for n =3,
D —D,z2o0r D,— D =3 o0or D,— D, 23 or
D,— D, D, — D, > 2 for n =4,

and let be

(185) fw) = (w — D)(w — D) -+ (w—~ D,,) —d =0;
D, <w<D,+ 1.

Perron [18] has proved the following important theorem :

If the supporting sequences of the Jacobi-Perron algorithm fulfil
the conditions

(186) bl =mn + b + b + - b, (v=201,--+)
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then f(w) is trreducible in the rational number field.

We shall apply Theorem 3. Here
B® = b = - = b, = 0; by, = D, — D, or 2= D |

In order to verify (186), we thus have to prove D, — D, = nd. But
in virtue of (184) we have, indeed,

Dy— D;=2d(n —1)=nd, sincen=2, (1=1,.---,2—1).

Thus f(w) is irreducible in the field of rational numbers, which is
true already under the conditions (159), and w, as well as the other
roots of f(x) are algebraic irrationals of degree m. Thus, in virtue
of Theorem 2 and the conditions (184), f(x) has n different real roots
which are all algebraic irrationals of degree n. According to the
famous Dirichlet theorem, the exact number of (independent) basic
units of the field K(w) is N = r, + 7, — 1, where

7, is the number of real roots of f(x),
r, is the number of pairs of conjugate complex roots of f(z) .

In our case r, =n; r., =0, so that N=n — 1. We shall now prove
THEOREM 5. Under the conditions (184) the n algebraic trrationals

(188) gk:(i”_“_d_l?_k)_”, (k=0,1,---,m—1)

are n different units of the field K(w).

That the numbers (188) are all different follows from D, == D,,
(t+#37;4,5=0/1,---,n—1). We further note that one of the

numbers (188), for instance
e, =(w—D,_)/d
can be expressed by the other » — 1 numbers. We obtain from (185)
df(w— D, ) =(w— D)w—D)---(w~D,_,),
a"/(w — D, )™ = (w — Dy)"(w — D)* +--(w — D,_)",
and from this

d — (w - Do)n . (w — Dl)n e (w — Dn~2)n
(w—D,.)" d d d '

so that
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(189) €l = €8 €, ;.

There is a simple algebraic method to prove that the e, are all
units (see the Appendix by H. Hasse); for this purpose, in view of
(189), it suffices to show that the ¢, are algebraic integers. This,
however, does not disclose the more organic connection between a
unit of a field and the periodic algorithm of a basis of the field;
after a unit of a field has been found by some device, it is easy to
verify that it is one, indeed. The problem of calculating a unit in
a quadratic field K(y/m) is entirely solved by developing 1/m in a
periodic continuous fraction by Euclid’s algorithm.

In a joint paper with Helmut Hasse [16] it was proved that in
the case of a periodic Jacobi-Perron algorithm carried out on a basis
w, w?, ---, w""' of an algebraic field K(w), w = (D" + d)'~; d, D
natural numbers, d| D, a unit of the field is given by the formula
(190) et = a8 alStt ... qlSiTn
where S and T (see (6)) denote the length of the preperiod and the
period of the algorithm respectively.!

Turning to Theorem 3, we obtain S =0, T = n(n — 1) for d = 1,
and formula (190) takes the form

(191) e»—-l — n{n—1i)—1 a(v) — :L:—ol Hn~2 a’(ni(n—l)+k) .

v=0 n—1 k=0 —1

Following up the various stages of the proof of Theorem 3, one can
easily varify the relations

(192) Z;g a;k~)1 = P1,1P2,2 ce Pn——l,n—x ’
(193) Z:g agyi—l)—k = d_IP1,1P2,2 e Pn—l,n—ir (7' = 1, e — 1) .

In virtue of (192), (193) we obtain from (191)
(194) e = d_("_l)(PLLPz,z e Pn—x,n—q)n .
From (39) we obtain

(195) P1,1P2,2 see Pn—l,n—l - d
w— D

and from (194), (195)

(196) =9 oD
(w — Dy" d

1 Formula (190) holds for any algebraic irrational w.
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which proves Theorem 5 for £ = 0, since D = D,. Yet it is rather
complicated to prove the remaining statement of Theorem 5, namely
that the other e, (k =1, ---,n — 2) are units of K(w) which can be
derived from a periodic algorithm like ¢, We say deliberately
periodic algorithm and not periodic Jacobi-Perron algorithm, which
has its good reasons in the following observation: if one reads the
author’s joint paper with Professor Helmut Hasse carefully enough,
he will soon realize that in order to prove formula (190) two pre-
sumptions are necessary—first that the numbers b®, by, ---, b,
(v=20,1, -.-) be all integers; second that the algorithm be periodiec,
while the formation law by which the b are derived from the a{®
is altogether not essential. In this chapter we shall define a new
formation law for the b and obtain, on ground of it, a periodic
algorithm for n — 1 polynomials chosen from the field K(w). In this
algorithm the b/ will all be rational integers so that formula (190)
can be applied. These results are laid down in Theorem 6. Before
we state this theorem, we shall explain the new formation law for
the b and introduce, to this end, a few more notations.

DEFINITION. Let w be the only real root in the open interval
(Do, D, + 1) of equation (185), so that

(w—D)w — D)+ (w—D,,) —d=0.

Let the elements of the basic sequence of an algorithm G be poly-
nomials in w with rational coefficients, i.e.,

(197) 0 = aP(w) = S Cav™  (s=1,+-+,n — 1);

if the »» (s=1,---,n—1; v=20,1, .-.) are rationals, then, in
virtue of (4), the al”, too, are polynomials in w with rational
coefficients for all s, v, i.e.,

(198) agv) = aiv)(w) = Zgzocy)ws—i (S = 1y cee, M — 1 y U= 07 19 o ')

G is called the Modified Algorithm of Jacobi-Perron, if the b{" are
obtained from the a{” by the formation law

(199) b = al™(D,) (s, v as in (198)) .

Here D, is one of the numbers D,, D, ---,D,_,; D, remains the
same during the process of G.

We shall now introduce the following notations
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R,;=w— D,,;; D,, any of the numbers D, ---, D, _,;
(200) R,g’,,; #* .Rj,j for 7: *= j :
Ri,j = Ri,iRiJrl,i-i—l s Rj,j y 0=r1=j=n-—-1).

From (185) and (200) we obtain

Ry =d;

o1 URos = B Binafd,  0<i=j<n—1)
1/R,,; = Ri+1,n—l/d ’ 0=j<n—-1
1/R; . . = R,;_/d , OD<i=s=n—-1).

We are now able to state

THEOREM 6. Under the conditions (186) let
(202) R Ry oo, Ry s s
be any n — 2 of the n — 1 polynomials
(203) P ooy Porits Peviiiny o0 Poineny (k=1,+0-,m — 2)
then the Modified Algorithm of Jacobi-Perron of the basis
(204) e =R, Pp; =1 -+,n—2) ey, =R,

is purely periodic; the length of the period is T = n(n — 1) for
d>1 and T=n—1 for d=1. The period of length T =n —1
consists of one fugue; its generator has the form

D, — D1,1

-Dk - Dn~1,n—1
(205) -Dk - Dn—z,n—2

Dk - Dzz

The period of length n(n — 1) consists of wn fugues; the generator
of the first fugue has the form

Dk - Dl,l

(Dk - Dn~1,n~1)d~1

D,—D,_,,._
(2062) ¢ B

Dk - Dn—s,n—?.

Dk - Dz 2

The generator of the i -th fugue (i =2, --+,n — 3) has the form
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Dk - -D1,1

Dk - Dn—l,n-—l

-Dk - D’n—-Z,n—-Z
(206b) D, — D, iy,n—ti

(Dy — D,_;,,_5)d™"
D, — D,_iity,n—t+1)

The generator of the n — 2 -th fugue has the form

Dk - D1,1

-Dk - Dn—l,n—l

D, — D, 5.
(206¢) {F e

D, — D,

The generator of the n — 1 -th fugue has the form (205); the genera-
tor of the m -th fugue has the form

(Dk - Dl,l)d—l
Dk - Dn—-l,n~—1

(206d) D,—D,_,,..
Dk - D2,2

The reader should note that the generators (205) and (206a)-
(206d) consist of rational integers only. The differences D, — D, ;
(¢ =1, ---,n — 1) are algebraic sums of natural numbers; and since
d|D,, d|D,; so is d|D,— D,;. One further notes that these
generators contain no zeros, since P, , # R,;; and therefore D, # D, ,,
i=1,.--,m—1).

Proof of Theorem 6. We first make the following observation :
since, in virtue of (202), (203), we can have either

P,,=R,or P,,=R, .,
we shall choose

(207) Plc,k = RO,O .
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We shall now carry out the Modified Algorithm of Jacobi-Perron for
the basic sequence (204). We obtain from (204), since every factor
a (i=1,---,n — 2) contains the factor P, ,, and in virtue of (199),

(208) b =0;(e=1,---, 0 — 2) by, =D, — D,, .
From (204), (208) we obtain, since R,, — (D, — D,)) = w — D, = Py,

a” — b = R, P,
(209) all; — b%; = R, iPi, @=1L-n=3

a'(noll - b'(nO)—l = Pk,k ’
and from (209), in virtue of (4) and (201), (207)

a’él) = Rl,n—2—iRn—1,n—-1Pk,k/d ’ (i = 1’ Sty n — 3)
(210) a/;:lz = Rn—x,n——1Pk,k/d ’
ayt, = R, ,../d .

From (210) we obtain, since every a{® (1 =1, --+, n — 2) contains the
factor P, ., and in virtue of (199)

21y b =0;(i=1,---,2—2) b, =Dy — Dyyn)dt,
and from (210), (211), since
(Boeiynat/@) — (D — Dy n )@ = (w — Dp)d™ = P d™,
a(ll) - bil) = Rl,n—3Rn—1,n—1Pk,kd—1 ’
afl; — bl = Rl,’n—3—iRn—1,n—1Pk,kd—l , (=1, .. -yn—4)

a/fnl)—z - bErLl—)—Z = Rn——l,n—lpk,kdhl ’
a;,lll - b,(,‘l)_l - kakdﬂl .

(211)

From (211) we obtain, in virtue of (4) and (201), (207),

aS;Z) = Rl,n—-3—iRn—2,n——1Pk,k/d ’ (?’ = 1: e, M — 4)
a’(nz)—ii = n—Z,n——lPk,k/d ’
aly = Ry snoPri/d

[ R—
an—l - R'rL—Z,n—Z .

(212)

From (212) we obtain, since every a® (1 =1, ..., n» — 2) contains the
factor P, ., and in virtue of (199)

(213) b =0, =1,---,m—2) bli=Dy— Doy,

and from (212), (213), since R, s, — (D} — Dy s,ps) = W — D, = P,
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a§2) - b£2) = Rx,n—4Rn—2,n—-1Plc,k/d s
a/ii)z - b;i)z = Rl,n—4—iRn—2,n——1Pk,k/d ’ (’L = 1! e, M — 5)
(214) a/(nZ)—3 - b»(nzla = Rn—-z,n—~1Pk,k/d ’
a, — b2, = R, ., .Pui/d
af)—l - b;u2>—1 = Pk,k
From (214) we obtain, in virtue of (4) and (201), (207)
a = R],n—-4-—iRn—3,n—1Pk,k/d ’ (t=1,--+,m —5)
aﬁf)—li - R’n-«.‘},n—«lPk,k/d ’
(215) (1/'(:-)-3 = Rn—S,n—ZPk,k/d L]
ad, = R’n—3,n~—-3Pk,k ’
il =R, g0 .
We ishall now prove the formula
a;? = Rl,n—l——t—-iRn—t,n—IPk,k/d ’ (t=1.-+,m—2-1)
@y = Ry Pri/d
@iy = By oy sPusfd,
(216) " t t, 24 K k/ ]
an~t+j - Rn—t,n—?—ij,k y (.7 - 15 ct t - 2)

a/(nt—)—l = Rn—t,n-—t!
t=3,-,m— 1.

Formula (216) is correct for ¢ = 3, in virtue of formula (215). Let
it be correct for t =m (m =3, ---,n — 4). From (216)
for ¢t = m, since every a™ (i =1, -.--,n — 2) contains the factor
P, ., and in virtue of (199),

(217)

b{'m) —
%

we obtain,

O;(i:]'y"'9n_2) bi”LTfi)l:Dk_Dn—«m,n—m!

and from (216) (for ¢t = m) and (217), since

(218)

Rn——m;%—m - (Dk - Dn—~m,n——m) =w — Dk = Pk,k

a™ —

(m) __
Q2w

b
b

(m) .
Ap—m+j

al™, — b, = Py, .

(m) ——

lm - Rl,n—Z—mRn~m,n——1Pk,k/d ’

(m) — ) —

Lr‘nz - Rl,n—Z——-m—iRn—~‘m,7L-~1Pk,k/d ’ (/L - 11 ct Yy

Ja;ﬁ)l—m - bibwi)L——m = Rn—m,n—lpk,k/d y
( —

a/;:i)m - bnﬁ)m - Rn—~m,n~2Pk,k/d ’

iﬁ-)m-%—j - Rn—m,n—z—jpk,lc ’ (.7 - 1) b

From (218) we obtain, in virtue of (4) and (201), (207)

n—3—m)

'ym_z)
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a’ierU = Rl,n~2—m~iRn—m——1,n—~1Pk,k/d ’ (7: = 1! e, M — 3 — m)
a'fr:i;i)m = Rn—m—~1,n~1Pk,k/d ’
(219) a’;f’ii—i)m - Rn—~m—1,n—2Plc,k/d ’

(m+ _ .
ayil.: = R’n—m—l,n——2~ij,k ’ Js=1:,m—-1)
a;&‘,'i-*l—l) - Rn—-m—l,n~m—-1 .

But (219) is formula (216) for ¢ = m + 1, which completes the proof
of this formula. We now obtain from (216) for ¢ = n — 3
" = R, Ry, P ,/d,
" = Ry Ppu/d
(220) " = R, ,P,./d ,
@i, = Ry s P, (j=1,+--,m —5)
a7 = R,,.

From (220) we obtain, since every a{"® (¢ =1, ---,n — 2) contains
the factor P,,, and in virtue of (199)

(221) b1(:n—3) = Oy (7’ = 1’ e, — 2) b;:L‘la) = Dk - -D3,3
and from (220), (221), since P;; — (D, — D) = w — D, = P,
ai"™® — b»P = R1,1R3,n~1Pk,k/d y
" = 0" = Ry, \Piu/d
(222) ;" — 0" = Ry, oPi/d
ast7 — b5 = Rys iPr (1=1,---,m —5)
A — by = Py,
From (222) we obtain, in virtue of (4) and (201), (207),

a"™" = Ry i Pii/d; 0" = R, ,P,./d ,

(223) i ;
a;:b—;z) = Rz,n—2~ij,ky (.7 - 1! ct ety n — 4)’ aiﬁ—iz) = R2,2 y

and from (223), since every ai*® (1 =1, .--,n — 2) contains the
factor P,,., and in virtue of (199);

(224) " =0, (1 =1,---,m — 2) b5 = Dy — D, .

From (223), (224) we obtain, since R,, — (D, — D,,) = w — D, = P, ,

o= n—2) __
a* ™ — "M = Rz,n—1Pk,Ic/d y
(n— (n—2) _
a — birY = R, ., P ./d ,
a;1;2) - b§i72) = Rz,n«z—ij,h ’ (.7 = 1y cee, M — 4)

(m— —2) __
an'”_lz) - b;,;’i.l) —_ Pk,k y

(225)

and from (225), in virtue of (4) and (201), (207)
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a'” = Ry, .P./d ,
(226) aliy = Ry, iPis (G=1-,m—3)
ayl) = R, .
Here we are making use of the notation (37) w;v = w(n — 1) + .
In virtue of formulae (208), (211), (213), (217), (224) the first = — 1
supporting sequences of the algorithm form a fugue which has the
form of the first fugue as demanded by Theorem 6.
From (226) we obtain, since every a{*” (¢t =1,.--,%n — 2) has
the factor P,,, and in virtue of (199)

(227) b =0; (1 =1, .--,n — 2) b, = D, — D, ,
and from (226), (227), since R,, — (D, — D,))=w — D, =P, ,

a"" — 0" = Ry, .P./d
(228) aliy — by = Ryn2-iPuu (G3=1,-,m—-3)

a;,‘jl) — b;l;ol) = Pk,k o
From (228) we obtain, in virtue of (4) and (201), (207),

a'(jl;1> = Rl,n—-z—jRn—-lm—IPk,k ’ (j = 19 e, M — 3)
(229) a'(nl-:—lz) = Rn—l,n—-IPk,k ’
(L(nu_ll) = Rn—l,n—l ’

and from (229), since every a{*’ (¢ =1,--.,n — 2) contains the
factor P, ,, and in virtue of (199),

2300 b =00=1---n—-2) b =D,—D, ..

From (229), (230) we obtain, since R,_, ,_, — (D, — D,_,,,..) = w — D, =
Py,

a — b = R, , 3R, P

afy — b =R, s iRy yiPry, (1=1,+,m—4)
al) — bl = R, . P,

al) — by = P..,

(231)

and from (231), in virtue of (4) and (201), (207)

a;}:2) = Rl,n—S—-jRn—-z,n—lpk,k/d ’ (j = 11 cee, M — 4)
a;‘l_,i) = Rn—2,n—-1Pk,k/d ’

a:zl'—zz) = Rn—-z,n—ZPk,k/d y

R =R, 4, /d .

From (232) we obtain, since every ai® (¢ =1, -..,n — 2) contains

(232)
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the factor P, ,, and in virtue of (199),
(233) M =0;1=1,---,m—2) b =(D, — D,,,.)d,
and from (232), (233), since

(Ruzn—2/@) — (D), — D, _s,_0)/d) = (w — D,)/d = P, ,/d ,
al'® — o' =R, Ry . Pri/d,
aliy — b7 = Ry y iRy suiPip/d, (7=1,+--,m—5)
(234) an — b8 = Ry s, Pri/d
sy — 0% = Ry s oPri/d
al’® — bl® = P, ,/d .

From (234) we obtain, in virtue of (4) and (201), (207) ,

a;’l;S) = Rl,’n—4—jRn—3,n—1Pk,k/d y (j == 1, ctty n — 5)
(235) a§11135)+3 = Rn_gyn__spk,k/d ’ (S = 1’ cee, 3)
\a/(nl—:?l) = Rn~3,n—-3 .

From (235) we obtain, since every a{® (¢ =1,.--,n — 2) contains
the factor P, ,, and in virtue of (199),

(236) bV =00@=1---n—-2) b =D,— D, 4.4,
and from (235), (236), since R, _,, s — (D, — D,_s,,s) = w — D, = P,

' — b =R, R, 5, Pe/d,
alxg)_b{i:}:Rn—s jRn 3n1Pkk/dy (j:l,---,n—G)
a'{ﬂl——sﬁ)ﬁ—s - b —-5+s = Rn 3,n— st k/d (s = 17 2) 3)
@Y — b = Py, .

(237)

From (237) we obtain, in virtue of (4) and (201), (207),

a/(flm:RlnﬁjR'n 4,n— 1Pkk/dy (j:l!""n_G)

a/flb)s"‘R'rL——lin—P d 821,2y3
(238) - o ok ( )

a;—z) = Rn—-4,n—4Plc,k ’

ai'bl:l) - Rn—4,’n—4 .

We shall now prove the formula

a;l‘t):Rln_lthn_tnLPkk/d’ (j:ly...,n——t—Z)
a'(rbltt2+s_Rnt'n—Pkk/d (821!2)3)

(239) @ iiw = RBactinauPr (w=1,---,t-3)
) =Ry yus s

t=4,---,n—3.
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Formula (239) is correct for ¢ = 4, in virtue of (238). We presume
(239) is correct for m = 4, i.e.,

al™ =R . iRy iPri/d (G=1-m—m-—2)
(240) alim™ ey = Ry iPuild (s=1,2,3)
a';l;—”;;)-i-1+u = Rn—m,’n——s——qu,k ’ (u = 17 cee,M — 3)

(Lim)
an——[ - Rn-—m,n-m .

From (240) we obtain, since every a{"™ contains the factor P,,
(t=1,---,n — 2), and in virtue of (199)

(241) b =0;(t=1,---,m—2) bW =Dy — Dy pnm
and from (240), (241), since
Rn——m,n-m - (Dk - Dn—m,n—m) =W — Dk = Plc,k ’
a/(lm” - bil:M) - Rl,n—m—ZRn—m,n—IPk,lc/d ’
a&—;n - b&_;n) = RLn —m— 2—'Rn mn—lPk k/d ’ (j:l, "',’ﬂ—m—g)
(242) alrm o — b = Ry nsPri/d (s=1,2,3)
a’izl—’;‘nJrl-ku - b;l Tn«)»H—u = Rn—m,n—3—qu,k y (u = 1: s, M — 3)
ali — b = Py .

From (242) we obtain, in virtue of (4) and (201), (207),

a(};m—{—l) = Rl,n—m——z—jRn—m,'n—l-Pk,k/d s (j = 1’ Sty n—m— 3)
Al = Ropin Prafd s=123

(243) 3 1, k,k/ ( [ )
aibl Tnthi = Rn——m—l,n—3~qu,k ’ (u = 1’ cre, M — 2)
a‘nl_’ﬁ Vo= Rn——m——i,n——«m—l

Substituting m + 1 for ¢ in formula (239) we obtain formula (243)
which completes the proof of (239).
From (239) we now obtain for t =n — 3,

al*m = R1,1R3,n—1Pk,k/d ’
all«L:L o= R3,n—st,k/d ’ (S = 1! 2’ 3)
a41 = R3,n—3——qu,k y (U/ = ly e, M — 6)

(1in—3)
Gy ly - R3,3 H

(244)

and from (244), since every al**® (1t =1,.--,n — 2) contains the
factor P, ,, and in virtue of (199)

al*¥ — b = R, \R, , R, ./d ,

a’ll ;L By — b&? Y = Rz,n—st,k/d ’ (S - 1» 2) 3)
v = b = Ryys ok Pr (w=1,---,m —6)

‘1in—3) {(1imn—3) —
Ay — bn—l Y= Pk,k .

(246)
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From (246) we obtain, in virtue of (4) and (201), (207)

a*® =R, ,_ P../d,
a;l;n——z) — Rz'n_zpk,k/d ’

(247) afi" = R, P,./d ,
alir® = Ry s WP, (w=tn=9
@ = Ry,

From (247) we obtain, since every a{*"® (¢ =1, ---,n — 2) contains
the factor P,,, and in virtue of (199)

(248) b =0;(i=1, «+-,m — 2) bin =D, — D,,,
and from (247), (248), since
R,, — (D, — D,;) = w — D, = Py,
alin2 — iy = R P, ./d
i — b = R . P/,
(249) Qi — B = Ry Pufd
a1 = BT = RyusiPi s
alyin T — b = Py .
From (249) we obtain, in virtue of (4) and (201), (207) ,
i = R, , 2P /d ,
ai®” = R, ,_sP/d ,
@i = Ry s iPr (1=1,+-+,m—4)

(2:0) _
a’n-—l - Rl,l .

(250)

In virtue of formulae (227), (230), (233), (236), (241), (248), the n — 1
supporting sequences, starting with the = -th sequence of the
algorithm, form a fugue which has the form of the second fugue as
demanded by Theorem 6.

The proof of Theorem 6 is essentially based on the following

LEMMA 2. If the generating sequence
a5 @ =1 n—-1t=1 -, m—4)
has the form

a?:o) = Rl,n—l—iPk,k/d y (?: = 1, ceey, t)
(251) @i = RipsiiPr (G=1-n—1t—2)

(:0) —
Apy —R1,1 ’

then the n — 1 supporting sequences
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b§t;8)’ bét;S)y ) b;:—sl) (S = 0: 11 e, M — 2)

form a fugue which has the form of the t + 1 -th fugue as demanded
by Theorem 6, and the generating sequence

QIO g0 L, g0
has the form (251) where t is to be replaced by t + 1.

Proof. The Lemma 2 is correct for ¢ =1, as can be easily
verified by the formulae (226), (250) and the remark following formula
(250). We shall presume that the Lemma 2 is correct for ¢t = m — 1
(m = 2) and shall prove its correctness for ¢ + 1 = m. We obtain
from (251), on ground of the second statement of the Lemma 2 (viz.
for t + 1 =m)

a;"" =R, , . P,./d, (t=1,.--,m)
(252) awid =Ry iwiPr (=1, —m—2)

(m3;0)
ar? =R, .

From (252) we obtain, since every a{™® (¢ =1, --.,n — 2) contains
the factor P,,,, and in virtue of (199)

(253) b =0;(t=1,.-+,m — 2) b,* = D, — D, ,
and from (252), (253), since R,, — (D, — D,,) = w — D, = Py, ,

A — b = R Pyd,

ait? — b = Ry, s_iPri/d , (t=1,+--,m—1)
30 3 —_— N

a(,,ﬁ,) - b%”+‘}’ = Rl,n—l—m—ij,k ’ (.7 - 1’ e, — M — 2)

30 0
amP — b = P,,..

(254)

From (254) we obtain, in virtue of (4) and (201), (207),
agm‘l) == Rl,n_z—iRn—l,n—-lpk,k/d 9 (i = 1’ R m — 1)
ain’”_‘ﬂ-j = Rl,n—l—m—jRn—l,n—~lPk,k , (1=1,---,n—m—2)
a;’ﬁ‘;’ = Rn_l,n_ppk,k ’

(m3l) —
a/'lb—l - Rn——l,n—}. .

(255)

From (255) we obtain, since every a{™" (¢t =1, .-.,n — 2) contains
the factor P, ,, and in virtue of (199),

(256) b™V =0;(t=1,---,m — 2) 0" =Dy — Dyys s
and from (255), (256), since
Rn—l.n—l - (Dk - Dn—l,n—l) =W — Dk = Pk.k ’
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ai"“” —_ b;ml'l) = Rl,n—aRn-—l,n—IPk,k/d y

ami — bmi = Ry g Ry i Piild (t=1,:,m—2)
(257)  dag; — by = RiyosomiRuciynsPriy, (=100 ,m—m—2)

amy — b =R, 1P

o) — by = Py, .

From (257) we obtain, in virtue of (4) and (201), (207),

a™? =R, , s iRy 5, Ppi/d, (t=1,+--,m—2)
ainm—zzi—y = Rl,n—l—m—jRn—Z,n—lPk,k y (.7 = 1y e, — M — 2)
(258) afn,’i;:?) = Rn—z,n—-IPk,k y

3
a™y = Ry 5, 2Py,

\a/'(n’,f—;f) = Rn—z,n—z .
We shall now prove the formula

a™ =Ry iR Pry/d (t=1,+-,m—1%)
anith; = RpimiBuiuiPrp, (1=1,-++,0—m—2)
(259) s iw = Ry tpnuPri s (w=1,---,0
am = Ryt
t=1,---,m—1.
Formula (259) is correct for ¢ = 1,2, in virtue of formulae (255),
(258). Let it be correct for ¢t = s = 2, i.e.,

aém;S) = Rl,n-—l——s—«iRn——s,%—lpk,k/d y (7’ = 1: e, M — S)
ainm—;zzkj = Rl,n—-l—m—jRn—s,n-—J.Pk,k y (.7 - 1y re, R — M — 2)
agz"—i:ssl%ku = Rn—s,n—qu,k ’ (u = 1’ ttty S)

(m3s) —
Ay = Rn—s,n—-s .

(260)

From (260) we obtain, since every a{™* (1 =1, ..., — 2) contains
the factor P, ,, and in virtue of (199),

(261)  b» =0;(i=1,+---,m—2) b2 =D, — D, 0,
a’nd from (260)’ (261)! Since Rn—s,n—-s - (Dk - D%—s,n——s) =w — Dk = Pk,k)

a{™® — b = R, s Ry g0 i Pryl/d,

aiti — b1 = Ris il suiPrp/d, (1=1,--+,m—s—1)
(262) A, — b, = Riiom iR i Prp, (G=1,00,m—m—2)

A g — O = Ry guuPr w=1---,8)

@i — b = Py,

From (262) we obtain, in virtue of (4) and (201), (207)



350 LEON BERNSTEIN AND HELMUT HASSE

™ =Ry o iRy gyui P/ t=1-,m—s—1)

(263) a;n"ifj;iw = Rl,n—-L—-m—jRn—-1—s,n—-1Pk,k ’ (.7 = 1, e, — M — 2)
a%’i:ssjsl-i—u = R’n—l—s,n—-qu,k ’ (w = 1,+--,84+ 1)
"t = Ry i guis

But (263) is formula (260) where s is to be replaced by s + 1; this
completes the proof of formula (259),
We now obtain from (259), for ¢t = m — 1,

aim;m—l) = Rl,n—m—-an—m+1,n—1Pk,k/d ’

(264) aﬁffjm"l) = Rl,n~1——m—jRn—m+1,n—1Pk,k ’ (.7 = 1! e, — M — 2)
la(nwiﬁ:llﬁ)u = Rn—m»l»x,n—qu,k ) (u = 1y ree, M — 1)
a;'li:lm—l) = Rn—m+1,n—m+1 .

From (264) we obtain, since every a{™™" (1 =1, ---, n — 2) contains
the factor P,,, and in virtue of (199),

(265) bmmt = 0;(i=1,---,m—2) b =D, —

Dn—m+l,n—m+1 »

and from (264), (265), since

Rn—m+1,n—m+1 - (Dk - D'n—m+1,n—m+1) =w — Dk = Pk,k ’
aim:m—l) - bi’m:m——l) - Rl,n—«m——IRn—m-}—l,n—lPk,k/d ’

afﬂ.;m«l) - bﬁr};m—«l) = Rl,n~1—m~—jRn—m+1,n—1Pk,k ’

(266) G=1,n—m—2)
aibffb—:'r:ﬂ—_ll—;—u - biﬁﬁ——ﬂu = Rn—m-H,n-qu,k ’ (u = ly e, M — 1)
almim — pimim = P

From (266) we obtain, in virtue of (4) and (201), (207),

a;-m;"” = Rl,n—l—mijn—m,n—lpl:,k ’ (j = 17 e, — M — 2)
267)  {am.w = RouwneuPr s (w=1,---,m)

(mim) —
a,— = Rn—m,n—‘m .

From (267) we obtain, since every a{™™ (¢t =1, --.-,%n — 2) contains
the factor P, ., and in virtue of (199),

(268) b;m;m) = 0; (?; = 1) e, M — 2) b'(nm—lm) = Dk - Dn—m,n——m ’

and from (267), (268), since R, _n,uom — (Dr — Dppynm) = w — D, =
Pk,k:
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Q™™ — hmm = Rl,n—2—mRn—m,n—1Pk,k ’
a{z‘z;’m) - biK—L_;M) = Rl,n—z—m—jRn-—m,n—IPk,k ’ (.7 = 1! e, —m — 3)
a'yi;;»"lﬂ»u - ir.’i:'r:zn—)—Z-fu = Rn—m,n—qu,k ) (U/ = 1, vy, m)

agm™ — b = Py, .

(269)

From (269) we obtain, in virtue of (4) and (201), (207) ,

a‘/’”""*“ - Rl,n—z—m—jRn—m—-l,n—IPk,k/d ’ (-7 = 1’ e, — Mo 3)
(270) a;ﬁ:r,:;ﬂjslj—u = Rn—-m—-l,n—qu,k/d ’ (u = 1’ T m + 1)
ai,,’i‘{“” = Rn—m—l,n—-m-—l/d ’

and from (270), since every a{™™*) (¢ =1,...,m — 2) contains the
factor P,,, and in virtue of (199),

@7y bt =01 =1,-+-,m—2) b =(D, — Dyt nem)/d .
From (270), (271) we obtain, since
(Rn—m—l,n—m—l/d) - ((Dk - Dn—m-—l,n—m~1)/d) = (w - Dk)/d = Plc,k/d 3

a™ ™t — N = R,y B i Pl
ayﬁ}mﬂ) - biﬁ;”“’ = Rl,n—~3—m—jRn—1—m,’/L—1Pk,k/d ’

(272) (=1 -+--,n—m—4)
at, — 0y = Ry inma P/ (w=1,---,m + 1)

a%i;lm“) - b;:iszrl) = Pk,k/d ’
and from (272), in virtue of (4) and (201), (207)

a';'m'VMH) = Rl,n——3—~7n—jRn—2—m,n———1Pk,k/d ’ (G=1-,n—m— 4)
(273) a;@ﬁfﬁu = Rn—m—z,n—~qu,k/d y (u’ = 1) cee, M + 2)
aﬁ[’iﬂm”) = Rn-——m—2,n—m——2 .

From (273) we obtain, since every a{™™*® (4 =1, ..., n — 2) contains
the factor P, ,, and in virtue of (199),

@74) bt =0;(1i=1,+-,n — 2) bmimt® = Dy — Dy pgnmes
and from (273), (274), since

R, vsnms— Dy — Dypsynms)=w— D, =Py,

Q[ — ot = By iR i Prld

aiﬁ;m+2) - biﬁ.:im.Fz) = Rl,n—m—~4—jRn—m—2,n—1Pk,k/d ’
(275) (3=1,---,m —m —5)
a;:'i;;tnjfﬁlu - b;ﬁ:ﬁj‘a—u = Rn—m—z,n—«qu,k/d ’ (’N/ = 1) cer, M+ 2)

(mim+2) (mim+2)
@y - bn~—1 - Pk,k .
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From (275) we obtain, in virtue of (4) and (201), (207),

ai™mt =R s iRy msnaPii/@, (G =1,-44,m — m — 5)

H 3 — —
(276) a'gﬁ—;znjﬁq)-u - Rn—m—B,n—qu,k/d ’ (’M, - 1; cee, M A+ 2)
a’(nm_-,zm+3) = Rn—m——3,%—m—3Pk,k ’
agﬁ:lm‘)—g) = Rn—-m—3,n——m-—3

We shall now prove the formula

a‘(im;mi—t) = Rl,n—-m—-l—t—jRn—-m—t,n—ipk,k/d y (j = 1’ cee 9”’ —m— 2 - t)

axﬁﬂjztltﬂ = Rn—m—-t,’n—upk,k/d ’ (7/6 = ly e, M + 2)
@277 et = Ry wotinemsiPi s (t=1,--+,t—2)
af/t’rizlm+t) = Rn—-m—t,n—m—t ’

t=38, - m—m—3

Formula (277) is correct for ¢ =3, in virtue of (276). As before,
(277) is proved by induction.

We now obtain, from (277), since every a{™"*" (1 =1, -.-,n — 2)
contains the factor P,,, and in virtue of (199),

(278) bém;m—H) = 0; (7: = 17 AR (7 _2) b;ﬁ:l,'n+t) = ch - Dn—m—t,n—m-—t
We further obtain from (278), for ¢t =n — m — 8
ai" " = Rl,lRﬁ,n—-IPk,k/d )

(279) a1 = Ry P/, (w=1,---,m+ 2)
a(mm;;b;im = Rs,w-—m—z—ipk,k ’ (7’ :.1y e, M — M — 5)

(min—3) __
@y - R3,3 .

From (279) we obtain, since every a{™" ™ (1 =1, .-, n — 2) contains
the factor P, ., and in virtue of (199),

(280)  bm" =0;(0=1,---,m—2) b =D — Dy,
and from (279), (280), since R,, — (D, — D,,) = w — D, = P., ,

A — b = Ry Ry Pufd
aify ™ = b = Ry, Prg/d (w=1,---,m+ 2)
ainm;;b-{:?) - binm+§L{—z2) = Rs,n—m—z—ipk,k y (7‘ = 17 e, — M — 5)

aitir ™ — b = Py,

(281)

From (281) we obtain, in virtue of (4) and (201), (207) ,
a;m;n~2) = Rz,n—iPk,k/d ’ (7/ = 1! cee, M+ 2)
(282) air’:n-fig-i-_}) = Rz,n—m—z—ij,k ’ (.7. - 1, e, — M — 4)

(msn—2) .
@,y V= RZ,? .
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From (282) we obtain, since every a{*® (¢ =1, ---,n — 2) contains
the factor P,,, and in virtue of (199),

283 bmm P =00=1,--,m—2) b =D, — D,,,
and from (282), (283), since R,, — (D, — D,,) = w — D, =P, ,
ai™ " — o™ = Ry Pry/d

(284) aii" ™ — b = Ry, iPig/d (t=1,+-,m+1)
a(;l,n-t—;:;) - bi,{’;;‘jf’ = Rz,n—m—-z—ij,k ’ (.7 = 17 e, — M — 4)
a'%-:lw_z) - b&”iﬂ"—m = Pk,k .

From (284) we obtain, in virtue of (4) and (201), (207)

am = R, P..Jd, t=1,+c,m+1)

(285) amiiY = RiuemeziPr Gg=1-,n—m—3)
a;’ﬁf“"’ — }21’1 .

We note that formula (285) is obtained from formula (252) replacing

in the latter m by m + 1.
We further note that the n — 1 supporting sequences

b(lm;S)y bém;s), M) b'(n'”—b-:ls) (8 = 07 1; e, M — 2)
generate a fugue which has the form of the m 4+ 1 -th fugue, as
demanded by Theorem 6. Thus the Lemma 2 is completely proved.

We now obtain, on ground of the lemma, and in virtue of formula

(251) for ¢t = n — 3, since (251) is correct for ¢ + 1, too,

Ia£n~3:0) = Rl,n-1——iPk,k/d ] (/I‘ = 1y tee, M — 3)
a5 = Ry, P

(n—3;0) __
[/ 2y - R1,1 .

(286)

from (286) we obtain, since every a{"*® ({ =1, --.,n — 2) contains
the factor P,, and in virtue of (199)

(287) bSO = 0;(i=1, - m—2) b =D, — Dy,
and from (286), (287), since R,, — (D, — D,)) =w — D, = P, ,

i — b = By, Pyufd
—3; —3;0) ) —

a7 — b7 = Ry e iPri/d, (G =1,.--,n—4)

asn"t_zsw) - b’(n"f_—?:‘)) = R1,1Pk,k ’

—3:0 —38;0) __
a;’"‘_ls b — b,(,,:n_l ! - Pk,k .

(288)

From (288) we obtain, in virtue of (4) and (201), (207),
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(n—3;1) __ y —

o = Rl,n»—z—iRn—l,n—-lPk,k/d ) t=1---,m—4
{(n—331) __

et = Rl,an—l,n—-lpk,k y

Laﬁ[g—;:n = Rn—l,n—lPk,k ’

(n—331)
a/n—-l - Rn—-l,n—l ’

(289)

and from (289), since every a{"*" contains the factor P,,
(t=1,---,n — 2), and in virtue of (199)

(290) B =0; (i =1, m—2) WPV =Dy~ Dy -
From (289), (290) we obtain, sinceR,_, ,.,— (D,—D,_,.,...)=w—D,=P,,

a" T — D = Rl,n—-3Rn~1,%—1Pk,k/d ’

a7 = 0t = Ry g iR 0 i P/ (t=1,---,m—5)
(291) A — 023 = R\ R, 1P s

a5 — 05 = Ry aiPr

a3 — b = Py,
and from (291), in virtue of (4) and (201), (207),

—33 — .
aﬁ” B = Rl,n—s—iR'rz~—2,n——1Pk,k/d ’ (,L - 1! e, — 5)
(292) {0y = R Ry 1 Pryy 0725 = Ry 50 1 Pry

a ¥ = Ry pn Py a5 = Ry o0 s .
It is now easy to prove the formula

a" = =Ry, Ry aiPrg/d, (0=1,000,m — 1 —3)
(a(rﬂ_tg—é) = Rl,an—t,n—lpk,k ’

(293) J‘afnn_—ts_.;)*‘] = Rn—~t,n—ij,k , (] = 1’ R t)
QT = Rones

t=1,---,n —14.

Formula (293) is true for ¢t = 1,2, in virtue of (289), (292). It is
then presumed that (293) is true for m =1 and proved, as before,
that it is correct for m + 1, too, which completes the proof of (293).
From (293) we obtain, since every a{**" (i =1, ---, n — 2) containg
the factor P, ,, and in virtue of (199),

(294) b0 =0;(0=1,---,m—2) b7 =Dy — Dyyyus s

and further for ¢ = n — 4,

a" Y = R1,2R4,n—1Pk,k/d y

ay i = R1,1R4,n-—1Pk,k ’

La;i?am_‘“ = Ry iPis (G=1-,n—-4

(n—3in—4)
Qp—y =R,,.

(295)
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From (295) we obtain, since every a{"~*"* (1 =1, ..., n — 2) contains
the factor P,,, and in virtue of (199),
(206) b0 =05 (i =1, m—2) B = Dy — Dy,
and from (295), (296), since R,, — (D, — D,,) = w — D, = P, ,

—3;n—4 —3in—4) __
ain - b;n = R1,2R4,n—1Pk,k/d ’
—35m— —~3in—4)
aén e — bén r = Rl,1R4,n-1Pk,k ’
(n—3;n—4 (n—3in—4) y
Lazij e — bZ’ij L R4,n—ij,k ’ (.7 - 17 e, M — 4)

{(n—3;n—4) (n—8;n—4) __
(42 - bn—l - Pk,k .

(297)

From (297) we obtain, in virtue of (4) and (201), (207),

a i = R1,1R3,n—1Pk,k ’
(298) a7 = Ry, ;P (3=1,+--,m—3)

(n—8:;n—3) __
a"ﬂ.—l - RS,S .

From (298) we obtain, since every a{**"* (¢ =1, ..., n — 2) contains
the factor P,,, and in virtue of (199),

299) b =0;(1=1, -+, m — 2) b =D, — D, ,
and from (298), (299), since R,; — (D, — D;3) = w — D, = P, .,

a9 b = B Ry, Py,

(2992) a7 = b = By Pu,  (G=1,-,m = 3)
a;":f;”“s) _ b;":;am_m — Pk P

From (299a) we obtain, in virtue of (4) and (201), (207),

(300) 0/2'”_3?”_2) = Rz,nujpk,k/d ’ (.7 - 17 e, — 2)
A = Ruold
and from (300), since every a{* %" (j =1,-.-.,n — 2) contains the
factor P,,., and in virtue of (199),
(801) br=r 2 =0;(1=1,---,m — 2) bir3m=n = (D), — D,,)/d .
From (300), (301) we obtain, since (R,,/d) — (D, — D.,)/d) = P,,./d,
a§n—3:n—2) - bin——S;n—Z) — Rz,n—1Pk,k/d ,
(802)  {aft5 ™ — b = Ry 5P/ (G=1-mn—3
@5 H T = b = Py /d
and from (302), in virtue of (4) and (201), (207),
a5 = Ry s iPra/d (3=1,--+,m—2)

(n—2;0) _..
a7 =R, .

(303)



356 LEON BERNSTEIN AND HELMUT HASSE

Formulae (287), (290), (294), (299), (301) show that the » — 1 support-
ing sequences

b5k bR e DR (B =0,1, +-c,m — 2)

form a fugue which has the form of the n — 2 -th fugue as demanded
by Theorem 6.

From (303) we obtain, since every a{"*® (j =1, ---,n — 2) con-
tains the factor P, ,, and in virtue of (199)

(804) b = 0;(i=1,--,m—2) b5 =D, - D,
and from (303), (304), since R,, — (D, — D,,)) = w — D, = P,
a(* 75 — "0 = R, . oPri/d

(305) a;i;w)) - bii;zm = Rl,n—z—jpk,k/d ’ (.7 = 1’ e, — 3)
QT — B = Py
From (305) we obtain, in virtue of (4) and (107), (108),
aﬁ-"_“’ = Rl,n—Z—jR'n-—l,n—lPk,k/d ’ (.7 = 1: e, N — 3)
(306) a5 = Ry yy0aPry
a;ﬂ——lz"l) = Rn—1,n—1 .
It is now easy to prove the formula
af B =Ry iRy n i Prald =1 ,mn—-2-1
s = Ry yuiPr (t=1,--4,10)
a211—12;t) = Rn—t,n—t ’

t=1,--+,0—3.

(307)

Formula (307) is correct for ¢ =1, in virtue of formula (306), (307)
is then proved by induction.

From (307) we obtain, since every a{"*" (i =1, ..., n — 2) contains
the factor P, ,, and in virtue of (199),

(308) b FY =0;(1=1,-++,m — 2) br " = Dy — Dyyyus
and further from (307), for t =n — 3,

zagn—zzn—-s) = R1,1R3,n—1Pk,k/d )

(309) a{i7¥" ™ = Ry iPr (t=1,---,m—=3)
a B = Rs,a .

From (309) we obtain, since every a{" %" (1 =1, -, — 2) con-

tains the factor P, and in virtue of (199),

(310) b =05 (=1, -+, m—2) B0 = Dy = Dy,
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and from (309) (310), since R,; — (D, — D,;;) = w — D, = P, ;. ,
a{" T — pinEn) = Rx,1R3,n—1Pk,k/d ’
(311) AT — BT = Ry Po,  (i=1,00,m— 3)

a;:n_—Izm—S) . bgri_-—lz;n—m — Plc,k .
From (311) we obtain, in virtue of (4) and (201), (207),

a*F " = Ry Py, (t=1,--+,m —2)

(n—2in—2)
an~1 - R2,2 y

(312)

and from (812), since every a{**"*? (1 =1, ..., n — 2) contains the
factor P,,, and in virtue of (199),

818) b Er B =0;(1=1,+-+,n — 2) birzm® = D, — D,, .
From (312), (313) we obtain, since R,, — (D, — D,,) = w — D, = P,

a»Erh — pn=tnd = R Py
—2in—2 —2in—2) __ ) —
(314) aiiz " — biiiz = Rz,n—l—-iPk,k ’ (/L - 17 e, M — 3)

a/iln;—lz;n—-?‘) — b;'/i:zm—Z) — Pk ks
and from (314), in virtue of (4) and (201), (207),
-t = R P,.Jd, i =1,.e0,n— 2
(315) a . ton—1—iPr, i/ (v )
a7 = Ry,/d .

Formula (304), (308), (313) show that the n — 1 supporting sequences
bi»=2*® (4 =1,+-e,m—1; k=0,1, ---,n — 2) form a fugue which has
the form as demanded by Theorem 6.

From (315) we obtain, since every a{" " (¢ =1,-..,n — 2) con-
tains the factor P,,, and in virtue of (199),

(316) b =0,(z=1,-++,m — 2) birt = (D, — D,)/d ,
and from (315), (316), since (R,,,/d) — (D, — D,,,)/d) = (w — D,)/d = P, ./d,

@ — b — Ry, Py d
(317) a7 = 0T = Rias iPry/d,  (t=1,+--,m — 3)
\@," Y — 00 = Py /d

From (317) we obtain, in virtue of (4) and (201), (207),

a{rtn = Rl,n_z—iRn—l,n—-IPk;k/d y (i=1,.-+,m— 3)
(318) @ = Ry Prald

(m—131) ___
an—l - Rn—l,n—-l .

From (318) we obtain, since every a(**" (i =1, ..., n — 2) contains



358 LEON BERNSTEIN AND HELMUT HASSE

the factor P,,, and in virtue of (199),
(819) b =0,(1=1,---,m—=2) b7V =D, — D, s,
and from (318), (319), since R,_,,_, — (Dy — D, _1,,,) = w — D, = Py,

a(xn—“” - bin—lu) = R1,n—3Rn—x,n—1Pk,k/d ’
aﬁ?“” - b;f:l) = Rl,n—3—~iRn-—l,%—LPk,k/d y (7/ = 1: e, M — 4)
a;;n_—;l:l) - b(nn——;;l) = Rn—l,n—lpk,k/d y

@ — bR = P

(320)

From (320) we obtain, in virtue of (4) and (201), (207),

a" ™" = Ry g Ry s Piild (t=1--,m—4
a,(nn_—:;l'.Z) = Rn—z,n—-LPk,k/d )
ta/;,nv—alm) - Rn—-—2,n—2PIc,k ’

(n—132)
Apy - R'n—z,n—z ’

(321)

and jfrom (321), since every a{""® (¢ =1,.--,n — 2) contains the
factor P, ,, and in virtue of (199),

322) b =0;(1=1,.--,m — 2) b =Dy — Dygns
From (321), (322) we obtain, since R, _, ,_.— (Dy—D,_5,,_) =W — D, =P, ,
ain_m) — "t = Rl,n—4Rn—2,n——LPk,k/d ’
aﬁ—?l;z) - bf’i?“z’ = Rl,n—4—iRn—2,n—1Pk,k/d ’ (7/ =1,¢0,n — 5)
(323)  Sayt® =0 = R, Pri/d
a;zl—_zlm - b;;ﬂ—_zuz) - Rn—z,n—-zpk,k )
art® — bt = Py,
and from (323), in virtue of (4) and (201), (207),

—133) — ) —
" =Ry, Ry i Prp/d (t=1,+-+,m —5)
(n—132) —
ann—4l b= Rn—s,n—lpk,k/d ’
—133) . —1;3) .
a'(nn—al ) = Rn—3,n—2Pk,Icy a(nwi—zl ) = Rn—3,n~—3Pk,k ’

(n—133) —
a’n——l - Rn-3,n—3 .

(324)

It is now easy to prove the formula

aa(iﬂ~1:t) = Rl,n—t—iRn—t,n—LPk,k/d ’ (i = 1’ ) " — 2 - t)
aiﬁ-—lii) = Rn—t,n—-lpk,k/d ’

(325) 3 = RotynaeiPri s (G=1,-0,¢—1)
@ = Ry

t=3,+c,m—3.
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Formula (325) is correct for ¢ = 3, in virtue of formula (324), (325)
is then proved by induction.

From (325) we obtain, since every a{"*" (=1, ---,n — 2) con-
tains the factor P,,,, and in virtue of (199),

(326) b =0,=1,---,m—-2) b =D, — D, ..,
and further from (325), for t = n — 3,

" = Ry, Pyil/d
1&;1}—1%_3) - R3,n—1—jPIc,k y (j = 1’ e, — 4)

(m—1:n—38) __
(2% =Ry;.

—Lin—3) __
(ain = R1,1R3,n—1Pk,k/d y

(3262)

From (326a) we obtain, since every a{* " (=1, ...,n — 2) con-
tains the factor P, ,, and in virtue of (199),

(82T) b =03 =1, oo, m—2) Pt = Dy — Dy,

and from (326), (327), since R,, — (D, — D;;) = w — D, =D, ,
QY < B = Ry R P

aén—lm—:i) _ b;n—l:n—:%) — R3,n—1Pk,k/d ,

lagizw—3> — b5 = Ry Py (G=1,,n— 4

(n—1.m—3) {(n—1.m—3) __
al™ — bl =P, .

(328)

From (328) we obtain, in virtue of (4) and (201), (207),

a* " = Ry, Puy/d
(329) T = Ry P (3=1+--,m—3)
A = Ry, .

From (329) we obtain, since every a{»**? (4 =1,..-,n — 2) con-
tains the factor P,,., and in virtue of (199),

(330) bt = 0;(i=1, -0, m —2)  bUSM =D, — D,,,
and from (329), (330), since R,, — (D, — D,,) = w — D, = P, ,,

e
(331) Q= B = Ry Pas, (G=1,000,m = 3)

a;n__——llm—Z) . b;ln_—ll'.n-—Z) — Pk P
From (331) we obtain, in virtue of (4) and (201), (207),

a;n:O) = Rl,n~—1~ij,k y (.7 = 17 e, M — 2)

(n#30)
@, = R1,1 .

(332)
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Comparing formula (332) with formula (204), we obtain
(333) a? = af® = ar* (G =1,--0,m—1),

so that the Modified Algorithm of Jacobi-Perron for the basic sequence
(204) is indeed purely periodic with length of period 7T = n(n — 1)
for d > 1.

For d =1 we obtain, comparing formula (226) with (204),

(334) af = e =apr,  (i=1-,m-1),

so that in this case the Algorithm is purely periodic with length of
period T = n — 1,

Formulae (316), (319), (322), (326), (327), (330) show that the
n — 1 supporting sequences

bin—l.k), bé%_l;k)y Yy biﬁ-_ll;k) ’ (k = Oy 1) cee, M — 2)

form a fugue which has the form of the » -th fugue as demanded
by Theorem 6. Thus, for d > 1, and from what was proved before,
the n(n — 1) supporting sequences of the Modified Algorithm of
Jacobi-Perron form n fugues of the form (206a)—(206d). In cased =1,
they all have the form (205). By this Theorem 6 is completely proved.

The reader should note the necessity to presume n > n,, (%, a
constant) while carrying out the proof of Theorem 6. The cases
n=2,+--,m, are easily proved separately by the same mothods used
for the proof of Theorem 6.

We shall now find units of the field K(w) by means of the
Modified Algorithm of Jacobi-Perron.

As Hasse and I have proved in our paper [16], a unit e of the
field K(w) is obtained from a periodic Jacobi-Perron Algorithm by
means of formula (190), viz.

S+T—1
e’ = 1l ay,
v=8
where S and T denote, as before, the lengths of the pre-period and
period of the periodic Jacobi-Perron algorithm respectively.

It is one of the most striking and basic properties of any periodic

algorithm G with integral supporting sequences

b, ¢t=1,-,m—1;,v=0,1,..)

by rational integers, that formula (190) holds for this general case
of the G. The proof of this statement is not too complicated and
follows exactly the lines of the methods used in [16], though certain
additional results are necessary (see, for example, my paper [12]).
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We then obtain from (190), since in our case again S =0, T = n(n — 1)
for d > 1, as in (191),

n(n—1)—1 n—1l n

—2
ek—l — H a(v) — H H az(n —1)+k) .

=0 k=0

Now it is not difficult to verify, following up the various stages of
the proof of the Modified algorithm of Jacobi-Perron, that the relations
hold

Mo =R, jd, (=01-,n—-3n-1
(335)
H a((n—2) n—1)+k) Rl,n—i .

We thus obtain from (191), in virtue of (335),

(336) e = (Ry,,_)"/d"" .
From (201) we obtain 1/R,,_, = R,,/d, and, since R,, = R, ,
(337) R, =d/P; .

From (336), (337) we now obtain

et = d/(Pk,k)n ’
or

(338) ¢, = W= D) (k=1,---,m—1),

so that with (196), (338) Theorem 5. is now completely proved by
means of the Modified Algorithm of Jacobi-Perron, since (338) in-
cludes the case d = 1, too.

The n — 1 units e, e, -+, e¢,_, are all different, since D, > D,.,
(k=0,1,.--,m — 2). It is proved below that they are independent
(see the Appendix by Hasse) in the sense that there cannot exist an
equation of the form

egf)e‘lll PR 6‘5/52 — y
where the a,, a,, -+, a,_, are rational integers not all equal zero.

Concluding we shall illustrate (338) by a numeric example. Let
the GP be a fourth degree polynomial

f@) = (x — 10)(x — 6)(x — 2)(x +4) —2=10;
flw) =0; 100 < w<11;

D,=10; D,=6; D,=2; D;= —4; d = 2;
w is a fourth degree irrational.
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We obtain from f(w) = 0:

w* — 14w® + 20w + 248w — 482 = 0 ,
w* = 14w® — 20w* — 248w + 482 .

Thus

(w — 6)* = —10w® + 196w* — 1112w + 1778 ;
(w — 2)* = 6w® + 4w* — 280w + 498 ;
(w + 4)* = 30w® + T6w* + 8w + 738 .

Substituting these values in (838) we obtain the independent units

e, = 5w® — 98w* 4 556w — 889 ;
e, = 3w® + 2w* — 140w + 249 ;
e, = 15w® 4 38w* + 4w + 369 .

Appendix. (By Helmut HASSE, at present Honolulu (Hawaii)).
In §7 of this paper L. Bernstein, by applying a modified Jacobi-
Perron algorithm to suitable bases of a certain type of totally real
algebraic number-fields K of degree n = 2, obtained a system of =
algebraic units in K with product 1. I shall prove here under slightly
stronger conditions that every n — 1 of these units are independent.

The fields K in question are generated by a root w of a poly-
nomial of type

(1) f@) =T @— D)~ d,

where the D, and d are rational integers, d = 1, satisfying the con-
ditions (184), viz.

(2) D,>D,>-.-->D,,,
(3) D, = D,mod. d ,
(4) Do—Dlzzd(%—l), (?):1,"',%—-1),

and in the special case d = 1 moreover the inequalities (19), viz.

D, —D,=z2o0r D,— D, =4 for n =3,
(5) D —D,=z2o0r D,— D, =Z3o0or D,— D; =3 or
D,— D,D,—D;=2 for n=4.

In addition to these conditions I shall have to presuppose the in-
equalities

(6) Dy — Dy = 2 2=s2k=n-1)
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to be satisfied in the special case d = 1.
I shall prove

THEOREM. Let w be a root of a polynomial of type (1) whose
coefficients satisfy the conditions (2), (3), (4), (5), (6). Then the m
algebraic numbers

em:_—(w_dD"‘)n (m=20,1,.--,n — 1)

are algebraic units with product

n—1

 en = 1,
and every m — 1 of them are independent.
Proof. (a) By (3)
(w— D,)" = :ﬁ:(w — D,)mod. d ,

and by (1)

:LI;I:(w—Dv):f(w)qLd:d.

Hence
(w— D,)" =0mod. d ,

so that the e, are algebraic integers.
(b) By (1) their product

e =1 d*w— D, =W+ d" _d"

Hence the ¢, are algebraic units.
(¢) According to Theorem 2, the generating polynomial f(x) has
n different real roots

w(o) > w > e > w1

(each of which may take the place of the above w), and the relative
position of these roots between and outside of the sequence (2) is
such that, for every fixed », in virtue of the congruences (3)

d for all m # v except possibly one

(v) __
| w Dy |> %d for the possible exception m == v .

The possible exception occurs for one of the two D, which
include w™ (so far v > 0 and for even n also v < » — 1), and hence
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only for » = 3 (since for » = 2 both roots w, w" are excluded by
D,, D). From these inequalities it follows that the units

(w(v) _ Dm)n
d

el)) =

for every fixed v satisfy the inequalities

d"'/d = d"* for all m # v except possibly one )
(v
e’ | > %—d"‘l/d = —;-d”"z for the possible exception m # v J :

Since the exception does not occur for » = 2, and since in virtue of
the presupposition (6) the factor 1/2 may be dropped in the special
case d = 1, these inequalities imply throughout

e ] >1 for m=wv.
On the strength of the product relation then necessarily
e | < 1.

Now the polynomial f(x) is irreducible, as Bernstein derived at the
beginning of §7 from Theorem 3. under the conditions (4). Hence
for each fixed m the ¢}’ are the algebraic conjugates of e¢,. Hence
by a well-known theorem of Minkowski' the latter inequalities imply
that for any fixed pair m,, v, the determinant

I ].Og I efr:z” r !m#mo,vsﬁvo i 0 .

From this it follows that every m — 1 of the % units ¢, are in-
dependent.

Note. In spite of this very simple theory of the unit system
e,, Bernstein’s more lengthly subordination of these units under a
modified Jacobi-Perron algorithm by means of Theorem 6. seems to
me still to be of importance. “The more organic connection between
a unit in a field K and a periodic algorithm of a basis of K”, as
Bernstein put it after Theorem 5, may be essential for attacking the
important question whether those units are fundamental units of a
ring (Dedekind order) in K. An answer to this question may lead
to lower estimates of the class number % of K.*

2 See H. Hasse, Zahlentheorie, 2. Aufl., Berlin 1963; 28, 2, Hilfsatz.
3 Compare for this: H. Hasse, Uber mehrklassige, aber eingeschlechtige reel-
quadratische Zahlkoerper, Elem. d. Math. 20 (1965), 49-59.
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BEST CONSTANTS IN A CLASS OF
INTEGRAL INEQUALITIES

Davip W. Boyp

In this paper a method is developed for determining best
constants in inequalities of the following form:

S" Ly 17 |y [w(@)de < K{S

b (p+a)/r
[y™ l’M(waw} ,

where y(a) = y'(a) = -+ = y»1(a) =0 and y* ! is absolutely
continuous,

It is first shown that for a certain class of m and w,
equality can be attained in the inequality. Applying variational
techniques reduces the determination of the best constant to
a nonlinear eigenvalue problem for an integral operator. If
m and w are sufficiently smooth this reduces further to a
boundary value problem for a differential equation. The method
is illustrated by determining the best constantis in case (a, b)
is a finite interval, m(x) = w(z) =1, and » = 1.

A number of special cases of the inequality have been studied but
usually without obtaining best constants. An exception to this is the
case n = 1,9 = 0, p = » which was studied very thoroughly by Beesack
[1], who gave a direct method for determining best constants. The
method of [1] was modified by Boyd and Wong [5] to apply to the
case n =1,9g =1, = p + 1. Recently Beesack and Das [2] obtained
constants for the case n = 1,7 = p + q but these were not in general
best possible.

We shall state our result only for » = 1 although it will be clear
that the analogous result for # > 1 is valid. In our closing remarks
we indicate a number of other inequalities to which the method of
this paper applies.

1. Preliminaries. Throughout we assume that p, q,r, a,b are
real numbers satisfying p > 0,r>1,0<¢<r and — o <a < b < co.
The functions m and w are measurable and positive almost everywhere.
We write du(z) = m(x)dz and

10 = {17 for 0<s< e

The space L: is the set of functions with || /||, < oo, with the usual
identification. We shall use the notation f, — fif || f, — f||,— 0, and if

s=1 so L:, is a Banach space, we write f, 2, f for weak convergence
in Li. We denote the dual of L: by L: so for s > 1,s = s/(s — 1).
We shall consider integral operators of the type

367
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b
(1) Tfz) = | ki, 000,
where k(x,t) = 0 a.e. A function f is in the domain of T if

T|fl(x) < oo a.e.

For Theorem 1, the operator 7 becomes
(2) T.fla) = wio)rm@) | ftyt

so that k(z, t) = w(®)"*m(x)"m(t) ¥ ,(t). A necessary and sufficient
condition for the domain of 7, to contain L7, is that

Sw m(t) " Vdt < o for aZx<b.

This follows from Holder’s inequality and its converse.
If T maps LI, — L&, where s = pr/(r — q), with norm || T'|| < oo,
then we can define the functional J on LI, by

(3) Iy = 1rpisran.

It then follows from Holder’s inequality that
(4) JUO) =TI

2. Main results.

THEOREM 1. Suppose that w, m e CYa,bd), that w(x) > 0 a.e. and
m(x) >0 for a<<x<<b, that p>0,r>1,0=Zq <r, and that the
operator T, defined by (2) is compact from LI, — L:i(s = pr/(r — q)).
Then the following eigenvalue problem (P) has solutions (y,\) with
y e C¥a, b) and y(x) > 0, y'(x) > 0 in (a,b).

(i) gd_ (VYT — qyty W) + pyP iy w = 0
7
(P) (ii) limy(z) = 0 and lim (rAy’""'m — qy*y'*~‘w) = 0
T—a x—b
i) [yl =1.

There 1s a largest value N such that (P) has a solution and 1f \*
denotes this value, then for any fe L,

o] 1w = 2] rrman” "

o f

Equality holds in (5) if and only if f = cy a.e. where y is a solution
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of (P) corresponding to M = N*, and ¢ s any constant.

The proof will require two lemmas which we state in reasonable
generality.

LemMMA 1. Suppose that p > 0,r >1,0<q < r, and that T, as
defined by (1) is a compact operator from L: — L3, (s = pr/(r — q)).
Let J be defined by (3), and

(6) K* = sup{J(/): [ fll. = 1} .
Then, there is an element f,€ L;, with || f,||, = 1 such that J(f,) = K*.

Proof. Since J(f) < J(|f|) unless f is of constant sign a.e., we
can restrict consideration in (6) to f=0. Let {f.} € L, be a sequence
with f, =0, f.|| =1 such that J(f,) — K*. We begin by assuming
g >0 so that 1 < r/g < . By the weak sequential compactness of
the unit balls of L7, and L:/* ([7], p. 68), and by the ecompactness of
T, we may assume that there are functions

feLy, heLy" geL;,

such that f, 2, I fe 2, h, Tf, — g in the appropriate spaces; clearly
Tf = ¢g. Furthermore, by the uniform convexity of L7, and L/ we
may assume that f, and f? are strongly (C, 1)-summable to their weak
limits ([7], p.462), so that
Fo=n S fi——f and k=03 fi——

=1 k=1

k

Now, we have
(1) I = [omdp = [ty - s+ [oi-m

Now, since f;L h in L7/ and since g?e L:* = L{'?", the second
integral in the right member of (7) tends to zero as n—c. To show
that the first integral tends to zero we consider separately 0 < p <1
and 1< p< . If 0=Zp<1, we use the inequality |4? — B?| <
|A— B|” for A=0,B =0 to obtain

Vo=V ore| = 1m0 — g

ST = glRlfullt = I Tfu — 9l -

The second step follows from Holder’s inequality with exponents s/p =
r/(r — q) and r/q. The final term in (8) tends to zero since Tf, —g
in Lg,.

In case 1 < p < =, we consider instead

(8)
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@) | el = Lo {178 - g pr}”

by Minkowski’s 1nequahty As in (8), the right member of (9) tends
to zero. Thus, if A, = S (Tf)*f? and B, = S ?f:. we have that

| AY» — BY?| — 0.

But {A4,} and {B,} are bounded sequences (4, = J(f.) < || T||” by (4),
B,=<llgllP =1l T|* by Holder’s inequality and Tf,-—g), and thus
|A, — B,| < p|AY* — BY?|.|| T|]>* shows that A, — B, — 0 as required.
Hence, we have

b
(10) K* = S g*hdp .
In case ¢ = 0, (10) also holds with %2 = 1, by a similar argument.
Now we show the existence of f, for which J(f,) = K*. The cases

0<qg<1l and 1< q<r are considered separately. If 0<¢qg <1,
define f, = f. Since () = ¢’ is concave, we have

(1) Fr=m" 3z 07 S =h
Now, since f, — f, in L7,, we have
b b ~ b A
[Lose = o7 = | o100 -7
b ~ -
= [ o1 =Fr S gl — Pl —0.

(12)

Similarly, Sbgpﬁn-—»Sbgph. Thus, combining (10), (11) and (12) we

a

obtain

I = | orpe =1im | o772
(13)
> lim Lgphn - Sag”h - K*.

However [|f,ll, =1 so J(f;) < K* and hence (13) implies J(f;) = K*
from which it is clear that || £, = 1.

In case 1 < g < r, let f, = 7. Now, instead of (11), we have
fi<h,. Since ||k, — h||,,,— 0, and since |hY? — k7| < |h, — b [ we
have

A T o

< (i =m0 = Rl
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Thus kY7 — ke = £, in L7, and since T is eontinuous, Th¥*— Tf, in
L;. However f, < h¥* and k(x,t) =0 a.e. so Tf, < ThY*, a.e. and

thus 7Tf =g < Tf, a.e. Thus (10) implies K* < J(f,), which again
means that J(f,) = K* and || f, ]|, = 1.

REMARK. A simple sufficient condition for T to be compact from
L;, — L:, is that k& have finite (+', s)-double norm. That is

b 1
a

(14 i ={. || k@ oraun | dpa)}™ <
(see [9], p. 319; the proof there applies even if 0 < s < 1).

Using (4), we see that K* < || T||* < ||| T|||* so (14) also supplies
an upper bound for K* (rarely the best).
For the operator T, given by (2) one may calculate that

(15) ”, Tl ]”s — Sbw(x)rl(r~q)m(x)_ql(T—’I)[Sxm(t)_ll('r—l)dt]SIde .

In the paper of Beesack and Das [2], the following inequality is proved:
If p¢ > 0,2+ g >1,y(a) =0 and y is absolutely continuous, then

(16) |LlyP 1y fw@ds < K, p, 0l |y Prm@ds,

where K,(b, p, q) is explicitly given. The constant K (b, p, q) equals
the best constant K* if and only if for some ¢ = 0

an  w@ = em@ye ([ meerd) e = p+ g

The constant K,(b, p, q¢) given there is in fact equal to (¢/r)*" ||| T\ |||?,
so, unless (17) holds we have

(18) K* < Kb, p, q) < ||| T, [I]” .

LEMMA 2. Suppose that T is given by (1), and that k(xz,t) > 0
for almost all (x,t) with a <t<x<b., Let p>0,r>1,0Zqg < 7,
and suppose T 1is a bounded operator from Lt — L:,. Let J be defined
by 8), K* by (6). Let f satisfy ||fll, =1 and J(f) = K*. Then f
1s of constant sign a.e. and

(a) f+#0 a.e.

(b) f satisfies a.e. the equation

@9)  rnfri ) — (T (@) (@) — pg:k(t, ) TH @) f()dp(t) = 0,

where N = \* = K*(p + q)/r. Furthermore \* is the largest value of
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N for which (19) has a solution f with || f||, = 1.

Proof. (a) We have seen that f is of constant sign a.e. so we
assume f =0 a.e. Let E = {x: f(x) = 0}; we must show that E is a
null set. First choose a function ke L; such that A(x) =0, and
h(z) > 0 if and only if e E. Such h exist: if p(E) < o, take h =
Yz, while if p(E) = oo, let

E,=EnN[—n,n]N{z:mx) < n},

so ((E,) < «, and define h = 3, v,xz, where {v,} is chosen so v, >0
and > v p(E,) < co.
For ¢ > 0, define f. = f + ¢h, and let F = Tf, F. = Tf., H= Th.
since J(f)/|| fl|**? is maximal, we have
0= J(f) — J() = ([ f A7 — DI(S)
20) {@ + €[ R|)ror — 1}(f)
= e[ |7 J(f), (where v = (p + ¢)/r, and 1 <& <1 +¢'|[h|l;
= 0(¢") as ¢ | 0.

First assume that ¢ > 0, so if CE = [a, D]\E, we may write
(21) HE) = af) = | Fenes | Fr— Fope
From (20) and (21) we immediately deduce that

0< SEFh < SFF;’h" — 0 —0 as €]0.

Thus, F(x) = 0 a.e. on E so k(x,t) = 0 a.e. on E x CE.

Next, we note that F(x) >0 a.e. on CE, since k(x,t) >0 a.e. for
a<t=<x=0>. Thus, for almost all x in CE, we have (d/de)F?f? =
pF?'Hf. Hence, if 0 < ¢ < ¢, we have.

(22) pF» ' Hf* < e(F? — F?)f?a.e. on CE,p=1
(23) pF? ' Hf* < e (F? — F?)f" a.e. on CE,0<p<1.

Thus, if p =1, (20), (21) and (22) imply that
24) 0 < S pFHf" < 8‘18 (F? — F")f" = 0(c—")—0 as €]0.
cr CE

Thus, since F(x) = 0, we have H(x) =0 a.e. on CE. A similar argument
using (20), (21) and (23) proves H(x) = 0 a.e. on CE, if 0 < p < 1. Thus
k(x,t) =0 a.e. on CE X E, and hence on (F x CE)U(CE x E). But,
since k(x,t) > 0 a.e. for a <t < x < b, the last sentence implies that
ExCE has plane measure zero and so either p(E) = 0 or ¢(CE) = 0.
However, p#(CE) = 0 implies that f = 0 a.e. contradicting J(f) = K* #0.
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Thus p#(E) = 0 as required.
In case ¢ = 0, (21) no longer holds. In this case, let

A = {o: F(x) = 0}

so k(x,t)=0 a.e. on A x CE. Clearly u(AnN CE) =0, since k(x, ) >0
a.e. for a <t < x <b. Instead of (21) we have

(25) JE) = a =) B+ | (- F).

Proceeding as in (24), we use the second integral in (25) together with
(20) to show that H(x) = 0 a.e. on CA, so k(x,t) = 0 a.e. on CA X K.
Now if B=CAN E has p(B) > 0, we would have k(z,t) = 0 a.e. on
B x B with contradicts k(xz,t) >0 a.e. for a £t < x < b and thus
MB) = (E\A) = 0. We already have shown that p#(A\E)=0. Thus
k(x,t)=0a.e.on (AXCE)U(CA X E) means k(x,t) =0a.e.on (ExCE)U
(CE x E), which leads to a contradiction as before. (We note that if
» < 7, a simpler argument is available using the first integral in (25).)

(b) Consider the functional

1) = M1l = I = [ I = (T

We shall show that if J(f) = K*, and if |h| < f, then for A = \* =
K*(p + q)/r, we have

(26) oI(f; h) = lirgrl e I(f+eh)—I(f) =0.

First, suppose that |2 | < f and that |¢| < 1/2. Now define A(e) =
J(f + ¢eh) and B(e) = || f + eh]|s. Then A and B are differentiable at
e =0, and

(7) 4 = | 0F=fH + qFf=hydp
(28) B(0) = gb rfthdpe .

To see this, note that (d/de)F?f? = pF?*Hf! + qF?f?"'h a.e. since
f>0a.e. by (a), and F' > 0 a.e. since k(x,t) >0 a.e. for a<t<x <b,
and thus f, >0 a.e., F. >0 a.e. for |[¢| < { and || £ f.

But, we have

e fremrs ey

by Holder’s general inequality with exponents s/(p — 1), s and 7/q.
Similarly, one shows F'?f7'h is integrable. And, for |e| < } one may
bound | (d/de)F?f?| in terms of F?*Hf* and F*f*'h. For example,
if p=1,¢=1, one has
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(30) |’dd€ Fefe

< (%)p”“l(pr~1qu 4 gF?fih) ae.

with similar bounds if 0 <p <1 or 0 <q <1. Thus, Lebesgue’s
dominated convergence theorem gives (27). A similar argument gives
(28).

By assumption J(f)/|| f||2t? = A(0)/B(0)**®!" is maximal and hence

i (A(E)B(e)—“’”’/r) =0.
de

Differentiating and using A(0) = K* and B(0) = 1, we obtain
(30) A'(0) — K*((» + @)/r)B'(0) = 0

or if we write A* = K*(p + q)/r, we obtain
(31) S"(m* frth — pFr U H — qF o f-hydp = 0
By Fubini’s theorem we have

|| Foipet = [ Fr@prea)([| v, oh@de )ipa)

a

(32) S
= { ([ ke, nF @) 7@ )du) .

Thus, if we write 7" for the operator with kernel k(¢, ) we have
from (31) and (32)

0 = [ h@r s = o Tpyfe = pTUTFY ) dpta)
(33)

- Sah(x)G(x)dp(ac) .

To obtain (19) set A(x) = f(x)sgn G(x) in (33) and use the fact
that f(x) == 0 a.e.

To see that \* is the largest value of A for which a solution to
(19) is possible with || f||, = 1, note that if (19) holds then (33) and
hence (31) hold for any || < f with X in place of \*. Thus, setting
h = f in (31) (with A for A\*), we obtain »\||filI — (p + Q)J(f) =0,
and thus v = (p + Q)J()/r £ (® + Q)K*/r = N*.

REMARK. Part (a) of Lemma 2 may be strengthened by allowing
k to vanish on more extensive sets. However, the precise condition
that is needed to insure f = 0 a.e. depends on the relationship of p, ¢
and r. For example, if ¢ >0 and p < », and if there are no sets
E with p¢(E) > 0 and #(CE) > 0 such that k vanishes on (EF x CE) U
(CE x E) then for f as in Lemma 2, one has f+# 0 a.e.
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Proof of Theorem 1. By Lemma 1, sup{J(f):||fll.£1}=K*< o,
and there is an f= 0 with || f||, =1 and J(f) = K*. Since m(z) >0
and w(x) > 0 a.e., Lemma 2 applies and we have f =+ 0 a.e. in [a, B],
and f satisfies

(34) A (@)ym(x) — qF(x)?f(x) ' w(x) — pSZF"“lf"w =0 a.e.

where F(x) = Y JF)de.

We claim that by modifying f on a set of measure zero, we will
have fe Ca,b), flx) # 0 in (a,d) and f will satisfy (34) everywhere.
To see this, rewrite (34) as

(35) St — A(x)f* = B(x) a.e.

where A(x) = 0, and B(x) > 0 for all z e (a, b).

Consider the equation (™' — &{* = 5. For 5 > 0,& =0 this has
a unique positive solution { = @(&, ) which can be extended to be C*
on an open region containing the set {(§,9):6=0,9=0,¢ + 7 > 0}.
To see this, consider the function () = {"* — &£ for fixed &, » and
qg. First suppose ¢ = 1, and & > 0, then +'({) has a single positive
zero C, = {y(§), and + decreases from ++(0) =0 to ({,) < 0 and is
strictly increasing on [{,, =) to + co. Thus () = » has a unique
solution for » > 0 which we denote @(¢,7). We define ¢(&,7n) for
£>0and 0 =7 > (L&) to be that solution of 7 = ({) with { > (.
If ¢ =1 and &£ <0, then + is strictly increasing from ++(0) = 0, hence
() = » has a unique solution for » = 0. Thus, for ¢ = 1, (&, ) is
defined on an open set containing @ = {(§,7):£=0,7=0,{ + n > 0},
and since +'(@(&, 7)) > 0, the implicit function theorem shows that
peC=. To show that ¢(&, n) — ¢(0,0) =0 as (¢, n)— (0,0) in Q, we
note that if 0 < £ <0,0<9n <0 and {, = ad" " with a = 22, then

P() = a0 — dartg T Zar et = 1)0 =0 (if 6= 1) .

Thus ¢(&, 7)) < ad’"" for 0 < & < 5,0 <7 < 0 proving the assertion.

If0<g<1landé >0, then + is strictly increasing from — c to
co on (0, ) so ¥(£) = » has a unique solution for alln. If0<¢<1
and &€ <0, then ¥({)—c as {—0 4 or {— o, and + has a minimum
at a point {, where ({,)) = v & V-0 gnd v >0, If €=0,4(&) =7
has a unique solution for 7 > 0. Again we have ¢ € C* on an open
set containing @ and that @(&,7) —0 as (§,%) — (0,0) in Q.

Now, from (35), by modifying f on a null set, we have

(36) fz) = p(A(x), B(z)) for all xe(a,d).

If w,meC" then A, B are absolutely continuous so (36) shows that f
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is absolutely continuous. But then FeC' so in fact, A4, BeC' and
(36) shows that feC'. That f(x) + 0 for = € (a, b) follows immediately
from (36).

Now, defining y = F' and differentiating (34) once gives (P) (i).
The conditions (ii) and (iii) are apparent from (34). The problem (P) thus
has solutions for » = K*(p + q)/r. To identify the largest eigenvalue
of (P) as K*(p + q)/r, we note that a solution of (P) gives a solution
of (34) and by Lemma 2 the largest eigenvalue of (34) is K*(p + q)/r.

The inequality (5) and the statement concerning equality are now

obvious.

REMARK. If m(x) > 0 and w(x) > 0 for all x€a, b], and if ¢ >0,
then A(x) > 0 unless « = a¢ and B(x) > 0 unless * = b. Hence equation
(86) shows that f(z) > 0 for all zea,d]; and fe(C'a,d]. We also
note that if lim,., A(x) is finite and lim,_, B(x) is finite then f(a) < «
and f(b) < . This will be used in § 3.

3. Some inequalities on a finite interval. As an application of
Theorem 1, we obtain the best constants in case (a,bd) is a finite
interval and m(z) = w(x) = 1. We immediately consider

0 1wl 1y ido = K, q,0{{ 1y raa} ™"

where y is absolutely continuous and y(0) = 0.

Some special cases of (37) are known. The case ¢ =0,p =7 =2k
(k a positive integer) is inequality 256 of [8], which was derived there
by classical variational methods using the Weierstrass sufficient condition.
This case was handled by elementary methods in [3]. Opial’s inequality
isthecase p=qg=1,r=2. If ¢=1,r=p + 1, the best constant
can be obtained by Holder’s inequality (see [5], for example). The
case v = p + q was considered in [6] but the best constant was found
only when ¢ =1 or r = 1.

Note that if g > », there is no inequality of the form (37), since
for y(x) =1 — 1 — )", ¢ <v < r, the left member of (37) is
infinite while || %’ ||, < 0. The case p = 0 is simply Holder’s inequality
with K(0,q,r) = 1.

THEOREM 2. For r=1,p>0,0< q < r, the inequality (37) is
valid with a finite constant K(p,q,r). The best such constant 1is
given by the following expressions

(a) if p>0,r>1,0=<q < r, then

(r—qp* - -
38 K(p,q,7) = Pt I(p, g, 1)
(38) (0,9, 7) (’r‘—l)(p—i—q)‘g (®,9,7)
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where

_[pr =1+ (r—g '
& { (r—1)»+ 9 }

and

I(p,q,7r) = SO {1 + I(f;ql) t}—(a+p+rp)/rp{1 +q— l)t}tl“’—'ldt .

(b) If r =1, then

q, —q
K(p’q,]_):{Q(p—f—(I) yQ>?)
yq@ =0,

(c) If q=wr, then

(39) K(p,r, ) = 2 ( " ) B( L ;1.;>—p :

If r=1,q = 0, there is strict inequality for all y = 0 while in all
other cases there is equality only for multiples of a single function
y(p, q, 7, x) which is in C=(0,1), and is concave if 0 < q <1, convex
if ¢ > 1, linear if q = 1.

For special cases of (a), (28) reduces to a simpler form. First,
if » = p + q, we have

(40) Kp,q,p+q) = q» + ¢)*{pL(p,q) + q¢}7*,q+# 0
where
_ [t ds _(+o@-—-1
L ’ - S ’ k -
» 9 o 1 — ks? (p+q— 1)g

In particular,

2q -
] 1ogq} ,q#0,1.

K(l,q,1+q):{1+

If ¢g =0, and » > 1, we have

K(p, 0,r) = A(p, 1)’
A(p, r) = ()P (p + )P B(1/p, /7)1,

where » = r/(r —1). Note that A(p, r) is the norm of the mapping
T: L7 — L» where here Tf(z) :S ft)dt. By (4), if || f]l, = 1 we have

J(f) Z|| T|?, where || T|| is the norm of T as a mapping from L; —
L:, (s = pr/(r — q)), and so we always have K(p, q,r) < A(s, r)’.
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We also note that in (38), if ¢ # 1, one may make the replacement
(41) (r — llp, q, r)™* = r**(q¢ — DI(p, ¢, )",

where
I(p,q,7)= £ (r —q) Sﬂt”"(l Frydt+r Sﬂt““’)“’(l F tydt,
0 [

where T, = 1— [(r — ¢)/g(r — 1)],¥ = (p + g — r)/rp, and the upper sign
is used with ¢ > 1, the lower sign with ¢ < 1.

Proof. In case (a), Theorem 1 applies since certainly ||| T.]||| < .
We seek solutions of the problem (P). We first observe that by the
remark at the end of §2, we have ye C*a, b] and 0 < %'(0) < «, 0 <
4'(1) < - except in case ¢ = 0 when we have (1) = 0. To see this
note that the functions A and B which appear in (35) are here just

Al) = g0 y(@)?, B@) = p0w) | yity-ty(tydt .

But (1) = S:y'u)dt < 1%l < =, so A() < o, and

1 . 1 . (r—q)/r
Soyp— Y q é {Soyr(p~ )l(r—q)} H yf qu

which shows that B(0) < co.
Notice that equation (i) of (P) has the integrating factor 3’ from
which we obtain

(42) (r — DAy” — (¢ — D)y*y'? = an,

where « is a constant which is evaluated by using ||%'||, =1 and
JW) = r\/(p + q). Thus we have

p+a D+q

Solving (42) for y = A*G(y’) and differentiating leads to a variables
separable equation for ¥, and if we write z = %’ we have, for ¢ # 1

(44) de = AP {(7' — 1)z — az™* }(1/p>—1
p q—1
qg—1

To obtain boundary conditions, we use (42) and (ii) and thus,
since z(0) == 0 and 2(1) == 0 for q = 0, we obtain
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(45) 20 = a/(r — 1) and 2Q1)" = aq/(r — q) .

We now integrate (44) from x = 0 to = 1 using (45) and make
the change of variables (for g == 1)

¢ = r—q (r=12" -«
ra q—1

which leads to equation (38).
For ¢ =1, we note that I(p,1,7) = p,8 =1, and so (38) gives
K(p,1,7) = (p + 1)7* which is the correct result by our earlier remarks.
In the equation y = \'*G(y’), G is increasing if ¢ > 1 and decreasing
if ¢ < 1. Thus, since ¥ is increasing, we must have ¥’ increasing if
g > 1 and decreasing if ¢ < 1. The solution to problem (P) with
A = \* can be seen to be unique in the following way. We know
that a solution of (P) must satisfy y = A/?G(y’) and thus also ¥’ =
APG'(y')y”, and hence ¥’ satisfies
y'(

(46) e

JY'(

G2 B~
0) V4

But, for q¢ + 1, G’(2) does not change sign on the interval from y’(0)
to ¥’(1) so (46) has a unique solution for ¥'(x), and hence (P) has a
unique solution when \ = \*.
To obtain the alternate expression for (r — q)I(p, q, r)~? given in
(41), we make the change of variable ¢t = 1 — a(r — 1)z~ in (44).
To obtain the formula (40), we make the following change of
variables in (38)

rg—1),_(;_ mMg—1) ,\"_ -t
14 M=, <1 —_—_q(r—l)s> R(s)~" .

Then t = (p/q(r — 1))s?R(s)™*, and ¢ = 0,1 correspond to s = 0,1 and
one has
(47) I(p’ q, 7,.) = const {glR(s)(q/rp)+(1/r)+1—(1/p)—1(pR(s)—1 + (I)dS}
0
= const {pL(p, q) + ¢}, sincer = p + q .

The formula (40) can be obtained in a more direct way by making
the substitution w = (¢/*\)"?(y/y’) in equation (i), where we assume
qg# 0 so y'(x) >0 for z€[a,b]. Then the conditions (ii) give %(0) = 0,
#(1) = 1, and equation (i) reduces to

(48) (r —1) {1 — —Z%i%—u”} = p(%)upu’ r=p+49q.

Separating variables and integrating gives (40).
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For case (b), let z(z) = Sx]y' |dt, and then if ¢ >0
0

[ lyP1y e < | @reyde

0
= {Sldx}w{glz”/qz’dx}q = ( q )qu“’ ,
0 0 P+ q

using Holder’s inequality with exponents 1/¢ > 1 and 1/(1 — q). Equality
holds only if 2792’ is constant, and y = z which means y(x) = cx?®+,
For ¢ = 0, we have

[ yirdo = f2pdo < 20y = | 17 do .

Equality holds only if ¥ = #, and z(x) = z(1) for all z, so y(x) = z(x) = 0.
For case (c), we let ¢ — r— in formula (38), using the equation

(41) to evaluate lim (» — ¢)I(p, q, r)*. This shows that the best

constant is given by (89), because if '€ L" and ¢ < r, then

NERE AN Iara

by dominated convergence. To handle the case of equality we cannot
apply Lemma 2 directly since the proof of Lemma 2(a) used r > q.
However, if there is an f with J(f) = K(p, r, r) = K* then we know
that f= 0 a.e. Now referring to the proof of Lemma 2(a), since
r>1 we do have (24) which proves that if E = {x: f(») = 0}, then
E(x,t) = 0 a.e. on CE x E. This means that

CEX E)YNn{x,t): 0=tz =1}

is a set of measure zero. This implies that E differs from an interval
¢, 1] by a set of measure zero. To see this, let

c=sup{z = 1:[0,2] N E is of measure zero} ,

and let d = inf{x = 0: [x,1] N CE is of measure zero}. Clearly d = c.
But, if d > ¢, and e = (d + ¢)/2, then [c,e] N E and [e,d] N CE have
positive measure; but then CE x E intersects {(#,?):0 <t <z <1} in
a set of positive measure which is absurd.

However if equality held for such an f, we would have (writing

f@) = (@),
(@9) [l o rde = x+{[ 1o paa} ™

Define 2(t) = y(ct) so 2'(f) = cy'(ct), and from (49) we obtain
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(50) g: 2|7 |2 [rde = K*e-rr—ir {5: v ]fdx}“’””' :

But, if ¢ < 1, then K*¢?*I* > K* contradicting the maximality of
K*. Thus ¢ =1, so f(&) = ¢'(x) > 0 a.e. on [0, 1].

Still proceeding on the assumption that there exists an f with
J(f) = K* we have shown f(x) >0 a.e. on [0,1], so the proof of
Lemma 2(b) is valid and f satisfies

(51) NFr ) — By f @) — pS;F“—lf’dt —0 ae.

where F(z) = y(a) = | A()d¢, and » = (p + K*/r.

If » is any point where f(z) > 0 and (51) holds then (561) shows that
M) > FP(x)f(x), so F'°(x) <\ a.e. But F is strictly increasing
so F(x)» < for 0 <z < 1. Now we can solve (51) for f and obtain

(52) f(x) = p(A(x), B(x)) for almost all xz¢[0,1).
where ¢(&, ) = (p/(L — &), A(x) = V'F(z)» <1 for 0 <2 <1, and

B(x) = p(rk)‘lglF”“lf rdt >0 for 0 <x<1. Now we proceed as in
the proof of Theorem 1. If we modify f on a null set so that it
satisfies (52) everywhere then we obtain fe C'[0, 1), and f(x) > 0 for
0 <2 <1. Thus we see that if J(f) = K* and ¢’ = f then y must
be a solution of the problem (P), with » =\* = (p + r)K*/r. But a
solution of (P) must be a solution of (42) (with ¢ = ») which is

(63) MY — yPy'T = pA(p + 7).

However if (53) has a solution then it must also satisfy
(54) [0 = wyredu = ovjeo + e
0

To see that (54) has a unique solution for 0 < ¢ < 1, we note that

1/p
6 | 0wy = pneB(L L ) = M )
0 r

using the formula for K(p,r,r) = K* and » = (p + r)K*/r. Since
A—u? >0 for 0 < u < \'?, (54) has a unique solution y = y(x) which
is strictly increasing and has »(0) = 0, y(1) = A?. To complete the
proof we must show that y in fact satisfies (i), (ii) and (iii) of (P).
By the implicit funection theorem ye C*a,d), and differentiating (54)
twice shows that y satisfies (i). Clearly »(0) = 0. For the other part
of (ii), we note that for 0 < x < 1, we have

A =y (@)Y @) = (oM + )T,
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and since y*(x) —\ as x —1 —, we have %'(x¥) >« as x—1—. But
this means that

(36) (v — ¥ @)Y (@) = (p/(p + MY (@) —0 as z—1.
To verify that ||¥']], = 1, let us first introduce the function g by

&7 9(8) = (M) (p + 1) S:O» — w)rdu

so g(y(z)) = x for x<[0,1] and hence y(g(t)) =t for ¢ [0, A\"?]. Now

1 1 da
58 S "oy ds = PN S
(59) Weyds = 2 [ dr
= ( p—? )Pu/ﬂgluz’()\, — gr)um=igy
P+ 0

where we use the change of variable ¢ = g(¢f). Now using the formula
for \, we obtain

! 11 1 1
59 S de =2 (L 1\p(L 1 1y_1,
( ) oy(x) v p—}-/r (q/-y p>/ <7"+ p)
REMARKS. (1) As was mentioned above, the method of this

paper applies to inequalities of the form (1) with » > 1. In this case
T becomes

w(@) P ()17 S @O e
« (m— 1)!
A discussion of the special case p = ¢ = 1,7 = 2 will be found in [4]
where, for m(x) = w(z) = 1, [a, b] = [0, 1], the best constant is shown
to be asymptotic to 1/4n!
(2) The method is equally applicable to inequalities in which the
function y is restricted by other boundary conditions. For example,
if [a, b] is a finite interval we may treat

b b (p+Q)/r
S Yy w(x)de < K{S y”’m(x)dx}
y(a) = yb) =0.

In this case, if f is a given function in L, the boundary value problem
Y’ = — f,y(a) = y(b) = 0 has a solution y(x) = gbG(m, t)f(t)dt, where
G(z,t) = 0 a.e. Hence our lemmas apply. ’

(3) When Theorem 1 is specialized to the situation studied by

Beesack in [1] (g = 0, »p = r), the results are not as general as his.
This is because we can effectively handle only those inequalities where



BEST CONSTANTS IN A CLASS OF INTEGRAL INEQUALITIES 383

we can insure in advance that equality is possible. There is some
compensation in the fact that the existence of solutions to the Euler-
Lagrange equations (P) is a conclusion of our theorem rather than a
hypothesis as in [1] and [5].
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AN EMBEDDING THEOREM FOR
LATTICE-ORDERED FIELDS

PAuL CoNRAD AND JOHN DAUNS

In this paper we develop a method for constructing lattice-
ordered fields (‘. -fields’’) which are not totally ordered (“‘o-
fields’’) and hence are not f-rings, We show that many of
these fields admit a Hahn type embedding into a field of
formal power series with real coefficients. In order to establish
such an embedding we make use of the valuation theory for
abelian &’ -groups and prove the ‘‘well known’ fact that
each o-field can be embedded in an o-field of formal power
series.

Let G be an <~-field that contains » disjoint elements, but not
n + 1 such elements. An element 0 < se G is special if there is a
unique &“-ideal of (G, +) that is maximal without containing s. We
show that the set S of special elements of G form a multiplicative
group if and only if S = @ and s > 0 for each se€ S. If this is the
case, then there is a natural mapping of S onto the set I” of all values
of the elements of G. Thus I is a po-group and if, in addition, 7I”
is torsion free, then there exists an <“-isomorphism of G into the
~-field V(I', R) of all functions v of I" into the real field R whose
support {yel'|v(y) # 0} satisfies the ascending chain condition. If G
is an o-field, then the above hypotheses are satisfied and hence the
embedding theorem for o-fields is a special case of our embedding
theorem. The authors wish to thank the referee for many constructive
suggestions.

Noration. If S is a subset of a group G, then [S] will denote
the subgroup of G that is generated by S. If G is a po-group, then
G+ will denote the set {g € G|g = 0} of positive elements. A disjoint
subset of an &#-group G is a set S of strictly positive elements such
that ¢ A b = 0 for all pairs a,bec S.

2. A method for constructing lattice-ordered rings. A po-set
I’ is called a 7root system if for each ve I, the set {ael |a =1~} is
totally ordered. A nonvoid subset 4 of a root system I is called a
W-set if it is the join of a finite number of inversely well ordered
subsets of I, and an I-set if it is infinite and trivially ordered or
well ordered with order type w. In [2] it is shown that 4 is a W-
set if and only if 4 does not contain an I-set; while in [10] five other
conditions are derived which are equivalent to 4 not containing an I-set.

385
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If I" is a root system and if v: I"— R is a function into the real
field R, then the support of v is defined as suppv = {veI" | v(7) # 0}.
The set V = V(I', R) of all v whose support satisfies the ascending
chain condition (A.C.C.) is a po-group if one defines v to be positive
if v(v) > 0 for each maximal element v in supp ». Such a v(v) will
be referred to as a maximal component of v. In [5] it is shown that
V is an &~-group for an arbitray po-set I" if and only if I" is a root
system. For a root system I”

W= W({,R)={ve V(I', R) |supp v is a W-set}

is an &~-subgroup of V.
Now suppose that the root system I" is also a strictly po-semi-
group:

a<B—a+7<B+7v and v+a<7v+ 48
for all ¢, B8,veI’. For u,ve W define uve W by

(wv)(7) = . g.z . w(@)v(B) .

Then W is a ring (see [2], p. 76, or [10], p.333). If 0 < u,ve W,
then 0 < uv and so W is an ¢~-ring and also a real vector lattice, If
I is an o-group, then V = W is a totally ordered division ring (see
[8], p.137]). Throughout, a “field” is always commutative while a
“division ring” is not necessarily commutative.

In §6, there are two examples of strictly po-semigroups which
are root systems and hence can be used to construct & -rings. Al-
though it does not appear likely that all such semigroups can be
reasonably characterized, the next lemma completely characterizes all
po-groups which are also root systems.

LEMMA 2.1. Suppose that a group I' has a totally ordered sub-
group H with positive cone H*. If H+ ]I, then I" with this positive
cone H* is a po-group and a root system. Conversely, each po-group
that is a root system is of this form.

Proof. Clearly, I' is just the join of disjoint totally ordered cosets
and so in this partial order I" becomes a root system and a po-group.
Conversely, suppose that 7" is a po-group and a root system. Let [I"*]
be the subgroup of I" generated by its positive cone I"+. Then H =
[*]1 I is a directed po-group. If H were not an o-group, then
there would exist «, 8, v € H such that « = 8, @ = v and such that B
and 7 are not comparable (notation 8| v). But then —8| —v, and
—B, —vef{del |0 = —a} which contradicts the fact that I is a root
system.
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Now let I" be a po-group and a root system and suppose that
H = [I'*] I is the unique totally ordered normal subgroup such that
I" is the disjoint union of totally ordered cosets of H. It is well known
that if I" is abelian and torsion free then the given partial order can
be extended in a not necessarily unique way to yield a totally ordered
group. The latter may fail for nonabelian groups. However, if I" is
torsion free with H <|I" and I'/H finite, then the given total order
on H can be extended uniquely to a total group order on I' (see
[14], p. 326). The hypothesis that I"/H is finite can in fact be weakened
to require merely that any finite set of elements of I'/H generate a
finite subgroup (see [14], p. 325).

PROPOSITION 2.2. Suppose that I" is a torsion free po-group, and
H=[I'"] is a totally ordered subgroup with I'|H finite. Then
W, R) = V(I', R) is a lattice ordered division ring. Moreover, the
lattice order of V(I', R) can be extended to a total rimg order on
V(I, R).

Proof. Let I, be the totally ordered group having the same
underlying set of elements as I" given by the unique extension of the
partial order of I" to a total one. As has already been remarked
([8], p.187), V(I',, R) is a totally ordered division ring. Since the
support of ve V(I', R) is the join of a finite number of inversely well
ordered sets in I", when supp v is viewed as a subset of I, it will
satisfy the A.C.C. Thusve V(I",, R) and V(I", R)= V(I',, R). Clearly,
V({, RY€ V(I", R). Since V(I', R) = V(I',, R) as sets, the lattice order
of V(I', R) can be extended to a total order.

COROLLARY. In the previous proposition V(I', R) satisfies the
Sollowing three conditions:

(i) V(I', R) contains n pairwise disjoint elements but not n + 1
such elements.

(i) If0 < wve V(I', R) has just one maximal component (such a
v 18 called special), then so does its inverse. All the special elements
SJorm a multiplicative group.

(iii) The multiplicative group of special elements is torsion free.

In §4, we show that, conversely, an _~-field with these three
properties can be embedded in V(I', R).

3. Special elements in an ~-ring. In order to obtain an em-
bedding theorem for an <~-field G, we assume that the special elements
in G form a multiplicative group. In this section we investigate what
this hypothesis means. In particular, we show that such special
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elements behave like elements in f-rings in that they distribute over
joins and intersections.

Let G be an abelian <~ -group. A convex subgroup of G which
is also sublattice is called an <~-ideal. An <~-ideal L of G is called
regular if it is maximal with respect to not containing some element
g€ G. If this is the case, then G/L is an o-group (see [4] or [5]) and
hence there exists a unique .&~-ideal that covers L. Let I" = I'(G) be
the set of all pairs of <~-ideals (G', G,) such that G, is regular and
G™ covers G,. We shall frequently identify I" with the set of pairs
(G", G,). In particular, define « < 8 in I" if G*S G,. Then (I', £) is
a root system. If geG"\G,, then we say that v is a value of g. If
0 < ¢ has exactly one value, then ¢ is called special and in this case
its unique value will be denoted by w(g). If ge G has exactly one
value then ¢ is comparable with zero and so either g or —g is special.
If a,b, € G are special, then a A b = 0 if and only if w(a)| v(b). If
L is an <~-ideal of G such that G/L is an o-group and 0 < ge G\L
implies that g > L, then G is called a lex-extension of L. It follows
that each coset L = L + x consists entirely of positive elements or
entirely of negative elements. If a and b are positive elements of an
Z-ring G, then a € b will mean that na < b for all integers n > 0.
If a<b,¢>0, and be = 0, then nac < bec for all #n and so ac < be.

3.1. In [4] it is shown that for 0 < ge G, the following are
equivalent:

(1) g is special,;

(2) G(g) ={2€G||z| < ng for some integer » > 0} has exactly
one maximal ¢“-ideal;

(3) G(g)is a lex-extension of a proper .~ -ideal L.

Consequently, if a is special and L is the unique maximal & -ideal
of G(a), then G(a)/L is an archimedian o-group and G(a) is a lex-
extension of L.

LEMMA 3.2. If G is an abelian Z-group and 0 < g€ @G, then
Tg ={zcG|0 = 2<L g} 18 a convex semigroup that contains 0 but not
gand so [Tg] = {y — 2|y, ze€ Tg} is an F-ideal of G and [Tg]t = Ty.

Proof. By Theorem 11 on page 81 in [8] it suffices to show that
Tg is a semigroup. But this is well known for o-groups, and since
G is a subdirect sum of o-groups, it follows that Tg is a semigroup.

COROLLARY. [T9] is the largest (proper) .-ideal of G(g) if and
only if g is special.

Proof. If [Tg] is the largest <~-ideal of G(g), then g is special by
3.1 (2). Conversely, suppose that g is special and let L be the largest
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<~-ideal of G(g). Since g¢[Tg] it follows that [T¢] <= L and since
nL* S L* < g for all positive integers n, LS [Tg] = L.

LeEMMA 3.3. Suppose that a and b are special elements in an
Z-ring G with an identity and that a= and b= exist.

(i) If a*eG*, then a™* s special.

(ii)y If a ', b'e G*, then Tab = TaGb)* = G(a)*Tb and [Tab] is
the largest < -ideal in G(ab). Thus ab is special.

Proof. (i) Let L be a proper <~-ideal of G(a™') and consider
0 < gelL. Since g < na~* for some n > 0, we have ga* < na and so
g’ € G(a). If ga*¢ Ta, then since G(a)/[Ta] is an archimedian o-group,
[Ta] + nga® > [Ta] + a for some n > 0. Then since G(a) is a lex-
extension of [Ta], nga* > a and so ng > a~'. But then L2G(a™), a
contradiction. Thus g¢ga’c Ta and so qga* < a, and hence g < a™'.
Therefore L* < Ta~! and hence by the above corollary a! is special.

(ii) If ze Ta and y < G(b)*, then knx < a and y < kb for some
k>0 and all » > 0. Thus knay < ay < kab and hence nxy < ab for
all %, and since ab # 0, nay < ab for all n. Thus TaG(b)* < Tab.
If ze Tab, then z< ab and 2b~* € a. Then z = (zb~")be TaG(db)".
Therefore Tab = TaG(b)™ and similarly Tab = G(a)*Tb.

Now suppose that L is a proper .&~-ideal of G(ab) and 0 < ge L.
Since ¢ < nab for some %, ¢b~* < na shows that ¢b~* e G(a). If ¢b~'¢ Ta,
then as above mgb™ > a for some m > 0 and so L 2 G(ab), a contra-
diction. Thus ¢b~—'< Ta and hence ¢ = (¢b™")b e TaG(b)* = Tab. Hence
LTZ Tab and ab is speecial.

Conditions (4) and (5) in the next theorem show that special
elements behave like elements from an f-ring. A commutative ¢~ -field
is totally ordered if and only if the positive cone is closed under
division (see [8], p. 139). This is one reason for putting requirements
on the special elements, rather than on all the positive elements.

THEOREM I. For a lattice ordered division ring G with an
identity the following are equivalent.

(1) The special elements form a wmultiplicative group or the
null set.

(2) If a s special, then a= > 0.

(3) If a s special, then a™ 1s special.

(4) a(cV 0)=acV 0 for special elements a and all ce@.

(5) a(yV z)=ayV az for special elments a and all y,zecG.
Siz additional conditions each equivalent to (4) and (5) are obtained
by writing (¢ VvV 0)a = ca V0, (y V 2)a = ya \V za, and by replacing “\/”
with “A”.
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Proof. The implications (1) — (3) — (2) and (5) — (4) are trivial
and (2) — (1) follows from Lemma 3.3.

(2)—(4). Since a and a' are both positive, the left multipli-
cations by a and a~' are inverse order preserving mappings and hence
are lattice automorphisms.

(4)—(2). If aisspecial, thena(l\VV0)=aVv0=aandsolVv0=
1. Thus a(e*Vv0)=1Vv0=1 and hence a* =a* Vv 0> 0.

(4)—(5).

ay VvV 2) =al((y —2) VvV 0) + 2]
={(ay —az) VO0)+az=0ay Vaz.

The equation

ay AN2)=a(—(—yV —2) = —(a(—y V —2))
= —(—ay VvV —az) = ay A az

shows that “\/” may be replaced by “A” throughout. Finally, each
of the above arguments applies equally well to (¢ \V 0)a, (¥ V 2)a,
(¢ A 0)a, and (y A 2)a.

Suppose that each element in the lattice ordered division ring G
has at most a finite number of values and that the special elements
in G form a multiplicative group S. Then each veI" is the value of
a special element (see [4], p.118) and the map v of se S onto its
value v(s) is an o-homomorphism of S onto I". In particular, I" is a
partially ordered group and of course a root system.

ProposiTION 3.4. If G is a finite valued _~-field, t.e., each
element has only a finite number of values, and if the special elements
of G form a group and the associated value group I' of G is torsion
free, then the order of G can be extended to a total order.

Proof. Extend the partial order of I" to a total order. An element
0 % g€ G has a unique representation g = g, + --- + g, where each g;
or —g; is special and |g;| A |g;| =0 if 2 = j (see [4]). One of the
v(g;) will be the largest in the total ordering of I, say v = v(¢;). Define
g to be positive if G, + g > G,. Clearly this is a total order of the
set G that extends the given lattice order and a straightforward
computation shows that G is an o-field.

An element 0 < b of an &-group G is basic if {geG|0 < g < b}
is totally ordered. A basis for G is a maximal pairwise disjoint subset
of G which, in addition, consists of basic elements. G has a finite
basis if there exists a basis consiting of # elements or equivalently
if G contains % disjoint elements but not # + 1 such elements. For
a structure theorem for a group with a finite basis see ([8], p. 86).
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If G is a lattice ordered division ring with a finite basis, if the
special elements form a group and if I'(G) is torsion free, then there
exists an extension of the lattice order of G to a total order of G.
The proof of this fact is the same as the proof of the last proposition.

4., An embedding theorem for o-fields. In this section it is
shown that an arbitrary totally ordered field F' can be embedded in
the o-field V(I'(F'), R). Only the statement of this embedding theorem
and not the method of proof will be used in subsequent sections.
The proof assumes some familiarity with the valuation theory of fields.

Let F' be an o-field and F* be the multiplecative group of all
strictly positive elements of F. Then F* is the set of all special
elements, and the mapping v of fe F* upon its value »(f) in I" =
I'(F) is an o-homomorphism. Thus I" may be regarded as an addi-
tive o-group with identity 6, and v is the natural order valuation
of F' (see[1] or [11]). Note that 1€ F'\F,, F'? is the valuation ring of
F, and F’/|F, is the residue class field. Also, F'’/F, is an archimedian
o-field and hence essentially a subfield of the real numbers. As
before, V. = V(I", R) is the o-field of formal power series with exponents
from I" and with real coefficients. For ve I, let 7 be the element
in V such that

lifa=v
) —
i@ = 0 otherwise .
Note that @’ = 1. Although V(I", R) in general contains several o-
isomorphic copies of the reals, it contains Rx’ as a distinguished copy,
and V(I", R) is an o-algebra over the reals under component-wise
multiplication by Rax?’.

Let E be a not necessarily ordered division ring with a valuation
w: E\{0} — I'(F') in the sense of [16] except with the order of I'(E)
reversed. Thus in case E is ordered w would be an order preserving
map. If Ec D where D is another valuated division ring whose
valuation extends w, then D is called an immediate extension of (E, w)
provided the value group of E, that is w(E), is also the value group
of D, and if the residue class fields of £ and D are isomorphic. By
Zorn’s lemma, every (E, w) has a maximal immediate extension.

THEOREM II. (i) If F is an o-field with value group I', then
there exists a value and order preserving isomorphism w of F into the
o-field V(I'y R). (ii) Moreover, if 4C I is a rationally independent
basis for the divisible hull of I', and for each 64,0 < x,€F 1s
arbitrary with value 6, then w can be chosen so that x,mT = x°.
(iii) Now assume in addition that R < F is any o-isomorphic copy
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of the reals and r — 7 is the umique o-isomorphism of R onto R.
Then in addition to satisfying (ii), T can be so chosen that ¥ = ra’.

Proof. We only outline a proof in the sense that [13] and [16]
are quoted for all the difficult steps (also see [1], p. 328). By [13],
any totally ordered field F' can be embedded in a totally ordered field
E so that the order induced on F' from F c E is the orginal order of
F, both E and F' have the same value group I" = I'(F') = I'(F), and E
contains an isomorphic copy of the reals, i.e., R = Rc E. Since v(1) =
0, necessarily, R\{0} = E°\E, and also E’/E, = R. The reader should
recall that the real field R has no nontrivial automorphisms, since R
admits exactly one total order. Let » — 7 denote the o-isomorphism
of Ronto R. The field E with the natural order valuation v: E/{0} — I"
has a maximal immediate extension < M. Denote the valuation on
M also by v. We define d ¢ M with value v to be positive if M, + df~*
is positive in M/ M, for some 0 < fe¢ F' with value v. This is the
unique extension of the order of £ to M. Let M* ={d|0 < de M]}.

It will be shown next that the subgroup

M* 0 (MOM,) = {0 < de M| v(d) = 6)

isdivisible. If0 < d e Mwithv(d) =6, define¢e Rbyé = inf {¥ |d < r1}.
Then v(d — ¢1) < 4 and d =¢(1 + ), N = (1/e)d — 1 with »(\) < 0.
If m > 1 is any integer, then in order to show that d'™ e M* N (M*\M,)
take ¢ = 1 and define p,e M* N (M°\M,) by taking terms up to A"
from the formal power series expansion of (1 + M)¥™. Then {p,|n =
1,2, ---} defines a so called pseudo convergent sequence (see [16],
p.39]). If this sequence has a pseudo limit ([16], p.47), then that
limit is d*/™, However, by ([16], p. 51, Th. 8), M contains a pseudo limit
for each of its pseudo convergent sequences. Thus d‘/™e M* N (M°\M,)
and hence M* splits, M* = T x M* n (M°M,), where T is some com-
plement of M* N (M\M,). For te T define t = = 2*® and for 7 e B
define 7= = rx’. Then this determines a value and order preserving
isomorphism 7 of the subfield K of M that is generated by B U T into
V. Moreover, M and V are maximal immediate extensions of K and
Kr respectively. By ([16], p. 222, Th. 4), = can be extended to a value
preserving isomorphism of M onto V so that the following diagram
commutes:

K— M
| =|x
Kr— V(I,R) .

It is asserted that 7: M — V preserves order. Since each element of
M? is congruent modulo M, to an element of the form 7 with re R,
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and since 7z = ra?, it follows that 7 induces an order preserving iso-
morphism z%: M’/M,— V’/V, = R. But de M is positive by definition,
provided for any 0 < ke K with v(k) = v(d), we have M, < M, + dk'.
However, since kr > 0, and since (M, + dk™)r’ = (V, + dn)(V, + k7'n),
it necessarily follows that dz > 0.

The set {x;|J e 4} described in the theorem generates a subgroup
of M* whose intersection with M* N (M%M,) is zero and so we may
pick T > {x;|0 e 4}. Finally, in performing the embedding any subfield
R c M isomorphic to R could have been used.

REMARK. Hahn’s theorem for an abelian o-group G states that G
can be o-embedded in V(I", R). (See [8], p.60). There are now several
short elementary proofs of this result in the literature. It would be
a considerable achievement to also have such a direct proof of the
above theorem.

5. An embedding theorem for a class of .&“-fields. The em-
bedding theorem for an o-field is actually a special case of the more
general embedding theorem for <~-fields which is developed in this
section.

Suppose that H is a subgroup of finite index in a torsion free
abelian group I". Then I'/H is a direct sum of cyclic groups.

I''H =[H+ s()] @D -+ ©[H + s(k)]
where the order of [H + s(?)] = d(¢), d(1) = --- = d(k) and d(z + 1) | d(2).

LEMMA 5.1. The subgroup of I" generated by the s(i) is a di-
rect sum [s(1)] P -+ P [s(k)]. In particular, d(l)s1), ---, d(k)s(k) are
rationally independent elements of H.

Proof. Suppose that > m(¢)s(4) = 0, where the integers m(7) are
not all zero. Since I' is torsion free, the g.c.d. of the m(¢) can be
factored out and so we may assume that the m(7) have g.c.d. 1. But
since the linear combination must become trivial modulo H, d(7) | m(7)
and hence d(k) | m(1) for all 7, a contradiction.

THEOREM III. Suppose that G is an F-field with a finite basis
and that the special elements of G form a group. Then the set of
values I' of G is a po-group and a root system. If I is torsion free
then there exists a value preserving <~ -isomorphism of G into the
Z-field V(I', R).

Proof. It follows from § 3 that I" is a po-group and a root system.
Then by Lemma 2.1 there exists a totally ordered subgroup H of I’
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such that the index | I": H| = » of H in I' is finite and H+ is the positive
cone for I'. Thus I'=U{H + 7. |k=1, ---,n} is a disjoint union
of totally ordered cosets, where v,eI" is chosen as v, = . Just as
in the proof of Proposition 8.4 each ge G is uniquely of the form
g=¢.+ +++ g, where if g, # 0, then either g, or —g; is special,
where |g;| A |g;| = 0 if ¢ # 4, and where g; “lives” on H + v,, that
is g;e @G, for all yeI'(H + 7v;). Let F be the set of all elements that
“live” on H, that is

F={geG|geG, for all ye"\H}.

Then F is a totally ordered subfield of G. For clearly, F is a totally
ordered convex subring of G, and if ¢ is special, then by hypothesis
¢g~' is also special. Thus g~ lives on H + 7v; for some 7. If 7 %=1,
then g g=* = 1 lives on H + 7; which is impossible. Therefore g~'e¢ F
and thus F' is a field. Now assume that I" is torsion free; then by
Proposition 2.2 V(I", R) is an .¢7-field. As before, for each v e I" define
2’eV by
lif a=7

v'(a) = .
0 otherwise .

In particular 2 = 1. As previously
I''H =[H+ s()]® --- D [H + s(k)]

with orders d(1) = --- = d(k) so that d(¢ + 1) | d(7). The reader should
note that n = d(1) --- d(k) and that d(k)*|n. For each ¢ =1, ---, k
pick 0 < z;¢ G that lives on H + 7v; and has value v,. In particular,
each z; is special. By Lemma 5.1, the d(1)s(1), - - -, d(k)s(k) are ration-
ally independent elements of H and hence by Theorem II there exists
a value and order preserving isomorphism 7 of the o-field F into
V({I", R) such that
(i) the support of fm is contained in H for each fe F, and
(li) zg(i)ﬂ_- — md(i)ﬂ‘(i).
We shall extend 7 to an isomorphism of G into V. Consider

gH + s)) + --- + g(B)(H + s(k)) e I'/H

where ¢(¢) are integers in 0 < ¢g(7) < d(%) and let ge G live on this
coset. Then

— 7 1 2 (%)
g =gz ... 2

where ge F. Since g lives on one of the n distinct cosets of I'/H, g
is special and conversely every special element is of the above form.
Define
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gT = GraiWega@s@ | potogh

Thus we have extended = to a one to one mapping of all special
elements S of G. (Note that the mapS— F,g— g is not a homo-
morphism of multiplicative groups unless I" = H, while g — g(¢) is a
homomorphism of S into the integers modulo d(:).) If ke S also lives
on this same coset as g, then so does & + g and g(?) = k(7)) = (h + ¢)(7)
for all ¢, thus

h + g = hz{”“’ 4 e zl}:(lc) + ng“) .o z%(k) — (h + g)zim) .o zi(k) .

Therefore (b + g~ = h + g and so (b + g)m = hr + gr. Next it will
be shown that 7: S — F' is a homomorphism of multiplicative groups.
Take g, h e S and write

g(%) + k(1) = n()d(@) + r(?), 0 = r(3) < d(@),t =1, -+, k.
Then since

— B yp9(+h(L k)+h(k
hg—hgz{”“‘”---zi‘”"

= hgarem L. gnlhdlkgr L, grik)
it follows that
(hg)™ = hgar®?® «o. 2z @B (hg)(4) = r(), i =1, -+ k.
Thus
(hg)yw = (hg)=2l® - -+ 2i% = (hm)(g7) .

Now each ac G has the above mentioned unique representation
a=a,+ +++ + a, where a; lives on H + v,; define ar = a7 + -+ +
a,7. Clearly, m is a map of G into V that preserves addition and
values. If beG with b=b, + --- 4+ b, and ab=¢, -+ -+ + ¢, where
b, c; live on H + v, it remains to show that ¢z + --- +¢,7 =
S (a;m)(b;mr). Each ¢, is of the form ¢, = 3} a;b; where 3 denotes
the sum over those distinet pairs (¢,7) for which v,v;e H 4+ v, It
suffices to show that ¢ = > (a;7)(b,7r). However, first, since a,,
b;e —SUS we have (a;b;)Tr = (a;7)(b;w); and, secondly, since 7 pre-
serves addition, > (a;w)(b;7) = S a;by)wr. Thus it follows that
(ab)w = (arm)(bw). Therefore 7 is a homomorphism of the field G into
the field V(I', R) that is clearly not zero and so it must be an iso-
morphism. If ¢ =a, + --+ + a, where the a, live on H + v;, then
a \/ 0 is just the sum of the positive a;. Therefore (¢ \V 0)r = ax \/ 0
and 7 is a value preserving .“-isomorphism of G into V. This com-
pletes the proof of the theorem.

An <&~-field F is an a-extension of an $~-field G, if for each
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0 < fe F, there exists an element 0 < ge G such that f < mg and
g < nf for some positive integers m and n, and G is a-closed if it
does not admit such an extension.

The next corollary shows that the field V, into which G was
embedded in the last theorem, has an intrinsic characterization.

COROLLARY. Under the same hypotheses as in the previous
theorem, V 1is the unique a-closed a-extemsion of GT.

Proof. V is a-closed as an ¢“-group and, clearly, it is an a-
extension of Gw. In order to prove the uniqueness of V, let G D
be any other a-extension of G. Since D satisfies all the hypotheses
of Theorem III, for ge D\G, g7 can be defined exactly as in the proof
of Theorem III to yield and .¢#-embedding of D into V that extends
7. Furthermore, Dr S V is an a-extension. Finally, if D is a-closed,
then so is also Dz and hence Dr = V. Thus © extends to an ~-
isomorphism of D onto V leaving G elementwise fixed.

REMARK. Under the hypotheses of Theorem III we can extend
the order of G to a total order (Proposition 3.4) and hence by Theorem
II there is an o-isomorphism of the o-field G into the <~-field V (I, R).
It would be nice to be able to prove that this isomorphism is also an
Z-isomorphism, but this we have not been able to do.

6. Examples and questions. The first example shows that I
need not be torsion free even if G is an <~-field with a finite basis
in which the special elements form a multiplicative group. Similar
examples exist in which G is actually a real algebra.

6.1. Take an algebraic extension G = Q[w] of the rationals @,
where we R, w" = 2, i.e., w = 2" for some n = 2. For

Yy=¢+cw+ -+ + 0»14—17/0%_l € Q[w]

with ¢; € @ define y = 0 if and only if all ¢; = 0. Note that this order
differs from the natural order of Q[w] as a subset of E. Then in the
context of the notation of §5, the multiplicative group of special
elements S is generated by S = [{cw|0 < cecQ}], H={0); I is the
cyclic group of order » and hence not torsion free.

6.2. Take n = 2 above in 6.1 but redefine y = ¢, + ¢;w > 0 if and
only if ¢, £0 and ¢, = 0.

6.3. Let I" be a cancellative multiplicative semigroup with identity
that contains an element % in the center such that k™ == k" for all
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distinet positive integers m and n. For a,berl’, define a = b if a =
kb for some integer n = 0 where k°=1. Then a straightforward
computation shows that I" is a strictly po-semigroup and a root system;
in fact, I" is the join of disjoint totally ordered sets each of which
is countable.

6.4. In the multiplicative abelian semigroup I' generated by a,
b,k with k° =1, define a’b’k" > a?b'k™ provided one of the following
four cases holds.

Case 1. 1 > ».

Case 2. 1=p=20,7 =gq, but n > m.

Case 8. 1 =9p>0 and 5 > q.

Case 4. 1 =p > 0,7 = ¢q, but n > m.

Note that the subsemigroup {ad’k" |4 = 1} is lexiographically ordered.
Aside from being a strictly po-semigroup and a root system, I" has
two noteworthy features. It is not the union of disjoint chains such
that the elements from distinet chains are incomparable, and it has
no convex semigroup ideals.

In conclusion we list some questions we could not answer.

(a) Can the partial order of each &~ -field be extended to a total

order?
(b) If F is an ¢~-field in which each square is positive, then is

F an o-field? 7
(¢) Does each <~-field contain a unique maximal totally ordered

subfield?
(d) When can a lattice order of a commutative integral domain

be extended to a lattice order of its field of fractions?

REFERENCES

P. Conrad, On ordered division rings, Proc. Amer. Math. Soc. (1954), 323-328.

, Generalized semigroup rings, J. Indian Math. Soe. 21 (1957), 73-95.

, Generalized semigroup rings II, Portugaliae Math. 18 (1958), 33-53.

. , The lattice of all convex & -subgroups of a lattice-ordered group, Czech.
J. Math. 15 (1965), 101-123.

5. P. Conrad, J. Harvey, and C. Holland, The Hahn embedding theorem for abelian
lattice ordered groups, Trans. Amer. Math. Soc. 108 (1963), 143-169.

6. J. Dauns, Representation of f-rings, Bull. Amer. Math. Soc. 74 (1968), 249-252.

7. , Representation of &~ -groups and f-rings (to appear).

8. L. Fuchs, Partially ordered algebraic systems, Pergamon Press, 1962.

9. A. Gleyzal, Transfinite numbers, Proc. Nat. Acad. Sci. 23 (1937), 581-587.

10. G. Higman, Ordering by divisibility in abstract algebras, Proc. London Math.
Soc. 2 (1952), 326-336.

11. W. Krull, Allgemeine Bewertungstheorie, J. fir Math. 167 (1932), 160-196.

12. R. McHaffey, A proof that the quaternions do not form a lattice-ordered algebra,
Proc. Iraqi Scientific Soc. 5 (1962), 70-71.

13. B. Neumann, On ordered division rings, Trans. Amer. Math. Soc. 66 (1949), 202-252.

1
2.
3.
4




398 PAUL CONRAD AND JOHN DAUNS

14. B. Neumann and J. Sheppard, Finite extensions of fully ordered groups, Proc.
Royal Soc. London 239 (1957), 320-327.

15. M. Rieffel, A characterization of the group algebras of finite groups, Pacific J.
Math. 16 (1966), 347-363.

16. O. Schilling, The theory of valuations, Amer. Math. Soc. Survey 4 (1950).

Received April 15, 1968. This research was partially supported by grants from
the National Science Foundation.

TULANE UNIVERSITY
NEW ORLEANS, LOUISIANA



PACIFIC JOURNAL OF MATHEMATICS
Vol. 30, No. 2, 1969

SUMMABILITY OF FOURIER SERIES BY TRIANGULAR
MATRIX TRANSFORMATIONS

H. P. DiksHIT

Hille and Tamarkin have proved a result for the Norlund
summability of the Fourier series of f(f) at ¢t = z, under the
hypothesis (i) o) = {f(w + ) + flw —t) — 2f(®)}/2 = o(1), t — 0,
which includes as a special case the corresponding result for
the Cssﬁro summability. However, under the lighter condition
(i) \ e(w)du = o(t), t — 0, Astrachan has proved a theorem for
the NO'(')r]und summability which does not cover the correspond-
ing Cesaro case, The object of the present paper is to prove
theorems for the Norlund summability and another triangular
matrix method of summability which are subtler than Astra-
chan’s theorem in the sense that they include as a special case
the corresponding result for the Cesaro summability.

1. Definitions and notations. Let >7,v, be a given infinite
series with the sequence of partial sums {s,}. We shall consider
sequence-to-sequence transformation of the type

(1.1) Uy = > s
k=0

in which the elements of the matrix D = ((d,,)) are real or complex
constants and d,, = 0 for £ > n. The sequence {u,} is said to be the
sequence of D-means of {s,}. If lim,_ . u, exists and is equal to u
then we say that the series Y,>_,v, or the sequence {s,} is summable
D to the sum w.

Let {p,} be a sequence of constants, real or complex and let us
write P, = p, + 0, + +++ + 9, # 0, P_, = p_, = 0. Then the matrix D
defines a Norlund matrix (N, p,) [7], if

(1'2) dnk = pn—lc/Pn ’ (n g k Z O) .

The conditions for the regularity of the (N, p,) mean are

(1.3) limp,/P, =0 and 3 [p,|=O(P,]), n— oo .
k=0

n-—co

In the special case in which

_(rte-1\__Ire+a -
(1.4 pn—< a—1 )_ I'(n + 1)I'(a) ==

the (N, p,) mean reduces to the familiar (C, ) mean.
The product of the matrix (C,1) with the matrix (N, p,) defines

399
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the matrix (C, 1)-(N, p,). Thus D defines the matrix (C, 1)-(N, p,) if

(1.5) dpe = —2— 3 p,_/P, O<k<n.
n+ 1=k

Similarly, one defines the (I, p,)-(C,1) matrix as a product of
the (N, p,) matrix with the (C,1) matrix. In Astrachan’s notations
[1] the (N, p,)-(C, 1) summability is denoted by (&, p.)-C..

Let f(t) be a periodic function, with period 27 and integrable in
the sense of Lebesgue over (—m, ). We assume without any loss of
generality that the constant term in the Fourier series of f(¢) is zero,

so that Sﬂ f)dt = 0 and

(1.6) f&) ~ 3 (a, cos nt + b, sin nt) .
n=1
We write throughout:

PO = L+ 0 + flz — ) — 2@} ;

Pult) = gy 6 — WP duy @ > 0,0,0) = 9(0);

Pu(t) = (@ + 1) (t)/t5 0 = 0
R, = np,/P,; S, = >, P, + /P, ;

Adp.,, or more precisely 4,pt, = ptt, — tlnss;
T = [1/t]; Piy = P(\); oy = (V) 5

where [\] denotes the greatest integer not greater than .
K, denotes a positive constant not necessarily the same at each

occurrence.

2. Introduction. Concerning the Cesaro summability of Fourier
series Bosanquet [2] has proved the following.

THEOREM A. If @.(t) = o(l) as t — 0, then the Fourier series of
f), at t = x, is summable (C, @ + 0) for every 6 > 0 and a = 0.

Theorem A is known to be the best possible in the sense that it

breaks down if d = 0.
For the Norlund summability of Fourier series we have the follow-
ing result due to Hille and Tamarkin [5].

THEOREM B. A regular (N, p,) method is Fourier effective, uf
the sequence {p,} satisfies the hypotheses:
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@1 R, =0(Q),
(2.2) Sk 4pu| = O( PuD
(2.3) S| Plfk = O( P.) ,

as n— oo,

Theorem B implies inter alia that if o(t) = o(1) as t — 0, and {p,}
satisfies the hypotheses (2.1)-(2.3), then the Fourier series of f(t) is
summable by a regular (N, p,) method.

Replacing the hypothesis: ¢(t) = o(1) as ¢t — 0 of Theorem B by
the lighter hypothesis: ¢,(f) = o(1) as ¢t — 0, Astrachan [1] proved the
following.

THEOREM C. A regular (N, p,) method is K, effective (0 < a < 1),
if the sequence {p,} satisfies the hypotheses (2.1), (2.2) and

(24) Sk — ) | 4P| = O(P,))
(2.5) S |Pl/k = O( P, |/m)
as n— oo,

Hille and Tamarkin have also pointed out in [5] that the sequence
{p,} defined by (1.4) satisfies the hypotheses of Theorem B for 1 > a > 0
and therefore, (C, ) summability for such a a is Fourier effective.
Thus Bosanquet’s Theorem A when a = 0 is an immediate consequence
of Theorem B. It is therefore natural to expect that the hypothesis:
@.(t) = o(1) as t — 0, may lead to (N, p,) summability of the Fourier
series of f(t) and that such a result may include Theorem A when
o =1, as a special case. However, Astrachan’s Theorem C in this
direction only implies the summability (C,d) for 6 = 2, whereas one
needs the summability (C,d),0 > 1, in order to cover Bosanquet’s
Theorem A when « = 1. Thus there is a gap of approximately 1 be-
tween the orders of (C) summability implied by Theorem C and the
corresponding case of Theorem A. This emerges from the following
reasoning.

The result of Lemma 8.1 in Astrachan [1], which is required for
the proof of his Theorem C states that

(2.6) 3\ (n = 1) | #pys| = O(P,|/m)

as n— co. Since the left hand side of (2.6) is greater than Kn we
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observe that K»n® < |P,|. It may be pointed out that for Astrachan’s
proof of Lemma 8.1 one has to assume p, = 0.

The object of our Theorem 1 is to show:that it is indeed, possible
to obtain a result for the (N, p,) summability of Fourier series which
has also the scope of covering Bosanquet’s Theorem A for o = 1.,

Astrachan [1, Th. II] has also obtained the following result for the
(N, p.,)-(C, 1) summability of the Fourier series.

THEOREM D. The (N, p,)-(C, 1) method is K, effective (0 < a < 1)
provided the sequence {p,} satisfies the hypotheses (2.1)-(2.3) and the
regularity condition (1.3).

Due to possible oversight, Astrachan has not shown that the regu-
larity conditions follow from his statement of Theorem D. Further, his
proof of Theorem D contains a deficiency, which has been pointed out
and supplied by the present author in [4].

Silverman has shown in [8, Th. 1] that a necessary and sufficient
condition for a (N, p,) matrix to be permutable with the (C, 1) matrix
is that it be a Cesaro matrix. This implies that

(C, 1)+(N, p,) # (N, p,)+(C, 1)

except when {p,} is defined by (1.4). In view of this Astrachan’s
technique of obtaining his Theorem D from Theorem B fails in the
case of the (C,1)-(N, p,) summability and one has to give a direct
proof to conclude the (C, 1)- (N, p,) summability of Fourier series of f(¢)
under the hypothesis: ¢,(t) = o(1) as ¢ — 0. More precisely, we observe
that since the (C, 1) mean is a very special case of the (N, p,) mean
viz. the case in which p, = 1, the convenience of expressing the (C, 1)
mean of the Fourier series of f(¢), essentially as a difference of the
Fejér’s and Dirichlet’s kernels of ¢,(t) [1, p. 546], disappears totally
in the case of the (N, p,) mean.

Thus for the (C, 1)-(N, p,) summability of Fourier series, we obtain
Theorem 2 which also covers Theorem A when a = 1,

3. We prove the following results.

THEOREM 1. If @,(t) = o(1) as t—0 and {p,} is nonnegative,
monotonic nondecreasing sequence such that p,— oo a8 B—r0, {Pyr,— Do}
18 nonincreasing, R, = OQ1) and (2.5) holds, then the Fourier series
of f(t), at t = x, is summable (N, p,).

THEOREM 2. If @(t) = o(1) as t— 0 and {p,} is a nonnegative,
monotonic nonincreasing sequence such that S, = O(1), then the
Fourier series of f(t), at t = x, 1s summable (C,1)-(N, p.).
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REMARKS. It is easy to see that if {p,} is nonnegative and non-
decreasing then (n + 1)p, = P, and therefore S, = O(1). Further, in
this case

-1

kZ:k ]Apk—ll = —S.‘J Zk (p# - pﬂ—l) + ng (p/.t - p#—l) - O(Pn) y

k=1 p=1

if R, = O1). Thus the sequence {p,} used in Theorem 1 also satisfies
the hypotheses of Theorem B.

As demonstrated by the present author in [3] if {p,} is a non-
negative sequence then the hypotheses: R, = O(1) and S, = OQ1) im-
ply that

- 1

P - - =01 k=128 ...
kn=zk“+l(%+1)Pn__l O()’ ( y “y &y )7

from which it is immediate that P,— « as n-— c. It may be ob-
served that with a slight modification in author’s analysis in [3] it is
possible to even drop the condition B, = O(1) to get the same conclusion.

4. We require the following lemmas for the proof of our results.

Lemma 1. If {q.} is monnegative and mnonincreasing, then for
0<as<b=< oo and 0t <,

b
D g, exp tht| = KQ. ,
k=a
where © = [1/t] and Q,, = ¢, + @, + +++ + @,
This lemma may be proved by following the technique of proof
of Lemma 5.11 in McFadden [6].
LEMMA 2. If {p.} ts a nonwnegative and monotonic nondecreasing

sequence such that {p,., — p.} s nonincreasing and R, = O(1), then
as n— oo

S, pu(n — k) exp (ikt) = OP.) + O(t*p,)
uniformly in 0 <t < m.
Proof. We write by Abel’s transformation
i}opk(n — k) exp (ikt)
= :Z,: Adp(n — k)} é‘s exp (ivt)

= (L - expit)”| 3, dlpu(n — B} — 5, dulputn — I} exp iCk + 1)t
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n—1 n—1
= (- expity | np, - 5 (0~ K)dpeexp itk +1) - 3 pkﬂexpi(kﬂ)t]
= -expit) nn - 5 3 dp, exp i(y + 1t — 5, ps exp il + bt

Thus

Zi piu(m — k) exp iktl

n—1

<1-expit||np, + 3,

Z 4p, exp i(k+1)t”

= Kt~ [npo + KZ Z Dot — D) + Da max | Z exp zktl]

(by Lemma 1 and Abel’s Lemma, since {p,,, — »,} is nonnegative,
nonincreasing and {p,} is nondecreasing)

< Kt'[np, + Knp.., + Kp,t']
< Knt™'p.,, + Kt*p,
< KnP. + Kt*p, ,

since {p,} is nondecreasing and R, =0(1) which also implies P,,,/P,=0(1).
This completes the proof of Lemma 2.

LemMmA 3. If {p.} s nonnegative and nonincreasing, then as n—co

n t—lP

v—k)p,exp t(v—k)t = O(t®)+O0O(t'P, L =),
3,5 5 6= Bpexp ikt = 0-)+0(+P. 3y ) +0( 25 L= )
uniformly in 0 <t < 7.

Proof. Applying Abel’s transformation we get

i‘, v—k expi(v — k)t

v=k Pu
2 v—k\ & o —k+1 _
= %A( 2 )Ekexp (e — k)t + ——-———Pnﬂ Z expi(p — k)t
= (1 — exp it)—i[y: A,(” - k){l — expi(v — k + 1)t}
v=k Pp
2=kl expin—k + 1)t}]
P'n+1

1 - expit)‘[ §=; P;:H v — k) exp i(v — k + 1)t

-%—i expi(v—k+1)t—i——ﬁl£j_—1expi(n—k+1)t].

v=k Ly n+1

Changing the order of summation of the inner sums, thus we have
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=%
ikﬁ” £ exp it - bt
=0 3=k P,
< Kt—‘[ S S Pt (y— k)expi(v — k + 1)t]
k=" v=x PP,
+ zn]p,,i 1 expi(v — k + l)t}
k=0  v=k Py
+ i p(n —k + 1)expi(n — k + l)t']
Pn-H k=0
=S+I+3.

say.

Again by a change of order of summation we have

s= Kt—lz e 32— k) expir — k + 1)4
v oyl k=0

< Kt Z, };“ Zp + Kt‘lz Ii;“ max

0SPSy

Zpk expi(yv — k + 1)t

k=0

(by Abel’s Lemma. If z = 0 the first part is taken as’|0.)
< Kt + Kt-P, 3, -1

y=r v

b

by virtue of Lemma 1 and the fact that (n + 1)p, < P,.

Similarly,
S < K'S) Pl Sipiexpil — k + 1t
2 v=0 v+1 k=0
= Kt 3 Sip + Kt 3 P,
v=0 P»+1 k= v=t v+1
< Kt + Kt-'P. >, =,
v=rt I%
by Lemma 1.

Finally, by Lemma 1 and Abel’s Lemma we have

P..

= Kt
3

n+1

This completes the proof of Lemma 3.

5. Proof of Theorem 1. For the Fourier series of f(¢), at t = &
we have



406 H. P. DIKSHIT

sin (k + 1/2)t
sin (¢/2)

Therefore, if ¢, denotes the (NN, p,) mean of {s,(x)} then

e = Lol singe 12
b= ) = ) PO S pe P e

sula) — f@) = ={ (0 dt .

Integrating by parts, we get
@, u
t, — f@) = 2E S p (1)
P, &=

1 SK 2,(t) {Zn, Dk COS (k + %)t}dt

" 7P, Josin (t/2) i
1 e [y 1
27P, Sosin (t/z){kga Pas cos (I + 2>t}dt
1 (* 0, sin (k + 1/2)¢
27P, Sotan (t/Z){kZS P i /2) }dt

:L1+L2+L3+L4,

say.
Thus, in order to prove the theorem it is sufficient to show that
as n — oo,

(5.1) L; =01); (j=1,2,3 and 4) .

Since O@.,(t) cot /2 = o(1) as t — 0, it follows from Theorem B that
L, =o0(l) as n-— o, when one appeals to the remarks contained in
§3 of the present paper.
We write
1 > _ k < pn —
P, k:ZO D —1DF| = K*I—);‘ =),

as n— oo, since {p,} is nonnegative and nondecreasing and R, = O(1).
Thus, we have L, = o(1) as % — co.

Also, L, = o(1) as n— oo, by virtue of Riemann-Lebesgue Theorem
and the regularity of the (N, p,) mean which is implied by the hypo-
theses: {p,} is nonnegative and R, = O(1).

Finally, to show that L, = o(1) as n — <o, we observe that

2B _ o)

sin t/2
as t— 0 and that the kernel occuring in L, is the real part of the
complex valued function

{exp — z(n + %)t}é p(n — k) exp ikt = M,(1) ,

n

say.
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Therefore, in order to prove that L, = o(1) as » — o, it is enough
to show that as n—

(5.2) EXMUM@ﬂt—dD,
where g(t) = o(1) as ¢t — 0.
We write, for a fixed 6 such that 0 < d < 7,
(5.3) I:<y_+yﬁ+KﬁMMﬂWh:L+L+L,

say.
Since

M0 = 053, puln —B)) = O,

we have, as n — o

(5.4) ( S t)ldt) = o(l) .
0=

For the interval o < t < m, we have from Lemma 2

MMPJK£)+OGZy=q;)+qn:qn,

n

as m— oo, by the hypotheses: R, = O(1) and that p, — « as n— oo,
Therefore, as n — oo,

(5.5) I, =0(1).

Since g(t) = o(1) as t — 0, to demonstrate the truth of I, = o(1)
as n — oo we prove that

EEYJmmng.

By Lemma 2, we have

HSK”YHMW+K&YFW
- P —1 P Ja1

n n n

— K_"_S" PG ys + kR,
P, i1 &
<K,
by virtue of the hypotheses: R, = O(1) and (2.5). Thus, as n — oo,

(5.6) L =o).
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Combining (5.3)-(5.6), we get (5.2) and therefore L, = o(1) as n—oo.
This completes the proof of Theorem 1.

6. Proof of Theorem 2. If t. denotes the (C,1)-(N, p,) mean
of the sequence {s,(x)} then

— flw) = —% -3 3 Beta) — fia)

Il

S
-
&

]

=]

<

[

=

P,
3% pisi(@) — £@)

1 gy st 1),
G=o P, i=o sin (t/2)

|
-t
—
)
"9
~~~
~~
~
A
(B

— fa) = 2D 5 L Sip, (-1
_ 1 S 2.(%) {z S . ,Jccos(k—i— 2>}dt

w(n + 1) Josin (¢/2) U= P, i=o
- 27r(n1+ 1) §:s1f1) E22){»§n:6 gy Dot €08 <k + 2) }dt
1 Q) & 2 sm [k + (1/2)]t
* 2rn(n + 1) Sotan(t/Z){Z‘ Z‘ sin (¢/2) }dt

=CI+CZ+C;.;+C4,

say.
Thus, in order to prove the theorem it is sufficient to show that

as n— co
(6.1) C; =o0(1); (=1,2,3 and 4) .

Since {p,} is nonnegative and nonincreasing, we have by Abel’s
Lemma

S o~ = BB = o(1),
E=0 P,

as Y — oo, by virtue of the fact that P, — « as n— «. By virtue
of the regularity of the (C, 1) mean we now get C, = o(1) as n — oo.

Further, since [@,(¢)/sin (¢/2)] cos t/2 = o(1) as t — 0 and the (C, 1)
mean is regular, Theorem B implies that C, = o(1l) as n — <, when
one observes that the sequence {p,} used in our Theorem 2 satisfies

all the hypotheses of Theorem B.
That C, = o(1) as % — o, follows from the Riemann-Lebesgue

Theorem and the fact that the (C,1) and the (N, p,) mean are both
regular.
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Finally, we observe that [®,(¢)/sin (¢/2)] = o(1) as t — 0 and there-
fore, in order to prove that C, = o(1) as n— o, it is sufficient to
show that as n — o

(6.2) E = g:g(t)Jn(t)dt = o),
where g(t) = o(1) as t— 0 and

exp (it/2) _ _
Ju(t) = —‘(—;1—)2‘3 P, f 2(” k)p, exp (v — k)t .

Let us write for a fixed 6 such that 0 < 0 =< 7,

63  E= (S' L+ Dewrwie =B+ B+ B

say. Since

L s 1sw—ip<kn,

Ja(t _
9,01 < 27 353

we have as n— oo
(6.4) B = O(nS:_l(g(t))dt) ~ o(l) .

For the interval 0 < 6 < ¢ < m, we have by Lemma 3

J(t)—o(1)+0< +1y”OP)+0< Ml):o(l)

as n— o, since P,— > as n— o« and (C, 1) mean is regular. Thus,
as N— oo,

(6.5) E, = o(1) .

Since g¢(t) = o(1) as £t — 0, to prove that E, = o(l) as n — oo, it
is enough to demonstrate that

By = Sa_l \J.(t) | dt < K .
By Lemma 3 we get
e K Sa . K Sa PUD S Lg

T+ 1Ja R n+1l.m1 ¢ o1 P,
+ .g__ga P(l/t) dt
P, Jar ¢
K S” P(s){ » 1 } 1 S” P(s)
< K— il Sl
—K+n+1 718 v;[sJP,, ds + P, s ds
K S” P(s){ » 1 }
<K )
=4+ n+1li1 g vg[:ﬂ P, ds
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since S, = O1). That E;* < K, now follows from the fact that

1 &P &1 _ 1 &1 &P
n+1 IR R Z‘kP, B n+1~Zvak:x k
1 n
= Su é K ’
n+1 Z:'l
since S, = O(1). Therefore, as n — oo
(6.6) E, = o(1).
Combining (6.3)-(6.6), we get (6.2) and therefore, C, = o(1) as

N — oo,

This completes the proof of Theorem 2.
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LINEAR TRANSFORMATIONS OF TENSOR PRODUCTS
PRESERVING A FIXED RANK

D. Z. Diokovic

In this paper T is a linear transformation from a tensor
product X ® Yinto UQ® V, where X, Y, U,V are vector spaces
over an infinite field 7. The main result gives a characterization
of surjective transformations 7' for which there is a positive
integer & (k < dim U, k < dim V') such that wheneverze XQ Y
has rank % then also Tzce UQ® V has rank k. It is shown
that T=AQ@Bor T = So(CQ® D) where A, B,C,D are ap-
propriate linear isomorphisms and S is the canonical isomor-
phism of VQ Uonto UR V.

Let F be an infinite field and X, Y, U, V vector spaces over F.
We denote by T a linear transformation of the tensor product X Q Y
into UQ® V. The rank of a tensor ze¢ X ® Y is denoted by o(z). By de-
finition p(0) = 0. The subspace of X spaned by the vectors z,, ++-, 2, € X
will be denoted by < @, +--, 2, >.

LEMMA 1. Let k be o positive integer such that ze XQ Y and
0(z) = k 1mply that o(Tz) = k. Then o(z) < k implies that o(Tz) < k
Jor all z.

Proof. If this is not true then for some 2e XQ Y,z # 0, we
have o(2) <k and o(T2) > k. There exists tc X® Y such that
o(t) + o(z) = k and moreover p(z + M) = k for all » = 0, v e F. Let

Tz 2%@%, m = p(Tz) .

Since u; e U are linearly independent and also v;€ V we can consider
them as contained in a basis of U and V, respectively. The matrix
of coordinates of Tz has the form

I, 0

<0 0>
where I, is the identity m x m matrix. Let

A, B

e
be the matrix of coordinates of Tt. Then the 'minor |I, + NA, | of
the matrix of T(z + M) has the form

411
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1+ anN+ a N+ .-,

Since F' is infinite we can choose )\ == 0 so that | I, + \A4, | # 0. For
this value of A we have

o +A\t) =k, o(T(z+ ) =m >k

which contradicts our assumption. This proves the lemma.

LEMMA 2. Let k be a positive integer such that ze XQ Y and
o) < kimply p(Tz) < k. Lf T s surjective and k < dim U, k < dim V'
then p(z) = o(Tz) for all z.

Proof. Assume that for some z we have p(z) < p(T?). Clearly,
we can assume in addition that o(z) = 1. Therefore £ > 1. By as-
sumption o(z) < k implies that o(Tz) < k. Let s < k be the maximal
integer such that there exists z ¢ X Q) Y satisfying o(z) < sand p(T%) = s.
Let

Tz:iui@}vi.

We can choose u,., € U,v,,,€ V such that u,.,¢ <wu, -+-,u, > and
Ve @ < 0y, +++,V, >. Since u;e U are linearly independent and v;€ V'
also linearly independent we can assume that these vectors are contained
in a basis of U and V, respectively. Since T is surjective there exists
te X® Y such that p(t) =1 and the (s + 1, s + 1)-coordinate a,.,,,,
of Tt is nonzero. The minor of order s + 1 in the upper left corner
of the matrix of T(z + M\t) has the form

as+1,s+1)’ + a27\‘2 + M

Since a,,,,,.; #* 0 we can choose » # 0 so that the minor is nonzero.
For this value of A we have

o+ M) Sp@) +1=s<k,
o(T(z + M) =s+ 1.

If s =k this contradicts our assumption. If s < k this contradicts
the maximality of s. Hence, Lemma 2 is proved.

LEMMA 3. Let k be a positive integer such that ze XQ Y and
0(2) = k imply that o(Tz) = k. If T 1is surjective and k < dim U,
k< dim V then o(z) = o(Tz) for each z€¢ X Q Y satisfying p(z) < k.

Proof. The assertion is trivial if p(z) = 0 or k. Let 0 < p(z) < k.
Choose te X ® Y such that
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oz + 8) = pz) + pt) = k .
Using this and Lemmas 1 and 2 we deduce
o(T(z + t) = o(Tz + Tt) =k ,
o(T2) + p(Tt) = k
o(T2) + p(t) 2 k
0(T2) = p(@) .
Since by Lemma 2, o(7T?) < p(2) we are ready.

The following Theorem is an immediate consequence of Lemma 3
and Theorem 3.4 of [3]:

THEOREM 1. Let k be a positive integer such that ze XQ Y
and 0(z) = k imply that o(Tz) = k. If T is surjective and k < dim U,
k< dim V then

(1) T=AQBHB,
or

(2) T=S-(CRD,
where

A: X—-U, B: Y-V,
C: X—-V, D:Y—-U,

are bijective linear transformations and S is the canonical tsomorphism
of VQU onto UR V.

This theorem gives a partial answer to a conjecture of Marcus

and Moyls [2].
From Lemma 2 and Theorem 3.4 of [3] we get the following

variant:

THEOREM 2. Let k be a positive integer such that ze X ® Y and
o) =k imply that o(Tz) < k. If T is bijective and k < dim U,
k < dim V then (1) or (2) holds.

When X=Y=U=V,dimX =un,k=mn—1 we get a result of
Dieudonné [1].
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EXTENSIONS OF A FOURIER MULTIPLIER
THEOREM OF PALEY

JOHN FOURNIER

Let A be the class of continuous power series on the unit
circle T, that is those continuous functions f whose Fourier
coefficients f (n) are 0 for negative indices n, It is known that
the most that can be said about the size of the coefficients of
such f is that they are square summable, For instance Paley
proved the following: Suppose that > | w(n)|? = . Then
there is an f in A with > | f (m)w(n)| = co. In other words
the [? sequences are the only multipliers which map A into
the class of absolutely convergent power series.

The main result of this paper is that Paley’s theorem can be ge-
neralized as follows: Let G be a compact Abelian group with a par-
tially ordered dual group I". Denote by A the class of continuous
functions f on G whose Fourier coefficients f(v) vanish off the non-
negative cone S of I'. Let E be a totally ordered subset of S and
w be a function defined on E which is not square summable. Then
S | AMw()| = oo for some f in A.

The class A when " is in fact a totally ordered group is a fre-
quently considered generalization of the algebra of continuous power
series. In this situation S itself is totally ordered so that > s | w(v)[?< o,
whenever 3| f(v)w(v)| < o for all f in A. This was obtained for
G = T by Helson [4] and in general by Rudin [8, p. 222]. Their
proofs differed from Paley’s although his method can be made to work
in the situations they considered.

Now the power series discussed in the first paragraph are the re-
strictions to the circle of those functions which are continuous on the
closure of the unit dise and analytic in its interior. From this point
of view it would be natural, when G = T? to let A be the class of
restrictions, to the distinguished boundary of the unit bidisc, of funec-
tions which are continuous on the closure and analytic in the interior
of the bidisc. These are precisely the continuous functions on 7
whose Fourier coefficients f(m, n) vanish off the first quadrant S of
Z*. The full analogue of Paley’s theorem would be that every sequence
w with the Paley multiplier property, >, |w(N) F(N)| < e for all f
in A, is square summable.

It is not known whether this strong version of theorem holds.
The Helson-Rudin proofs for the case when S is a half space depend
on a property of the analytic projection L taking trigonometric poly-

~ -~

nomials 3, f(V)7(x) into D5 F(¥V)¥(x). Specifically, ||Lf|l, < K, || f I

415
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for p < 1. The corresponding projection when S is the first quadrant
does not have this property [12, Th. 4] and [13, p. 208].

Except for this, however, the above mentioned proofs work in
the double power series case. A simple counterexample to the full
analogue of Paley’s theorem would provide a simple proof that the
double analytic projection is not bounded from L' to L* for any p<1.
As Helson observed, by a theorem of Bohr [2, p. 468, Th. 5], there
are Paley multipliers on power series in infinitely many variables which
do not even tend to 0; so the infinite dimensional version of Paley’s
theorem is false. This paper is the result of an attempt to settle
the question for two or more variables.

What our main theorem says about Paley multipliers w on double
power series is that >, |w(N,)[* < o for any sequence {N,}i,, of
pairs of nonnegative integers, which is increasing in the strong sense
that the N, are distinct and the sequences of first and second com-
ponents are nondecreasing. It follows easily that all such Paley mul-
tipliers w tend to 0 but perhaps not fast enough to make S| w(N) > <
oo, $So it is still not known if the only Paley multipliers on double
power series are square summable. The proof of the main theorem
does not involve properties of the analytic projection, however, and
this suggests that Paley’s theorem may not be as closely related to
the boundedness of the projection as the previous proofs suggest.

As we shall see in §3, Paley multipliers ean be thought of as
coefficients in a semi-lacunary series on a somewhat larger group than
G. The proof of the main theorem takes advantage of this fact and
the method can be applied to lacunary Fourier series in other situa-
tions. In order to present the idea in a simple setting, we begin in
§ 2 with such an application to semi-lacunary trigonometric series. In
§3 we use the same general approach to prove the main theorem.
Section 4 contains a discussion of Paley multipliers on power series in
several variables; a number of special results not depending on the
main theorem are obtained. In §5, we investigate Bohr sets, that is
those subsets of S whose characteristic functions are Paley multipliers.
It turns out that all such sets are finite unions of sets in each of
which no two elements are related under the partial ordering of I.
Finally, in § 6, we return to the subject of Fourier series whose re-
strictions to S are lacunary and obtain some information about such
series from our main theorem.

Notation and terminology have been taken from [8], which is a
good source for the facts which we shall assume in what follows.

2. We begin with an illustration of our method in a simple setting.

THEOREM 1. Let E = {m,}>., be a set of positive integers with
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My > 2 m, for all n. Suppose that f is a function in L(T) with
fim) = 0 for all nonnegative m which do mnot belong to E. Then

Sl fm) P <4 fI

Proof. We can assume that || f ||, = 1. Factor f = gh where g
and h are in L¥T) with ||g|, = ||k, =1.

Then f(m) = 1/2% S_ 9(O)h(6) exp (—im8)do

(1) ie., flm)=<g, 1 ny

where y(0) = exp (¢6) and <{.,.> is the usual inner product in the Hil-
bert space L*T).

By assumption the inner product in (1) is 0 for most nonnegative
m. The theorem is a consequence of the following result about such
inner products.

LEMMA 2. Let H be a Hilbert space and M, M,C --- c M, be
closed subspaces of H., Let A, A,, -+--, Ay be unitary linear opera-
tors on H with AAM,CAM,C.--CAyMy. Suppose that g and h are
elements of H satisfying:

(i) Ahcd, .M, forn=12 ..., N—1

(ii) g s orthogonal to the subspaces A, M, for n =1,2, ..,
N — 1.

Then 337 <9, AP < 41l gI*-[| R

To prove the theorem let H be L*(T) and take M, to be the closed
subspace of L*(T) generated by {y"h| — m, £ m < 0}. Clearly

McM,c---cM,cM,,,C---.

Define A, by A,k = ™k for all k£ in H.

The subspaces A,M, are the closed linear spans in L*T) of
xmh |0 £m < m,}. So, AMcAMcC---CAM,CA, M, C---.
Also as m, < My, Ahe A, M,., for all n,

Finally A, M, is the closed subspace generated by

{th i Mpir — My, é m < mn-H} .

Now m,., — m, >2m, —m, = m, so that m,., — m, < m <m,,, im-
plies m, < m < m,.,. For such m, {g, y"h) = F(m) = 0 by assumption.
Therefore {g, k) = 0 for every generator & of A, M, and hence for
all k¥ in A,., M, and (ii) holds.

The lemma applies for any fixed N to yield

Sy Fom) = 3 1<g, Ay = 4.
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Therefore S, | f(m,) |* < 4.

Proof of Lemma 2. Again normalize by assuming || g|| = ||4]|| = 1.
By M, we shall mean the subspace of H consisting of 0 alone.

For n=20,1, .--, N let k, be the orthogonal projection of % onto
M,. Then the sequence k, — k,, k, — k,, -+, kxv — ky_, 18 orthogonal and

(2) Sy~ = oy = BolF S 1

Now for each =, A,(h —k,) is orthogonal to A,M,. But for
m<n, A,he Ay M, < AM,, and Ak, c A, M, A,M,. So for dis-
tinct m and n, A, (h — k,) and A,.(h — k,), are orthogonal with norm
at most 1.

Write <{g, A.hp =<9, A (h—k,)) +<g, Ak, — k1)) + <9, Aik) =
a, + b, + c, say.

By (ii) ¢, = 0 for all n.

By Bessel’s inequality,

Sla, =gl =1.

Finally |b,]| = ||g||-]| A.(k, — k,) || = | ko — ka_y]] so that by (2)
o P = 1.
The triangle inequality for I* yields [33V |<g, A.h) *]'* < 2.

Results like Theorem 1 are well known for lacunary series, i.e.,
series with f(m) = 0 for all m off E [14, p. 205, Remark (a)]. The
fact that the same is true for semi-lacunary series is implicit in an
argument of Rudin, [9, §5.7], and seems to be well known among
Fourier analysts. So the novelty of Theorem 1 lies in the method of
proof rather than the conclusion. On the other hand, the most general
situation in which our method works seems different from the one in
which the usual technique works; we shall compare them in § 6.

For the moment, let us remark that a simple modification of the
above handles the case when, for some \ strictly between 1 and 2,
M, > Nm, for all n. It turns out that if f is as in Theorem 1 then
S Fmy P < (VF + 1)) £ 1|}, where k is an integer chosen so that

A= 00 — 1),

3. In what follows, G will be a compact Abelian group and I”
will be the dual group of G, with the group operations written addi-
tively. S will denote a semigroup in I" which contains 0. We let 4
be the algebra of continuous functions f on G for which f(7) is 0 off
S. For definiteness, the reader may find it convenient to imagine
that G = T?, I"' = Z* and that S is the first quadrant in Z°.
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Let M be the class of Paley multipliers on A, that is those se-
quences {w(7)};es With ¢ |Aw(v)| finite for all £ in A. In other
words for each w in M, the mapping f— {f(")w(7)},es sends A into
(S). In fact, by the closed graph theorem, this is a bounded linear
operator. So M is a normed linear space with the operator norm:

lwlle =sup 3| f)wm | (fin Aand || fll.=1).

Observe that if v is a sequence with |v(7)| < |w(v)]| for all v in
S then || vy = || w]||y. In particular this is true if » is a truncation
of w which agrees with w on part of S and is 0 elsewhere.

For any sequence ¢(v) = =1 we have that |Dse()f(Mw@)| =
[|w]ls+]] f llo. Therefore the mapping f— Sl e(m)w(v)f(¥) is a bound-
ed linear functional on A of norm no greater than ||w]||,. By the
Hahn-Banach theorem it has a norm preserving extension to all of
the continuous functions on G. This means that there is a bounded

regular Borel measure ¢ on G with || g¢|| =< ||w|ly and

S emuwmfo) = | fmdu—o)
for all fin A. Taking f = v for any 7 in S we obtain:
(1) () = | r@dp(—a) = | H—o)du@) = p0) .

The property that for every choice of signs e(v) there are mea-
sures p satisfying (1) characterizes M and was used by Helson and
Rudin in their proofs of Paley’s theorem ([4] and [8, p. 222]).

Now S induces a partial ordering of I under the rule: v, < v, if
and only if v, — v, €S. The order relation is transitive and invariant
under addition but it may happen that v, < v, < v, without v, = 7..

We can now state and prove our main theorem.

THEOREM 3. Let we M and EC S be totally ordered wunder the
order induced by S. Then

S < 4wl .

Proof. It is enough to prove the theorem for ||w]||, =1 and E
finite. Let 7, <7, < --+- <7, be the elements of E. Denote by v
the truncation of w to E:wv(v) = w(v) if ve E and »(v) = 0 otherwise.
As observed above ||[v]], =< 1.

Let ¢(v) be any sequence of =1 on S. There is a bounded re-
gular Borel measure 2 on G with || ¢|| <1 and f(v) = e(v)v(v) for all
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v in S.

Fix K > 1. As E is finite there is a trigonometric polynomial P
on G with ||P|, < K*and P(v) =1 on E [8, Th. 2.6.8]. Then f=
Pxp is a trigonometric polynomial with the following properties:

(2) | FIl. < K% f(v) = e(v)w(v) on E and 0 elsewhere in S, and
f(“/) = 0 off the support of P.

It is a theorem of Littlewood [5] that, if for each choice of signs
there is an f satisfying (2) and with 7 = 0 off E, then 3, |w(®) [} <
BK* where B is a fixed constant. Our problem is to reach the same
conclusion assuming only that 7(v) = 0 on the rest of S.

In order to make use of the random signs &(v) in the above, we
introduce the Rademacher functions. Let @ be the Cartesian product
of N copies of Z,, the additive cyclic group of order 2. Denote the
elements of @ by ¢ = (¢, ---,t,) with each ¢, = 0 or 1. Define the
7’th Rademacher function », by

1 if ., = 1}

t) =
m(t) { 1if £ =0

By (2), for each ¢ in Q we can find a trigonometric polynomial
ft,x) on G so thatS Lf(t, @)y | de < K [ f(t, )] (v) = 0 off the support
A~ G
of P and

(3) ) = (o s -

0 for all other v in S

Letting d¢ be the Haar measure on Q which asgigns mass 2=V to
each point, we get S S | f(t, x) | dedt < K*. That is, if we assume for
the moment that f is g rfleasurable function on @ X G, then fe LY(Q xG)
with norm no greater than K°.

In fact, f is a trigonometric polynomial on @ X G, that is, a finite
linear combination of continuous characters on @ x G, but to be sure
of this we must look at the set of such characters, i.e., the dual
group of Q x G.

To begin with, the complete set of characters on Q is the set of
Walsh functions (m)(f), m = 0,1, ---,2¥ — 1 [3, pp. 376-377], which
are defined as follows. We write

m=2" 4 oo + 2%, 00, <Ny < »+- < Ny

and let Y(m)(t) = r,,(t)-7,,(t) -+ 7, (t), with the convention that
v (0)(t) = 1. R, the dual group of Q is the set of all such functions,
under multiplication.

The dual group of Q@ x G is R x I’ [8, Th. 2.2.2] so that the
products +(m)(¢)v(x) form the complete set of continuous characters



EXTENSIONS OF A FOURIER MULTIPLIER THEOREM OF PALEY 421

on @ x G.

For fixed ¢, f(¢,x) is a trigonometric polynomial on G whose
coefficients are 0 off the support of P. As @ and R are finite, all
functions on @ are trigonometric polynomials and in particular [ f(¢,-)]*(7)
is a trigonometric polynomial on @ for each v. So, the finite sum f(¢, 2) =
S esun & V@[ f(E,+)]N(7) is a trigonometric polynomial on @ x G.

Write f(t, ) = 345 Ser a(m, M(m)(E)v(@). Clearly a(m,v) = 0
unless vesupp P and in view of (3) we have

w(,) if v =17, and m = 2"

4 =
(4) a(m, %) 0 otherwise for v in S

We have no information about a(m,y) when v is in supp P but not
in S but this will not matter.

The proof now proceeds much as in Theorem 1 with the products
(2", playing the role of the thin set of characters {y™»}:...

Factor f(t, ) = g(t, ®)h(t, ) where g, he L}Q x G) and || g], =
IRl = || f % < K.

For all m,

a(m, 7) = §Q§0g<t, D)h(t, 2)7(@)F(m) () dzdt |

i.e., a(m,v) = <g, y(m)vh) .

(5)

We wish to apply Lemma 2 with Ak = (2" v,k for all k in
LY@ x G). Assume for a moment that subspaces M, can be chosen so
that the hypotheses of the lemma hold. Then, in view of (4) and (5)

S ) = S la@ v [ = 3 [<g, A5y < 4K

which is what we want, as K is any constant larger than 1.

It remains to chose the M, so that the assumptions of the lemma
are satisfied. This is the only part of the proof where the total or-
dering of E is used.

Let M, be the closed linear span in LY@ X G) of {y(m)vh | (m, v) %=
0,0,0=m<2", —v, =70}, As v, <7 < +++ <7y it is clear
that M\,c M,c ---c M,.

The set {y(m)]0 < m < 2"} is the subgroup of the Walsh func-
tions generated by r,, 7, ---, r,_,. Therefore, A,M, is the closed sub-
space generated by {y(m)vh|(m,v) + 2 7,),0=m <2, 0= v< 7.},
Certainly A M, c A,M,C --- C AyM,. Moreover

A = @) v,he Ay M,

for n<N and (i) holds. Again this depends on the fact that v, < 7,...
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Finally if m < 2", r, is not one of the factors of +(m). So
P(m)p(2") = yp(m)r, = J(m + 27) .
Therefore, A, .M, is the closed linear span of
{p(m)Yh [ (m, 7) # (2% Vpis), 2" S M < 2%, Vi = Vo SV S YV}

Now when m and 7 satisfy these restrictions, then ye S as v,,,—7, =0,
and by (5) and (4), <g, y(m)vh) = a(m,v) = 0. That is g, k> = 0 for
every generator k of A,.,. M, and hence for every k in A, M,. (i)
holds and the proof of the theorem is complete.

In fact the argument actually works under somewhat weaker as-
sumptions than those above.

DEFINITION. A set Ic ' is called convex if {v|v,. = v =< v)CI
whenever v, and v, are in I.

THEOREM 4. Let IC I" be convexr and w be a sequence defined on
I. Define

lwll; = sup 3 [Fw | (feCAG), I fl.=1),

where C(G) = {feCG)|f(v) =0 off I}. Let Ec I be totally ordered.
Then >z |w@) P =4[ wl.

Outline of proof. The method of Theorem 3 works in this
situation. The main change is that statements which held for all v
in S in the proof of Theorem 3 now hold for all v in I. Lemma 2
applies with M, taken to be the closed linear span in L*Q X G) of
{y(m)vh | (m,v) = (0,0), 0 <m < 2", and v, — v, =<7 < 0}. We omit
the details.

In the special case G=T,S={nr|n=0, I=n|n, =n=n}, I
itself is totally ordered and we conclude that 3, |w(n)|* < 4] w|}.
With the constant 4 replaced by a much larger one, this was obtain-
ed by Steckin [11, Lemma 2] as a consequence of Paley’s theorem.

The definition of ||w ||, makes sense for any set I and does not
depend at all on S. Furthermore a set may be convex with respect
to several orderings of I'. For instance, let G = T% I" = Z* I =first
quadrant in Z2, We can take S to be any quadrant and in each case
I is convex with respect to the order induced by S. So, S plays an
indirect role in Theorem 4 which may be restated as follows:

THEOREM 4'. Let I be a subset of I'. Define ||w]||, as before.
Then Sz |w) P 4||wlt for any set E I which is totally ordered
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under some ordering of I' with respect to which I is convex.

4. We now treat the case of power series in a finite number of
variables. That is, G=T",I'=Z", and S={N=(N,, N;, ---, N,) | N;=
0 for all j}.

The main theorem tells us that, when w is a Paley multiplier, 4
[|w]|% is a uniform bound on 3| w(N)|* for all totally ordered sub-
sets E of S. Unfortunately, such sets E are essentially one dimen-
sional. For instance, the N, axis {N in S|N; =0 for j > 1} is a
maximal totally ordered subset of S.

It is possible, however, to give bounds on >, | w(N)[* for some
sets D which are not as thin as totally ordered sets. For simplicity
we prove the following theorem only for the case n = 2.

THEOREM 5. Fix an integer L>0 and let D be the set
{(N|IL<N,<8L and N,z=0}.

Then for every w im M, >, | w(N)|* < 36| w]||y.

Proof. Since truncation does not increase norms in [/, assume
that w = 0 off D.

Let K,(6) be the Fejer kernel >%__, [1 — | m|/(n + 1)] exp (¢m 6).
Put K(9) = exp (12L0)[2K,,_,(6) — K,_,(6)]. Then (1/27r)S | K@) |do <
3, K(m) =1if L<m < 3L, and K(m) =0 if m <O. Define a measure
y on T® by S £(6, p)dv(—6, —p) = (1/2@& f(6, 0)K(—6)ds. Then
v]|<8,9=1on D, and SN) = 0 it N, < 0.

Now let S, be the half space {N|N, >0, or N, =0 and N, = 0}.
w can be thought of as a Paley multiplier on C; (T?), the continuous
functions whose coefficients vanish off S,. For, suppose that f is such

a function. Let g = fxv. Then gec A and || ¢l <3| f|l.. Extend
w to S, by setting it equal to 0 on the rest of S,. Now,

%If(N)w(N)l = 2N wN) [ = llwllx19lle = 31wl £

So, as a multiplier on Cs, w has norm at most 3 [[w|l,. It follows
from the main theorem that

2 wN) [ =X NW(N)|2<36HWI|

The same kind of conclusion can be obtained in dimension % for
sets D of the form:

(N|N,=0and L; < N, <3L; for j =1,2, -++,n — 1}
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where L,, L,, ---, L,_, are any fixed nonnegative integers. Of course
the last coordinate need not be the one that is free in the above.

As we shall see in the next section, the main theorem implies
that, in the context of power series in a finite number of variables,
w(N)— 0 as N— o whenever wec M. This fact can also be derived
from the following lemma of Helson.

LeMMA (Translation Lemma). Let G be a compact Abelian group.
Suppose that i is a finite regular Borel measure on G and {v,}7 s
a sequence of distinct elements of I'. Define measures \, by dn,(2) =
T.(x)dp(x). Let N, — ¢ in the weak star topology. Then o is singular
with respect to the Haar measure of G [8, Lemma 3.5.1].

THEOREM 6. With G = T" and S as above, w(N)—0 as N— oo
for every Paley multiplier w.

Proof. Suppose that the theorem is false. Let w have the pro-
perty that |w(N)| = 1 on an infinite set B of N's.

First assume that B contains an infinite sequence {N‘®}; such
that for each & and all j, N/ = k. Then in fact the sequence can
be chosen to be lacunary in the sense that for each %k and j, N/ >
2N, Let v be equal to 1 on this sequence and 0 elsewhere. As v
is dominated by w, it is a Paley multiplier.

Therefore there is finite regular Borel measure ¢ on 7" so that
A(N*) =1 for all k and Z(N) = 0 for all other N in S. Consider the
measures \, defined by dr,(x) = exp (—tN®.x)du(x). Forall k, ||\, || =
[l t¢]], so that a subsequence of the A\,s converges in the weak star
sense to a measure o.

%:(0) = 1 for all k, so that 6(0) = 1. For any N = 0, %, (N) =0
for all large k. Hence 6(N) = 0 for N = 0. This means that do is
dx, the Haar measure on T". But by the translation lemma, do is
singular with respect to dxz, a contradiction.

The preceding three paragraphs prove the theorem for the case
# = 1 as then any infinite B would contain such a sequence {N *'}.

For n > 1, we conclude that B contains no such sequence. It
follows that there is an integer & for which the cone {N|N; > k for
all 5} does not intersect B. In other words B is contained in the union
of the (¢ + 1)-n hyperplanes {N in S| N, = h} where j runs from 1
to » and & from O to k. The intersection of B with one of these
hyperplanes, for particular choices of j and h, is infinite. Let S, be
the positive cone in Z*!, Define a sequence v on S, by

,U(le NZy ctty, Nn—l) = w(Nu NZy c0 Y Nj—-ly hy Nj+1y R} N'n—-l) .
It is not hard to see the that v is a Paley multiplier on Cs, (T")
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with |v(N)| = 1 for infinitely many N in S,. The theorem follows by
induction on the dimension x.

The idea for the application of the translation lemma in the above
came from Rider’s treatment of the infinitite dimensional case [7, §3].
In fact Rudin made a similar application in [9, Th. 4] to obtain the
result in the one variable case.

So, for the case of power series in two or more variables Theorems
3,5, and 6 provide a variety of restrictions which must be satisfied
by any Paley multiplier. We now give an example for the case of
two variables of a sequence which satisfies these restrictions but is
not square summable. It resembles one given by Bohr in infinitely
many variables [2, p. 468, Th. 5] and arose from a suggestion of Pro-
fessor Walter Rudin.

For m = 0,n =0, let wim,n) =1/(m +n + 1).

Observe that any totally ordered set E intersects the line [, =
{(m,n)|m + » = k} in at most one point. For any such K,

Sl =5 5 [wN) s Sk + 1= 26 .

Hence w satisfies the conclusion of Theorem 3.

Next let D be any set of the type considered in Theorem 5. For
k< L,l,ND is empty and for any k, I, N D has at most 2L + 1 ele-
ments. Therefore,

S w(N) ! =§“kzm|w(N) P SEL+ D+ 1)
_2L+1
7

= =3,

and the conclusion of Theorem 5 holds for w.
Finally, it is clear that w(N)—0 as N — oo,
On the other hand,

oo

SwN) =5 5 (w0 = 3+ Dk + 1) = e

S k=0

It is not known whether w is a Paley multiplier sequence. This
example shows, however, that in the context of power series in two
as more variables, our results do not imply that M = [*S). The
question is therefore still open for the case of » variables, 1<n< oo,

5. We modify a definition of Rider [7, p. 558].

DEFINITION. Let G, S, and A be as in § 3. A subset B of S will
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be called a Bohr set if there is a constant K so that 3, | f(7)| <
K] f |l for all fin A.

In other words, B is a Bohr set if the sequence which is 1 on B
and 0 elsewhere in S is a Paley multiplier.

The reason for the name Bohr set is the following theorem of
Bohr [2, p. 468, Th. 5]. Let G be the complete direct sum 7 of
countably many circles and I" be the direct sum Z=, [8, §8.7.9]. Let
S={NeZ=|N; =0 for all j} and let A be the space of continuous
functions on T“ with coefficients supported by S. Let B={Ne Z=|N,=
d;; for some i}. Then S, |AN)| < || f . for all fin A. Other ex-
amples of Bohr sets and an account of the connection with Dirichlet
series appear in [7].

We use Theorem 3 to obtain necessary arithmetic conditions on
Bohr sets.

THEOREM 7. Let B be a Bohr set and K the constant of the de-
Jinitton. Then every totally ordered subset of B has at most 4K?
elements.

Proof. By assumption the multiplier w which is 1 on B and 0
elsewhere has norm at most K. If EcC B is totally ordered, },;1 =
il w®) P = 4K

Observe that the theorem certainly holds for Bohr’s example B.
Totally ordered subsets of B have one element as no two elements of
B are related under the order induced by S.

DEFINITION. A subset B or I” will be called unrelated if no two
elements of B are related under the order induced by S.

LEMMA 8. A subset B of I' contains no totally ordered set with
more than K elements if and only if B is the union of at most K
unrelated sets.

Proof. It is obvious that such a union contains no totally order-
ed set with more than K elements.

Conversely, suppose that the totally ordered subsets of B have
at most K elements. Let E be a totally ordered subset of B, maximal
with respect to containment. We shall find a set B, consisting of ex-
actly one minimal element from each such E. As FE is finite the set
F of minimal elements of E is nonempty. By the maximality of E,
F is a maximal equivalence class in B: i.e., for any v in F, F = {7/
in B|v <" <7}. Thus if E’is another maximal totally ordered subset
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of B and F" is the set of minimal elements of E’ then either F = F"’
or F' and F' are disjoint. The axiom of choice yields a set B, con-
sisting of one element from each such F, that is one minimal element
from each such E. By the maximality of the E’s, B, is unrelated.
Moreover as every totally ordered subset of B is contained in such
an FE, B ~ B, contains no totally ordered set with more than K — 1
elements. The lemma follows by induction on K.

THEOREM 9. FEwvery Bohr set is the union of at most 4K* unrelat-
ed sets, where K 1is the constant in the definition of Bohr set.

Proof. Combine 7 and 8.

It can be shown that every unrelated subset of the positive cone
S of Z" is finite. This means that, for the case of power series in
n variables, Bohr sets are finite. This statement is equivalent to
Theorem 6, as it is easy to see in any case that there is an infinite
Bohr set in S if and only if there is a Paley multiplier which does
not tend to 0. In fact we can use Theorem 7 in place of the Transla-
tion Lemma in the proof of Theorem 6. Simply observe that the
lacunary sequence discussed in the second paragraph of the proof of
Theorem 6 is increasing with respect to the order induced by S and
can have at most 4K*® elements, contrary to the assumption that it is
infinite. Therefore there is no such sequence and the last paragraph
of the proof of Theorem 6 applies.

We now turn to the case of power series in infinitely many vari-
ables; i.e., G is the complete direct sum T, I" is the direct sum Z*
and S = {N|N; =0 for all j}. Bohr’s example shows that there are
infinite Bohr sets in this case.

In [7, p. 560] Rider gives sufficient arithmetic conditions for a set
to be a Bohr set: Let BcC S satisfy:

(c) the elements of B are linearly independent over the integers.

(d) whenever Ne S and N = Y\F B,N“ where the B, are integers,
¥R, =1, and the N*“ e B for all ¢, then Ne B.

Then B is a Bohr set.

It is easy to see that these conditions force any such B to be
unrelated. For if N < N® are in B, then by (d)

M(k) = N(l) -+ k(Nﬂ) — N(l))

isin B for all k= 0. But M® + N® — 2N® = 0 contrary to (c).
On the other hand, an unrelated set need not be a Bohr set. For
instance let B, ={N in S|N; =0 unless j =2k —1 or 2k, and
S N; =k}. Let B=Ur B,. It is easy to see that B is unrelated.
Let w be the sequence which is 1 on B and 0 elsewhere. Apply
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Theorem 4’ with I = S, using the order induced by {N in Z=|N; =0
for j + 2k and N,, < 0}, to obtain: k+ 1 =3, |wN)[= 4| wlf.
Therefore w is not a Paley multiplier and B is not a Bohr set. We
can modify this example so that it becomes an unrelated Sidon set
which is not a Bohr set.

Nevertheless any set consisting of exactly one element from each
B, satisfies (c) and (d) and is therefore a Bohr set. It is not clear
whether every infinite unrelated set must contain an infinite Bohr set.

It is shown in [2] that there is a connection between Dirichlet
series and power series in infinitely many variables. Theorem 9 can
be restated as follows:

THEOREM. Suppose that B is a set of positive integers so that
there is a constant K, with X.z|c(n)| £ K whenever there is a Dirich-
let series f(s + 1t) = D> c(m)yn=="% with |f(s + )| <1 for all s > 0.
Then B is the union of at most 4K* sets in each of which mo ele-
ment divides any other.

6. Conclusions similar to Theorem 1 can be obtained under weaker
assumptions. Onece again G, I, S, and A are as in § 3.

DEFINITION. A set Bc I' is called a Sidon set if there is a con-
stant K so that 3,;|f(7)| = K| f|l. for every trigonometric poly-
nomial f for which f is 0 off B, [8, §5.7].

THEOREM 10. Let B be a Sidon set and I be a convex subset of
I'. Suppose that f is in LXG) and f(v) = 0 whenever v is in I but not
in B. Let E be a totally ordered subset of BN I. Then 3. |f(7)P <
4K*®|| f ||} The constant K is the one appearing in the definition of
Sidon set and does mot depend on I or E.

Proof. Let ¢ bg a trigonometric polynomial with § = 0 off I.
Put 2 = fxg. Then h =0 off BN I and in particular off B. By the
definition of Sidon set,

(1) S1IF) | = SO | S K kle < K £ ellgll. -

Since the trigonometric polynomials with coefficients supported on
I are dense in Cy(G), (1) holds for all g in C,(G). Putting w(v) = f(7)
we have that ||w||; < K || f||,. By Theorem 4, 3, |w(7)|* < 4K*|| f |
Observe that in the above f is arbitrary off I.

COROLLARY. Let E = {m,};_, be any Hadamard set of positive
integers (i.e., there is a » > 1 so that m,., = xm, for all n). Suppose
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that Jje LXT) and f(m) =0 for all m =0 which are not in E. Then
Selfm)|P < K| flIf for some constant K depending on E.

Proof. It is well known that every Hadamard set is a Sidon set.
Theorem 10 applies with I =S ={m|m = 0} and B = E.

As a Sidon set need not be a Hadamard set Theorem 10 genera-
lizes Theorem 1.

If S is a half space, it is not necessary to know that E is a Sidon
set to obtain the conclusion of Theorem 10.

DEFINITION. A set Ec " is said to be of type A(s), s > 0, if for
some r < s, there is a constant B,, so that || f ||, < B,.|| f||. for every
trigonometric polynomial f whose coefficients are 0 off K.

In [9, Th. 1.4], Rudin shows that if there is such a constant B,,
for one r < s, then there are such constants B,., for all ' <s.

The following argument was shown to us by F. Forelli. It re-
sembles the one used by Rudin in proving Paley’s theorem for half
spaces [8, p. 222], and is the technique mentioned at the end of § 2.

THEOREM 11. Suppose that S is a half-space, that is, that I" is
totally ordered. Let EC S be a A (2) set. Then there is a constant
K so that S| f(MIFPZ K| fI} for every f with f =0 on S ~ E.

Proof. First suppose that f is a trigonometric polynomial. Let
g(@) = S f(7)7(x) be the analytic projection of f. There is a constant
K, so that ||gl|,. =< K,|| f|l. [8, Th. 8-7-6]. The coefficients of ¢
vanish off E so that || gl < Bue:ll 9l = K. || £, say. Then

SIFF=llgl= &FILIE,

the desired result with K = (K,).

We obtain the same conclusion for arbitrary f by convoluting f
with a sequence of trigonometric polynomials which form an approxi-
mate identity.

Every Sidon set is of type 4 (2) [8, §5-7-7]. So when S is a half
space and I = S, Theorem 10 is a special case of Theorem 11. When
S is smaller than a half space, however, the proof of 11 breaks down
for the same reason as Rudin’s proof of Paley’s theorem: The analy-
tie projection may not be a bounded operator from L' to L™ for r<1.

One reason for considering theorems like these is that by an argu-
ment due to Banach [1, Th. a], they are equivalent to theorems about
interpolating I* sequences by Fourier coefficients of continuous func-
tions. We demonstrate this idea by applying it to Theorem 10.
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THEOREM 12. Let B be a Sidon set and I a convex subset of I.
Let E be a totally ordered subset of B N I and suppose that a sequence
v 1s defined on E so that >,z |v(7)|* < co. Then there is a function
fin CAG) with Ff(v) = v(v) for all v in E. Moreover f can be chosen

with || flle < 2K'||v]]; for any fized K’ larger than the constant K
associated with B.

Proof. Let D be the closed subspace of elements f of C, with
Ff=0 on E. Consider the bounded linear operator L:C,/D — I}E)
defined by L([f]) = {f(")};cr. We must show that L is onto and that
| L7'|| £ 2K. The range of L is dense in [*(E) and L is one so that
L is onto if and only if L* is [8, p. 259, C11].

Now (C,/D)* = D* the annihilator of D in (C)*. Also (C)* =
M(G)/(C))*+ where M(G) is the space of bounded regular Borel measures
on G and (C))* is the set of such measures ¢ for which S fle)dpu(—zx) =

0 for all f in C,. Since the trigonometric polynomials in C, are dense,
(CH)"={¢in M(G)|fi=0 on I}. Then D' = {pt+ (C)"|ft =0 off E}.

To any [*(F) sequence w associate the L*G) function g(x) =
Sierw(r(x). L*(w) is the coset g + (C;)* in D*'.

Pick ¢ in (C))* and a finite subset F' of E. Let P be a trigono-
metric polynomial with P =1 on F. Then the function k= (9+ w)xP
is a trigonometric polynomial. On I, fi(y) = 0 so that A(v) = §(7)P(v).
In particular A(v) = 0 on I ~ B. By Theorem 10,

2wt =1 [ = 4K ([ 1|l
But 1A, || < ||g + ¢]|-|| P||, and || P|l, can be taken arbitrarily close
to 1. Therefore 3., |w(7) | < 4K*|| g+ ¢|]* for all finite subsets F' of
E., Hence |lg+ ¢|| = Q2K)C,. | w() )" for all ¢ in (C,)-. That is,

I L*w) || = inf|[g + pf| (e (C)")
= (12K) [[w . .

This means that L* is onto [8, p. 259, Cl11] and || (L*)*| < 2K.
Therefore L is onto.

Moreover || L[| = [ (L)* || = [|(L*)*]| = 2K.

A similar interpolation theorem can be derived from Thecrem 11.

For the circle group, for instance, it is well known that if B is
a Sidon set of integers and v is a [*B) sequence then there is a con-
tinuous f with || f|l. < 2K ||v ||, and fin) = v(n) on B [10, Th. 5.1].
Also if I={n|n, <n <mn,} and v is 0 off IN B then the trigonometric
polynomial g(8) = 3,5 v(n) exp (in 6) has the right coefficients but, as
B is a Sidon set, || g{l. = 1/K) >\;qs | v(n) |, which may be much larger
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than 2K ||v||,. So the interpolating continuous function, in order to
have small norm, may need some nonzero coefficients off B. Theorem
12 says that such an f can still be taken as a trigonometric polyno-
mial with coefficients supported by the smallest interval I containing
the support of wv.

This paper is based on my Ph. D. dissertation at the University
of Wisconsin. Many of the ideas arose in conversations with various
faculty members there. I would especially like to thank Prof. Frank
Forelli for suggesting the problem and supervising my research.
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A SUBCOLLECTION OF ALGEBRAS IN A
COLLECTION OF BANACH SPACES

RoBERT PaAuL Korp

Let D(p, r) with1 =< p < 0 and — o0 < 7 < 4 <o denote the
Banach space consisting of certain analytic functions f(z)
defined in the unit disk, A function f(z) = 35 ,a.2" is a
member of D(p, r) if and only if

io(n+1>r|a,,|p< o .
We define the norm of f in D(p, r) by
1 11pr = (3,00 + 1 1 )

By the product of two functions f and g in D(p, r) we shall
mean their product as functions, i.e., [ f. g](z) = f(z)g(z). The
purpose of this paper is to discover which of the spaces D(p, 7)
are algebras,

THEOREM 1. If D(p,r) ts an algebra, then there exists a real
¢ >0 with | fgll = clifIlllgll for every f,ge D(p,r).

Proof. Let h be a fixed element of D(p,r). It suffices to show
the map f— hf is a bounded linear transformation from D(p, r) to
itself. The proof is based on the closed graph theorem [2, p. 306].
Suppose % is a multiplier from D(p,, 7,) to D(p,, r.) and suppose

(i) fu—f in D(p,, ) and

(ii) Rf.—g in D(p,, 75).

Then f,(z) — f(2) for each z in the unit disk and so A(z) f,.(2) — k() f(2).
On the other hand by (ii), A(z)f.(z) — g(z) for each z in the unit disk.
Hence g = hf, and so by the closed graph theorem multiplication by
h is a continuous linear transformation. It follows from this [2, p. 183]
that D(p,r) is equivalent to a Banach algebra, and from this the
theorem follows immediately.

COROLLARY 1. If D(p,r) is an algebra and ¢ > 0 as above, then
| f@)| < cllfllvfeDp,r) and 2] <1.

Proof. For each f in D(p,r) let T, denote the multiplication
operator from D(p, r) to itself determined by f, i.e., T/(g9) = fg9. Then
for z, satisfying |z,| < 1 the map T,— f(2,) is a multiplicative linear
functional on the Banach algebra of multiplication operators

TfyfeD(py 7')

433
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with the usual norm. Hence

@) | < 1 T1| = sup || fg]l < ol fll o e Dip, 7).

THEOREM 2. If p =1, then D(p, r) s no algebra for r < 0. And
1f 1< p < co, then D(p,r) is no algedbra for r < p — 1,

Proof. The function f(z) = X2, [1/(n + 1)]z* is an unbounded
function on |z2| < 1 but lies in D(1,r) if » <0. And similarly the
function f(z) = 32, 1/[(® + 1) log (n + 1)]z* is an unbounded function
on |z|<1lin D(p,r) if p>1 and »r < p — 1. Therefore by Corollary
1 the spaces are not algebras.

THEOREM 3. If p=1, then D(p,r) ts an algebra for r =0, and
1f 1 < p < o then D(p,r) is an algebra for r > p — 1.

Proof. (i) Suppose first f(z) = Jo,a,2” and g(z) = D o, b,2" lie
in DA, r) with » = 0. We will show fge D(1, r)

Ifal=3% | S5+ 1 S a] by
=33+ el (b,
=SS G+ k+1ylalib] where j=n—k
= 5 5G b 1[0k + 17+ 171k + 1) x| (G + 1[5
= 3 S0 b+ DJGk + G+ ke DG+ 1 [0 (5 + D7 (b
<SS+l (G +1) 15
I

_-.‘
1l

— ©°

lgll .
(ii) Now suppose r > p — 1, and let

fz) = 2 a,2" and g(2) = Si, b,z"

betwo elements of D(p, r). We will show there is a constant K such
that || f9|| < K || f]||lg|l. Define ¢ by the equation 1/p + 1/g =1.

Ifallr = 5 @+ 1) =Sty

{kﬁ; Y[k + 1)'»(n — &k + 12\ + 1) |, | (n — k& + 1)77 | b, |}p .

n
> b,y
k=0

Applying Holder’s inequality we get
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Ifg1”
= 3 0+ 0 {(3 W40k + D77 — & + 1))

n=0

(B 6+ vrlarm—k 1y by

= S (G 3 (6 + 1) @ (0 — kb + 1) [b,
< sup [C,] (1 £17 | 911

where

Co = (0 + 17(3 (Ul + 1770 — b + Lyl e

k=0
We complete the proof of the theorem by showing
sup [C,] < .

C, = (n + 1)f<ki [k + 1) — & + 1)7/?]}4>m

=0

=(n+ 1)r<é,0 1/(n + 2y *{1/(k + 1) + 1/(n — k + 1)}w/v)m
= [0+ D/ + DY E W + 1) + L — & + Do o
=[5 @/ + Dy pre

= 2] S 1 + 1 e

since
rg/p =r/(p—1) > 1.

I should like to thank Professors Allen L. Shields and Gerald
Taylor for some of the ideas in this paper. In addition, I should
like to thank the referee for considerably simplifying the paper.
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TWISTED COHOMOLOGY AND ENUMERATION
OF VECTOR BUNDLES

LAWRENCE L. LARMORE

In the present paper we give a technique for completely
enumerating real 4-plane bundles over a 4-dimensional space,
real 5-plane bundles over a 5-dimensional space, and real 6-
plane bundles over a 6-dimensional space. We give a complete
table of real and complex vector bundles over real projective
space P;, for k < 5. Some interesting results are:

(0.1.1.) Over P;, there are four oriented 4-plane bundles
which could be the normal bundle to an immersion of P? in
R, i.e., have stable class 2k + 2, where % is the canonical
line bundle, Of these, two have a unique complex structure,

(0.1.2,) Over P; there is an oriented 4-plane bundle which
we call C, which has stable class 64 — 2, which has two distinct
complex structures. D, the conjugate of C, i.e., reversed
orientation, has no complex structure.

(0.1.3) Over P, there are no 4-plane bundles of stable

class 5 — 1 or Th — 3.

0.2. In reading the tables (4.5.2) and (4.6), remember that if &:
P, — BO(n) or & P,— BU(n) is a locally oriented (i.e., oriented over
base-point) real or complex vector bundle, and if

a € HYP,; 7, (BO(n), £))

(local coefficients if & unoriented) or a ¢ H*P,; 7,(BU(n)), then & + a
is a vector bundle obtained by cutting out a disk in the top cell of
P, and joining a sphere with some vector bundle on it.

0.3. Since some of the homotopy groups of BO(n) are acted upon
nontrivially by Z, = n,(BO(n)) for n even, we study cohomology with

local coefficients in § 3.

1.2. From here on, we assume that all spaces are connected
C. W.-complexes with base-point, all maps are b.p.p. (base-point-
preserving) and that all homotopies are b.p.p.

For any space Y, we choose a Postnikov system for Y, that is:
for each integer » = 0, a space (Y), and a map P,: Y — (Y), which
induces an isomorphism in homotopy through dimension n, where all
homotopy groups of (Y), are zero above m; for each n =1 a fibration
0.:(Y),—(Y),_, such that p,P, = P,_,. The fiber of each p, is then
an Eilenberg-MacLane space of type (7,(Y),n). If X is a space of
finite dimension m, then [X; Y], the set of homotopy classes of maps

437
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from X to Y, is in one-to-one correspondence with [X; (Y),].

DEFINITION (1.2.1). For any integer n = 1, let G,(Y) be the sheaf
over (Y), whose stalk over every y is defined to be x,(p~'y), which
is isomorphic to 7,(Y) (where p = p, -+ p,: (YY), — (Y),) if n = 2;
7.((Y),y) if n =1, If X is any space and f: X—(Y), is a map, let
.Y, f) be the sheaf f—'G,(Y) over X. This sheaf depends only on
the homotopy class of f. If g: X— (Y), is a map for any integer
m =1, or if h: X— Y is a map, let 7,(Y, g) denote 7, (Y, 0, -+ 0.9)
and let 7,(Y, n) denote 7, (Y, P.h).

DEFINITION (1.2.2). If f and g are maps from X to (Y), for any
n = 2, which agree on A, and if F: X x I —(Y),_, is a homotopy of
p.f with p,g which holds A fixed, let 6*(f, g; F) € H (X, A; 7, (Y, f)) be
the obstruction to lifting F' to a homotopy of f with g which holds
A fixed.

REMARK (1.2.3). If g: X— (YY), is another map which agrees with
f on A, and if G is a homotopy of p,9 with p,h which holds A4
fixed, then o*(f, g; F') + 0™(g, h; G) = 6"(f, h; F + G), where, for each
(x,t)e X x I,
F(z,2t) if 05¢t<4%

E+O@) =tgmat—1) if 3<t<1.

DEFINITION (1.2.4). Let X be a space, let AC X be any subcomplex
(possible empty), let f: X— (YY), be a map for some integer n = 2, and
let a be an element of H*(X, 4; 7, (Y, f)). We define f+ a to be that
map from X to (Y),, unique up to fiber homotopy with A held fixed,
such that »,.(f + @) = p,f and 6*(f, f + @) = a, where C is the constant
homotopy.

REMARK (1.2.5). If b is any other element of H*(X, A4; 7,.(Y, f)),
then f+ (a + b) = (f + a) + b.

REMARK (1.2.6). If g¢: (X', A’) — (X, A) is a map, where (X'A’)
is any other C. W. pair, then (f + a)g = gf + g™a.

MAIN THEOREM (1.2.7). For any ac H(X, A;n (Y, f)),f+ a s
homotophic to f,rel A, if and only if o™(f, f; F') = a for some homotopy
F of p.f with itself which holds A fixed.

Proof. Let C be the constant homotopy of p,f with itself. On
the one hand, if F is any homotopy of p,f with itself which holds
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A fixed, let a = 6"(f, f; F). Then 6(f + a, f; F) =6(f + a, f;C) +
o(f,fiF)= —a+a=0. Thus F may be lifted to a homotopy of
f+ a with f. On the other hand, if G is a homotopy of f + @ with
f, then o"(f, f; p.G) = o*(f, f + a; C) + o*(f + @, f; ».G) = a + 0 = a.

DerINITION (1.2.8). Let L, be the subgroup of H*(X, A; 7, (Y, f))
consisting of all a such that f -+ a is homotopic to frel A. Then the
set of all homotopy (rel A) classes of liftings of p,f to (Y), which
agree with f on A is in a one-to-one correspondence with the quotient
group H*(X, A; n,(Y, f))/L;; each coset a + L, corresponds to f+ a.
If g: X— Y is a map such that p,9g =7, let L =L;,. If h: X—(Y)a
is a map such that p,., --- p,h = f, for m = n, let L} = L,.

REmARk (1.2.9). If ae H*(X, A; 7, (Y, f)), then L, , = L;.

Proof. Let F be any homotopy of p,f = p.(f + a) with itself,
and let C be the constant homotopy. Then 6"(f + a,f + a; F) =
Mf+a, /0 +0"(f, i F)+0"(fif+a;C) = —a+0"(f,f; F) +a=
o*(f, f F).

1.3. In order to calculate L, in specific cases, such as X a
projective space, A = base-point, and Y = BO(m) for some m, we
use a spectral sequence which has the following properties:

(1.3.1) ‘Ep'=Ep'=H"X, A;7(Y,f)if 2<q=<n,1<p<q+1.

(1.3.2) E?* =0 for all other values of p and gq.

1.3.3) d,: Ept— Eptootr=t for all » = 2.

(1.3.4) E»" = H"X, A; (Y, f))/L;, which, by (1.2.7) and (1.2.8)
can be put into one-to-one correspondence with the set of rel 4 homotopy
classes of maps X — (Y), whose projection to (Y),_, is rel A homotopic
to p.f.

Basically, what is happening is as follows (where, for any space
Z and any map g: A— Z, the set of rel A homotopy classes of maps
X — Z which agree with g on A is denoted “[X; Z: ¢g]”); consider the
function:

[X; (V). £ Al 22 (X (V) puf | A]

Now (p,); is just a function of sets, but (p,);'(p.f) is an Abelian group
with 0 the homotopy class of f itself. This group, E*»" of our spectral
sequence, depends on the choice of f.

We define our spectral sequence via an exact couple:

N4
kN2

D;*
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where E?¢ is as defined in (1.3.1) and (1.3.2), where <,, j,, and k, have
bi-degrees (—1, —1), (2,1), and (0, 0) respectively; and where (for all
t < n, M, = space of maps from X to (Y), which agree with p!f on
A, compact-open topology):

(1.3.5) Dp*=m, (M, p;f) if 0=¢=mn, and p <gq.

1.36) Dr*=0if g<por ¢ <O0.

(1.3.7) Dz = Dyt if g > n.
Note that D?¢ is only a group if ¢ = p + 1 and only a set if ¢ = p.
This will not affect our computation, however.

We proceed to define the homomorphisms <, j, and £,.

(1.3.8) If ¢ > n, let 7, be the identity. If ¢ < n, let <, = (p,)..

1.3.9) If p<q and 0=<q<mn, any ze D}’ represents a map
g: X x I''"*—(Y),, where g(z, v) = prf(x) for all (x,v)e X X 0I"?UA x
I'-», Let j.x) = (s*?)""v"*¥g), where s ?: H***X, A; 7. (Y, f)) —
H*¥X x I'*, X x oI"*U A x I'"?; &, (Y, g)) is the (¢ — p)-fold sus-
pension and 7Y?+*(g) is the obstruction to finding a lifting 2: X x I"? —
(Y),s. of g such that h(z, v) = pp,, f(x) for all (¥, v) € X x oI*** U A x I*~»,
(If p>qorq<O0orqz=mn,js,: DI — Ep>eis obviously the zero map,
since Ef*»1*' = (0.) This obstruction is zero if and only if g can be
lifted; it follows immediately that: )

(1.3.10) The sequence D+t 2, ppa 72, oi2att ig exact,

Furthermore, since every homotopy, rel A, of p,f with itself
represents a loop in M,_,:

(1.3.11) L, is the image of j,: Dy »"'— E/". For any 2 < q < n,
1<p=gq, and any ac E??, let

b=s?ae H(X x I'*, X x 0I"* U A x I"*; n (Y, C)) ,

where C(x, v) = p;f(x) for every (x,v)e X x I*"?, Let kya)e D} be
that element represented by the map C + b (cf. 1.2.2). It follows from
(1.2.8) that %, is a homomorphism if p < q; if p = ¢q then D??is only
a set anyway. (For other values of p and ¢, k, = 0.) Since p,(C+b) =
»,C, and C represents 0e D3

(1.3.12) Imk,c Ker ,.

If, on the other hand, a map g: X x I**— (YY), such that g = C
on X X oI'*» JA x I"? is a representative of a given a € Ker,, then
p,9 is homotopic, rel X x 0I? U A x I, to p,C via a homotopy F, then
a = k,((s*?)~0YC, g; F')). Thus:

(1.3.13) Keri,CcImk,.

Somewhat more difficult to show is:

1.3.14) Kerk,=Imy, if p <q.

Proof. Let 2=<q¢=<mn,1<p=<gq. Let g(x,v) = pif(x)e(Y), for
all (x,v)e X x I*?; g represents 0 € D??. Let be E7*. Then b ¢ Kerk,
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if and only if s?be L, (cf.1.2.7). If b = j,a, then a represents F, a
homotopy, rel X x oI U A x I of p,q with itself, and s?b =
0%(g,9; F)e L,. If, on the other hand, s"*be L,, then s*~?b = d%(yg, g; F')
for some homotopy F,rel X x oI U A x I'?, of p,g with itself; let
a = [F]e D**', and j,a = b.

1.4. Since only finitely many of the E, terms are nonzero, we
obtain E. after a finite number of steps. We also have, by straight-
forward algebra, an exact sequence

ke 1o

0 E. D.. D., 0.

Consider now the commutative diagram with exact columns:

D;_Z'n—l = 7T1(Mn_1, pnf) [F]

J2 I
Emr & Epn = HYX, A; w (Y, ) o"(f, f; F)
monolkm k2 v
Drr = Dy X (TeslAl )
epili«, 12 fre.
Dzt —— Dy = (X5 (Y )aes 2uS | Al

A typical element of D7y *"'is a rel X x dI U A x I homotopy class
of homotopies of p,f with itself; if F is such a homotopy, 7,[F] =
o"(f, f; F), by (1.3.9). If xe HYX, A; 7, (Y, f)), ksx = f + 2, by (1.3.11).
Thus Imj, = L;, and E»" = HYX, A; 7Y, f))/L;, the set of rel A
homotopy classes of liftings of p,f.

1.5. If g: (X', A')— (X, A) is a map, g induces a map of spectral
sequences.

(1.5.1) g*:7Er*—79Er for all p,q,r. If h: Y—Z is a map,
where Z is any other space, h determines a map h,:(Y), — (Z),, for
each m = 0 [1]. Then h;: (Y, y,) — 7(Z, 2,) induces a sheaf homo-
morphism from G,(Y) to (h)"'G,(Z) which in turn induces a homo-
morphism.

1.5.2) h,: HYX, A; (Y, /) — H*X, A; 7, (Z, hf)) for all m =0
and a map of spectral sequences

(1.5.3) h,:’Ert—*E? for all p,q, r.

2. Nonbase-point-preserving homotopies.

2.1. Using the techniques of §1, we can compute all b.p.p.
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homotopy classes of maps from a finite-dimensional space X to a
space Y. What if we want to know, instead, all free homotopy
classes of maps?

2.2. Let f: X— Y be any b.p.p. map, and let ae 7 (Y, y,). By
the homotopy extension property, we can find a free homotopy F"
X x I—Y of f such that F'|{x,} x I represents a. Let f*(x) = F(x,1)
for any z ¢ X; f* is unique up to b.p.p. homotopy, and f°(f¢)°® for
any other ben (Y, v,).

THEOREM (2.2.1). If f and g are any b.p.p. maps from X to Y,
then f is freely homotopic to g if and only if f* is b.p.p. homotopic
to g for some acm (Y, y,).

Proof. If f° is b.p.p. homotopic to g, then f is obviously freely
homotopic to g since f is freely homotopic to f¢. If, on the other
hand, F: X x I— Y is a free homotopy of f with g, let a be that
element of 7,(Y,wy, represented by the loop F'|{x,} X I. Then f*=g
(up to b.p.p. homotopy).

THEOREM (2.2.2). If n=2,f: X—(Y), is a map,
ae H(X, xy; 7, (Y, f)),

and bern(Y,y,), then (f + a)® = f + 1%(a), where 1% 1s the homo-
morphism induced by the map 1° (cf.1.5.2), where 1 is the identity
map on (Y),.

Proof. The theorem follows from naturality of obstruction theory.
3. Sheaves of local coefficients.

3.1. The homotopy groups of BO(n) are sometimes acted on
nontrivially by 7,. We must therefore study twisted sheaves.

DEFINITION (3.1.1). A twisted group is an ordered pair (G, T), G
an Abelian group, T: G — G an automorphism of order 2. If X is a
space, a (G, T)-sheaf over X is a fiber bundle over X with fiber G
and structural group Z,, action determined by 7. Let G’[u] be the
(G, T)-sheaf over P. obtained by identifying (x, ¢) with (Tz, Tg) for
all (z, 9)e S x G, where T: S*— S> is the antipodal map.

DEFINITION (3.1.2). If ae HYX, %; Z,) and f: (X, x,) — (P, *) is
a map where f*u = a (u = fundamental class of P.), let G'[a] =
f'G"[u]. We call a the twisting class of G'[a].
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ProposITION (3.1.3). G"[u] is universal in the sense of Steenrod
[6], that is, if G is a (G, T)-sheaf over a space X,G = G"[a] for
some unique a € H\(X, x,; Z,).

Proof. P, = BZ,.

REMARK (38.1.4). If F: X x I— P, is a free homotopy of f with
itself, where f*w = a, then F' induces an automorphism of G”[a]; 1
or T depending on whether F'|{x,} x I is a trivial loop in P, or not.

3.2, If X is a space, BC AcC X are closed, and S is a sheaf
over X, we have a long exact sequence:

- — HY(X, A; S)— H"(X, B; S) — H"(A, B; S)
L H(X, A3 S) — -
ProprosITION (3.2.1). If S is a sheaf over a space X, and ACX
18 closed, we may find an isomorphism
st H¥X, A;S) — H (X X I, X xdlUA X IS x I),
called the suspension, of degree 1, where S X I = p~'S; p: X X I—- X
being the projection.
Proof. Let S be that subsheaf of S such that S|4 =0 and
S| (X — A) = S|(X — A). According to Bredon [1],
H*X, A; S) = HYX; S')
and
H(X xI,Xx0IlUAXI;S x I)= HY(X x I, X x oI; S’ x I).

Now H*(X x I, X x {t}; S) =0 for any tel [1], and by the long
exact sequence of (X x I, X x 0I, X x {1}) and excision we have an
isomorphism H*(X x {0}; S’ x I) — H*(X x I, X x oI; S’ x I) of degree
1; the left group is isomorphic to H*(X; S’).

3.3. Let X be a space, AC X closed. If a:S— S is a homo-
morphism of sheaves over X, we get a homomorphism «,.:H*(X, 4; S) —
H*(X, A; S"). If S and S’ are sheaves over X and

%

E:0 S st s 0

is an extension of S’ by S, then E determines a long exact sequence
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. — HY(X, 4; S) -2 H¥(X, 4; 8") -2 HY(X, 4; §)
i) Hn+1(X, A; S) —_—> e
where 6% is called the Bockstein of E.

ProrosiTiON (8.3.1). If S and S’ are sheaves over X and if

7

E:0 S sr-2, g 0

and
Fio— St u-2.5—0
are elements of Ext (S, S), then 6%+F = 6% + oF.

Proof. We use the Baer sum construction to find
E+ F:0 S V— & 0;

our result follows from the commutative diagram, where each row is
exact:

0— SXS—S" X U— 8 xS —0

I | |

00— S x §S—> w — S —0

d l p

00— S — Vv — S —0.

3.4. As Abelian groups Ext(Z,, Z,) = Z,; the nonzero extension
is Z,. Fix a space X; we study Ext of sheaves over X.

PROPOSITION 3.4.1. As sheaves over X,
Ext (Z,, Z,) = Z, + H\(X, x,; Z,) .
For any ae H'(X, x; Z,), (0, a) corresponds to the extension
B0 — 7, (Z, + Z)[a] 2 2,— 0,

where T(z,y) = (x + ¥, ), i(x) = (,0), and p(x, y) = y; (1, a) corres-
ponds to

E:0— Z,— ZT[a] — Z,— 0,

where T(x) = — x for all xe Z,,m(l) = 2, and e(1) = 1.

Proof. Routine computation shows that E? + EY = E?;¢ for any
x,ye€Z, and a,be H'(X, %,; Z,). On the other hand, suppose that
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7

E-0— 7, G2z, —0

is some extension. Then the stalk of G at =z, is Z,, in which case
G = Z![a] for some ae€ H\X, x,; Z,), or it is Z, + Z,. In that case,
we have an exact sequence of stalks at z,:

0— 2,27, +2,-2.7,—0.

Since G is locally isomorphic to Z, + Z,, it is a fiber bundle with fiber
Z, + Z, and structural group Aut(Z, + Z,). But the only nontrivial
automorphism which commutes with 4,: Z,— Z, + Z, and p,: Z, + Z,—
Z, is T given above. So the structural group of G may be reduced
to Z,; G = (Z, + Z,)"[a] for some ac HYX, x,; Z,). This gives us the
isomorphism.

We have the following commutative diagram with both rows exact,
for any a e H(X, x,; Z,):

0— Z"[a] — Z7[a] — Z,— 0

O

0— 7, —7n——>Z4T[a]—e—>Z2—)O.

DEFINITION (3.4.2). Let 8"[a] (or simply A7, when a is understood)
denote the Bockstein of the top row of the above diagram, and let
(SH[a] (or (S))") denote the Bockstein of the bottom row.

REMARK (3.4.3). I1.B8" = (S)T.

ProPOSITION (3.4.4). For any n =0 and any xec HY(X, A: Z,),
(S)"x = Sz + 2U a.

Proof. Samelson [5].

PROPOSITION (3.4.5). For any n =0 and any xe HYX, A; Z,)
o) = xUa, where 6 s the Bockstein of Ey:0— Z,— (Z, + Z,)"[a] —
Z,— 0.

Proof. The result follows immediately from (3.3.1), (3.4.1), and
(3.4.4).

3.5. Let T(n,m)=(m — n,m) for any (n, m)e Z+ Z. If S and
S’ are sheaves over a space X, and if p#:SQ S — S’ is a sheaf
homomorphism, then we have a cup product defined from

H*(X, A4; S) ® H*(X, B; S
to H¥(X, AU B; S”) for any closed Ac X and Bc X. We have thus
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cup products generated by the following relations:
Z"a] ® Z"[b] = Z"[a + b], Z, R (Z. + Z,)"[a]
=(Z, + Z)"[a), ZQ (Z + Z)"[a]
=(Z + Z)'[a], Z"[e] ® (Z + Z)"[a] = (Z + Z)"[a]
(where 7 Q@ (p, @) = (np, 2np — nq)), Z{[a] Q Z[[b] = Z[a + b],
and many others.
Let (X, A) be a C. W.-pair. Let ae H'(X, x,; Z,) and
a = B"[a](1) e H(X; Z"[a]) .
We have the following commutative diagram; where
2 = (2,0), T(z,y) = (¥ — 2, 9), 5.@ = (v, 2v),
and q,(w,y) = y — 2.

0 — Z™a] 5 (Z + Z)'[a] 2> Z 0

| |

0— 7, —25(Z+ Z)a] -2 Z, 0

[ |

0—s 2 Lz + Z)la] -2 Z7a] 0.

ProposITION (3.5.1). The Bockstein homomorphisms 6, and 6, are
both cup products with «.

Proof. By (3.4.3) and (3.4.4) we may compute that
H'(P..; Z"[u]) = Z,

and is generated by # = B7(1).

Let e HY(X, A; Z). If n =0, then the universal example is
X=P,,A=@,x=1. Then a =u. Now H'P.;Z") =0, 80 (J)4:
H(P,; Z)+~— HP.;(Z + Z)7) is an isomorphism, and p,j, = 2. Thus
1¢ Im (p.)s, s0 0,(1) =%. If » =1, the universal example is X =
K(Z,n) X P,,A=%xP,,x=wv, x1, Then a = p*u, where p: X — P,
is projection onto the second factor. Now routine computations using
(3.4.3) and (3.4.4) show that H"*'(X, A; Z") = Z, and is generated by
(v, X 1) U p*#, which is mapped onto //,v, X v under /I.: H*(; Z*) —
H*(; Z,). The result follows from (3.4.5).

Let xe HY(X, A; Z%). If n=0,x=0. If n =1, the universal
example is X = K(Z",n), A= P, and « =L, where K(Z",n) is
obtained as follows:* Let K(Z,n) be a topogical group, let T(g,y) =
(97, Ty) for all ge K(Z,n) and ye S°. Let

1 Personal communication from C. T. C. Wall.
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K(Z",n) = K(Z,n) x S=/T .

‘We have inclusion and projection

P K(Z7, n) - P,

where i[y] = [*, y] and p[g, y] = [¥]; P.. may thus be considered to be
a subset of K(Z7,n), and its cohomology group is a direct summand'.
Then v’ e HY(K(Z", n), P..; Z"[«]) is the fundamental class.

HYX, A; Z) = Z,

is generated by I1.vf; H**\X, A; Z,) = Z, generated by II.v! U u.
Thus, by (3.4.3) and (3.4.4), H**Y(X, A; Z) = Z, generated by v! U1,
and the result follows from (3.4.5).

(3.5.2). We summarize the results of (3.4.5) and (3.5.1) in the
following commutative diagram with all rows exact:

oo HY(X, A5 27 0 BX, 452+ 2)) T2 HNX, 43 2) 2 B, A 2T —

! s lu* lm J'm
s HX, 4 Z) % BY(X, A (Ze+ 200 P HYX, 43 2) 5 HYX, A Z) —— e
I//* T 1l ]n,
S HNX A Z) U HNX, A2+ 2)) P BX, 4;27) S HX, A Z) —

3.6. Applying the results of 3.4 and 3.5, we compute the coho-
mology of real projective space P,, for £ = 1:

Z,, generated by u", if n <k

3.6.1 H*(P,; Z,) = | )
( ) (Pi; Z.) 0 ifn>k.

Z,, generated by u", if n
even, 0 <n =k

Z, generated by 1, if n =0

(3.6.2) H"(P,;Z)={0, if n odd, 0 <n <k

Z, generated by t(P,), the
top class, if » =k odd

0 ifn>Fk.

Z,, generated by #", if n odd,
0O<n=sk

0, if n even, 0 <n<k

Z, generated by t(P,), the top
class, if #» = k even

0, if n >Fk.

(3.6.3) H"(Py; Z"[u]) =
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0, if n=0
(3.6.4) H"P,, *; Z"[u]) = {Z, generated by #, if n=1.
\H"(Py; Z"[u]) if n>1

(3.6.5) H"(P,; Z, + Z,) = HYP,; Z,) © HY(P,; Z,) .
(3.6.6) H(P,; Z + Z) = H(P,; Z)  H*(P,; Z) .
Z, generated by (5)).1,

if n=20

0, f0<n<k

Z, generated by (i) .8(P;) =
(2)7't(Py) if n =k is even

Z, generated by (7.).t(P:) =
()7t(Py) if m =k is odd

(3.6.7)  H"(Py;(Z + Z)"[u]) =

0, if n >k
Z,, generated by (7,),1
ifn=0

0, if 0<n<k

Z,, generated by (p,)z'u*
(= I1,3(3),8(Py) if k
even, = I1,3(7,)t(Py) if k
odd) if n =k

0, if n>k.

(3.6.8) H"(Py; (2. + Zy)"[u]) =

4. Evaluation of the differentials.

4.1. We need two remarks.

(4.1.1) If Y, and Y, are spaces, and h: Y, — Y, is a map, h induces
a map (Y)..,— (Y., and a sheaf homomorphism #&: 7, (Y,, 1) —
T.(Yy,h). If k' and kr+' are the m™ k-invariants of Y, and Y,
respectively, kit = h*kr+te H(Y,)us; Ta(Ys, B)).

(4.1.2) Let X and Y be spaces, 2 < m < n integers such that
7(Y)=0 for all m <k<n, and f: X—(Y), a map. If the k-
invariant k"' of Y is based on the relation 6(1, k™*') = 0, where ¢
is a map cohomology operation and 1:(Y),_, — (Y),_, is the identity
map, then; for any

re Hm—l(X, n-m(Yy f))y dr(x) = s_zﬁ(pZ—lny Szx)s r=mn—m+ 1 ’
where P: X x S*— X is projection,

st H*(X, 2,) — H**(X x S%, X x * U, x S
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is suspension and p%_, = D, c+* 0u: (Y) = (Y)ese

Proof. Let (S', *) be a circle, which we think of as the unit
interval with end-points identified. Let C: X x S'— (Y), be the
constant homotopy of pzf with itself. Now p,(C + sx) = p,.C, where
C + sx is as defined in (1.2.2) and d,(x) = 6*(f, f; C + sx) by (1.3).
Finally, so"(f, f: C + sx) = (C + sx)*k**' = s~'0(p=_, fP, s*x).

4.2, Kervaire [3, p.162] gives us the following table of homotopy
groups:

BO(1) BO(2) BO@) BO#4) BO(B) BO®) BOn) forT=n<o

1 Z> Z Zs Zs A VA Z>
72 0 Z Z> Z2 Z> Zs Zs
73 0 0 0 0 0 0 0
74 0 0 VA Z+Z A Z Z
75 0 0 Z> Zs+ Z> Zs 0 0
6 0 0 Z> Zs+ Z2 Zs VA 0.

Now 7, (BO(n)) = Z, acts on 7, (BO(n)) for all » =1,k = 1; this
action is trivial if 7, (BO(n)) is stable, that is, k¥ < n; because BO is
simple. For 7 even, Z, acts nontrivially on 7,(BO(n)), because the
first relative k-invariant of BO(n) — BO is

b = 8w, € H(BO; 27w .

(Because /1 .k"**, the reduction mod 2, must be w,,,). Z, acts trivially
on 7,(BO(3)) because if acts trivially on =#,(BO) and the map Z =
7, (BO(3)) — w,(BO) = Z is just multiplication by 2. Since Z, can only
act trivially on Z,, we need only now examine the action on 7 (BO(4))
for k = 4,5, 6.

ProPOSITION (4.2.1). We may choose generators x and y of
w,(BO4)) such that T(x) = — x, T(y) = © + y, and the maps

13: 7(BO(3)) — w(BO4)) and 1ii: 7 (BO(4)) — w(BO(5))
have the properties 1)(1) = v + 2y, 1i(x) = 0 and ii(y) = 1.

Proof. We know that 4! is onto. Choose x to be a generator of
Ker 4!, and pick a such that dia = 1. Now 2a — 3(1) € Ker ¢!, since
243 = 2. So 2a — 73(1) is a multiple of x. It can’t be an even multiple,
because then 4%(1) would be divisible by 2, and iz, (BO(3)) is a direct
summand of 7,(BO(4)). So for some £k, 2a — ¥(1) = 2k — 1)x. Let y =
a — kx; then 7%(1) = x + 2y, #4(x) = 0, and 4i(y) = 1. Now T(x) € Ker <},
so T(x) must be —x. T(x+ 2y) =2 + 2y so T(y) = 3(x + 2y — Tx) =
x + y. We are done.
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We represent m,(BO(4)) as ordered pairs of integers, where (p, q)
represents px + qy.

PROPOSITION (4.2.2). 7,(BO(4)) and my(BO(4)) may be represented
as ordered pairs of elements of Z,, such that ii(x) = 13(v) = (x, 0),
(@, y) = (@, y) =y, and T(z,y) = (v + y,y) for all x,y¢e Z,.

Proof. m(BO(n)) and my(BO(n)) are the images, under 7 and 7
respectively, of 7, (BO(n)), for n = 3, 4, or 5. Apply (4.2.1).

REMARK (4.2.3). There are two possible choices of « in (4.2.1) we
retroactively make that choice such that the image of 7,(BU(2)) = Z,,
under the classifying map of the reallification BU(2) — BO(4), is generated
by (0, 1) € 7,(BO(4)).

4.3. We need to describe k-invariants for BO(n).
(4.3.1) For all n,k* of BO(n) is zero, since the projection

P: BO(n) — (BO(n)), = K(Z, 1) = BO(1)

has a lifting, namely, the map induced by the inclusion of O(1) in
O(n). Also k* = 0, since m,(BO(n)) = 0.

(4.3.2) For BO(@3), ¥’ = + B,Pw,, where B, is the Bockstein of Z—
Z—Z, and B: H*(; Z,) — H*(; Z,) is the Pontrjagin square [2], and k°
is based on the relation S://.k° + w, U Il .k° = 0.

(4.3.8) For BO(5), k* = 28, Bw, = Bw: (see [4]), and k°® = w,, based
on the relation S://.k° + w, U I,k = 0.

(4.3.4) Using (4.3.2), (4.3.3), we get that for BO4), k¥ = (8, Bw,,
where ¢: H*(; Z) — H*(; (Z + Z)") is (j,)« as described in (8.5.2), and
k* is of order 4 and generates H*((BO(4)),; (Z + Z)"[w,]). Also, k°® is
based on the relation S:/1.k° + w, U Il k°, where

Si: H*( (Z, + Z)"[a]) — H*(; (Z: + Z)"[a])

is that unique operation which is ordinary S on each factor when
a =0, and w, U is as described in (3.5).

(4.3.5) For BO(6), k* = 28,Bw, = Bw}, and k" = B'[w,|w,, based
on the relation B"(S:/ . Kk + w, U Il k°) = 0.

4.4. Using (4.1.1) and (4.1.2) we can now evaluate some differen-
tials d, = df for a map f: X — (Y),.

(4.4.1) If Y = BO() or BO®2),d, = 0.

(4.4.2) If Y=BO@B) and k<4,d,=0. If k=4,d,=0: by
(4.1.2), dy(x) = B(@* + x U f*w,) e H(X; Z) for all xe H'(X; Z,). This
was also known to Dold and Whitney [2]. If
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k =5, d\(x) = Sil & + f*w, U Il ,x € H(X; Z,) ,

for all v e H¥X; Z) by (4.1.2); d, = 0, and d, requires special compu-
tation.

(4.4.3) If Y=BOM4) and k< 4,d,=0. If k=4,d,=0; and by
(4.1.2),

dy(®) = B(@* + x U f*w,) € HY(X; (Z + Z)"[f*w.])
for all x e H(X; Z,); if
k =5,dyx) = S:H*x + ffw, U Il .o € HY(X; (2, + Z)"[f*w.])

for all xe H¥(X;(Z + Z)"[f*w,]) by (4.1.2), d, =0, and d, must be
computed specially.
(4.4.4) If Y = BOG) and k < 5,d, = 0. If

k=5,d(x) = Sl .x + f*w,U Il ,x e H(X; Z,)
for all xe HY(X; Z),d, = 0, and

d(x) = a* + fFfw, Ut + fFfw, U + frfw, U’
+ frw, Uz + Imd,e B2 = HYX; Z)/Im d,

for all xe H(X; Z,).

Proof. We have a map S: SK(Z,1)—BSO, such that S*w,,, = su’
for all 7 =1, where u is the fundamental class. Now (BO(5)), = (BO),
has the same homotopy as BO up through dimension 7, so we identify
H*((BO(5)), with H*(BO) for 0 <k <7. Let h: YK(Z, 1)—(BO(5)), be
given by the commutative diagram:

SK(Z, 1) - (BOG)).= (BO),

N Ir

BSO — BO.

(BO(5)), has an H-space structure p: (BO(5)), x (BO(5)),— (BO(5)), and
prws = S, w; X we_;. Let QX be the space obtained from X x S* by
collapsing x, x S'; let J: QX — 3 X be the map which collapses X x *,
and let p,:QX— X be projection onto the first factor. For any
ze(H*X), let qv = pfx and let Qx = J*sx, both in H*(QX). We
showed in [4, 5.1] that qa U ¢b = qaUb),qa UQb=Q(aUb), and
Qa U Qb=0 for all a,be H*(X). Let C:X— K(Z,,1) be a classifying
map for a given xe HY(X; Z,), and let F: QX — (BO(5)), be a map,
which represents a homotopy of p,f with itself, defined by composing
the following maps:
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QX -1 QX x Qx TP, sx % x 22, yr(2,1) % (BOG)).

"X1 ., (BO®). x (BOG), — (BOG)), .

By (1.3), d,(x) contains ¢°(f, f; F'). Now routine computation shows
that f*w, = Q@° + &'f*w, + 2*f*w, + 2*f*w, + xf*w,), and the result
follows from [4, 5.2].

(44.5) If Y=BO®) and k< 6,d,=0. If k=6,d,=0 and
dy(x) = BY(S; 1 yx + f*w,U Il @) e H(X; Z'[ f*w,]) for all xe HYX; Z);
d, = 0 and

dy(®) = B"(@° + @'f*w, + *f*w, + *f*w, + xf*w,)
+ Imd,e E¥* = HNX; Z"[f *w,])/Im d,

for all x ¢ H'(X; Z,).

Proof. same as (4.4.4).

4.5. We are now ready to classify real vector bundles over P,,
for k < 5.

DEFINITION (4.5.1). A locally oriented real n-dimensional vector
bundle over a space X shall be a b.p.p. homotopy class of maps from
X to BO(n). If f: X— BO(n) represents a locally oriented v.b. &,
let ~ &, or & conjugate, be that locally oriented v.b. given by a map
g: X — BO(n) which is connected to f via a free homotopy which
sends the base-point of X around a nontrivial loop of BO(n). Obviously
~ &=¢, and conjugate classes of locally oriented vector bundles
correspond to equivalence classes of vector bundles.

TABLE (4.5.2). For k=1, let h: P,— BO(1) be the canonical line
bundle. Let “@” denote Whitney sum. We give a complete list of
all locally oriented real n-dimensional vector bundles over P,, each =
and k; all bundles are self-conjugate unless otherwise specified.

Let G denote (q)7't(P,) = 4(t,).t(P,) which generates

HYPg; (Z + Z)"[u]) .

Also (p¥)~'w® generates H(P;; (Z, + Z,)"[u]). Locally oriented real
n-dimensional vector bundles over P,, for n — 1 < k < 5:

Over P; Over P;
1 ‘ 2 1] 2 3
h hH1 h Tpr = (D 1) + pt(Ps), for all peZ; hP2

stable class » + 1 if p even, 2hP1 =3+ u?
3h — 1 if p odd; ~Tp = T—»p. 3h =(hP2) + u?
2h = 2 + @2
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Over P Over P,
1(2 3 4 1|2 3=38+ut 4=4+(u4,0) 5
h |RPL| P2 |RP3 ||h|hPL| RP2 2hH2 hP4
2h |2RPB1|2RD2| [2h | (WD2)+it | 2hD2+ (4, 0) 2hP3
3h 3np1 2hP1 4h=4+(0,a%)=4h+(#4,0)| 3hP2
(2hD1)+a* | 2hP2+(0, @4); stable 4hp1
3h=3h+a* class 6n—2 5h
2hP2+ (ut i) = (ChP2)+(0, u4))P1;
~(2hP2+(0, @*)) stably 6hA—1
E,=h®P3+pG for all | FiP1; stable class
pE Z; stable class Th—2
h+3 if p even, 5h—1
if p odd; ~E,=FE_,
Fp=3h@P1+ pG for all
pE Z; stable class
3h+1 if p even,
Th—3 if p odd;
~Fp=F_p
Over Ps
12 |3 4 5=5-+us 6
k. hD1| 3+us 44-(us, 0) P4 hd5
2h hP2 440, ud) hP4d+us 2hP4
hD2+us 44+ (us, us) =~(4+(0, ud) 2hP3 3hP3
A=A+us; hrP3 2hP3+us 4hp2
A|Ps=hrP2+at | hP3+(p;) tus 3hD2
2hP1 2hP2 3hP2+us 5hP1
2hP1+us 2hP2+(us, 0) 4hP1 6h
B=B+us; 2hP2+(0, us) 4hPl+usd ChrP1
B|Ps=2hP1+a* | 2hP2+(us, u®)=~2hP2+(0,u®)) | 5Sh=5h-+us
3h B@1=B®P1+(us, 0) CP1=CP1+us
3h+ud BP1+(0, us)=BPD1+(ud, us) CPHh=CODh+us

3hP1
ShE1+(p)~1us
4h
4h+(us, 0)
4h+(0, us)
4h+(us, us)=~(4h+(0, us))
C=C+(0,u5); C|Ps=2hP2+(0,a*)
D=D+(0,uw)=~C
C+ (us, 0)=C+ (u?, ud)
D +(us, 0)=
~(C+(us, 0)) =D+ (us, us)
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4.6. Similarly, we can classify all complex vector bundles over
P,, for k <5. We give a table of homotopy groups:

BU(1) BU(2) BU(n) for 3=n =
w1 0 0 0
) Z Z A
73 0 0 0
74 VA Z Z
s 0 Z2 0

The only nonzero k-invariant in this range is k° of BU(2), which
is 11,(cic;) + Sil . c,, where c; € H¥(BU(2); Z) are the Chern classes.
We thus have:

REMARK (4.6.1). For any space X, all complex line bundles over
X correspond to H*X; Z).

REMARK (4.6.2). For any space X of dimension < 5, all complex
n-bundles, for » = 3, over X correspond to KU(X), satisfying the
exact sequence 0 — HY(X; Z) - KU(X)— H¥(X; Z) — 0.

REMARK (4.6.3). If f: X — (BU(2)); is a map, then

dy(x) = I (c,®) + S}l .0 e H(X; Z))
for all xe HYX; Z);d, = 0; d,(x) = I .(f*c, U x) + Imd, for all
xe H(X; Z) .
Proof. Let S:S*= YK(Z,1)— BU be the generator of 7,(BU);

then S*¢, = o, the fundamental class of S?, and S*¢, = 0. The result
follows just as in (4.4.4).

TABLE (4.6.4). We summarize complex n-bundles over P,,2n —
1 < k £5. The reallification is given in square brackets.

Over P; Over P3
1 [2] 2 [4] 1 [4] 2 [4]
H [2h] HP1=2+ uz [2h D 2] H [2R] Hpl [2h B 2]
Over Py
1 [2] 2 [4] 3 (6]
H [2h] HP1l [2h & 2] Hp2 [2h B 4]
2H = 2 + a4 [4R] 2HP1 =3 + it [4h 6B 2]
HP1+ at [2h B 2 + (a4, 0)] SH=H®2+ it [6A]

Stable class 3H — 1
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Over Ps

1 [2] 2 [4]

H [2h] 2+ wus [4 + (0, u3)]
HPp1 [2h & 2]
HP1Dus [2h B 2 + (0, u9)]
2H [4R]
2H + us [4% + (0, u3)]
C [C]
C + ub [C]

4.7. We give a few representative examples of evaluating those
difficult differentials. Is f: P,— (BO,); is a map representing a 4-plane
bundle &, then df(u) is defined if and only if

di(u) = (308" + uf*w,) = 0e H'(Py; (Z + Z)'[f*w.]) .

If dy(w) = 0, then d{(u) = 0 if and only if there is a map F:QP,—
(BO,); which represents a homotopy of f with itself, such that
F*w, = qf*w, + Qu, where QX is as given in [4; 5].

ExaMpLE (4.7.1). If & =4 or 4h, then f*w, =0, so d,(u) = (%, 0)
and d,(u) is not defined. Thus 4,4 + (%, 0),4 + (0, %), and 4 + (u°, u°)
are all distinct oriented vector bundles.

ExampLE (4.7.2). If & =2h & 2, then f*w, = u?, so d,(u) = 0.

Let 7, be that line bundle over QP; such that w,(y,) = qu; now
2-plane bundles over a space X with w, =2« are classified by H*X; Z*[]);
let 7, be that 2-plane bundle over QP; with w,(7,) = qu classified by
Qu. Then wy(7,) = Qu. Let ¢: QP;,— BO(4) be the classifying map
of n.P7n.DL c*w, = qu’ + Qu and (9 D7.P1)|P,=2nPH2. Thus
F, the projection of ¢ onto (BO(4)),, and d{(u) = 0.

ExaMPLE (4.7.3). If & = C, then f*w, = u?, so d{(u) = 0, and df(u)
is defined. Now p,C = p,(2h D 2) + (0, u©?),
F
QP ——— (30(4))5
AN

U O\

/N
2D\ l

C

Ps
P, ———3(BO(4)),
5(2hB2)

Ds

and so d(u) = 0 if and only if we can lift the map
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D:F" + (0, w'): Qp; — (BO(4)),

to (BO(4));, where F' is the map given in (4.7.2). Now the k-invariant
k® is based on the relation S/7.k°* + w, U I1,.k* = 0, and (p,F)*k® = 0,
so (p:F + a)*k* = S} .a + (pF')*w, U Il ,a which, when a = ¢(0, %),
equals S7q(0, u*) + (qu’ + Qu) U ¢(0, u*) = Q(0, «*). So, by [4; 5.2], d,(u) =
(0, ). Thus C + (0,%°) = C, but C + (% 0) is different. We also
have that there are two complex structures on C, because since C
is the reallification of the complex bundle C, C = C + (0, %°) is the
reallification of C + u°.

4.8. We would like to know how vector bundles behave under
tensor products. If L is any line bundle over any space, L QL = 1.
Furthermore:

REMARK (4.8.1). If 7, and 7, are locally oriented real n-plane
bundles over a space X, which agree on X*!, and if & is a locally
oriented real m-plane bundle over X, then ¢,0%(n,, 17,) = 0*(n, B &, n, P &)
and j,.0*(n,n,) = d'"N, K &, 1, K &), where ¢: BO(n) — BO(n + m) and
j4: BO(n) < BO(nm) are the maps induced by the inclusion of O(n) in
O(n + m) and O(nm). Similarly for complex vector bundles.

REMARK (4.8.2). If & is an oriented real vector bundle which has
a complex structure, and if » is any other locally oriented real vector
bundle, then £ ® 7 also has a complex structure.

Proof. Let C(y) be the complexification of 7, and let & be a
complex bundle whose reallification is £&. Then we can see routinely
that the reallification of & Q C(n) is &£ Q 7.

With the above information, we can almost completely determine
the action of “@” and “®’” on all locally oriented real vector bundles
over P,, k < 5. For example,

ARh=B,CQRh=C,4Qh =4h,4 + (0, u)) @ h = 4h + (0, v*),
T,Qh =T, E,Qh =F,, (4dh + (@', )Pl =4rP1 + v’ .
The only unsolved questions are whether A@r = B 1; it is also

possible that A h = BA1 + (0, %); and whether B 2 equals 22 P 3
or 2k & 3 + u’.
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A RADICAL COINCIDING WITH THE LOWER RADICAL
IN ASSOCIATIVE AND ALTERNATIVE RINGS

W.G. LEAVITT AND YU-LEE LEE

In a recent paper by the second author a construction was
given which was shown to coincide with the lower radical in
all associative rings. In the present paper this construction
is considered in various classes of not necessarily associative
rings. It is shown that while the construction still defines a
radical, it will in general properly contain the lower radical.
More precisely, it is shown that the radical constructed coincides
with the lower radical if the semisimple class of the lower
radical is hereditary (or, equivalently, if the radical of a ring
always contains the radicals of all its ideals),

From this condition it follows that the construction coincides with
the lower radical in all associative and alternative rings, but an
example is given which shows that this is not true in general. We
conclude by showing that an apparently quite different construction
due to J.F. Watters [5] yields exactly the same class of rings.

We will assume that all rings considered in this paper are from
some universal class Z of not necessarily associative rings. We will
use the following construction, which is equivalent to that of [4].
Let .o~ be an arbitrary class of rings and .o, its homomorphic closure.
Then define .7, = {Re % | R has a nonzero ideal I¢.%7, |}, and 4, =
U. .. Then define /(&) = {Re % | R/I € .oz, for all ideals I of E}.
It is clear from this definition that we have

LEMMA 1. & @S 77(5Y).
LEMMA 2. W& F tmplies 27() S 27 (<Z).

It is also easy to check that the proof of [4, Th. 1] makes no
use of associativity. Thus we may state

THEOREM 1. 2/(.%7) 4s a radical class.

We will replace [4, Th. 2] by the following generalization:

THEOREM 2. If &7 is a radical sub-class of 7/, then &7 = 2/ ()
if either of the following two equivalent conditions is satisfied:

(1) The semisimple class L of & 1is hereditary,

(ii) Writing FP(R) for the F-radical of R, then F(I)S F(R)

459
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for every ideal I of every Re Z.

Proof. The equivalence of (i) and (ii) follows from [1, Lemma 2,
p. 595]. Thus assume that .&%<? is hereditary. By Lemma 1 we have
P = 77 () and suppose there could exist Re 2/(&”), Re¢.Z”. Then
R has a nonzero homomorphic image in 5727, so (without loss of
generality) assume Re 2/(&”) N $%<?. Thus Re &#, for some n, and
since 7N =0 it is clear that n = 1. Let m be the smallest
integer such that there exists a nonzero Re &2, N .&“<” Then R has
a nonzero ideal I'e &?, .. Since ¥ is hereditary Ie .5%<” contrary
to the minimality of m. Thus & = Z/ ().

COROLLARY 1. If .27 s a radical class then in any associative
or alternative ring the F-radical and the %/ (F°)-radical coincide.

Proof. This is clear since the intersection of .2 with any universal
associative or alternative class is again a radical class and semisimple
clagses are always hereditary in associative [2, Corollary 2, p. 125] or
alternative classes [1, Corollary 2, p. 602].

Note that a sufficient condition for property (ii) is that <2(I)
shall be an ideal of B. This is already known to be true in associative
rings [2, Th. 47, p. 124] or alternative rings [1, Th. 2, p. 600]. From
this last remark it also follows that the proof of [4, Th. 2] could
have been applied equally well to alternative rings.

THEOREM 3. Let #(.%7) be the lower radical for an arbitrary
class 7. Then F(7) = 2/ () if FF(7) is hereditary.

Proof. Suppose .2 () is hereditary. From Lemma 1 and the
minimality of (%) among radical classes containing .© [2, Lemma
5, p. 13] it follows that () S 27(.%). But by Lemma 2, .7 S <2(.%)
implies 2/ (%) S 27 (£ (.%)). Then if 527 (.%) is hereditary if follows
from Theorem 2 that 2/( (%)) = L () and s0 L () = 2/ (.Y).

We can thus conclude that the Z/(.o)-radical coincides with the
lower radical in any associative or alternative ring.

Note. The class _# of all idempotent rings is a radical class
whose semisimple class is nonhereditary [3, Th. 2, p. 1116]. It is also
true that 2/(_#) = _# for if R¢ _# then since all subrings of R/R?
are zero rings, R/R*® has no accessible subrings in ..%Z Thus R¢ 2/(_#)
and so Z(.“)=._% This example shows that the conditions of
Theorems 2 and 3 are not necessary.

Also remark that there are classes & for which 2/(%) is not
the lower radical. One example is the class <& = &°(2") where 2
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is the class of all zero rings. Let R be the ring constructed [see 3]
over Z, in symbols u, v, w satisfying relations «* = w* = 0, uv = vu =
uw =u, and wu = vw = wv = v* = v. The only ideal of R is H =
{0, w, v, w + v} for which H*= H. Now .7 is a hereditary class
so by a result of A.E. Hoffman [see 6, Theorem 1,] we have
FANF(%)=0. Now the lower radical of a hereditary class is
hereditary. Thus (%) is hereditary and so R¢ <°(2°). On the
other hand, R/H ¢ % and R has the accessible subring J = {0, u} e 2",
Hence Re 2/(2°).

It should also be noted that while 2/(.%7) need not equal &7 (%),
it is nevertheless true for all classes .o that 2/((.¥)) = 2/(.¥).
This is an easy consequence of the fact that /(2 (%)) = 27(.%).

In a paper [5] which is soon to appear the following construction
is given: Let _# be an arbitrary homomorphically closed subclass
of some universal class 2. For Re % define M,, = 0, and for an
arbitrary ordinal a M,, = Usco M5, if a is a limit ordinal, or
M,./M,, is the ideal of R/M,, generated by all accessible _~ -subrings
of R/M,;, whenever & = 8 + 1. If v is the ordinal for which M,, =
M,..,, write M,(R) = M,, and let .2 = {Re Z | M,(R) = R}.

THEOREM 4. 7, = 2/ (.#).

Proof. Let R be a ring for which M,(R) = R, and let I == R be
an ideal of R. Then 0 = M,,< I, and there must exist some ordinal
« such that M,, =1 but M,,..&I. Write A= M,,, B = M,.,,. Since
I is an ideal of R, it follows from the definition that B/A contains
an accessible _# -subring W/A of R/A such that WZI. Then the
natural homomorphism R/A — R/I gives W/A — W' with W' accessible.
Thus since . is homomorphically closed, we have a nonzero W’'e _~ .
It follows that R/Ie_#, for some » and since I was arbitrary,
Rez (7). Thus 7Sz (#).

The converse is clear, for suppose Re 2/(_#) and I = M,(R) =
M,(R). If I+ R, it follows that R/I has an accessible _# -subring,
contradicting M, (R) = M,,,(R). Thus M,(R) = R whence Rc _~," and
so #) = 2 (A).
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CHARACTERIZATION OF CERTAIN INVARIANT
SUBSPACES OF H” AND L» SPACES DERIVED
FROM LOGMODULAR ALGEBRAS

SAMUEL MERRILL, III, AND NAND LAL

Let A= A(X) be a logmodular algebra and m a represent-
ing measure on X associated with a nontrivial Gleason part.
For 1 =< p < o0, let H?(dm) denote the closure of A in L*(dm)
(w* closure for p = o), A closed subspace M of H?(dm) or
L*(dm) is called invariant if f€ M and g € A imply that fg e M.
The main result of this paper is a characterization of the
invariant subspaces which satisfy a weaker hypothesis than
that required in the usual form of the generalized Beurling
theorem, as given by Hoffman or Srinivasan.

For 1 < p < o, let I be the subspace of functions in H"(dm)
vanishing on the Gleason part of m and let 4, = { feA: S fdm = O}.

THEOREM. Let M be a closed invariant subspace of L*(dm) such
that the linear span of A,M is dense in M but the subspace R =
{fe M: f 1 I"M} is nontrivial and has the same support set E as M.
Then M has the form y-F-(I®)* for some unimodular function F.

A modified form of the result holds for 1 < p < . This theorem
is applied to give a complete characterization of the invariant subspaces
of L*(dm) when A is the standard algebra on the torus associated with

a lexicographic ordering of the dual group and m is normalized Haar
measure.

1. Invariant subspaces. In 1949 Beurling [1], using function
analytic methods, showed that all the closed invariant subspaces of
H* of the circle have the form M = FH? where |F|=1 a.e. In
1958 Helson and Lowdenslager [3] and [4] extended the result to
some but not all subspaces of the H? space of the torus, using Hilbert
space methods. In the past 10 years the latter arguments have been
extended by Hoffman [5, Th. 5.5, p.293], Srinivasan [8], [9], and
others to prove the following generalized Beurling theorem. If m is
a representing measure for a logmodular algebra A and if M is an
invariant subspace of L*(dm) which is stmply invariant, i.e., if

(1) the linear span of A,M is not dense in M,
then M = FH* for |F|=1. In the general case (even the torus case)
not all invariant subspaces satisfy this hypothesis. Our purpose is to
extend the characterization by weakening hypothesis (1).
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We assume throughout the paper that A = A(X) is a logmodular
algebra [5] of continuous complex-valued functions on a compact
Hausdorff space X and that m is the unique representing measure on

X for a complex homomorphism of A, i.e., S fodm = g fdm S gdm for

all f,9e A. Furthermore we assume that this complex homomorphism
lies in a Gleason part P(m) containing more than one element. A
function fe H*(dm) is called inner if | f| = 1. For each fe H*dm)
we write f(qa) = S fdp for @ in P(m), where ¢ also denotes the
representing measure for the homomorphism o.

In [10] Wermer showed (for A a Dirichlet algebra) that there
exists an inner function Z such that Z maps P(m) onto {\:|M\]| < 1}
and such that the equation

(2) G(Z(9) = flp)
associates with each fin H*(dm) an analytic function G(\) = >\, a, A"
for [M| <1 where a, = |\ Z*fdm. (See [5] for the extension to log-

modular algebras.) Denote by F' the boundary value function of G
(i.e., the function in L*df) whose Fourier coefficients are a,, where
df is normalized Lebesgue measure on {|\| = 1}).

Elementary arguments (including the Riesz-Fischer theorem) esta-
blish that the mapping @(f) = F can be extended to a bounded linear
transformation of L*dm) onto L*d#), using the fact that L*(dm) =
H*dm) @ Hi(dm) [5, Th. 5.4, p. 293].

Denote by 27 the closure (in L?(dm)) of the polynomials in Z;
denote by &#? the closure (in L?(dm)) of the polynomials in Z and
Z. (For p = <o, the closure is taken in the w* topology.) Thus
= 2@ 2% and @, restricted to &%, is an isometric isomorphism
onto L*(df), induced by the correspondence Z — e,

Actually @ can be extended to a continuous transformation of
L'(dm) onto L'(d@) induced by formula (2) and for 1 < p < « carrying
~? isometrically onto L?(df). (This map also carries H?(dm) onto
H*(d#).) This follows from the following result of Lumer [6, Th. 3, p.
285] (and our Lemma 5 below): The correspondence Z — ¢* induces an
isometric isomorphism of <#? onto L*(dd) for each p,1 < P < «, which
carries .<~? onto H*(df). See also Merrill [7, Proof of Th. 1]. For f
and g € L*(dm), D(fg9) = @(f)P(g) (see the proof of Lemma 10 in Wer-
mer [10]). We call @ the natural homomorphism of L'(dm) onto L'(d6).

Define I”:{feH"(dm):SZ”fdm:O,n:0,1,2, ...}for 1<p<eo,

so that H*(dm) = 2*@ I*. Using (2) it is not hard to check that
I’ ={fe H(dm): f(p) =0, p € P(m)}. For any subset S <& L*(dm), denote
by [S] the closed linear span of S.

DEFINITION. Let M be a closed invariant subspace of L*(dm). M
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is called simply invariant if A,M is not dense in M (w* dense for
p = o) and doubly invariant if AM S M. We call M sesqui-invariant
if ZM < M but M is not invariant under A.

There exist closed invariant subspaces of L*(dm) which are sesqui-
invariant, i.e., neither simply nor doubly invariant. For example, let
M = I*. If I® satisfied (1) so that it had the form FH? F inner, then
F would be in I2, so that ZF would be in I* by Lemma 1 below. But
if I* = FH?, then Ze H?, which is not the case.

Our main purpose in § 2 is to relax hypothesis (1) and to obtain
a characterization of certain invariant subspaces of L*(dm) not covered
by the Beurling theorem, in terms of the support set of M, a unimodular
function, and I®. At the end we extend the result to 1 < p < .
Examples in which I* is nontrivial are given in § 3 together with
applications of the main theorem. First we give three lemmas of a
preliminary nature which collect elementary and known facts.

LeEmMA 1. If fel® then Z"fe I’

Proof. Clearly it suffices to show that Zfe H?, for then Zf 1 2
and hence ZfeI*. Let he H:(dm) and write

a, = SZ”fdm, b, = g Z hdm .
Then S Zfhdm = ab, + ab, = 0 so Zf e H.

LEMMA 2. Let M < L*dm) be a closed subspace. Then the follow-
ng are equivalent

(i) AMc M

(ii) H*M<E M

(iii) HyM = ZM = [A,M].

Proof. That (i) implies (ii) follows from the w* density of 4 in
H>(dm). To see that (ii) implies (iii) observe that by definition of Z,
H: = ZH* and hence H, = ZH', by taking closure in L!. By con-
sidering conjugate spaces and applying Corollary to Theorem 6.1 in
Hoffman [5, p. 298], we have H; = ZH*. Using (ii), HoM = ZH*"M =
ZM < H;M. In any case HpoM = [A,M] by the w* density of 4, in
Hz. This establishes (iii).

To show that (iii) implies (i), it suffices to show (iii) implies (ii).
We have seen that H: = ZH™ or ZHz = H>. Using (iii) this yields
H"M = ZH=M < ZZM = M.

LEMMA 3. Let M & L¥dm) be a closed invariant subspace. Then



466 SAMUEL MERRILL, III, AND NAND LAL

the following are equivalent.
(a) M= FH* for some unimodular function F.
(b) MOI[A.M] +# {0}.
(c¢) MOS ZM =+ {0}.
(d) M s not imvariant under Z.

Proof. The equivalence of (a) and (b) is the generalized Beurling
theorem. Items (b) and (c) are equivalent by Lemma 2. If (a) holds
then so does (d). For if M were invariant under Z then since Fe M,
ZF e M = FH?, so that Ze H* which is not the case. On the other
hand, if (d) holds, ZM is a proper closed subspace of M, i.e., (¢) holds.

DEFINITION. If fe L'(dm), we define the support set of f (denoted
by E;) as the complement of a set of maximal measure on which f
is null. If M is a closed subspace of L'(dm), the support set of M
(denoted by E,) is defined as the complement of a set of maximal
measure on which all fe M are null. Clearly E, and E, are defined
only up to sets of measure zero.

2. The invariant subspace theorem.

THEOREM 1. Let A be a logmodular algebra and m a fixed
representing measure such that the part P(m) contains more than
one element. Let M be a closed sesqui-invariant subspace of L*(dm)
and let E be the support set of M. Let R=MOI[I°M] and L =
M O [I~M"] where M* = {fecy;L¥dm): f L M}. Then

(8) L is nontrivial and the support set of L is E if and only
if Az€ L% and M has the form M = yz-F-I* for some unimodular
function F, and

(4) R s nontrivial and the support set of R is E if and only
iof Az € L* and M has the form M = Yo F-(I)" = %z F- (DI for
some unimodular function F.

We need several lemmas, the key fact being Lemma 8.

LEMMA 4. Let Z be the Wermer embedding function. If 6 is
Lebesgue measure on T, then 0{Z(x):xec X} =1 and m(Z7'(E)) =0 if
and only if 0(E) =0, for each measurable subset E of T. Moreover,
if F in LY(d0) corresponds to fe " under the natural homomorphism
@, then f(x) = F(Z(x)) a.e.

Proof. Suppose that 8(Z(X)) <1. Then there exists a closed set
K < T\Z(X) such that (K) > 0. The functions f,(¢) = 1/(1+no(t, K)),
where p denotes distance, are continuous for each # and converge to



Hr AND L? SPACES DERIVED FROM LOGMODULAR ALGEBRAS 467

%x(t) pointwise everywhere and in L*d6). Let g, and g denote the
images in &* of f, and ¥, respectively, under the natural correspond-
ence. Hence g, — g in L*(dm) and by passing to a subsequence we may
assume that g¢,(x) — g(x) a.e. (dm). Since the f, may be approximated
by trigonometric polynomials, g,(x) = f.(Z(%)) a.e. (dm), and the latter
sequence converges to zero a.e. (dm) by the definition of the f,. Hence
g(x) = 0 a.e. (dm). But this contradicts the fact that g corresponds
to a nonzero function. Thus 6(Z(X)) = 1.

This also proves that if 6(E) > 0, then m(Z'(E)) > 0. Now
suppose that 6(E) = 0, i.e., that ys(t) = 1 a.e. (df), where S = T\E.
Choose closed sets K, < K, <, --+, < S, such that 4(K,) — 0(S). Using
the argument of the previous paragraph, we can show that the
characteristic function of K, corresponds to that of Z7'(K,). Thus
the characteristic function of Z-K,) converges in L*(dm) to the
function 1. But the characteristic function of Z—(K,) also converges
to that of Z-'(U K,). Thus the latter function is 1 a.e. Thus
m(Z7(S)) = 1 so that m(Z-'(¥)) = 0.

To obtain the last assertion of the lemma, let F'e L'(df) and f
the corresponding function in the isomorphic image of L'(df) in L'(dm).
Choose a sequence F', of polynomials in ¢¥ and e¢~*’ which converge to
F in L'(d6) and a.e. Let f, correspond to F, so that f, — f in L*dm)
and can be replaced by a subsequence which converges a.e.

Since F, are polynomials, f,(x) = F,(Z(x)) a.e. (dm). Since F,(t)—
F(t) a.e. (d0), the first part of the lemma implies that F',(Z(x)) — F(Z(x))
a.e. (dm). Thus f(x) = F(Z(x)) a.e.

LEMMA 5. If 1< p < oo, then
Hr(dm) = z*pI*

z_ukere @ denotes algebraic direct sum. Denote by N® the closure of
PP I in L*(dm) (norm closure for 1 < p < oo; w* closure for p=
). Then

Ly(dm) = &»~* @ N7 .
Proof. First assume 1< p < oo, If fe H?(dm), then f defines a
bounded linear functional on L?(dm) which (via Lumer’s isometry)

induces a bounded linear functional on L“d#), which in turn is
represented by some F'e L?(df). It is easy to show that

SZ”fdm - Seindo

for all integers n. Hence Fe H?(df), and by Lumer’s isometry there
exists ge 27 with
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SZ"fdm - S Zrgdm,

so that f — ge I*. Hence H?(dm) = 2P I*,1 < p < oo,

Now let »p =1 and fe H'(dm). Since the lemma holds for p =2
and H' is the closure of 2*@ I? there exists g, 2* and h,ecI®
such that the functions f, = g, + h, converge in L' to f. We will
have shown that H'(dm) = 2@ I' if we can establish that {g,} forms
a Cauchy sequence. For this it suffices to show that whenever f =
g+ h for ge 27* and hel? then ||g|, = || f .-

Applying Lumer’s isometry for p = 1 for the second equality and
for p = o for the fourth, we have

lal={ 1glam = o)1 = sup || o100

o=t

= sup

lHgllee=1

| fadm| <1711,

S_qum[ = sup

Halleo=1

where ¢ ranges over &=, Thus H?(dm) = 2? P I’,1 < p < oo,
For the second part of the lemma, denote

M» = {fe Lr(dm): S Z"fdm = 0 all integers 'n} .

It can be shown that L?(dm) = <" @ M? by the same arguments we
used for the H” case. We can complete the proof of the lemma by
showing that M? = N?,1 < p < oo,

Clearly N» = M?. Let fe M”. Since Hz(dm)@® H*(dm) is dense
in L*(dm) [5, Th. 6.7, p. 305] and H*(dm) = 2> @ I by the first part
of the lemma, we can choose g,¢ <” and h, € N? such that

S k(g + ho)dm —— S kfdm
for all ke L*(dm). Write k = k, + k, where k, ¢ <¥? and k,e M?. Thus

Sklgndm - Sia(gn + hy)dm—s S ko fdm =0 .

Also S k.g.,dm = 0, Thus S kg,dm — 0. Since the subspace N” is norm

closed for 1 < p < o, it is also weakly closed, so fe N*. If p = «,
clearly fe N=.

LEMMA 6. Let M be a closed sesqui-invariant subspace of L*(dm),
and let R=MO[I°M]. If feR and E; is the support set of f,

write f for the characteristic function of E;,. Then f 1 I

Proof. Observe that for any f, g € R the function f§ is orthogonal
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to both I~ and I=. For if heI=, gheI~M so that f Lgh, i.e., f§ Lh.
Similarly fg L I=. In particular |f* = ff L I> and I=. It follows
easily from Lemma 5 that |f|* lies in &', If F' is the function in
L'(d#) corresponding to | f|}, we have |f(x)|* = F(Z(x)) by Lemma 4.
In particular f(x) = 0 if and only if F(Z(x)) =0 so that f = FoZ.
Since F'e L¥d#), it follows that fe &2, i.e., f L I-

LEMMA 7. Suppose that M s a closed sesqui-invariant subspace
of L¥dm) and let R= MO [I°M]. Then there exists fe R with
Ef = ER.

Proof. If f, g€ R, note that there exists ¢ R with £, = E;U KE,.
For let F = E)\E;. Since y,c .<* by Lemma 6, y,9€ E. Then f +
xrg € R and has support set E, U E,. Now let a = sup {m(E,): fc R}.
Choose f, € R with m(E; )—»a and E; S E; < ---. Alter the functions
f. by the technique above so that their supports are disjoint. Then
fo=>2_.2"f, e R and has support G with m(G) = a. If m(E;) > «,
then there would exist a set of positive measure in E;\G and a function
g€ R such that g would not vanish on that set. But then E; U E,
is the support set for some function in R, although m(E; U E, > a.
This contradiction shows that E; = E,.

LeEMMA 8. Let M be a closed sesqui-invariant subspace of L*(dm),
R=MO[I*M], and let E be the support set of R. Then there exists
a unimodular function F e L¥dm) such that y,FeR. If m(E) =1,
then FeR.

Proof. By Lemma 7, there exists fe R with E, = E. Define

Fla) = J@)/| fx)|,ve B
1, xze¢ekK.

Then |F(x)| =1 a.e., and f = F|f].

As in the proof of Lemma 6, since f¢ R, there exists a function
Fec LY(df) such that |f(x)|* = F(Z(x)) a.e. Thus FF =0 a.e. and
V'F e L}df). Let h be the function in the isomorphic image of
LXd#) corresponding to 1/F. By Lemma 4, /F(Z(x)) = h(z) a.e.,
ie., |fl=he < 1t follows that f = F'|f|e F<*. Clearly [Z"f] &
F.<7* for all integers m. Writing N = [Z"f], we have FN = [Z"Ff].
But Z"Ff = Z(| f|/f)f = Z"|f| on E, and is zero off E. Therefore
Z"Ffe & so that FN < <*. However, F'N is invariant under Z
and Z, so that its isomorphic image in L*d6) is doubly invariant and
must have the form QL*df) where Q = Q*<c L¥df). Thus FN = ¢q.&*
where ¢ is the corresponding idempotent in .&#% It is clear from the
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definition of N that ¢ =y;. Hence N = Fy,.<* so that Fy,e NS R.

REMARK. If M is a closed sesqui-invariant subspace of L*dm),
then M* (as defined earlier) is a closed subspace of L*dm) invariant
under H=(dm) and Z. Let L = M*© [I*M*]. Then dual forms of
Lemma 6, 7, and 8 hold with L in place of R.

Proof of Theorem 1. First we assume that M = y FI* for some
unimodular function F' and that y,e _<* and show that y,F'e L, so
that E, = E. To this end let A e I:. Then

SXEFXEthm = | xeham = 0

by assumption, so that y,F e M*. To see that y,F LI~M", let he I~
and ke M*. It suffices to show that y,F L hk, i.e., that y,Fh L k.
But this follows since k¥ 1L M. A dual argument shows that M =
y:F(I%)* and y,e <* imply that 3 F e R so that E, = E.
Conversely, let us suppose that E, = E. By Lemma 8, there exists
a unimodular function F'e L*(dm) such that y,F e L. It follows that

(5) FH*dm) 2 M 2 yFI*.

To prove the first inclusion in (5) it suffices to show that M' 2
FH? where this time M+ denotes the orthogonal complement in all of
L¥dm). Thus let he A,, so that hkM S M and y,F 1| hM. Since the
functions in M vanish off E by assumption it follows that F 1 hM,
i.e., Fh 1 M, so that FH% = M* as required.

To obtain the second inclusion, let g e I~ and suppose that f1 M
in ypzL*dm). It follows easily from Lemma 5 that I~ is dense in I°.
Thus it suffices to show that y.Fg .l f, i.e., that y F L gf. But this
follows since yzF 1 I=M" by construction.

Multiplying (5) by F we have

(6) H¥(dm) 2 FM 2 y.I" .

We use the invariance of M under Z to show that FM = y,I°
For let fe FM and write f= f, + f, where f.e 2%, f,eI’. By Lemma
6, xr€ <" so that

f= XEf: XEfl + XEfz

is the unique orthogonal decomposition of f into <* and I?’. However,
since f and y.f, are both in H* (Lemma 1), it follows that y.f, e H"
Therefore y fi€ 2. But y f, vanishes on the complement of E so
that either (i) m(&) =1, or (ii) xzf, = 0.

If case (i) holds, H? 2 FFM 2 I* so that either /M = I* or there
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exists fe FM with SZ— "fdm == 0 for some nonnegative integer n. By
considering the least integer for which such an f exists, it is not
hard to see that M would not be invariant under Z. Thus M = FI?.

If case (ii) holds, f = y.f. € I* and y,f = fe xI*. Thus FM < y,I°.
Together with (6) this implies that FM = y,I°. So that M = y,-F-I*.

We turn now to case (4) in which R is nontrivial and the support
of (R)y=FE. Let N=M*={feL¥dm): E;, < FE and f1 M}. Then N
is the complex conjugate of a sesqui-invariant subspace and

N'©"N=MO[I"M]=R.

We apply (a trivial modification of) the first part of the theorem to
N. For this we need to know that Ey,=FE. If G= E\E, is not
the null set, then y.-L*dm) S M which is not possible. Thus E, = F
and N = y,-F-I* for some unimodular function F. Hence

M=N-=3,F(I) =y, -F-(F* B I .

We now extend the main result to a more general class of sub-
spaces of L*dm).

THEOREM 2. Let M be a closed sesqui-invariant subspace of L*(dm).
Let M, = {fe M: f-L°(dm) S M} and M,= MO M, and R, = M,
[I=M,]. Assume that E,, the support set of M, is the same as the
support set of R,. Then

M = 2o, Ldm) @ 25, F-I°

where F' is umimodular, E, is the support set of M, and Xz, L I’

Proof. Since M, is a closed doubly invariant subspace of L*(dm),
there exists a measurable set E, & X such that M, = x; -L*(dm) (see

Helson [2, Th. 2, p.7]). It is easy to check that
M,={feM:f=0 on E}.

Since M is sesqui-invariant, M, = {0}, and is itself sesqui-invariant.
By Theorem 1, M, = y,,-F-I* for some ), 1 I* and F' unimodular.

The final theorem of this section characterizes the invariant sub-
spaces of L?(dm) for 1 < p < oo,

THEOREM 3. Fix p in the range 1 < p < . Let M be a closed
sesqui-tnvariant subspace of L*(dm) and let E be the support set of
M. Let R={feMnL:f1I°M} and L ={feM" NL*:f1LI°M}
where q is the conjugate index to p and M* = {f€ yz- L' (dm): f1 M}.
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Then

(1) M= yz-F(&? + I?) where ¥z <* and F is a unimodular
function if and only if E is the support set for R.

(ii) M = yz-F-I* where Y€ &* and F is a unimodular function
if and only if E is the support set for L.

Proof. It is easy to show that if M has form (i) or (ii) then F
is the support set of R or L, respectively. Let us prove the converse.
First we prove the theorem for p = 1. Suppose that E is the support
set of R. Let N = M Ldm); N is a closed sesqui-invariant subspace
of L¥dm). Let R* = {fe N:fLI*N}. Since RCR*, we get E is the
support set of R* which in turn is the support set for N. Applying
the L* invariant subspace theorem to N, we get N = y,-F(&* + I?).
Since N & M, we get ¥ - F(&* + I') S M. For fe M, define k = | f'*
for |f|=1and 1 for |f|< 1. Takeh e H*dm) outer such that || = k.
It is easy to see that 1/he H>(dm) and therefore f/he M. Since
flh e L*(dm) also, we get flhe N = yz-F(<* + I’) and therefore f¢c
Y- F(Z* + I'). Thus we get M = yz-F- ("' + I'). When E is the
support set for L, we get M = y,-F-I' by applying an argument
similar to the above.

Now let us prove the theorem for p = «. Suppose that E is the
support set for R. Let N = [M] (where [ ] denotes closure in L*(dm).
Let R* = {fe N: f1LI*N}. It is clear that E is the support set for
N which in turn is the support set for R*. By the L? invariant
subspace theorem we get N = y,-F(<* + I?). Since M S NN L=(dm),
we get M S y,-F(< + I*). By applying the L' invariant subspace
theorem to M*, we get M* = y,-G-T', |G| = 1. It is easy to see that
Ao GI' Lz F(&= + I*) and therefore M = y,-F(<#> + I). When E
is the support set for L, we get M = y-F-I= by applying an argu-
ment similar to the above. The proof for 1 < p < 2 is similar to the
one for p =1 and that for 2 < p < « is similar to the one for p = co.
Thus the theorem is true for 1 < p < oo,

3. Applications. We give an example of a logmodular algebra
and a representing measure m for which I* is nontrivial and show
that the above theorems, together with known results, completely
characterize the invariant subspaces of L*(dm).

EXAMPLE 1. Let T={neC:|N| =1} and let A = A(T* be the
logmodular algebra of continuous functions on 7T® which are uniform
limits of polynomials in e‘*?¢‘™* where

(m, m)e S = {(n, m): n > 0} U {(0, m): m = 0} .

The maximal ideal space of A can be identified with
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{o:101 =1} x TYU ({0} X {p:|@| = 1}) ,

with normalized Haar measure m identified with § = ¢ = 0. The part
of m is {0} X {p:|®| <1}. The Wermer embedding function is given
by Z = ¢, 2°* is the L*? closure of the polynomials in ¢, m = 0,1, - .-,
and I*® is the L? closure of the polynomials in e*?¢"¢ for n = 1.

Let now M be a closed invariant subspace of L*dm). Observe
that M is doubly invariant if and only if €M = M. In this case
M = y-L*dm), for some measurable set £ < T2,

If MO e?M + {0} and M = ¢“M we show that R =+ {0} and that
E, = E, (see Theorem 2). To see that R = MO e“’M, let ge M,
gle?M. Since M is sesqui-invariant g 1 e~*™¢e?’ M, for m = 1,2, ---.
Hence g L [I~M].

Define M, ={feM:e"feM,n=1,2,---} and M,= MO M,.
Then M, = y;,- L*(dm) for some measurable E,. We show that Theorem
2 applies to M,. Let K be the complement of E, in T*

Since yxe 7, we get M, S M,. Also yx-M, 1 R so yxM,C
¢ M, and therefore y .M, = xx(¢?’M,). But M, cannot contain a doubly
invariant subspace, so E; = E,. Theorem 2 applies and

M2 — XEz'F,(TZ)L

for some unimodular function F’. Writing F' = ¢~’F’, we have M, =
Xe, F'-I*. Note that the proofs of Lemmas 4, 6, and 7 are much
simpler for the torus case than for the general case.

If MO e“M =+ {0}, then M = FH* by the generalized Beurling
theorem.

Suppose that we now replace T x T with B x T, where B is the
Bohr compactification of the real line and consider 4 = A(B x T).
Again Haar measure is associated with a nontrivial part. Denote
by y.(x) the characters on B, where e R. I® is generated by the
characters y.(x)e'™ for ¢ > 0. Clearly (3) holds for M = y.I* and (4)
holds for M = y.(I* @ %), for any fixed z. However one can use
the example in Helson and Lowdenslager [4] to construct a sesqui-
invariant subspace of H?*(dm) for which both L and R are trivial.
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MULTI-VALUED CONTRACTION MAPPINGS

SAM B. NADLER, JR.

Some fixed point theorems for multi-valued contraction
mappings are proved, as well as a theorem on the behaviour
of fixed points as the mappings vary.

In §1 of this paper the notion of a multi-valued Lipschitz mapping
is defined and, in § 2, some elementary results and examples are given.
In § 3 the two fixed point theorems for multi-valued contraction map-
pings are proved. The first, a generalization of the contraction
mapping principle of Banach, states that a multi-valued contraction
mapping of a complete metric space X into the nonempty closed and
bounded subsets of X has a fixed point. The second, a generalization
of a result of Edelstein, is a fixed point theorem for compact set-
valued local contractions. A counterexample to a theorem about
(&, M)-uniformly locally expansive (single-valued) mappings is given
and several fixed point theorems concerning such mappings are proved.

In § 4 the convergence of a sequence of fixed points of a convergent
sequence of multi-valued contraction mappings is investigated. The
results obtained extend theorems on the stability of fixed points of
single-valued mappings [19].

The classical contraction mapping principle of Banach states that
if (X,d) is a complete metric space and f: X — X is a contraction
mapping (i.e., d(f (), f(¥)) < ad(zx, y) for all 2, ye X, where 0 < a0 < 1),
then f has a unique fixed point. Edelstein generalized this result to
mappings satisfying a less restrictive Lipschitz inequality such as local
contractions [4] and contractive mappings [5]. Knill [13] and others
have considered contraction mappings in the more general setting of
uniform spaces.

Much work has been done on fixed points of multi-valued funections.
In 1941, Kakutani [10] extended Brouwer’s fixed point theorem for
the m-cell to upper semi-continuous compact, nonempty, convex set-
valued mappings of the n-cell. In 1946 Eilenberg and Montgomery
[7] generalized Kakutani’s result to acyclic absolute neighborhood
retracts and upper semicontinuous mappings F such that F(x) is
nonempty, compact, and acyclic for each x. In 1953, Strother [22]
showed that every continuous multi-valued mapping of the unit interval
of I into the nonempty compact subsets of I has a fixed point but
that the analogous result for the 2-cell is false. In [22] Strother also
proved some fixed point theorems for multi-valued mappings with
restrictions on the manner in which the images of points are embedded
under a homeomorphism of the space onto a retract of a Tychonoff
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cube. Plunkett [20], Ward [23], and others have shown that the
spaces which have the fixed point property for continuous compact
set-valued mappings constitute a fairly small subclass of those which
have the fixed point property for continuous single-valued mappings.
In this paper, we combine the ideas of set-valued mapping and
Lipschitz mapping and prove some fixed point theorems about multi-
valued contraction mappings. These theorems place no severe re-
strictions on the images of points and, in general, all that is required
of the space is that it be complete metric, Some results in this paper
were presented to the American Mathematical Society on November
18, 1967; an abstract of that talk may be found in [18]. A slightly
different version of Theorem 5 below was announced later in [15].

1. Basic definitions and conventions. If (X, d) is a metric
space, then

(a) CB(X) ={C|C is 2 nonempty closed and bounded subset of X},

(b) 2% ={C|C is a nonempty compact subset of X},

(c) N(,C)={xecX|dx,c)<e for some ce(C} if ¢ >0 and
CeCB(X), and

(d) H(A,B)=inf{e|ACN(e, Byand BCN (e, A)}if A, Be CB(X).
The function H is a metric for CB(X) called the Hausdorff metric.
We note that the metric H actually depends on the metric for X and
that two equivalent metrics for X may not generate equivalent Haus-
dorff metrics for CB(X) (see [11, p.131]). We shall not notate this
dependency except where confusion may arise. It will be understood,
unless otherwise stated, that the symbol H stands for the Hausdorff
metric obtained from a fixed preassigned metric.

Let (X, d,) and (Y, d,) be metric spaces. A function F: X — CB(Y)
is said to be a multi-valued Lipschitz mapping (abbreviated m.v.l.m.)
of X into Y if and only if H(F'(x), F(2)) < ad(x,z) for all z,z¢ X,
where a =0 is a fixed real number. The constant « is called a
Lipschitz constant for F. If F has a Lipschitz constant a < 1, then
F'is called a multi-valued contraction mapping (abbreviated m.v.c.m.).
A m.v.l.m. is continuous.

A point x is said to be a fized point of a single-valued mapping
f (multi-valued mapping F) provided f(x) = x(x<c F(x)). Since the
mapping i: X — CB(X), given by i(x) = {#} for each ze X, is an
isometry, the fixed point theorems in this paper for multi-valued
mappings are generalizations of their single-valued analogues.

2. Preliminary results. In this section we present some ele-
mentary results which will be used in later sections and introduce
some notation and terminology. The proofs of many of the theorems
are straightforward. From a remark in [23, p. 161] if F: X — 27 is
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a m.v.l.m. and Ke 2%, then J{F(x)|xec K}e2”.

LEMMA 1. Let F: X — 2% be a m.v.l.m. with Lipschitz constant
a. If A,Be2*, then HU{F(a) |ac A}, U{F(b)|be B}) < aH(A, B).

THEOREM 1. Let F: X — 2% be a m.v.l.m. with Lipschitz constant
a and let G: Y —2% be a m.v.l.m, with Lipschitz constant 8. If
GoF: X — 27 is defined by (GoF)(x) = U {G(y) |y € F(x)} for all x€ X,
then GoF is a m.v.l.m. with Lipschitz constant «-f.

THEOREM 2. Let F: X — 2¥ be a m.v.l.m. with Lipschitz constant
a and let F:2¥ — 27 be given by F(A) = | {F'(a) | a e A} for all Ae2”,
Then F is a Lipschitz mapping with Lipschitz constant «.

Let (X, d) be a complete metric space and let F: X—2* be a
multi-valued contraction mapping. By Theorem 2 F' is a contraction
mapping and therefore, since (2%, H) is complete [2, p.59], has a
unique fixed point Ae2*, In the next section (see Theorem 5) we
prove that such an F' has fixed points. The existence of the fixed
point A of F does not seem to imply the existence of a fixed point
of F and in fact, as the next example illustrates, there seems to be
little relation between the set S of fixed points of F and the fixed
point A of F' (except the containment of S in A; see the last part of
the proof of Theorem 9).

ExampLE 1. Let I = [0, 1] denote the unit interval of real numbers
(with the usual metric) and let f: I-— I be given by

—l—-x+%,0§x§%
fx) = 1 1 . Define F: I— 2! by
—E-x+1,5§m§1

F(x) = {0} U {f(x)} for each xcI. It is easy to verify that (a) F is
a multi-valued contraction mapping, (b) the set of fixed points of F
is {0, 2/3}, and (¢) the fixed point of F is

{2, 0,70, F(F OSSO, -} -

THEOREM 3. Let F: X— CB(Y) be a m.v.l.m. with Lipschitz
constant a and let G: X — CB(Y) be a m.v.l.m. with Lipschitz constant
B. If FUG: X— CB(Y) is given by (F U G)(x) = F(x) U G(x) for all
xe X, then FUG is a m.v.l.m. with Lipschitz constant max {«, 5B}.

The following example shows it is not in general true that the



478 SAM B. NADLER, JR.

intersection of two multi-valued contraction mappings is continuous
(we define the intersection of two multi-valued mappings only when
the image sets have a nonempty intersection at each point).

EXAMPLE 2. Let I*={(¢,%) |02 =<1 and 0=y <1}, let F:
I*— CB(I* be defined by F'(x,y) is the line segment in I?* from the
point {(1/2)-x,0} to the point {(1/2)-x, 1} for each (z, y) € I?, and let
G: I* — CB(I® be defined by G(x, y) is the line segment in I? from the
point {(1/2)-z, 0} to the point {(1/3)-x, 1} for each (z, y) € I*. It is easy
to see that F' and G are each multi-valued contraction mappings and
that F'N G, which is given by

(F N G)(a, ) = {{%’“ o)} 0 for
(@, y)el*|x =0}, =0

all (x, y) € I, is not continuous.

Let X be a closed convex subset of a Banach space. If 4eCB(X),
then let co(A) denote the intersection of all closed convex sets con-
taining A. We may think of co as a function from CB(X) into CB(X).

LEMMA 2. Let X be a closed convex subset of a Banach space
(with norm || ||). Then co: CB(X)— CB(X) is nonexpansive, t.e., if
A, Be CB(X), then H(co(A), co(B)) < H(A, B).

Proof. Let A, BeCB(X) and let ¢ > 0. Choose peco(4). Then
there exist a,, a,, -+, a,€ A and ¢, t,, +-+,t,[0,1] such that >, ¢ =
1and ||p — D ta;|] < €/2. For each ¢ =1,2, ..., n there is a point
b; e B such that ||a;, — b,|| < H(A, B) + ¢/2. Let ¢ = >\, t;-b;. Then
gecoB)and [|p — ql| = |[p — S ticas || + || X tiras — 200 t:b: ] <
€2+ >k tilla; — b;|| < H(A, B) + ¢. This proves that

co(A)Cc N(H(A, B) + &, co(B)) .
Similarly it can be shown that co (B) € N(H(A, B) + ¢, co (4)). Since
¢ was arbitrary, the result follows.

The proof of the next theorem is immediate from Lemma 2.

THEOREM 4. Let X be a closed convex subset of a Bamnach space
and let F: X — CB(X) be a m.v.l.m. with Lipschitz constant «. If
co F: X — CB(X) is given by (co F')(x) = co (F'(x)) for all xe X, then
co F' is a m.v.l.m. with Lipschitz constant «.

REMARK. Theorem 3 gives a technique for constructing a multi-
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valued Lipschitz mapping from a finite number of single-valued
Lipschitz mappings by “unioning their graphs at each point”. Theorem
3 can be generalized to an arbitrary family {F,},., of multi-valued
Lipschitz mappings if it is assumed that (1) |J{F(x)|» e 4} is a closed
and bounded subset of X for each x ¢ X and (2) there is a real number
2 such that a; < p for all A € 4 where «, is a Lipschitz constant for F',.

REMARK. Note that if, in Theorem 4, F is compact set-valued,
then so is eo F. This is an immediate consequence of a result of
Mazur’s [3, pp. 416-417].

REMARK. Requiring a multi-valued mapping to be Lipschitz is
placing a very strong continuity condition on the mapping. The
literature on continuous selections suggests that, for a multi-valued
mapping F' to have a continuous selection, conditions on the individual
sets F'(x) are just as important (if not more important) as restrictions
on the continuity of F [17]. We substantiate this by pointing out
that a multi-valued contraction mapping need not have a continuous
selection, as may be seen by defining F' on the unit circle in the
complex plane by F'(z) is the two square roots of z.

3. Fixed point theorems. The first theorem of this section is
proved by an iteration procedure similar to that used in proving the
contraction mapping principle of Banach [14, pp. 40-42].

THEOREM 5. Let (X, d) be a complete metric space. If F: X —
CB(X) s a m.v.c.am., then F has o fixed point.

Proof. Let a <1 be a Lipschitz constant for F', (we may assume
a > 0) and let p,e X. Choose p, € F(p,). Since F(p,), F(p,)ec CB(X)
and p, € F'(p,), there is a point p,<c F'(p,) such that

d(p,, ) = H(F(p,), F(p)) + «

(see the remark which follows this proof). Now, since
F(p), F(p,) e CB(X) and p.€F(p),

there is a point p,e F'(p,) such that d(p,, p;) < H(F (py), F(p,) + &
Continuing in this fashion we produce a sequence {p;};>, of points of X
such that p;., e F(p;) and d(p;, pis)) < H(F (pi), F(p))) + o for all
1 =1. We note that

A, piv) = H(F (pi), F(9) + o < ad(p;—,, p;) +
< oH(F (p;), F(piy) + &' + &
< Ay, Piy) + 208 £ -0 S Aid(py, p) + i
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for all + = 1. Hence

A(Diy Diry) = A(Piy Divs) + ADisry Diva) + + o+ + ADis i, Di+j)
< @'d(py, p1) + 1o + ad(py, o) + (1 + D)eaft 4 .o
+ @i d(py, p) + (G 4§ — D)ot

i4+i—1 i4g—~1
:< Z_] a")ti(po, D) + Z_l no"

for all 7,7 = 1.

It follows that the sequence {p;}i>, is a Cauchy sequence. Since
(X, d) is complete, the sequence {p,}3, converges to some point x, ¢ X.
Therefore, the sequence {F'(p;)}7, converges to F'(x,) and, since
p;€ F(p,_,) for all ¢, it follows that z,e F'(x,). This completes the
proof of the theorem.

REmMARK., Let 4,BeCB(X) and let ac A. If » > 0, thenitisa
simple consequence of the definition of H(A, B) that there exists bc B
such that d(a, b) < H(4, B) + 7 (in the proof of the previous theorem
the Lipschitz constant « and subsequently «' play the role of such an
7). However, there may not be a point be B such that d(a, d) <
H(A, B) (if B is compact, then such a point b does exist). For example,
let I, denote the Hilbert space of all square summable sequences of
real numbers; let ¢« = (-1, —1/2, ..., —1/n, ---) and; for each n =
1,2, ---, let e, be the vector in [, with zeros in all its coordinates
except the n™ coordinate which is equal to one. Let A = {a, ¢, €. -,
€,, ---yand let B = {e, e, ---,¢,,---}. Since |ja — e, = (la|f+1+
2/n) for each n =1,2, ---, H(4, B) = (||a |} + 1)? and there is no e,
in B such that ||a —¢,|| = H(A, B).

In [4] Edelstein proved that if X is a complete e-chainable metric
space and f: X — X is an (g, A)-uniformly locally contractive mapping,
then there is an x ¢ X such that f(x) = . We generalize this result
to multi-valued functions in Theorem 6, but first we give some defi-
nitions.

A metric space (X, d) is said to be e-chaitnable (where ¢ > 0 is
fixed) if and only if given a,be X there is an e-chain from a to b
(that is, a finite set of points «, ®, +--,2x,€ X such that z, =
a,x, = b, and d(x;,_, ) <eforallt=1,2,-.-,n). A function F': X —
CB(X) is said to be an (g, M)-uniformly locally contractive multi-valued
mapping (where € > 0 and 0 <\ < 1) provided that, if x,ye X and
d(z, y) < &, then H(F(x), F(y)) < Md(2, y). This definition is modeled
after Edelstein’s definition for single-valued mappings in [4]. Formally
this definition, in the case of single-valued mappins, is less restrictive
than Definition 2.2 in [4], but Edelstein uses only the properties of
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this type of uniform condition in the proof of his Theorem 5.2 [4].

The proof of Theorem 6 is substantially different from the proof
of Theorem 5.2 of [4]. The basic idea was inspired by Remark 2.34
of [6, p.691].

THEOREM 6. Let (X, d) be a complete e-chainable metric space.
If F: X—2% is an (¢, N)-uniformly locally contractive multi-valued
mapping, then F has a fixed point.

Proof. If (x,y)e X x X, thenlet d,(z,y) = inf {3~ d(x;_,, ;) | ®, =
X, %, v+, 2, =Y is an é-chain from x to y}. It is easy to verify that
d. is a metrie for X satisfying (1) d(z, ) < d.(x, y) for all z,y€ X and
2) d(z,y) = d.(x,y) for all z,ye X such that d(z, y) < e. From (1)
and (2) and the completeness of (X, d) it follows that (X, d.) is com-
plete. Let H, be the Hausdorff metric for 2% obtained from d.. Note
that if A, Be 2% and H(A, B) < ¢, then H.(A, B) = H(A, B). We now
show that F: X — 2% is a m.v.c.m. with respect to d. and H.. Let
2,ye X and let , = 2,2, --+, x, = ¥ be an ¢-chain from z to y. Since
dx,_,x;) <eforalli=1,2 ... n, HEF (x;_), F(x)) < M(x;_y, x;) < €
forall 1 =1,2,---,n. Therefore,

H(F(@), F) < 3, H(F @), F @)
= S HF @), F@) S\ @, o) ,

i.e., H(F(x), F(y)) < 2>\, d(%;_,, @;). Since x, = ¢, 2, +++,2, = Yy Was
an arbitrary e-chain from a to y, it follows that H.(F(x), F(y)) <
A (%, y). This proves that F' is a m.v.c.m. with respect to d. and H..
By Theorem 5, F' has a fixed point. This completes the proof of
Theorem 6.

In [4] Edelstein defines a single-valued mapping f to be (¢, \)-
uniformly locally expansive (where ¢ > 0 and A > 1) provided that, if
x is in the domain of f, then, for any distinct points » and ¢ in the
domain of f such that d(p, x) < e and d(q, ) < ¢, d(f(p), f(q)) > Nd(p, q).
Corollary 6.1 of [4] states “If f is a one-to-one (&, \)-uniformly locally
expansive mapping of a metric space Y onto an é-chainable complete
metric space X O Y then there exists a unique & such that f(§) = &”.
The proof offered for this corollary is that f—! is (¢, 8)-uniformly
locally contractive for some 8 < 1. In the following example we show
that this is not necessarily the case and, in fact, that Corollary 6.1
as stated is false.

ExampLE 8. Let S = (1,2, 3, 4, 5, 6} with absolute value distance.
Define f: S— S by
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2,z =1
4,2 =2
6, =3
f(x)=41’x:4-
3,x =5
5,2 =26

It is easy to verify that f satisfies all the hypotheses of Corollary 6.1
of [4] where ¢ = 111? and » = 1% (note also that S is l—i—-chainable).

However, f has no fixed point.

Next we prove two fixed point theorems for single-valued (not
necessarily one-to-one) uniformly locally expansive mappings. Conditions
are placed on the inverse of a uniformly locally expansive mapping
which reflect the degree of chainability of the space or the degree of
local expansiveness of the mapping. Example 3 is the motivating
factor for such conditions (note that the mapping of Example 3 has
a uniformly continuous inverse).

We shall use a slightly weaker definition of uniform local expansive-
ness than Edelstein’s definition given above. Specifically, a single-
valued mapping f is said to be (¢, N)-uniformly locally expansive (where
€ > 0 and » > 1) provided that, if z and y are in the domain of f and
d(z, y) < &, then d(f(x), f(y) = \d(z, y).

We need several more definitions before stating the next theorem.
A metric space is well-chained if and only if it is e-chainable for each
e > 0 (for compact spaces well-chained is equivalent to connected but
{(z, tan (%)) | 0 < 2 < 7/2} U {(7/2, ) | y = O} is a well-chained complete
space which is not connected). A function g from a space X to a
space Y is said to be e-continuous (for fixed ¢ > 0) if and only if each
point # of X admits a neighborhood U, such that the diameter of
g(U,) is less than ¢ (in [12], where e-continuity was apparently first
defined, the requirement was that the diameter of g(U,) be less than
or equal toe). A function F: X — CB(X) is said to be an e-nonexpansive
multi-valued mapping (where ¢ > 0 is fixed) if and only if H(F'(z),
F(y)) < d(z, y) for all x,y e X such that d(z, y) < ¢ (this definition is
modeled after Definition 1.1 of [6] for single-valued functions).

THEOREM 7. Let (X, d) be a complete e-chainable (well-chained)
metric space, let A be a nonempty subset of X, and let f: A— X be
an (&, N)-uniformly locally expansive mapping of A onto X. If
fHw)e2* for each xe X and f~': X — 24 is e-nonexpansive (uniformly
e-continuous), then f has a fixed point.
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Proof. We first prove the theorem for the case when X is e-
chainable and f—' is e-nonexpansive. We shall show that f—': X — 24
is (¢, 1/0)-uniformly locally contractive. Let x,ye X such that 0 <
d(z,y) < ¢ and choose 7 > 0. Let pef'(x). Since f~ is e-nonex-
pansive, H(f'(x), f~(¥)) =< d(x,y) < &. Hence, there exists a point
gef~'(y) such that d(p,q) <e. Therefore, d(f(p), () = (p,q),
i.e., d(p, q) <[1/» + p]d(x, y). This proves that

@ e N(| =+ 9]aw, ), F@) -

Similarly, it can be shown that f~'(y) C N([1/» + n]ld(x, y), f~(%)).
Since 7 was arbitrary, it now follows that f~* is (¢, 1/:)-uniformly
locally contractive. Since X is e-chainable we may now apply
Theorem 6 to conclude that there is a point %, ¢ X such that z, € f~*(x,).
Clearly, f(x,) = ;. We now prove the theorem for the case where x is
well-chained and f~! is uniformly e-continuous. Since f—* is uniformly
e-continuous, there exists a o >0 such that d(x, x,) <o implies
H(fY(x), f~(x)) < e. Using a procedure similar to that employed
above, it follows that /' is (9, 1/»)-uniformly locally contractive. Since
X is well-chained, X is d-chainable and we may now use Theorem 6
to obtain, as above, a fixed point for f. This proves Theorem 7.

A metric space (X, d) is said to be convex (in the sense of Menger)
provided that, if x,y <€ X, x = y, then there exists a pointze X,z #
and z # y, such that d(z, y) = d(x, 2) + d(z,y). If (X, d) is a complete
convex metric space and F: X — CB(X) is (¢, A)-uniformly locally con-
tractive, then F' is actually a multi-valued contraction mapping. The
proof is the same as the proof of the corresponding statement for
single-valued mappings in [4]. Using this fact we may now prove
the following:

THEOREM 8. Let (X, d) be a complete convexr metric space, let A
be a nonempty subset of X, and let f1 A— X be an (&, N)-uniformly
locally expansive mapping of A onto X. If f~(x)e CB(X) for each
zeX and f~: X— CB(X) 1is uniformly e-continuous, then f has a
JSized point.

Proof. Proceeding as in the second part of the proof of Theorem
7 we can show that f is (9, 1/x)-uniformly locally contractive for
some 0 > 0. From the comments immediately preceding this theorem
it follows that f~' is actually a multi-valued contraction mapping.
Hence, by Theorem 5, there is an x,e X such that «, € f~'(z,). Clearly
f(@,) = x, and the proof of Theorem 8 is completed.

REMARK. The author does not know if Theorem 6 remains true
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when stated for mappings into CB(X). The proof of Theorem 5.2 of
[4] does not seem to generalize for mappings into CB(X) and the
proof of Theorem 6 is not valid for mappings into CB(X) because d,
may not be bounded even though d is. If Theorem 6 were valid when
stated for mappings into CB(X), then Theorem 7 would be valid in
the more general setting and Theorem 8 would be superfluous. (Cf. § 5).

4. Sequences of multi-valued contraction mappings and fixed
, points. Suppose (X, d) is a complete metric space, F;: X — CB(X) is a
multi-valued contraction mapping with a fixed point «; for each 7 =
1,2, ..+, and F;: X— CB(X) is a multi-valued contraction mapping.
In this section we investigate the following question: If the sequence
{Fi}, converges (in some sense) to Fi,, does some subsequence {x;}7,
of {x;};Z, converge to a fixed point of Fy?

Without further assumptions on the images of points it is easy
to see that the answer to the above question is no; simply let Fi(x)
be the set of real numbers (with a bounded metric) for all ¢ =
0,1,2,--- and for all real numbers x and let z, = ¢ for each 7 =
1,2, ..., For this reason we shall assume from now on (except in
Lemma 3) that F;(x) is compact for all < and for all x.

In this section we shall prove the following:

THEOREM 9. Let (X, d) be a complete metric space, let Fy: X — 2%
be a m.v.c.m. with fixed point x; for each t=1,2,---, and let
Fp: X— 2% be a m.v.e.m. If any one of the following holds:

(1) each of the mappings F,, F,, -++ has the same Lipschitz
constant a < 1 and the sequence {F;}3, converges pointwise to Fi;

(2) the sequence {F;}2, converges uniformly to F;
or

(38) the space (X, d) is locally compact and the sequence {F;}z,
converges pointwise to F;
then there is a subsequence {avij}j-":1 of {x;}i, such that {9cij,}j~":1 converges
to a fixed point of F.

Before giving a proof of this theorem we need several preliminary
results. A proof of Proposition 1 below may be found in [1, pp. 6-7],
Proposition 2 is a special case of Theorem 1 of [19], and Proposition
3 is Theorem 2 of [19]. In each of these propositions f; is a single-
valued contraction mapping of a metric space (X, d) into itself with
fixed point a; for each 7 =10,1,2, ..,

ProprosiTioN 1. If all the mappings fi, [ - have the same

Lipschitz constant & < 1 and if the sequence { fi}z, converges pointwise
to f,, then the sequence {a;}, converges to .
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PROPOSITION 2. If the sequence {f;}i, converges uniformly to f,,
then the sequence {a,}, converges to a,.

PropoSITION 3. If the space (X, d) s locally compact and the
sequence { fi}z., converges pointwise to f,, then the sequence {a;}7, con-
verges to a,.

The following lemma is a generalization of the lemma in [19].

LEMMA 3. Let (X, d) be a metric space, let F;: X — CB(X) be a
m.v.c.m. with fized point x; for each 1 =1,2, -+, and let Fj: X —
CB(X) be a m.v.em. If the sequence {F;}3, converges pointwise to
Fy and of {x;}7-. is a convergent subsequence of {w}z., then {v;}7.,
converges to a fived point of F,.

Proof. Let @, =lim; .. 2;; and let ¢ > 0. Choose an integer M
such that H(F; (%), Fy(x,)) < ¢/2 and d(x;, %) < ¢/2 for all j = M.
Then, if 7 = M,

H(F (@), Fo) < H(F (@), Fi (@) + H(F;, (@), Fyx,)
< d(xijy xo) + -H(Fij(xo)s Fo(wo)) <e.

This proves that lim; .. F; (%;;) = Fy(x,). Therefore, since @i, € Fy ;)
foreachj =1, 2, ---, it follows that «, € F(«,). This proves the lemma.

Proof of Theorem 9. For each ¢ =10,1,2, ---, let F;: 2% — 27 be
defined in terms of F, as in Theorem 2. Then, by Theorem 2, F is
a contraction mapping and therefore has a unique fixed point A4, € 2%
for each ¢ =10,1,2, ..., If the sequence {F;};>, converges pointwise
to F, as assumed in 1 and 3, then {F}}Z, converges uniformly on
compact subsets of X to F, [21, p. 156], and hence, the sequence
{F }o, converges pointwise on 2% to F,. A direct argument shows
that if the sequence {F }2., converges uniformly to F, as assumed in
2, then the sequence {F,}2, converges uniformly on 2% to F,. In any
case we may use Proposition 1 in connection with 1, Proposition 2 in
connection with 2, and Proposition 8 in connection with 3 to conclude
that the sequence {4;}%, converges to A,. Hence, K =J{4;|7 =
0,1,2, ...} is a compact subset of X. Note that, by the iteration
procedure of Banach [14, pp.40-42], the sequence {ﬁ‘;‘(oci)}‘;;’=1 converges
to A, (where Fr(x) = F(F(-+-(F(x;))---)), n times); and therefore,
since ;e Fr(x;) for all w =1,2, ..., it follows that x;€ A; for each
1=1,2, ..., Thus we have that {x;}, is a sequence in the compact
set K. Hence, {x;};>, has a convergent subsequence {ocij};-"=1 which, by
Lemma 3, converges to a fixed point of F,. This completes the proof
of Theorem 9.
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We now make several remarks concerning Theorem 9.

REMARK. If F, has only one fixed point =z, then (with the
hypotheses of Theorem 9) the sequence {x;]}:, itself converges to .
To see this suppose {x;}7, does not converge to %, Then there is a
subsequence {x;}7. of {x;}7, such that no subsequence of {;}i..
converges to «,. Applying Theorem 9 in the context of the two
sequences {F;}i., and {x;}7 ., we see that there is a subsequence of
{x;}v-, which converges to a fixed point of F,. This establishes a
contradiction. (This remark shows that Theorem 9 is an extension of
Propositions 1, 2, and 3 stated above).

REMARK. To see that local compactness is a necessary hypothesis
in Proposition 3 and, therefore, in part (3) of Theorem 9, the reader
is referred to Example 1 of [19].

ReEMARK. Let (X, d) be a compact metric space. In this setting
Theorem 9 is a direct consequence of Lemm 3. Let Mf(X) = {G: X —
2% | G is continuous and G has fixed points} and, if G, and G, are in
Mf(X), let o(Gy, G.) = sup {H(G.(?), Go(x)) | v € X}. Define @: Mf(X) —
2¥ by o(G) = {xre X|xeG(x)} for each Ge Mf(X). Using a modifi-
cation of Lemma 3 together with the fact that convergence in (Mf(X), p)
is uniform convergence, it can be shown that ¢ is upper semi-continuous
(this is a generalization of a result of Wehausen [24] which also
appears in [8]). It follows from a result in [9] that ¢ is continuous
on a dense subspace of Mf(X). However, @ may be discontinuous
even at some constant functions. In the next example we construct a
sequence {G,};_. of multi-valued contraction mappings defined on the
unit interval [0,1] which converges uniformly to the mapping given
by G(x) = [0, 1] for all x<][0, 1] but for which the sequence {p(G,)}:-:
does not converge to (&) = [0,1]. It is interesting to compare this
phenomenon with results in [8] and [16].

ExaMPLE 4. Let I = [0, 1] denote the unit interval of real numbers

(with the usual metric). For each w=1,2,..-, let G,: I—2’ be
given by

1
an:{ ogg"-}{1”- ggl}
(@) =y | _y_n+1mUy | x+n+1_y_

for all xeI. Using Theorem 3 it is easy to see that G, is a multi-
valued contraction mapping foreachn = 1,2, - ... Clearly, the sequence
{G,}z-, converges uniformly to the mapping G:I— 27 defined by
G(z) = I for each xcI. Since ¢(G,) = {0,1} for all n =1,2, --. (see
the preceding remark), it follows that {p(G,)};-, does not converge to
?(G) = 1.
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5. Added in proof. In a forthcoming paper with Professor Covitz
on multi-valued contraction mappings in generalized metric spaces the
author has extended Theorems 5 and 6 of this paper to mappings into
CL(X) = {C|C is a nonempty closed subset of X} with the generaliz-
ed Hausdorff distance. These results give an affirmative answer to
problems posed in this remark and show that even boundedness of
point images is not necessary. In addition, it was discovered by the
author that a generalized version of the iteration procedure of Edels-
tein [4] can be carried out to give a proof of Theorem 6 above even
for mappings into the more general space CL(X).
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SEMI-GROUPS OF SCALAR TYPE OPERATORS
IN BANACH SPACES

T. V. PANCHAPAGESAN

This paper deals with the spectral representation theorems
of semi-groups of scalar type operators in Banach spaces.
These results generalize the corresponding ones on semi-groups
of hermitian, normal and unitary operators in Hilbert spaces.
In the beginning sections we study some interesting properties
of a W*(|]-||)-algebra-which generalizes the notion of an abelian
von Neumann algebra to Banach spaces-and unbounded spectral
operators arising out of E(.)-unbounded measurable functions
where E(-) is a resolution of the identity., These results are
applied later to prove the spectral representation theorems on
semi-groups of scalar type operators, The last theorem of
this paper gives an extension of Stone’s theorem on strongly
continuous one parameter group of unitary operators to arbitrary
Banach spaces.

This paper mainly deals with the spectral representation theorems
of semi-groups of scalar type operators in Banach spaces, generalizing
those of semi-groups of hermitian, normal and unitary operators in
Hilbert spaces. Since all the classical proofs of these theorems vitally
depend on the inner-product structure of the Hilbert space they cannot
be adapted to Banach spaces. However, Phillips has obtained in [15]
these spectral representation theorems on Hilbert spaces by making
use of the theory of abelian W* (von Neumann) algebras. Here we
adapt his method of proof by suitably generalizing the notion of an
abelian W* algebra to Banach spaces.

In [3] Bade has developed the theory of operator algebras W on
Banach spaces, which are generated in the weak operator topology
by a o-complete Boolean algebra of projections. Such an algebra W
has its maximal ideal space extremally disconnected, just as in the
case of an abelian W* algebra. However, W is not a B*-algebra.
To this end we exploit the work on hermitian operators in Banach
spaces by Berkson [4, 5, 6], Lumer [12,13] and Vidav [18] and we
define an algebra called a W*(||-||)-algebra in § 2 of this paper, which
is a B*-algebra generated in the weak operator topology by a o-complete
Boolean algebra of projections. The involution * of this algebra is
also strongly continuous (Theorem 1 of §2) as its counterpart in the
abelian W*algebra. Thus W*(||-||)-algebras have all the essential
properties of abelian W* algebras, though the double commutant
theorem fails for such algebras. (See Dieudonné [7]).

Further in § 2 we introduce an ordering relation among hermitian

.
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operators on a Banach space and prove that in a W*(||-||)-algebra a
bounded monotonic net of operators converges strongly. This result
is given here not only for its own interest, but also for its application
later in Lemma 6 of §4.

The spectral operators arising from unbounded measurable functions
are studied in § 3 and a generalization of Lemma 6 of Dunford [8] is
obtained here in Theorem 4. This is a basic result, which is used in
the theory of semi-groups of scalar type operators to show that the
infinitesimal generator of the semi-group is a spectral operator of scalar
type. Theorem 5 of this section, which states that the residual
spectrum of an unbounded spectral operator of scalar type is empty,
generalizes the corresponding result for maximal normal operators in
Hilbert spaces.

In 884, 5 and 6 we study the semi-groups of scalar type operators
making use of the tools developed in §2 and §3. We generalize
Theorems 22.3.1, 22.3.2, 22.4.1, 22.4.2 and 22.4.3 of Hille and Phillips
[11] to Banach spaces. Because of the lack of the inner-product in
our case the relations (13) and (23) are to be obtained here in a way
completely different from [11]. Also Theorem 8 of § 4 has to be weaker
than the corresponding Theorem 22.3.2 of [11] as we have to apply
here the generalized Lebesgue bounded convergence theorem which is
available only for a sequence of functions.

As the W*(||-||)-algebra W does not in general satisfy the double
commutant theorem, we have to assume explicitly in Theorem 9 of
§ 5, that the resolvent operators R(:, 4) of the infinitesimal generator
A of the semi-group belong to W. However, this explicit assumption
is not needed in the particular case when the operators of the semi-
group are all unitary. (See Theorem 10 of §6).

1. Preliminaries. The terminology and notation in this paper
are as follows. By a Banach space we mean a complex Banach space.
X always denotes a Banach space. For definitions of boundedness,
o-completeness and completeness of a Boolean algebra (abbreviated as
B.A. hereafter) of projections in X, one may refer to Bade [3]. For
a B.A. B of projections in X, B° denotes the strong closure of .
The results on spectral operators that are used in the sequel, can be
found in Dunford [8] and Bade [1, 2, 3].

DEFINITION 1. An element % of a Banach algebra A with the
norm ||-|| will be called hermitian in the norm if for # real,

lle + ark|| = 1 4+ o(7)

as r — 0, where e is the identity of A.
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If T is an operator on a Banach space X then T is called hermitian
in the equivalent norm ||-|| of X in the sense of Vidav if T, as an
element of the algebra B(X), is hermitian in the induced operator
norm ||| of B(X).

DEFINITION 2. An operator T on a Banach space X is said to be
hermitian in the equivalent norm ||-|| of X in the sense of Lumer, if
[T, #] is real for all  in X with ||x| =1 where [, ] is a semi-inner-
product (see Lumer [12]) on X consistent with the norm [|-]|.

In [12], Lumer has shown that T is hermitian in ||-|| in the sense
of Lumer if and only if T is hermitian in the sense of Vidav. Hence
we write that 7T is hermitian in the norm |{-|| to mean hermiticity in
either sense.

(1.1) VIpav’'s THEOREM. Let A be a Banach algebra with the
identity and with the norm ||-||. Let H be the set of elements of A
which are hermitian in ||-||. If A= H + +H and if for every he H,
h* can be expressed in the form h* =u + v with w, v in H and uv =
vu, then

(i) for each x in A, the decomposition x = u + v u,v in H,
s unique;

(ii) the map * which assigns to each element x = u + v (where
u, v are in H) the element x* = u — v ts an tnvolution on A; (we
call x* the Vidav adjoint of x);

(iii) ||-ll,, defined by || x||, = || x*x||'® ©s a Banach algebra norm
on A equivalent to the givem mnorm and moreover ||h|l, = | k]| for
every he H;

(iv) the algebra A with the involution * and the morm |||, is
a B*-algebra.

DErFiNITION 3. If a Banach algebra A with the norm ||-|| satisfies
the hypothesis of Vidav’s theorem (1.1) and is equipped with the
involution * defined in (i) of (1.1), then we call A, following Berkson
{5], a V*-algebra in the norm ||-||.

The Vidav’s theorem (1.1) has been sharpened recently by Berkson
in [5] to the following form.

(1.2) A is a V*-algebra in the norm |[|-|| if and only if 4 is a
B*-algebra in the norm |-]|.

As pointed out to the author by Bade and Phillips, the above
result of Berkson has the following important consequence for the
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theory of spectral operators.

THEOREM. (1.3) Let B be a bounded B.A. of projections on a
Banach space X and let A be the uniformly closed Banach algebra
generated by B. Then there exists an equivalent norm |||-||| on X
(t.e., a norm |||-||| which is equivalent to the given norm of X) such
that the norm of each operator in A, computed relative to |||-]||, is
equal to its spectral norm. Thus the Gelfand map of A is an
isometric isomorphism onto C(im), m the space of maximal ideals of A.

Proof. Since B is bounded, all the members of B are hermitian
in some equivalent norm [||-||| of X by remarks in § 3 of Lumer [13].
Hence all the members of the closure of the real linear span of B are
hermitian in |||-|]|. Now arguing as in the proof of Theorem 3.1 of
Berkson [4], it can be shown that each 7 in A may be written as
T=R+1J, with R,J in A and hermitian in [{|-|||. Thus A4 is a
V *-algebra in the operator norm |[||-||| induced by the Banach space
norm |[||-]|] of X and hence by Berkson’s result (1.2), the theorem
follows.

For results on semi-groups of operators one may refer to Hille
and Phillips [11].

2. W?*(l|-|l)-algebras. This section deals with the theory of
algebras of operators W on a Banach space X which are generated
in the weak operator topology by a o-complete Boolean algebra 8B of
projections. Such algebras are the natural generalization of abelian
von Neumann algebras. The theory of such algebras is developed
quite fully in [2],[3] and [9]. It is shown there that

(i) W is the algebra generated in the uniform operator topology
by B°;

(ii) ®B° is a complete B.A. of projections whose Stone represen-
tation space m is the maximal ideal space of W;

(iii) The Gelfand map A — A(.) is an isomorphism of W onto
C(m) and W and C(m) are topologically equivalent under this map;

(iv) Every operator S in W is scalar type of class X*; S =
SkE(dk), whose spectral projections E(o) belong to ®° < W. Further,
the space m is extremally disconnected.

Here we make the additional assumption on W that the norm |||
on X is such that the operator norm on W is isometric to the supremum
norm in C(m). Such an algebra is called here a W*(||-||)-algebra.

DEFINITION 4. By a W*(||-||)-algebra W on a Banach space X,
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we mean a pair, consisting of a commutative subalgebra W of B(X)
generated by a o-complete B.A. of projections in X in the weak operator
topology and some equivalent norm ||-|| on X such that every element
S in W has the representation of the form S = R + ¢J where R and
J satisfy the following conditions (V):

(i) RJ =JR with R and J in W;

|4
() (ii) R™J"(m,n = 0,1,2..-) are hermitian in the norm [|-]] .

We make the following observations in regard to a W*(||-||)-algebra.

REMARK 1. A W¥*(||-|))-algebra W on a Banach space X is precisely
an abelian subalgebra of B(X), which is a V*-algebra in the operator
norm ||-||, induced by the Banach space norm ||-|| on X together with
the property that it is generated weakly by a o-complete B.A. of
projections in X.

REMARK 2. A W*(||-|))-algebra W is a commutative B*-algebra
in the operator norm ||-|| induced by the Banach space norm ||-|| of
X and hence the Gelfand map is an isometric isomorphism of W onto
the space C(m) of complex valued continuous funections, where m is the
maximal ideal space of W.

For, the above remark follows from the fact that a o-complete
B.A. of projections is bounded and from Theorem (1.3) of §1.

REMARK 3. The Banach algebra W generated weakly by a o-com-
plete B.A. B of projections on a Banach space X is a W *(||-||)-algebra,
under a suitable equivalent norm ||-|| on X, If X is weakly complete,
the hypothesis that B is ¢-complete may be replaced by the hypothesis
that B is bounded.

For, the o-completeness of B implies that B° is complete and
bounded. Hence the weakly closed algebra generated by B coincides
with the uniformly closed algebra generated by ¥°. Now the remark
follows by appealing to Theorem (1.3) of §1.

REMARK 4. An operator S on a Banach space X is scalar type
if and only if it belongs to a W*(||-||)-algebra on X.

REMARK 5. If an operator S belongs to a W*(||-||)-algebra W,
then S is scalar type and all its spectral projections are in W. Further
-every projection in W is hermitian in [|-]].

Now we shall show that the *-operation in a W*(||-||)-algebra is
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strongly continuous. Though this result is noted in [9] on page 544,
the proof that we are giving here is based on the notions of hermiticity
and semi-inner-product. In addition, this proof is more direct. To
this end, we prove the following lemma.

LeEMMmA 1. If E is a nonzero projection operator on a Banach

space X then there is an equivalent norm ||| on X in which E 1s
hermitian and the norm of E computed with respect to ||-|| is unity,
1.e., ||E| = 1.

Proof. The B.A. B of projections, consisting of 0,1, EF and I — E
is bounded and hence there is an equivalent norm ||-|| on X, in which
the members of B are hermitian. By Theorem 1.3 of §1, the Banach
algeba & generated by B is a B*-algebra in the operator norm induced
by the Banach space norm ||-|| of X. Hence ||E|| =sup E(m) =1 as

mem
E +#0.

THEOREM 1. If W is a W*(||-||)-algebra on a Banach space X,
then the involution * defined in W which makes it a V *-algebra
(see Definition 3 of §1) is continuous in the strong operator topology.

Proof. Since the maximal ideal space mt of W is extremally

disconnected, every operator T in W admits a spectral representation
of the form

(1) T = Sm T(m)E(dm)

where T(m) is the Gelfand function associated with 7 and E(.) is a
strongly countably additive spectral measure, having its range in W.
Further, for Borel sets ¢ of the maximal ideal space ni, the projections.
E(o) are hermitian in |[-|| by Remark 5 and hence [[E@)|| <1 by
Lemma 1.

Let T, in W converge strongly to T. Since W is strongly closed,
T belongs to W. Hence there exist operators R,,J,, R and J in W
such that T=R ++J,T,= R, +1J, and R,,J, and R,.J satisfy
conditions (V) of Definition 4. By following an argument similar to
that of Bade (p.408, [2]), which is available here in view of the
spectral representation (1) of any operator T in W and the fact that
|| E(o)|| =1 for Borel sets ¢ of the maximal ideal space ui, we can
show that lim, R, and lim,J, exist in W in the strong operator
topology. Let lim, R.x = Rz and lim, J,x = J for z in X.

Now we shall show that R, = R and J, =J. If [,] is a semi-
inner-product on X consistent with the norm |i-||, then,
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[RB.x, 2] — [R, @]

(2) and
[Jox, @] — [J, ]

for |lz|| =1. Since R,, J, are hermitian in ||-l], [R.x, ] and [J,x, x]
are real for each « when [|z}| =1 and hence [R.2, z] and [Jz, z] are
real for ||z || = 1 by (2). Thus R, and .J, are hermitian in ||-||. Similary
RrJr(m,n =0,1,2, -..) are hermitian in ||-||. Hence R, and J, satisfy
conditions (V) of Definition 4. Clearly Tx = Rz + iJx for xe X.
But T = R + 4J by assumption, with R, J satisfying conditions (V).
Hence from the uniqueness of the representation of T in W, it follows
that R=R, and J = J..

Now lim T}z = lim (R, — iJ, )% = (R, — iJ)x = (R — tJa) = T*x for
in X. This establishes the strong continuity of the involution *.

In the rest of this section we generalize the notion of positivity
of operators on a Hilbert space to operators on a Banach space. We
recall that in a Hilbert space H, an operator T is called positive if
(Tz,2) =0 for x in H, where (,) is the inner-product of H. Also it
is known there that 7T is positive if and only if ¢(7T) is nonnegative.

DEFINITION 5. An operator T on a Banach space X is called
positive in the equivalent norm ||-|| on X (which we denote by T =0
in |j-]]) if [Tz, 2] =20 for « in X, with ||z|| = 1, where [,] is a semi-
inner-product consistent with the norm ||-}| on X; i.e., if the numerical
range W(T) with respect to the semi-inner-product [, ] is nonnegative,

The above definition calls for several comments. Since there may
be an infinite number of semi-inner-products consistent with a given
norm, the definition looks ambiguous at first sight. But the ambiguity
disappears in the light of Theorem 14 of Lumer [12], according to
which the numerical range has the same convex hull relative to any
two semi-inner-products inducing the same norm. It may be noted
that this definition also coincides with the classical one in a Hilbert
space.

LEMMA 2. If E is a projection operator on a Banach space X
and 1s hermitian in the equivalent norm ||| on X then E is positive
m ]+

Proof. The cases in which E = 0 or E = I are trivial. Hence sup-
pose E 0,1, Then by Lemmal ||E|| =1and ||I— E|| =1, since E and
I — E are hermitian in ||-|]. Now for x in X with ||z||=1 and a
semi-inner- product [, ] consistent with the norm ||-||, we have
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[Ex, o] = [{I — (I — E)}w, «]
1-[I - E)w,a]
0

Vol

as [{ — E)x,«] is real and |[({ — E)x,x]| < ||I — E|| = 1. Hence the
lemma.

The above lemma on projections enables us to link the positivity
of an operator in a W*(||-||)-algebra, with the nonnegativeness of its
spectrum.

THEOREM 2. If T is an operator belonging to a W*(||-|))-algebra
W then the following are equivalent.

(i) o(T) is nonnegative.

(ii) The Gelfand function T(m) in C(m) is monnegative where
m s the maximal ideal space of W.

(iii) T is positive in ||-||.

Proof. The equivalence of (i) and (ii) is clear from the results
that the spectrum of 7 in W, viz. ¢,(T), is the range of T(m) and
that o,,(T) = o(T) (see Corollary 3.7.6 of Rickart [16]).

To prove the theorem, therefore it suffices to show that (i) and
(iii) are equivalent. Let (i) hold. Then, as T belongs to the W*(||-|))-
algebra W it is scalar type and its spectral projections are in W.
Further they are hermitian in ||-|| by Remark 5. Hence, if E(.) is
the resolution of the identity of 7, then E(¢) are hermitian in |||
for Borel sets o of the complex plane, so that E(s) are positive in
I|]| by Lemma 2. Now let [, ] be a semi-inner-product on X consistent
with the norm ||-[|. Then for z in X, with ||| =1,[E()x, 2] is a
positive measure and hence

[Tz, 2] = UH(T)NE(dx)x, x:'

S NME(dN)@,z]
o(T)
0

Il

v

as o(T) is nonnegative. Hence T is positive in ||-||; i.e., (iii) holds.

Conversely, let (iii) hold. Then as T is in W, T is scalar type.
Hence by Theorem 5, §4, of Foguel [10], 6(T) = n(T) where n(T) is
the approximate point spectrum of T. Since T is bounded, by Theorem
4 of Lumer [12], we have =n(T) < W(1') where W(T) is the numerical
range of T with respect to some semi-inner-product consistent with
the norm |[|-||. But by hypothesis W(T') is nonnegative and hence
W(T) is nonnegative. Hence o(T) = w(T) is nonnegative. Therefore
(i) holds.

This completes the proof of the theorem.
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DEFINITION 6. For two operators T, 7' on a Banach space X we
say T is greater than T’ in the equivalent norm |[-|| on X (briefly
T=T in ||-||) if i) T, T’ are hermitian in ||-|| and (ii)) T — T’ is
positive in ||-[|.

DEFINITION 7. A net {T,} is said to be monotonic increasing
(decreasing) in the equivalent norm ||| on X if T, = Ty(T:, = T,) in
{|-l| whenever @ = 8. In symbols we write this as {T,} m.i. (m.d.)
in |-}

We recall that in a Hilbert space, if {T,} is a bounded monotonic
net of commuting hermitian operators, then {T,} converges strongly
to a Hermitian operator. We generalize this result to Banach spaces
below.

LEMMA 3. Let T, | 0 be a monotonic decreasing net in a W*(||-||)-
algebra W. Then T,— 0 in the strong operator topology.

Proof." By Theorem 2, for elements S, and S, in W, S,= S, in
[|-]l if and only if S/(m) = Sym) in C(m). Since m is stonean, the
hermitian elements of C(m) and hence of W form a conditionally
complete lattice under this partial ordering.

Fora =z a, T, = T, in [|-[|. Hence T.(m) = T, (m) so that || T,|| =
sup| To(m) | = sup T.(m) < sup T, (m) = || T,,||. Hence
(3) | To |l =[] Tay |l
for a = «a,.

Let xe X and ¢ > 0. If ¢, = {m: T.(m) < ¢} then Y E(e,) = I so
that E(e,) — I strongly where E(.) is a countably additive spectral

measure on the Borel sets of m with respect to which 7T, have the
spectral representation

T, = Sm T (m)E(dm) .
Thus for xe X,
| T |l < || ToE(e)2 || + || Tl | (L — Ee))x || < ella]] + €

for @ = «, in view of (3) and Lemma 1. Thus T,— 0 strongly.

THEOREM 3. Let{T,} be a netina W*(||-||)-algebra W of operators
on a Bamnach space X such that

(i) {T.} is monotonic in ||-||; and

(ii) for some R in W, T, < R in ||-|| if {T.} is m.i. in ||-|| and

1 The present short proof is due to the referee to whom the author is thankful.
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T.=R in ||-|] iof {T.} is m.d. in ||-||; i.e., the net {T,} is bounded.
Then lim, T,x exists for each x in X. Further lim, T,x = V T2
(ATox) if {T,} is m.i. (m.d.) in ||-].

Proof. Without loss of generality we may assume that {T,} is
m.i, in ||-||. Since T, < R in ||-|| and since the hermitian elements
in W form a conditionally complete lattice, it follows that 7, V.T.
in W. Hence (V.T,~— T, | 0. Then it follows from Lemma 3 that
lim, T.x = V.T,x for # in X. Hence the theorem.

3. Unbounded spectral operators of scalar type. In this section
we obtain some interesting results on unbounded spectral operators
of scalar type, which will be needed in the sequel. For definitions
and results on such operators which are used here, the reader may
refer to Bade [1].

Let m be a set and Y be a o-algebra of subsets of m. Let E(.)
be an X *-countably additive spectral measure on Y. Suppose f is a
complex valued F(.)-essentially unbounded X-measurable function on
m. Then we define a linear transformation f(E) as below.

DEFINITION 8. Let ¢, = {m:mem,|f(m)| < n}. Then define f,
as follows.

Salm) = f(m), mee,
=0,m¢ee, .
We define
D(f) = {m: xe X and limg fm)E(dm)x exists}

and

n—rco

f(B)z = lim S f(m)E(dm)z, © € D(F) .

It is easy to check that D(f) is a dense linear manifold in X and
f(E) is a linear transformation over D(f) with its range in X.

LEMMA 4. Let A(f) be the set of members in X on which f is
bounded. Then we have:

(1) A(f) is closed under finite unions and contains any subset
of its members, if the subset belongs to X;

(ii) If ee€ A(f), then E(e)X < D(f) and f(E) is bounded in
E(e)X, where D(f) and f(E) are as in Definition 8;

(i) E(e)f(E)E(e) = f(E)E(e), e c A(f);

(iv) A(f) contains an increasing sequence {0,} such that

EWU?-.0,) = 1.
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Proof. The statement (i) is obvious. The statement (iv) is clear,
if we take for {0,} the sequence {e¢,} in Definition 8.

Since f is bounded on e € A(f) and since lim, ., E(e,) x= « for z € X,
we have

f(B)E(e)r = lim S Fim)E(dm)E(e)e

(4) — lim S fim)E(dm)E(e,)x

n—oco

- S f(m)E(dm) .
Now from (4) the assertions (ii) and (iii) follow.

LEMMA 5. Let {0,} be any other increasing sequence from A(f)
for which E(U3-,0,) = I. Then:

(1) lim,..f(E)E(e,)x exists if and only if x is in D(f);

(ii) If lim,_. f(E)E(e,)x exists, then

lim f(E)E(e,)x = lim f(E)E@,)x

and conversely;

(iii) If im the definition of f(E) the sequence {e,} is replaced by
any other sequence {0,} in A(f) such that 6,20,_, and E(U:-,0,) = I,
we obtain the same linear transformation f(E).

Proof. Let x bein X. Then by relation (4) in the above, we have
FE)B(e,)w = | fim)Bdm)z

from which the assertion (i) of the lemma follows.

The statement (ii) of the lemma can be proved by following an
argument similar to that of Lemma 2.1 of Bade [1].

Finally, to prove (iii) let « be in D(f). Then by relation (4) and
statement (ii) of the lemma we have

AB)w = limS Fim)E(dm)
= lim f(E)E(e,)x

n—r00

= lim f(E)E(5,)»

= lim (lim Sek f(m)E(dm))E(Bn)x

n—oo \k—oo

— lim lim S Fim)E(dm)o
e 10y,

n—oo f—oo

— lim lim E(e,) Sa f(m)E(dm)z

n—oo f—roo
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so that
(5) AE)e = lim S F(m)E(dm)s .

Now the assertion (iii) is clearly a consequence of equation (5) and
statements (i) and (ii) of the lemma. Hence the lemma.

As a consequence of the above lemmas, we prove the following
main theorem of this section. We also remark that this theorem is
a generalization of Lemma 6 of Dunford [8], to the unbounded case.

THEOREM 4. Let f be a complex valued E(-)-essentially unbounded
Y-measurable function on the set m, where E(-) is an X*-countably
additive spectral measure on X, a oc-algebra of subsets of m. Then:

(i) The set D(f) = {x: limn_mg S(m)E(dm)x em’sts} 18 a dense
linear manifold of X where "

e, = {m:mem,|fm)| < n};

(ii) The operator f(E) defined by
AEB)w = limS Fim)B(dm)s

1s an unbounded spectral operator of scalar type with domain D(f)
whose resolution of the identity is given by E.(-) where

E(0) = E(f~(9))

Jor Borel sets o of the complex plane;

(iii) Any other increasing sequence {0,} in A(f) (see Lemma 4
for definition of A(f)) such that E(U;-.0,) = I would also define the
same linear transformation f(E).

Proof. The proof of (i) is trivial. The assertion (iii) follows from
Lemma 5.

To prove (ii), let E;(-) = E(f~'(-)) on the family B of Borel sets of
the complex plane. KE.(-) is also an X *-countably additive spectral
measure. Defining f, as in Definition 8, we have

(6) [, smBam = | rmE@m = |__\E, @

n

by Lemma 6 of Dunford [8], where E; (-) = E(f,'(+)).

Now by Lemma 1, § 3, of Foguel [10], the operator NE; (dN)
)
belongs to the uniformly closed algebra generated by E; (a) for Borel
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sets a of the complex plane such that 0¢&. Let a be such a Borel
set of f,(ut). Since a3 0
(7) fala) = {m; f(m) e « and mee,}

as f, = fone, But asfmc{Mn=nhasfum)S MM <n})
Hence f(a) S e,. Thus

(8) M) = {m: f(m) e and mee,}.

Hence from (7) and (8) it follows that f,"(a) = f~'(@) so that E; (@) =
E/(a). Hence by the above lemma of Foguel [10] we have

|, romB@m = |__ B, @

n

= | B, @)
Sfley)

f(E)e = lim g fim)E(dm)o

(9)
— lim S_ NE (AN

fley)

n—co

Clearly the left hand side and the right hand side of (9) exist if and
only if x is in D(f). Hence the right hand side of (9) defines the
same operator f(E).

Now as f(e,) S {\: | M| = n}, the sequence {f(e,)} is a sequence of
bounded closed sets in the complex plane. Clearly it is an increasing
sequence. Also it is easy to check that E.(J7., f(e,)) = I. Hence by
Theorem 3.3. of Bade [1] and by the definition of scalar type operators
(see p. 379, Bade [1]) it follows that the operator f(E) defined by

f(B)e = lim S__ NE (AN, @ € D(F)
n—oo J fey,)

is an unbounded spectral operator of scalar type with the resolution
of the identity E,(-).

This completes the proof of the theorem,

In Theorem 3.3 of Bade [1] the operator f(S) (see p. 379 of Bade
[1] for definition) is proved to be spectral and nothing has been said
whether f(S) is scalar type. But the above theorem asserts that f(S)
is scalar type and hence we state this result separately below.

COROLLARY. If f is an E(-)-essentially unbounded Borel measu-
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rable function over the complex plane where E(.) is an X *-countably
additive spectral measure over the Borel sets of the complex plane,
then the operator f(S) is an unbounded spectral operator of scalar type.

In [10] Foguel has proved that the residual spectrum of a (bounded)
spectral operator of finite type is empty. In the following theorem we
generalize this result to unbounded spectral operators of scalar type.

THEOREM 5. Let S be an unbounded spectral operator of scalar
type on a Banach space X, with its resolution of the identity FE(-).
Then a point 1l in the complex plane belongs to (i) the point spectrum
0,(S) if and only if E(l) # 0 and (ii) the continuous spectrum a,(S)
if and only if leo(S) and E(l) = 0. Consequently, the residual
spectrum of S ts empty.

Proof.? Suppose E(l) = 0. Then the function f(\) = (M — )7 is
analytic and single valued in the complement of the single point closed
set [ for which E(l) = 0. Hence f(\)e R (see p. 387 of Bade [1] for
definition of R). Now taking

¢, = {x: N = m, dist. (N D) = l}
n

{e,} is an increasing sequence of bounded closed sets for which

oo

EWUe,)=1.

n=1

Therefore defining

(10) f(S)leimS FOV BN

on the set D(f(S)) of z for which the limit in (10) exists, we see

that f(S) is a closed operator with its domain D(f(S)) dense in X.
Now for « in D(f(S)) we have

(v = DE(ANS(S)

vey

:S (v — DE@N) l‘img FOVE(dN@

-

= lim g (n — l)E(dk)Ben FOVE@N)s - S FOVE@ |

k—oo ey

_ S O — DFVE@N = Ee,) .

2 The method we adopt here is an extension of that on p.325 of Stone [17] for
maximal normal operators on Hilbert spaces.
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Hence for z in D(f(S)) we have
11) (S — I f(S)x = lim E(e,)x = % .

Similarly we have for « in D(S) = D(S — 1lI), f(S)(S — )z = z. Thus
f(S) is the inverse (S — IlI)™'. From (11) and that D(f(S)) is dense
in X it follows that the range of S — I is dense in X. Hence [ is not
in the residual speetrum of S. Also as (S — II)™* exists, I is not in
the point spectrum o (S). Thus if [ belongs to ¢(S) and E(l) = 0 then
lco,(S). This proves the direct part of assertion (ii). The converse part
of (ii) clearly follows from the result (i), which we shall now prove.

Suppose le€o,(S). If E() = 0 then from the above, we must have
{ in the continuous spectrum ¢.(S) which is a contradiction as

g(S)No(S)=o.

Hence E(I) + 0.

Conversely, suppose E(l) =+ 0. Clearly lco(S). Since E() = 0
there is a vector z,€ X such that E(l)x, = 0. Then

SE(l)w, = lim S NE(@V)E(Da,
where o, = {\: | M| £ n}. Therefore

SE(), = lim S NE(dN),
7, 0{1}

n—>co

_ S BNz, = LD,
u

and since E(l)x, = 0, 1 is in o,(S).
This completes the proof of the theorem.

The following theorem on W *(||-||)-algebras which plays a key
role in the spectral representation of semi-groups of scalar type
operators, is a consequence of the preceding results.

THEOREM 6. Let W be a W*(||-|)-algebra. If m vs the maximal
ideal space of W, then there exists an X *-countably additive spectral
measure P(-) on the Borel sets X of m such that each bounded Borel
measurable function f on m corresponds to a unique operator F in
W, the correspondence being given by

F= Sm fim)d, P(E)

8 _[mf(m)P(dm) is denoted by J.mf(m)de(E) hereafter following the notation of
Hille and Phillips [11].
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the above integral existing in the uniform operator topology.

Also if f is a P(:)-essentially wunbounded Borel measurable
function on m and if {e,} ts an increasing sequence of Borel sets
of m on which f is bounded and if P(U;-.e.) = I then the set D(f)
of all x of X for which

(12) f(P)z = lim S Fim)d,, P(E)z

exists, 1s dense in X and the tramnsformation f(P) defined by (12) 1is
an unbounded spectral operator of scalar type with domain D(f).
Consequently, the residual spectrum of f(P) is empty.

REMARK 6. If the Borel measurable function f in the above
theorem is real valued, an equivalent representation for f(P) in (12)
is obtained as follows.

If E;, = {m: f(m) £ A}, then denote the projection P(E)) by P(\).
The family of projections [P(\): — oo < A < o] which generates the
resolution of the identity P,(-) of f(P) (see Theorem 4) has the
following properties ().

(i) APN =0,V P =I;
(¥){(ii) PO)P(w) = P for < p2;
(i) PO = A P -

Also the property (iii) is equivalent to

(iii)y POz = lim,_;+ P(¢)x, z € X in view of Lemma 2.3 of Bade

[3].

Further, by Theorem 4 the equation (12) can be written as
AP)x = lim S NP, (\), @ € D(F)

where P;(-) = P(f~'(+)) and {o,) is any increasing sequence of bounded
Borel sets of the real line such that P, (U;-, 0,) = L.

Since the resolution of the identity P,(-) of f(P) is generated by
the family [P(\): — oo < XN < oo}, (12) is written as

(12)) F(P)z = r NPz, e D(F) .

—o0

4. Semi-groups of real scalar type operators. In this section
we obtain the spectral representation of a strongly measurable (and
hence strongly continuous) semi-groups of real scalar type operators.
We also obtain an ergodic theorem for such semi-groups of operators.
Henceforth we closely follow the notations of Hille and Phillips [11]
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and often omit details of analogous proofs.

DEerFINITION 9. Let & = [T(é): £ > 0] be a semi-group of operators
on X. Then by X, we denote the set U.., T(§)X. (see p. 307 of [11}).

THEOREM 7. Let & =[T(£): & > 0] be a strongly measurable semi-
group of real scalar type operators of class X* on X and let the
members of & belong to a W*(||-||)-algebra W. Then & is of finite
type w, (say) and || T(€) || = exp (w,&). Also,

(13) lim T(&)x = Jx,xe X

g-0t

where J is a projection with its range R(J) = X, and
T = JTE) = T(&)

Jor all & > 0.

Finally, T(&) has a holomorphic extension T(t) having either the
whole plane or the right half-plane as its maximal domain of analytic
existence and there exists a unique representation of T(ct) of the form

—oo

T(t)e = S e dP\)z, we X .
Here [P(\)] generates the resolution of the identity relative to X,
Jor the infinitesimal operator A, of &, viz.,

—oco

(14) Az = S“" NAPOV)

where D(A,), the domain of A, coincides with the set of all xe X,
for which the integral in (14) exists. Also D(A,) is dense in X, and
A, is an unbounded spectral operator of real scalar type on X,.

Proof. That the semi-group & is of finite type w, follows from the
facts that (i) W is an abelian B*-algebra in the norm ||-|| (ii) || T(&) || is
lower-semi-continuous and (iii) & is a nontrivial semi-group. Also it
follows that || T'(&) || = e

Since the maximal ideal space I of W is extremally disconnected
and || T(§) || = e»* the argument on p. 589 of Hille and Phillips [11] can
be applied verbatim, taking W for B there. Defining 28,11 and a(m)
in the same way as in [11] and putting P(\) = P(E;) = P{m: a(m) < \}
it is easy to see that [P(\)] generates a resolution of the identity
relative to the subspace R[P(W)]; i.e., P(\) satisfies conditions () in
§ 3 except that YV P(A) = P(B®) = J. J may differ from I. Then arguing
as in [11] we have
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(15) T(E)s = gme T(&)(m)d, P(E)z = Sml APV .

Consequently,

zre ot T(S) = S e w* dP(n + 0w

—oco

for each x € X and 2*e X*. Since x*P(\)x is continuous in the right
for fixed «#* and x, by arguing in the same way as on p. 590 of [11]
it can be shown that [P(\)] is uniquely determined by &. Now
E
I e“dP(z | = H e, P(E)o |
—oo i Ws

- ] S% ¢ md, P(E)P(TS)x H

= [ |, T@0md.. PE) Py)a |

where B, = {m: me M, a(m) < B).
Hence by Lemma 6 of Dunford [8] and Lemma 1 of §2,

” S 1 e“dP(\)w l] < dsup| T()(m) ||| P ||

= 4 e || P(T;) ||
< 4max {1, en'} || P(B)x ||
< €

for & in [0,¢] if B < — N(e), as || P(B)x||— 0 as 8— — <. Hence
8
lim S e*dP(\)x = 0 uniformly for & in [0, ¢] so that the double limit

Bsmoo

lim S“’° e dP(\)x
g—ot Jp

p——oc0

exists and hence the two iterated limits exist and are equal. Thus

lim T(®)e = lim lim S e#d PO\

£-0t £50T Bor--c0 JB

= lim lim S‘"" AP0 = Jo
Br—co gm0t ) B
for e X. Hence the equation (13).

The argument on p. 590 in [11] holds here to show that R(J) = X,
and JT(&) = T(&)J = T(¢). Further, the part concerning the holomor-
phic extension can be proved arguing in the same way as in [11],
replacing (P(\)x, y) there by x*P(\)x, € X and x*e X*.

Define the operator A as follows.
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(16) Az = lim S a(m)d, P(E)Jx
where e, = {m: m e, |a(m)| < n}, for all z in X, for which the limit in
(16) exists. Since P(U;-. e,)J = P(BW)J = J, A is an unbounded spectral

operator of real scalar type on X, and

(16) Az = Sw" NPO)

—o0

and [P(\)] generates the resolution of the identity of A with respect
to X, (see Remark 6 of §3). Further the set D(A4) of all » in X, for
which the limit in (16) exists is dense in X, by Theorem 4 of § 3.
If A, is the infinitesimal generator of & with domain D(A,) then
arguing as in [11] it can be shown that D(4,) = D(A) and A, = A.
Hence from (16’), the equation (14) of the theorem follows.
This completes the proof of the theorem.

LEMMA 6. Let & = [T(8): & > 0] be a semi-group of real scalar
type operators belonging to a W*(||-|))-algebra W on X. Let || T(%) |
be bounded on every compact subset of (0, ). Then T(§) is continuous
wn the strong operator topology for & > 0.

Proof. The argument on p.591 of [11] in the proof of Lemma
22.3.2 holds here verbatim because of the representation theory in
Theorem 7. Also defining S(&) = e~ T(£) as on p.591 of [11] we see
that S(¢)(m) is continuous and nonincreasing in & for each m e IN.
Thus, as the set of hermitian elements in M is a conditionally complete
lattice,

hm SE)(m) = A S(E)(’m S(&)(m)
= eYeS(E)(m) = 122% SE)(m) .

Consequently by Theorem 3, §2, it follows that lim... S(é)x =
A<, S = S(&)w and lim,_.+ S(§)x =V (.0 S(§)x = S(&,)x. Hence S(§) and
therefore T(&) is strongly continuous at & = &, > 0. Hence the lemma.

The above lemma is applied to prove an ergodic theorem for
semi-groups of real scalar type operators.

THEOREM 8. Let & =[T(&): & > 0] be a semi-group of real scalar
type operators of class X* on X and let the members of & belong to
a W*(||-|))-algebra W. Let & be of type w, and w, < 0.

Then

lim T(¢.)2 = [P(0) — P(0)]e, € X
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where [P(\)] generates the resolution of the identity relative to X,
for the infinitesimal operator A, of &.

Proof. Since T(§) are in the W*(]|-|))-algebra W || T"(&) ||l =
T(&)||*~. Hence arguing as on p. 592 of [11] we have

ITE) [ =e*=1

for all & in (0, ) as @, < 0. Thus || T(¢)]| is uniformly bounded in
(0, ) and hence by Lemma 6 & is continuous in the strong operator
topology, for & > 0. Now as & satisfies the hypothesis of Theorem 7,
making use of the representation given in that theorem we have

T@m::y e*dP\)e, e X .
Let P= P(0) — P(07) = P{m: me T and a(m) = 0} in the terminology
of the proof of Theorem 7. Then we have

T(&)x — Pu — S% exmd P(E)x — S% d.P(E)x
= SO— e*dP(\)x

:ymf ¢*d PO
where B, = {m: m e W and a(m) = 0}. Now if f,(\) = ¢*» where {£,}
is an increasing sequence of positive numbers tending to < and A
ranges in (— <o, ), 8 < 0, then f,(\) — 0 as &, — o for each n. Further
Fi(\) > f.(\). Hence by the generalized Lebesgue bounded convergence
theorem on vector valued measures

i

a7 lim } Siw e“rd P(\)x H =0.

n—rco

Thus, in view of (17), Lemma 6 of Dunford [8] and Lemma 1 of §2
we have

lim sup H T,z — Px H

&,

< lim sup (HS; end POV || + || SZ— eléndP(?n)xH)

& mree

= lim sup H Si— end P(\)x H

f,nv»oo

< lim sup 4 sup ¢*» || P(0")x — P(B)x H
£mro0 22(8,0

=4[ (P(07) — P(®)x||
< &
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if B is sufficiently near to zero from below. Hence the theorem.

5. Semi-groups of scalar type operators. In this section we
study the spectral representation of semi-groups of scalar type operators
when the spectra of the members are not necessarily real.

DEFINITION 10. We shall donote by R,* the set {R(\, 4): N € p(A)}
where A is the infinitesimal generator of a semi-group & and p(A4) is
the resolvent set of A.

LEMMA 7. If © is a semi-group of class A (see p. 321 of [11])
then the commutant of & contains the set R, and &° = RS where &°
and R are the commutants of & and R, respectively.

Proof. By Theorem 16.2.1 of [11], &° = R:. Since R, is abelian,
R, S R = ®&°. Hence the lemma.

LEMMA 8. Let Q(-) be an X *-countably additive spectral measure
over the Borel sets of the complex plane and let Q(4) = I where
4 ={n:Re: £ w,}. Suppose A is a closed operator having its spectrum
contatned in 4. If pris a complex number such that Re 1 > @, and if

R, 4) = | (1 = N7 dQ(E)
then

(18) Az — g ALQ(E)z

(the integral in (18) being understood as limnqwg AGQE ) where

{0,) is an increasing sequence of Borel sets of 4 sucka’;fkat QUs..0,) =
I). Further the integral in (18) exists if and only if x belongs to
the domain of A. Further A is a spectral operator of scalar type
with Q(+) as its resolution of the identity and is unbounded tf o(A)

18 unbounded.

Proof. Since Re pt > w,, g(\) = (£ — N\)™' is a bounded measurable
function defined on the set 4 and hence by Lemma 6 of Dunford [8]

R, A) = | (1 = M dQE)

is a bounded scalar type operator of class X* with its resolution of
the identity given by

+ However, in [11] this is denoted by .
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(19) Q,() = Qg7'(+)) -
Define f(\) = ¢t — 1/x. Then let

FB(p, A = lim | f)d:Q,(B)e

en

where e, = {\: [ 1] < n, dist. (\, 0) = (I/n)}. Then as
Qg(o) - Q{X- QO\:) = O} = Q(g)) =90

the increasing sequence {e,} of bounded Borel sets of the complex plane
is such that Q,(U:-,e,) = I. Hence by Corollary under Theorem 4 of<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>