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HOMOMORPHISMS OF ANNIHILATOR
BANACH ALGEBRAS, II

GREGORY F. BACHELIS

Let A be a semi-simple annihilator Banach algebra, and
let v be a homomorphism of A into a Banach algebra. In this
paper it is shown that there exists a constant K and dense
two-sided ideals containing the socle, IL and IR, such that
11 v{xy) II ^ HΠI # 11 \\y\\ whenever x e IL or y e IR. If A has
a bounded left or right approximate identity, then v is continu-
ous on the socle. Thus if A — Li(G), where G is a compact
topological group, then any homomorphism of A into a Banach
algebra is continuous on the trigonometric polynomials.

In [1] we considered the problem of deducing continuity pro-
perties of a homomorphism v from a semi-simple annihilator Banach
algebra A into an arbitrary Banach algebra. The main theorem
there (Theorem 5.1) had a conclusion more restrictive than the one
stated above and required the additional hypothesis that / © 3ί(/) = A,
for all closed two-sided ideals /, where 9Ϊ(/) — {x\Ix — (0)}. The
main theorem of this paper applies when A = LP(G), 1 ^ p < oo or
C(G), where G is a compact topological group and multiplication is
convolution, and when A is topologically-simple, whereas the earlier
theorem did not.

Any terms not defined in this paper are those of Rickart's book
[10]. For facts about annihilator algebras, the reader is referred to
[4] or [10].

Given the left-right symmetry in the definition of annihilator
algebras, it follows that, given any theorem about left (right) ideals,
the corresponding theorem for right (left) ideals also holds. Specific-
ally, this is the case for the theorems in [4, §4] and [1, §4], We
will make tacit use of this fact throughout this paper.

2* Structural lemmas* In this section several lemmas are
established which will be used later in proving the main result.
Throughout this section, we assume that A is a semi-simple annihilator
Banach algebra.

LEMMA 2.1. // {xl9 •• , # J is contained in the socle of A, then

there exist idempotents e and f such that x{ e eAf, 1 ^ i <Ξ n.

Proof. By [1, Corollary 4.9], for each i there exist idempotents
e{ and fi such that x{ e e{A Π Afi c e^f. By [1, Th. 4.8], there
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284 GREGORY F. BACHELIS

exist idempotents e and / such that eλA + + enA = eA and
Af + + Afn = Af. Thus xi e e,Af = ee,AfJ(z eAf, 1 ^ i £ n.

LEMMA 2.2. Suppose A is topologically simple, and e is a
minimal idempotent in A. Then there exists a constant L such
that:

Given f ~ f2 e A and xeeA, there exists g = g2 e A such that:
(1) x{l
(2) fg =

( 3 ) ||flr||
The corresponding statement holds for x e Ae.

Proof. Let Fo denote the bounded operators on Ae of finite
rank. Then via the left regular representation, we may regard A
algebraically as a subalgebra of the uniform closure of Fo which
contains Fo (see [4], Ths. 9 and 10).

If a e eA, u e Ae, then au = eaue = Xe = φa(u)e, and a —* φa defines
an isomorphism and homeomorphism between eA and the bounded
linear functionals on Ae [4, Th. 13]. Hence there exists a constant
L such that | | α | | ^ (L/2) \\φa\\ for all aeeA.

Let x e eA and / = f2eA. Then x(l — f) e eA, and e is minimal,
so range(x(l — /)) is one-dimensional. Let M = (x(l — /))~1(0). Then
M is a closed subspace of co-dimension one in Ae, so there
exists a bounded linear functional β on Ae such that \\β\\ = 1 and
β - \ 0 ) = M. L e t we Ae s u c h t h a t \\w\\ ^ 2 a n d β(w) = \\β\\ = 1.
Now w = (1 - /)w + fw, and /w e (1 - f)-1^) c ikf, so β((l - f)w) =

Let G(%) = β(u)(l — f)w, ueAe. Then G is a bounded operator
on Ae with one-dimensional range and G = G2, so there exists an
idempotent geA such that gu = β(w)(l — /)w, we^4β. If ueAe,
then % - β(u)(l - f)w e β~\0) = M = (x(l - Z))"1^), so x(l - f)u =
x(l - f)β(u)(l - f)w = xβ(u)(l - /)w = α βru. Therefore x(l - f) =
##. Thus x(l — /)gr = χ#2 =z xg = χ(l — / ) . This establishes (1).

To prove (2), we see that (1 - f)w ef~ιφ), so fg = 0, and
range(/) = (1 - f)~ι(0) c M = g~ι(0), so gf = 0.

To establish (3), let h e eA such that φh = /3. If π e i e , then

- (1 - f)wβ(u)e - j8(w)(l - /)wβ = β(u)(l - f)w = ^ .

Therefore (1 — f)wh — g, so

I k I I ^ I I λ 11(1 + I I / I D I I w | | ^ ( I r / 2 ) ( l + 11/11)2 ^ L ( l + l l / H ) .

3* The ideals IL and IR. In this section we discuss the ideals
which enter into the main theorem. Throughout this section, we



HOMOMORPHISMS OF ANNIHILATOR BANACH ALGEBRAS, II 285

assume that A is a Banach algebra and that v is a homomorphism
of A into a Banach algebra.

DEFINITION 3.1. Let IL = {xeA\y—+v(xy) is continuous on A}
and let IR = {x e A | y —> v(^) is continuous on A}.

These sets were introduced by Stein, who shows they are two-
sided ideals in A [11]. Another useful concept is that of the separat-
ing ideal, S, which is defined to be the set of seel (v(A)) such that
infxe^{||^|| + || s - v(x)\\} = 0. The separating ideal was introduced
in the form above by Yood [13]. It is a closed two-sided ideal in
cl (i>(A)).

In [12], Stein notes that IL c {x e A | v(x)S = (0)} and similarly
for IR. One actually has equality: For suppose v{x)S = (0). If
xn—>0 in A, then by [8, Lemma 2.1], v(xn) + S-* S in cl (v(A))/S.
Hence there exists {sn} c S such that v(xn) + sn —> 0. Thus v{xxn) =
v{x)v(xn) = v(x)(v(xn) + sn) -> 0, so x e IL.

4* Homomorphisms of annihilator algebras* In this section
we establish the main results of this paper. We will make frequent
use of the "Main Boundedness Theorem" of Bade and Curtis.

THEOREM 4.1. Suppose that A is a Banach algebra, and that v
is a homomorphism of A into a Banach algebra. Let {xn} and {yn}
be sequences in A such that xnym — 0, n Φ m. Then

» ll Hi/.II

Proof. This is Theorem 3.1 of [5]. The statement there in-
cludes the unnecessary hypothesis that ynym = 0, n Φ m.

Throughout the remainder of this section, A will denote a semi-
simple annihilator Banach algebra with socle F, and v will denote
a homomorphism of A into a Banach algebra. We first prove:

LEMMA 4.2. If A is topologically-simple, and e is a minimal
idempotent in A, then v \ eA and v \ Ae are continuous.

Proof. (For v \ eA). Let L be as in Lemma 2.2. Suppose the
conclusion fails. Choose xteeA such that || v(x^ \\ > L \\x1 \\. By
Lemma 2.2, with / = 0, there exists g1 = gleA such that \\g.\\ < L
and x1g1 = xγ. Thus || v{x,) \\ > \\ xι \\ \\ g, \\.

Assume that elements xteeA9 giβA have been chosen such that
xigi = xif
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9iff, = 0 , i Φ j ,

and || v(xt) || > i\\ x, \\ \\ ffi ||, 1 ^ i, j ^ n.
Let / = gx + + gn. Then / = f\ gj = Λ = /&, and x, e eAf,

1 <Li <^n. Since / can be expressed as the sum of minimal idempotents
[1, Th. 4.5], eAf is finite-dimensional, so let K be the norm of v \ eAf.
Now choose ueeA such that || v(u) || > ( l + ||/||)2L(w + l ) | | u || + #11/11 \\u\\.
Then

\\v(u)\\<^\\v(uf)\\

^K\\u\\\\f\\ + \\v(u(l-f))\\ ,

so

\\v(u(l-f))\\ > ( 1

Let xn+1 = ^ ( 1 — / ) e eA. By Lemma 2.2, t h e r e exists # M + 1 = g\+ι e A
such t h a t xnΛιgn+1 = a?Λ+1, flrΛ+1/ - / ^ + 1 = 0, and || gn+11| ^ L ( l + | | / | | ) .
Thus

gn+1g{ = 0 = flrt flrΛ+1 , 1 ^ i g ^

and

Thus by induction t h e r e exist sequences {xn}, {gn} such t h a t xngm =
^nQndm = 0, π Φ m a n d II v(xngn) \\ > n\\xn\\\\gn\\1 w h i c h c o n t r a d i c t s
Theorem 4.1.

We now show that IL and IR are dense in A:

LEMMA 4.3. FaILn IR .

Proof. If e is a minimal idempotent, then e is contained in a
minimal-closed two-sided ideal ilf, M is a topologically-simple semi-
simple annihilator Banach algebra, and eM = eA. The preceding
lemma gives that i; | eA is continuous. Thus x —+ v(ex) is continuous
on A, so β e IL. Hence IL contains all the minimal idempotents of A.
Since IL is an ideal, this implies that IL ZD F. Similarly, IR Z) F.

L E M M A 4.4. // || v(xy) \\ > r\\x\\ || y\\, and if xeIL or yeIB,
then there exist xlf yLeF such that ||v(i»i2/i)|| > τ | | ^ i | | | |2/i | | .

Proof. Suppose xeIL. Since w —> v(xw) is continuous on A and
F is dense in A, t h e r e exists y^eF such t h a t ||y(a?2/i)|| > ^ | |a? | | Ill/ill
Now I / I G / R , SO t h e r e exists ^ G F such t h a t l l y ^ ^ O I I > r | | ̂  || [|2/i||.
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We can now prove the main theorem:

THEOREM 4.5. Let A be a semi-simple annihilator Banach
algebra, and let v be a homomorphism of A into a Banach algebra.
Then there exists a constant K such that

\\v(xy)\\^K\\x\\\\y\\

for all x and y in A such that x e IL or ye IR.

Proof. In view of the preceding lemma (or by symmetry con-
siderations), it is enough to show that there exists a K such that
|| v{xy) || <̂  JBΓ || a? || \\y\\ whenever x e IL. Suppose this is not the case.
By the preceding lemma, there exist xγ and yι in F such that
II VJ/Λ- nj \ | | \ \\ T 11 11 1/ IIII v \ ^ \ U ι ) II s> II ̂ i II II Uι ll

Assume that elements xif y{ e F have been chosen such that

XiVj = 0 , iΦj

and

\ \ v ( % i V i ) \ \ > i \ \ X i \ \ \ \ V i \ \ , 1 ^ ij ^ n .

By Lemma 2.1, there exist idempotents e and / such that
{xly -•-,xn,y1, --,yn}c: eAf. By [1, Th. 4.5], β and / are in F, and
by Lemma 4.2, F cz IL Π IR. Now an idempotent is in IL{IR) if and
only if the restriction of v to the right (left) ideal it generates is
continuous, so let L be the maximum of the norms of the continuous
mappings v \ Ae, v \ eA, v \ Af, v \ fA, and let

If x, y e A, then

|| v{(x - xe)(y - fy)) \\ = \\ v{xy) - v(xeey) - v(xffy) + v(xefy) \\

^ \\v(xy)\\ - \\v(xe)\\\\v(ey)\\

- | |*(s/) IMI v(fy) || - (l^β)IMI v(fy) \\

By the preceding lemma, there exist u, v eF such that

\\v(uv)\\ > {(n + 1 ) ( 1 + | | β | | ) ( l + | | / | | ) + K ' } \ \ u \ \ \\v\\ .

Let xn+1 = u — ue, yn+1 = v — fv. By the above, we have that

II v(χn+iyn+i) II > ( n + 1 ) 0 - + I I e II)II ^ 1 1 ( 1 + 11/11)11 ^ II
^ ( n + l ) | | a w + 1 | | \ \ y n + 1 \ \ .
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Also, XiVn+1 = xj(v - fv) = 0, xn^Vi = (u - ue)eyi = 0, 1 ^ i ^ n, and

Thus by induction there exist sequences {xn}, {yn} such that
XnVm = 0, n Φ m, and || v(xnyn) \\ > n \\ xn \\ \\ yn ||, which contradicts.
Theorem 4.1.

REMARK 4.6. If x e IL, let K(x) be the norm of the mapping
y->v(xy). Then || v(xy) || ^ (K(x)/\\ x | | ) | | a? || || y ||, 2/eA. The above
theorem shows that {(!£"(#)/1| x \\) \ x e /L} is bounded.

The following corollary is an analog for annihilator algebras of
a theorem by Bade and Curtis on homomorphisms of commutative,
regular semi-simple Banach algebras [2, Th. 3.7]; it gives Theorem
5.1 of [1] as a special case.

COROLLARY 4.7. Let A be a semi-simple annihilator Banach
algebra, and let v be a homomorphism of A into a Banach algebra.
Then there exists a constant K such that.

\\v(x)\\^K\\x\\\\y\\

for all x and y in A such that yx — x or xy — x.

Proof. If yx = x or xy = x, then by [1, Corollary 4.12],

xeFdILnIR.

DEFINITION 4.8. A Banach algebra A is said to have a bounded
left (right) approximate identity if there exists a norm-bounded net
{ea} c A such that eax —> x (xea —> x) for all xeA.

COROLLARY 4.9. Let A be a semi-simple annihilator Banach
algebra with a bounded left or right approximate identity, and let
v be a homomorphism of A into a Banach algebra. Then v is
continuous on the socle of A.

Proof. Suppose that A has a bounded left approximate identity.
Let zeF. By Cohen's factorization theorem [6], there exists a
constant L (independent of z) and elements x and y such that
z = xy, \\z — y\\ ̂  \\z\\, | | α ; | | ^ L , and y is in the closed left ideal
generated by z. By [1, Corollary 4.9], there exists an idempotent-
generated left ideal, J, containing z. Since J is closed, we have
y e Ja Fez IB. Thus if K is as in the above theorem, then

= \\v{xy)\\^K\\x\\\\y\\^KL(\\z\\ + \\z - y | | ) ^ 2KL\\z \\ .
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We conclude this paper with several remarks:

REMARK 4.10. Let G be a compact topological group and let A =
LP(G), 1 ^ p < °o, or C(G), with convolution for multiplication. Then
Theorem 4.5 applies to A and the above corollary applies to L^G).
Here F is the set of trigonometric polynomials, that is, the set of
linear combinations of component functions of strongly continuous
irreducible unitary representations of G (see [10, p. 330]).

REMARK 4.11. If X is a reflexive Banach space, if F denotes
the bounded operators on X of finite rank, and if A c 33(X) is a
Banach algebra containing F as a dense subset, then Theorem 4.5
applies to A [10, pp. 102-104]. Here the socle of A is F.

If A is the uniform closure of F in 33(X), if A has a bounded left
or right approximate identity, and if X has a continued bisection, then
Johnson has shown that every homomorphism of A into a Banach
algebra is actually continuous [8, Th. 3.5]. His theorem is stated
for the algebra of compact operators on X (which may indeed always
coincide with A), but his method of proof works equally well for A.1

REMARK 4.12. Although examples do exist of discontinuous
homomorphisms of annihilator algebras (see [2, p. 597, p. 606] [3,
p. 853], and [9]), it is still the case for these examples that IL = A.
One might conjecture that this is always true. As a small move in
this direction, we show below that, in two special cases, IL properly
contains F the socle of A.

(1) Let Wl = {Mλ \Xe A) denote the minimal-closed two-sided
ideals of A and suppose that 3ft forms an unconditional decomposition
for A. Then x e A implies x = Σλxλ, where xλ e Mλi and an equivalent
Banach algebra norm for A is given by \x\ = sup {|| Σ ^ ^ #;. ||: A is
a finite subset of A). [1, pp. 231-232]. Thus \x\ = sup^C/11 ^λeAl xλ |.
For yiczWl, let A(%1) denote those x in A whose summands are all in
31. If % and % are disjoint subsets of 2tt, then A(%) . A($l2) = (0).
If xeAffi) and x£lL, then given K there exists ye A such that
|| v(xy) || > K\ x I | y |. Since removing the summands of y that are
not in members of 9ΐ does not increase its norm and does not affect
xy, we may assume that y e A(%ΐ) as well. Thus if {9ΐJ~=1 is any
sequence of disjoint subsets of Wl, then Theorem 4.1 implies t h a t
A(3ln) c IL for all but finitely many n.

If A is strongly semi-simple, we can say a bit more. In this
case, each Meϊffl is finite-dimensional [1, Proposition 4.7]. Let ^(W)
denote the set of subsets of 9JI, let ^~ denote the set of finite sub-
sets of 9K, and let [9Ϊ] denote an element of the Boolean algebra

1 See "Added in proof."
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If A(W) c IL, and 31, e [SR], then % n 91 e ̂  so A(^) c 7L.
Thus Σ t l 6 [ ^ ^ T O c / L . (Here "2"' denotes the algebraic sum. Note
that F = Σ^e^A(9ϊ).) Let j? = {[9ϊ] e ̂ (SK)/j^~ | A(SR) c IL}. Then
^ is an ideal in ^(3K)/^7 If [9ί] Φ J^7 then there exists ^ " >
[ î] ^ [9̂ ] such that [ S ΐ j e ^ : Otherwise, we could find a pairwise
disjoint family {3ln}, with A(SRn) <£ 7L for any n, which would contradict
Theorem 4.1. But this says that the annihilator of ^ is J^, and
thus J? corresponds to a dense open set in the dual space of
^(2W)/J^7 β(Wl) - 2K, where 2K has the discrete topology2 (see [7],
pp. 76, 84, and 88). Since dividing by ^~ in effect "mods out the
socle", we see in this case that IL is significantly larger than F.

(2) Suppose that A has proper involution x —> x* and that
7 0 3ΐ(/)* = A for all closed left ideals /. Let {eλ \ X e Λ) be a maximal
family of orthogonal hermitian idempotents. Then xe A implies
x = Σ λ e λ x — Σ λ x e λ , a n d w e m a y a s s u m e \\x\\ — s u p ^ l C / 1 1 | ^ΣjλeΛl e λ x \ \ .
[1, pp. 231-233]. For Λ.czΛ, let A{Λλ) = {x e A | xeλ = 0, λ g AJ. If
» e A ( ^ ) and || v(xy) \\ > K\\ x \\ \\ y | | , let yι = Σ,λ^Λleλy. Then x ^ =

xy, Hi/ill ^ II2/II, and x'y1 = Q if x' e A(A2) and Aλf] A2 = 0 . Thus,

given any sequence {An} of disjoint subsets of A, Theorem 4.1
implies that A(An) c IL for all but finitely many n. (Of course there
may exist xe F such that xeλ Φ 0 for infinitely many λ, but clearly
A(Λ^) gL F if A1 is infinite.) Since v \ Aeλ is continuous, remarks
similar to those in the above paragraph can be made in this situa-
tion, with 9K replaced by {Aeλ\XeA}.

Added in Proof, (continuation of Remark 4.11) If X is a Hubert
space and A — gi, the algebra of trace class operators, or g2, the
algebra of Hilbert-Schmidt operators, then the methods of [8, Th. 3.3]
can be adapted to show that A2 c IL. The statement in [8] that these
methods imply continuity is in error. The following example (com-
municated to the author by Professor Johnson) illustrates this: If v
is a discontinuous linear functional on %2 which vanishes on %\ ( = ̂ 0,
then by defining zero multiplication in the complex numbers, one ob-
tains a discontinuous homomorphism of %2.
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AN EXPLICIT FORMULA FOR THE UNITS OF
AN ALGEBRAIC NUMBER FIELD

OF DEGREE n ^ 2

LEON BERNSTEIN AND (IN PARTIAL COOPERATION WITH) HELMUT H A S S E

An infinite set of algebraic number fields is constructed
they are generated by a real algebraic irrational w, which
is the root of an equation f(w) = 0 with integer rational
coefficients of degree n ^ 2. In such fields polynomials Ps(w) =
aow

s + dιws~ι + + da-ίW + αs and

Qs(w) = bow
s + bιWs~ι + + bs-iW + bs

(s — 1, , n — 1 <ik9bk rational integers) are selected so that
the Jacobi-Perron algorithm of the n — 1 numbers

carried out in this decreasing order of the polynomials, and
of the n — 1 numbers

carried out in this increasing order of the polynomials both
become periodic.

It is further shown that n — 1 different Modified Algorithms
of Jacobi-Perron, each carried out with n — 1 polynomials
Pn-i(w), Pn-z(w), ••, Pί(w) yield periodicity. From each of
these algorithms a unit of the field K(w) is obtained by means
of a formula proved by the authors is a previous paper.

It is proved that the equation f(x) = 0 has n real roots
when certain restrictions are put on its coefficients and that,
under further restrictions, the polynomial fix) is irreducible
in the field of rational numbers. In the field K(w) n — 1
different units are constructed in a most simple form as
polynomials in w it is proved in the Appendix that they are
independent the authors conjecture that these n — 1 in-
dependent units are basic units in K(w).

I* Algorithm of n — 1 numbers* An ordered (n — l)-tuple

(1) «\αf, . .-,<!,), (n>2)

of given numbers, real or complex, among whom there is at least
one irrational, will be called a basic sequence the infinitely many
(n — l)-tuples

( 2 ) ( δ ί ϋ ) , ^ , •• ,6 i l 1 ) , (v = 0,l, •••)

will be called supporting sequences. We shall denote by

293
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( 3 ) A(αί0),αJ0), •• ,c4°!1)

the following algorithm connecting the components of the basic
sequence with those of the supporting sequences:

n(v) -L{v)

( 4 )
a d ι =5= 0i , ^y — u, ±, •; .

The (n - l)-tuples « \ a{

2

υ\ , αJί.n), (v = 0,1, •••) will be called
generating sequences of the algorithm. A(a[°\a{

2

0), •• ,αS,°i1) is called
periodic, if there exist nonnegative integers s and natural numbers t
such that

( 5 ) αί*+ί) - a[υ) , (ΐ = 1, . . . , t t - 1; Ϊ; = s,s + 1, .-.) .

Let be

( 6 ) min s = S min t = T

then the £ supporting sequences

( 7 ) (&{•>, δf>, ., δiϋj , (v = 0,1, , S - 1)

are called the primitive preperiod of the algorithm and S is called
the length of the preperiod the T supporting sequences

( 8 ) (&Γ\^\ •• , δ . ^ 1 ) , (v = S,S + l, •••,S+ T-l)

are called the primitive period of the algorithm, T is called the
length of the period S + T is called the length of the algorithm.
If S = 0, the algorithm is called purely periodic.

Two crucial questions emerge from a first look at such an
algorithm:

(a) can a formation law be defined by whose help the support-
ing sequences could be obtained from the basic sequences and the
generating sequences ?

(b) under what condition is A(a[0\a{

2°\ •• ,α4°i1) periodic; what
is then the nature of the basic sequence and what is the correspond-
ing formation law for the supporting sequences?

For n — 3 an algorithm A(a[°\ c40)) was first introduced by Jacobi
[17] and a profound theory of an algorithm of n — 1 numbers for
n ^ 2 was later developed by Oskar Perron [18] in honor of
these great mathematicians the first author of this paper called
A(αίO),c4O), •• ,αi°i1) the algorithm of Jacobi-Perron they both used
the following formation law for the supporting sequences: let a\υ) be
the components of the generating sequences then



UNITS OF AN ALGEBRAIC NUMBER FIELD OF DEGREE n ^ 2 295

( 9 ) bP = [an, (i = l, • • • , * * - 1 ; v = 0,1, ••.)

where [x] denotes, as customary, the greatest integer not exceeding
x. For n = 2 the algorithm of Jacobi-Perron becomes the usual
Euclidean algorithm.

One of Perron's [18] most significant results is the following

THEOREM. Let the supporting sequences bίΌ) (i = 1, , n — 1
v = 0,1, •) be obtained from the basic sequence af] (i = 1, , n — 1)
of real numbers by the formation law (9). // the nonnegative
integers A\v) are formed by the recursion formula

(10) \ A ? = 1 ; A^ = °; (i * t; i, i; = 0, , n - 1)

then A(a[0), a{

2°\ •• ,αl°i1) converges in the sense that

(11) a(^ = \ιmj±^. (i = l, . . . , * * - . 1 ) .

Moreover, this theorem can be generalized, as was done by the
First author ([8], [10], [11], [12[) in the following way :

Let the supporting sequences be obtained from the basic sequence
by any formation law if the αf \ b\v) are real numbers such that

(12)

^L, ^ C C a positive constant, (v = 0,1, •)

and the numbers A^v) (here not necessary integers) are formed as in
(10), then A(a[°\ a{

2°\ •• ,α^oi1) converges in the sense of (11).

2. Previous results of the first author* Perron [18] has
proved that if A(a[0), a{

2°\ , a^U) becomes periodic then the a\0)

(i = 1, . ., w — 1) belong to an algebraic number field of degree ^ n.
However, he did not succeed to construct, in a general way, algebraic
fields K and to select out of K such n — 1 numbers whose algorithm
would become periodic. This was achieved by the first author for
an infinite set of algebraic number fields K(w), w being a real
irrational root of an algebraic equation f(w) = 0 with rational coef-
ficients. In his papers ([l]-[7]) he used (9) for the formation law
of the supporting sequences, thus operating with the algorithm of
Jacobi-Perron, though heavy restrictions had to be imposed on the
coefficients of f(w) in order to achieve periodicity. The first author
succeeded to remove these restrictions by introducing a new formation
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law that generalizes (9) and is defined in the following way :
The α£0) and, subsequently, the αf\ (i = 1, , n — 1 v = 0,1, •)

being numbers of the field K(w) have, generally, he form

(13) a& = a?\w) , (i = 1, , n - 1 v = 0,1, ..)

as long as the bίv) are rationals. Let be

(14) [w] = D;

then the formation law of the supporting sequences is given by the
formula

(15) blv) = aiv)(D) , (i, v as in (14)) .

In previous papers of the authors the α[0) had the form

(16) af^

thus being polynomials in w with rational coefficients now the
second author of this paper asked the question, whether the algorithm
of Jacobi-Perron or any other algorithm

A(Pn^(w)f Pn-2(w), , P^w))

of polynomials of decreasing order would yield periodicity, too. This
challenging problem could not be solved at first, with the exception
of a very few numerical examples, w being a rather simple cubic
irrational. Only recently the first author ([13], [14]) could give an
affirmative answer. He achieved this by means of a highly com-
plicated formation law for the supporting sequences. But while the
new model works well for an infinite set of algebraic number fields
K(w) and though in certain cases it is identical with the Jacobi-
Perron algorithm — its application does not, at least in this initial
stage, seem to go beyond narrow limitations.

In this paper an algebraic number field K(w) is constructed where
w is a real algebraic irrational of highly complex nature but just
here it is possible to select polynomials in w such that the algorithms
of Jacobi-Perron, viz. for the given (n — l)-tuples

both become periodic.

3* The generating polynomial* We shall call the polynomial
of degree n ^ 2, viz.
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f{x) = (x - D)(x - D^x - A) (x - A*-i) - d
(17) A Dif d rational integers d ^ 1

D> D{; d\(D- A), (i - 1, , n - 1) ,

a Generating Polynomial, to be denoted by GP.
In what follows we shall need two theorems regarding the roots

of the GP.

THEOREM 1. The GP has one and only one real root w in the
open interval (A +00). This root lies in the open interval (A
D + 1).

Proof. The two assertions are immediate consequences of the
following three inequalities which follow from the conditions in (17):

f(D) = - d < 0 ,

fix) = (f(x) + d)(-^— + ~^— + + ί—) > 0
\% — D x - A a; — JO*-/

for x > D ,

/CD + 1) = (JD + 1 - A ) Φ + 1 - A) (D + 1 - A-i) - d

THEOREM 2. Le£ ίfee integers D, O{ occur ing in the GP satisfy,
in addition to (17), the conditions

(18) D = D0> A > > A.-1 ,

m £Λ>e special case d = 1 moreover

A - A ^ 2 or A - A ^ 4, /or π = 3

(19) j ί A - A ^ 2 or A - A ^ 3 or A - A ^ 3 or

( ( A - A , A - A ^ 2, for n = 4 .

feβ GP feαs exactly n different real roots. Of these lie
1 in the open interval (A>+°°), more exactly in the open

interval (A> A + 1)»
2 m βαcfe 0/ the open intervals (D2i, A*-i), more exactly 1 m

ίfcβ open left half, 1 in the open right half of these intervals with
2 ^2i ^ n — 1,1 in the open interval (—00, ΰw_1) i/ n is

Proof. Since the total number of roots asserted in the latter
three statements is exactly equal to the degree n of the GP, it
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suffices to prove the existence of at least 1, 2,1 roots respectively
within the indicated open intervals. For the first interval this has
been done in Theorem 1. For the other intervals it suffices, besides
the obvious facts

/(A) = -d< 0 (i = 0,1, •••,**- 1)

and

lim f(x) = + oo if n is even ,
X—*—oo

to verify the inequalities

f(Ci) > 0 (2 ^ 2ί ^ n - 1) ,

i.e.,

f(Ci) + d = (Ci- DoXct - A ) (ct - Dn_x) > d ,

with 2^2i ^n - 1 and c< = (Ai-i + A*)/2. Now according to (18)

Ci- D3 <0 for j = 0,1, , 2ί - 1 ,

Ci - D3 > 0 for i = 2i, 2i + 1, , w - 1 ,

and as the j in the first line are in even number, certain at least

f(Ci) + d > 0 .

According to (17) and the obvious consequence d \ (Di — Dά) one has
more precisely

ct - D31 ^ d + — = —d for j Φ 2% - 1, 2% ,

c. - D31 ^ — d for i = 2ΐ — 1, 2% ,

and hence

Observing that 2 ^ 2i ^ n — 1 implies w ^ 3, one obtains thus for
d ^ 2 the desired inequalities

In the special case d = 1 still more precise lower estimates are
required, viz.,
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\c( - Dj\ ^ (2i-l-j)d + ^. = 2i-l-j + ±. for i = 0,l f , 2 i - l ,
Δ Δ

\Ci- D3\^ (j - 2i)d + — = j - 2ί + — for j = 2i, , rc - 1 .

The lower bounds have values from the sequence 1/2, 3/2,5/2,
For each relevant i two values 1/2 and, if n ^ 5, at least two values
3/2 and one value 5/2 occur. For n > 5 therefore certainly

In the remaining cases d = 1 with n — 3,4 there is only one relevant
ί, viz., i — 1. One verifies easily that the desired inequality

fie,) + 1 > 1

is true under the conditions (19).
We shall now rearrange f(x) in powers of x — D. We shall

first prove the formula

/<*>(*) = kl Σ(x - Dh) ix - Dίn_k) ,

(20) 0 ^ ix < i2 < < *„_* ^ n - 1,

k = 1, , n — 1 .

We shall denote

g(X) = iχ- D0)ix - A ) (x - 2>*-i) /(») - g(χ) ~ d .

(21) fix) = g'(χ) = g(χ) Σ (l/(« - Dy))

0 ^ ix < i2 < < iΛ_! ^ w - 1 .

Thus formula (20) is correct for k = 1. Let it be correct for k = mr

namely

/<m>(α;) = m! Σ (x — Di)ix — Di2) (x — Di%__J ,

or, in virtue of (21)

(22)
(a? - Dh)ix - Dh) . . . (a - Dy J

0 ^jι<j\<j\< < i w ^ rc - 1 .

Differentiating (22) we obtain
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ml

= 9\x) Σ
(x - Dh)(x - Dh) (x - D3J

0^j1<j2<

Σ (x-Dh)(x-Dh)- (x-DJm))

= 9{X) §•Ax-D. {x- Dh)(x - Dh) ••• (x - D3J

0 ύ j\ < jt < i3 < < i . ^ n - 1

(x-Dh) (x-DJrJ(x-DJrr(x-DJr+l) •.. (*-Z>im) '

But it is easily seen that

^ - ΰ , Σ ( ^ - Dh)(x - Dh) (x - Djm)

0 S 3\ < 3i < J» < < in, ^ Λ - 1

+ Σ

- D i 2 ) ' " ( x - Djm)

j u " ,jm; 0 ^ j ι < j 2 < ••• < j m ^ n -

1

( x - Dh) •••(x- DJrJ(x - Z > i r )
2 ( x - Djr+ι) . . . ( * - Z > ί m )

o ^ i, < i, < i3 < < i . ^ w - l .

Therefore

m!

_ a(χ\ V1

άi x - Ds * (x - Dh)(x - Dh) . . . (x - Djm)

Φ ii, , im o g j y < j 2 < j 3 < < j m ^ n - l

0 g ί t < ί2 < ί 3 < - < ί m + 1 ^ ί ί - 1

= (m + 1)! flr(x) Σ -. =- : ; ^ ? „ ^

(x - Dh)(x - Dh) -"(x- Dtm+l)

0 ^ <! < ί2 < ί3 < < ίm+1 ^ w - 1

= (m + 1)! Σ (x - AJte - A2) (x - A._(.+1))
0 ^ i t < i2 < i3 < - < in-im+i) ^ n - 1
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which proves formula (20).
From (20) we obtain for x = Do = D, taking into account that

D - Dh = 0 for ί, = 0

/<*>(/?) - ft! Σ Φ - A,)Φ - A2) (2) - AW_J ,
(23) 1 ^ ix < i2 < < i._& ^ n - 1 ,

k = l, ---,n- 1 .

From (17) we obtain

(23. a) f(D)= -d; f™(D) = nl ,

and, combining (23), (23. a) and using Taylor's formula for develop-
ing f(x) in powers of x — D,

f(x) = (x- DY + ( Σ fc.(s - Dy~s) - d ,

<24) *, = Σ ( f l - A , ) ( ^ - A 2 ) • • • ( £ - A . ) ,

4* Inequalities* In this chapter we shall prove the inequalities
needed for carrying out the Algorithm of Jacobi-Perron with a basic
sequence αf} (i = 1, , n — 1) chosen from the field K(w).

We obtain from Theorem 1 and D < w < D + 1

(25) [w] = D .

In the sequel we shall find the following notations useful

One of the basic inequalities needed in the following

(27) j
U ^ ii < *2 < < ** ^ n - 2 .

To prove (27) we have to verify

(28) 0 < (w - D)PhPh • • Pik < 1 .

From (25), (26) we obtain

Pi = w - Di > D - Di > 0 .

Thus the left-hand inequality of (28) is proved. From (17) we obtain

(29) W-D = ^ - .
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(w - D)PhPh ~Pik = dPhPi2. . PikIPUn

= d/Pik+ιPik+i Pin_x < d/(D - Dik+ι)(D - DikJ . . . φ - DinJ

but, as was proved before, D — D{. ^ d (j = 1, , n — 1) therefore

(.-WΛ Λ<ϊέ7ίί-i.

which proves the right-hand inequality of (28).
From (27) we obtain easily, since d ^ 1

(30)
[(w-D)PhPi2 --Pik] = 0;

1 ^ i, < i2 < ik ^ ^ - 2 .

We further obtain, in virtue of (25)

(31) [PJ = D - A

From (31) we obtain, since d | D — A,

(32) [P,/d] = (D - A)

* Jacobi-perron algorithm for polynomials of decreasing

order*

(33)

DEFINITION. An (w — 1) by (w — 1) matrix of the form

0 0 . . . 0 Ax

0 0 . . . 0 A2

0 0 . . . 0 A%

will be called a fugue the last column vector

A,

will be called the generator of the fugue.

THEOREM 3. Let f(x) be the GP from (17) and w its only real
root in the open interval (D, D + 1). The Jacobi Perron Algorithm
of the decreasing order polynomials
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α<°> = ±(w - i?)PlflP1+..._1 , (β = 1, . . . . Λ - 3)
a

(34)
d

^n—i — -1- 1,1 1

- D)Puί,

is purely periodic and its primitive length is T = n(n — 1 for d Φ 1,
and T = n — 1 for d = 1. T%e period of length n(n — 1) consist of
n fugues. The generator of the first fugue has the form

(35)

D-D,

D - D2

D — Dn.

The generator of the r + 1 -th fugue (r — 1, , n — 1) has the form

(36) D - Dr

The period of length n — 1 consists of one fugue whose generator
has the form (35).

Proof. In the sequel we shall use the notation

'u v = %(w - 1 +) v (M = 0,1, v = 0,1, , n - 2)
(37)

1 (u; n-l = u + l; 0 .

Because of (26) the formula holds

(38)

Since, from (17),

(w - D)(w - D,)(w - D2) - (w - ZVi) - d = 0 ,

we obtain
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(39)

hw - JD)P1,1Pt+.,n_1 =
d

hw - D)pUί = L

(s = 1, • , n - 3)

We shall substitute these values for α^0) in (34), so that

(0) -L

(40) S p 2,i+, '
(s = 1, . . . , n - 2 )

We obtain from (34), in virtue of (30), (31)

(41) 6i0) = 0 (s = 1, . , n - 2) 5 ^ = D - D, .

We obtain from (31)

(Pi,* - [P ί f i] = w - D

(42)
d L d J cί

From (40)—(42) we obtain

(8 = 1, . . . , n - 2 )

L + s 1 + β p >
•^2,2+8

^α^ii — b{nU = w — D ,

so that, in virtue of (4)

(s = 1, . . , n - 3)

α^i2 = (w — D)P2>2 ,

» —1 ~ - ^ 2 , 2

From these formulas we obtain, in virtue of (40)

as" = —

(43)
•^3,2+s

n(l) p
Un — l — -^2,2

Since
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1/P...+. = Mw - D)P1P2 ,
a

we obtain, from (43) and in virtue of (30), (27), (31)

and from (43), (44), in virtue of (42)

(45)

{nU — KU = W — D .

Frow (45) we obtain, in virtue of (4) and (38)

α(2) =

(46)

α<fi8 = (w - D)P2,2PS>3 ,

a%U = (w-

αίfii = -Pa,*

P
-^4,3+s

αi2i3 = (w -

α " , = (w - Z»)P3,s ,

We shall now prove the formula

ι{k) = ί/P

(s = 1, . . . , w - 4)

(β =

(s = 1, , n — 4)

(47)

= 1, ...,n - k - 2)

lr — 9 . . . <YI **

Formula (47) is valid for k — 2 in virtue of (46). We shall prove its
validity for k + 1. Since

we obtain from (47), in virtue of (30), (27), (31)

(48) bp = 0; (j = 1, , n - 2) b^ = D - Dk+1 ,



306 LEON BERNSTEIN AND HELMUT HASSE

and from (47), (48), in virtue of (42)

( a ^ - 6<fe> = l/Pk+2,k+ί+s , (« = 1, , n - k - 2)

α(*) i _ &(*)1 = w - D
' a ( k ) _ £(fc) __ J / p

ai+s — δίϊ-β — l/Pk+2,k+2+8 i (s = 1, ' ' , n — k — 3)

α^Λ — δ^Λ = w — D ,

so that, in virtue of (4)

and, in virtue of (42),

γ.(*+l> =

(49)

α î/c + ij — p /p /ς» — *\ Ύl — h — R^

s — •*- Jfc + 2 A + 2/-^1 A + 2 fc + 2 + s > \ — 9 1 /

&n-2 — \W D)Pk + 2,k + 2 >

(s = 1, , w — k — 3)

αί»Jiιi,+< = (w -
(k + l) _ p
w-l — -Γk+2,k+2

With (49) formula (47) is proved.
We now obtain from (47) for k = w — 3

(50)

α(—3) =

(w—3) p
TO—1 — J n—2,n—2

- 3)

From (50) we obtain, in virtue of (30), (27), (31)

(51) 6*"-3' = 0 (s = 1, , n - 2) &£?> = D -

and from (50), (51), in virtue of (42)

(52) ΐ73) - &ίΐ73) = (w - D)Pι+i,n-2 ,

,<C_-i3) - 6iM3> = w - D .

From (52) we obtain, in virtue of (4),

(a{

s

n~2) = (w -
,_1,,_1 ,

(i = 1, , n - 3)

(i = 1, , n - 3)
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or

(53)
αi"-2' = (w - D)P1+Un_ι ,
π(n-2) __ p

(i = 1, , n - 2)

From (53) we obtain, in virtue of (27), (31),

(54) δr 2 > - 0 (β = 1, , * - 2 ) 6 ^ 2 ) = 2?

and from (53), (54), in virtue of (42),

= 1, . . . , Λ - 2)

αi^ 2 5 - 6£ϊ2) = w - D
f αί- 2 ) - 6{w-2) = (w -

s,n^ , (s - 1, . . . , n - 3)

so that, in virtue of (4),

(n-l) _
'β —

(n-l) _
2

but, from (39) we obtain

therefore,

( l ; 0 ) _
1

thus, with the notation of (37),

(55)

From (55) we obtain, in virtue of (30), (32), and since

b™l = D ~ D ι

a
(56) 5ili01 = 0 (8 = 1, , w - 2)

and from (55), (56), in virtue of (42)

. f w - 3)

(β = 1, • • - , « - 2 )

(β = 1, . . . , » - 2 )
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or
~(l;0) t ( l O) — Λ IP
W-l — 01 — l l± 2,2 >
~(l;0) Jjd O) — Λ IP

thus, in virtue of (4),

p p
2,21 * 2,2+s1

™(1;1) _ p Γ

or

(57) αίiLV = (w - D)PJd ,

^ " «—1 — -̂  2,2

o"!1,' -

UίίiV - 6Ϊ1V = w - I>

or

(59)

(s = 1, , n — 2)

(8 = 1, •••,*- 3)

(β = l , • • - , « - 3)

(β = l , • • • , * - 3 )

From (57) we obtain, as before,

(58) δα ; 1 ) = 0 (s = 1, , n - 2) δαiV = D - D2 ,

and from (57), (58), in virtue of (42),

(8 = 1, • • - , » - 3 )

~ ( i ; D λ d D — I I P
W Ί + S ^ 1 + S — •*•/-' 3,3+β >

" α ^ - b^l = (w - D)PJd ,

An-l — bn-ί. = W — D .

From (59) we obtain, in virtue of (4),

/Λd;2) — p ip
Us — ^ 3,3/ ^3,3+s >

' α i 1 ^ = (w - Z>)PS,3 ,

(8 = 1, • • - , » - 4 )

(s = 1, •• ,n- 4)

or
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Ό ' 1 * = 1/P4>3+S , (ί = l , , » - 4 )

α»iϋJ = (w - D)P2,3/d ,

a™ = (w-D)PlΛ ,

G-w-l — -* 3,3

We shall now prove the ̂ formula

(61)

/βd fc) _

αϋϋU = (w- D)P2,k+1/d ,

k = 2, - - , n — 3 .

(s = 1, « , ^ - k - 2)

Formula (61) is correct for k = 2, in virtue of (60). We shall prove
by induction that it is correct for k + 1.

We obtain from (61), as before,

(62) 5i1J*> = 0 ; (s = l, - . . , r c -

and from (61), (62), in virtue of (42)

W*Λ = D - D k + ι ,

or

(63)

fc+2,fc+l+3 9 (S — 1 , , W /^ ^ )

/•(l fe) λd fc) //i/i Π\ Γ> //7

ΛΛ_A:-I — 0M-*-i — ^ — JJ)Jr2,k+1/a ,
α ( 1 ί/c) __ r\ (1 * ^) //i/ί /J i /-̂  i ĵ . "I iv . "I i

Λ - f c - l + i ϋ % - / ί " l + i — V^ 7 ~~ •U)Γ2+i,k + l \V ~ L> •••,«/ - L ;

•α(l;Jfc) _ J ( l fc) =

α(i;j) _ &(i|*) = l / p f c + 2 > ; , + 2 + s , (s = 1, . . . , n - k - 3)

a™U - bϊ?U = (w - D)P2fk+1/d ,

μM) _ juj*) = w - D .

From (63) we obtain, in virtue of (4),

-/γd fc+1) ID / Γ> /« — 1 . ,
tts — j r k + 2,k + 2/jrk + 2,k + 2+s j \ b ~ x >

αίίiVi' = (w-D)P%,k+1Pt+t,k+ild ,

&n-k^2+i = ( ^ — D)P2+i,]c+ιPjc+2tk+2 j \Ί ~

Λ(l;fc+1) //m ΊΊ\T>

CLn-Z — yW — ±J)rk + 2,k + 2 9

>,n - k - 3)

n(l;k + l) _

or



310 LEON BERNSTEIN AND HELMUT HASSE

/π(Uk+ί) —

(64)

1, , n — k — 3)

αiίi^t1,' = (w - D)P2,k+2 ,

^ ( l fc+1) _
U>n-k-2+ί —

With (64) formula (61) is proved.
We now obtain from (61) for k = w — 3

(67)

,-2 = (w - D)P2,nJd ,
(65)

(^(I Λ-3) _ p

From (65) we obtain, as before,

(66) δi1—3 ) = 0 (β = 1, , n - 2) 6i?ir8) = D- 1

From (65), (66) we obtain as before

^l n-8, _ 6(i;.-8, = llPn_Un_γ ,

jti -8) _ 5(i;-») = ( W - D)P2,nJd ,

v(l;n—3) ϊ»(l;w—3) //,», TΊM* (% =
l2+i — 02+i — \ ^ — ^)Γ2+i,n—2 1 \ υ

| Λ ( 1 ; Λ - 3 ) _ ϊj(l;»-3) _ w __ Π .

and from (67), in virtue of (4),

^ ( l .n-2, = ( ^ _

αίVΓ2) = (w -

" αίfir8 ) = (w -
Λ(1;Λ—2) P
U/^ — l -ί- n —1,71 — 1 »

, n - 4)

n — l , w — 1 >

or

(68)

Ό"'—« = («; - D)PMJd ,

oίϊΓ" = (w - - , » - 3 )

Prom (68) we obtain, as before,

(69) ft"1-21 = 0 (β = 1, . .-, w - 2) fti'ir" = ̂  - I>.-i -

and from (68), (69), in virtue of (42)

'α« —«

(70) £?-2> = (to - DJP^i,^! , (t = 1, ,» - 3)

ίir*' = w - D



UNITS OF AN ALGEBRAIC NUMBER FIELD OF DEGREE n ^ 2 311

From (70) we obtain, in virtue of (4) and (39)

/π(2;θ) _ flp fp /o — 1 . . . /M _ Q\
as — U'X2+8,«-i/X2,w-i , v^ — • * • > > " ' «/

Λ(2;θ) _ > 7 / p

Q"n—l : = -̂  1,1 \

or

(71)
(2;0)

From (71) we obtain, as before,

(72) δί*°> = 0; (s = l, . . . , n - 2 )

and from (71), (72), in virtue of (42)

α ? ; o , _ 6(.;o, =

or

(73)

« - KHZ = w-D;

Zj(2;0) _
— °i —

From (73) we obtain, in virtue of (4)

/«(2;i) — p ip

• αi?ϋ» = (w -

\<*)i-l — - ' 2 , 2 / " ' I

or

(74)

//γ(2;l) — Λ IP

jαί?!1,' = (w - Z>)P2,2/cί ,

(s = 1, , n — 2)

and from (74), as before,

(75) &«!1> = 0 (s = 1, , n - 2) &«i\> =

From (74), (75) we obtain, in virtue of (42)

&SS = (w —
&«iV = ( w -

, Λ - 2)

(β = 1 , • • - , » - 3)

(β = l , . . , Λ - 3)

(β = l , • - . , « - 3 )

or
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αίί1.' - δίϊi' = 1/P3,3+S , (β = 1, , n - 4)
~(2;1) #»(2;1) / Λ , , Γϊ\ D /i7
W'n—2 — On—2 = \ ^ — J^)-^2,2I^/ >

( β = 1 , • • - , % - 4 )

,nn\

From (76) we obtain, in virtue of (4),

OS' = (w - D)P2,2P3,3/d ,

aΐ*l = (w- D)P3t3/d ,

Λ(2;2) _ p

or

(77)

//γ(2;2) 1 /p

αi2i2

3

} = (w - D)P2Jd ,

' α ^ = (w - D)P3>3/d ,
«(2;2) Ό

(JLn__l — -*• 3,3

From (77) we obtain, as before,

(78) &<*»> = 0; (s = l, . . . , w - 2 ) 6i5

and from (77), (78) and in virtue of (42),
fπ{2;2) A(2;2) __ 1 / p

αjf-i — δ ^ = (w — D)P2Jd ,

.αίfi2! — δi2-i ~ w — D ,

(8 = 1, , » - 4)

D-D,,

(s = 1 , ••-,% - 4 )

or

(79)

'^(2;2) J(2;2) _

/»(2;2) Z (̂2;2) __

α«i2' - &«!« = (w - Z>)P2l3/^ ,

(8 = 1, • • - , » - 5 )

From (79) we obtain, in virtue of (4), and carrying out cancellation

and multiplication as before,

/αf 3' = 1/P5i4+S , (8 = 1, ••-,»- 5)

α«!2 = (w - I>)P,,4/d .

(80) • oίfJS = (w - -D)P3>4/d ,

α*5 = (w - D)PM ,
/7(2;3) _ p

\U'Λ-1 — Γ4,4 .
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We shall now prove the formula

αίίiU = {w- D)P2,k+1/d ,

(81)

(s = 1, •••, w - k - 2)

αίfiϊ = (w - D)P3,k+ί/d ,

a{2-k+i = (w —

\ t l w _ l — ΓA + l.Λ + l >

(t = l , ••-,*-2)

ΓC
 z=z O, * , TV O

The proof of (81) is by induction like that of formula (61) or (47).
First we see that (81) is correct for k = 3 then we show that it is
correct for k + 1.

We now obtain from (81) for k — n — 3

(82)

a&Γ3) = (w - D)Ps+i,n_z ,

•^n~2,n—2

and from (82), as before,

(83) δί»-8 ) = 0 (s = 1, , n - 2) 6i2iΓ3) = D - Dn_2 .

From (82), (83) we obtain, in virtue of (42),

(83)
(2;w-3) Iv(2;u-3) _ / . . .
3+i — ^3+ί — ^

^(2;π-3) _ l,(2;*-3) — w _ Γ)

From (83) we obtain, in virtue of (4) and carrying out multiplication

as before,

fαί2—2> = (w - D)P2,nJd ,

(84)

From (84) we obtain, as before,

( 8 5 ) b[2''n-2) = 0; (s = 1 , . . . , n - 2

and from (84), (85), in virtue of (42),

(i = 1, ---,n - 4)

(2;w-2) _ Γ)
n _! — U —
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(85a)
α<«; -«> _ 6?:-«) = ( W _ D)Ps>n_ί/d ,

α ί ? r 2 ) - &£Γ 2 ) = (w - D)PMfn_ι , (< = 1,

From (85a) we obtain, in virtue of (4),

(π(z;θ) — p / p

- 4)

(i = 1, . .-,» - 4 )

or, after carrying out the necessary cancellation and multiplication

(86)

(3;0) _
l

1 i —

From (86) we obtain, as before,

(87) 6i3;0) - 0 ; (β = 1, . . . , r c - 2 )

and from (86), (87), in virtue of (42)

/^y(3;0) k(3;0) -| ip

/QQ\ /t(3*,0) ϊk(3;0) rJ I T>

An-l ~ bn-i = W — D .

,n- 3)

Prom (88) we obtain, in virtue of (4), and carrying out the necessary
cancellation

α f 1 ' = d/P3ι2+i ,

(89)

and from (89), as before,

(90) 6?sl> = 0 (β = 1 , , w - 2) 6

From (89), (90) we obtain, in virtue of (42),

(91)

^ = Z? -

- 4 )

α S - 6Ϊ2Ϊ = w- D
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From (91) we obtain, in virtue of (4), and carrying out the necessary
cancellation and multiplication

/Λ(3;2) 1 / E>
ai — J-/-* 4,3+; ,

αi3i2

3

} = (w - D)P2Jd ,
(92)

and from (92), as before,

(93) 6ί8*> = 0; (s = l, - . . , t t - 2 ) 6J

From (92), (93) we obtain, in virtue of (42)

- A

(93a)

(3;2) 1(3:2) _

Ί °1 —
(3;2) Iv(3;2) _

•ίt-3 — °ίί-3 ,3/tt , Ctn_2 O,,_2

α » - 6«i« = (w -

From (93a) we obtain, in virtue of (4),

(94)

(ΐ = 1, . . . , n — 5)

a«J5 = (w - -D)P3l</

aϊϋSI = (w -
«(3;3) _ p

XW'ίi—1 — *• 4,4

From (94) we obtain, as before,

(95) 6ί8ϊ8> = 0 ; (s = l , . . . , w - 2

and from (94), (95), in virtue of (42),

(96)

ϋ

δ«i3' = (w -

δ«i33» = ( w -

δ»i ,> = (w -

&»iϊ = w - D .

From (96) we obtain, in virtue of (4), and carrying out the necessary
cancellation and multiplication
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a™l = (w- D)PtΛ/d ,

(97) f - = {W ~ D)P-ld '
te = (w- D)PJd ,

αίfJi' = (w - -D)Pδ>5 ,

αίίii' = PM

We shall now prove the formula

(98)

(i = 1, . , n - fe - 2)

a™U = (w- D)Pt,k+1/d ,

oίfiV = (w - D)P3,k+ι/d ,

n(3\k) /nn n\τ> id

n(3\k) _ / - . , _ Γ)\Ό
Wn—k + 1 + 8 — \ w 1 J ) Γ 4+s,k + l i

^n—l — •*• k+l,k+l >

Jc = 4, , n — 3 .

(8 = 1 , • - . , & - 3 )

Formula (98) is correct for k = 4 because of (97). We then prove
as before, that it is correct for k + 1, so that (98) is verified. We
obtain from (98), as before,

(99) b^k) = 0; (8 = 1 , . . . , w -

and again from (98), for k = n — 3 ,

(100)

0 n _ ! — JJ — JJjc + 1 9

(i - 1, 2, 3)

(β = 1, • • - , » - 6 )

«{3;n-3) _ p
\^n—1 — -^w—2,%—2

From (100) we obtain, as before,

(101) 6i8ϊ—8) = 0 (s = 1, , n - 2) δ£ir 3 ) = I> - D._ 2 ,

and from (100), (101), in virtue of (42)

(102)

γ(3;%—3) ϊj(3;%—3) __

£(3;*-3) _ J(3;w-3) _ / ^ _

^4 + ? ^4 + s — ( ^ ~~

T(3;Λ—3) — Ij(3;w-3) Λ., —

(i = 1, 2, 3)

From (102) we obtain in virtue of (4), and carrying out the necessary
cancellation and multiplication



UNITS OF AN ALGEBRAIC NUMBER FIELD OF DEGREE n ^ 2 317

(103) ί ί r 2 ) = (w - D)P4+s,n_1 ,

(i = 1, 2, 3)

(s = 1, '•-,%- 5)

and from (103), as before,

(104) δ<3;"-2> = 0 (s = 1, , n - 2) δ ί i r 2 ) = D

From (103), (104) we obtain, in virtue of (42),

(105)

α«
!—*> - δ<3;κ~2> = (w - D)Pt,._Jd ,

a<3;«-v _ 6 «:-i ) = ( W _ D)Ps,nJd ,

αί"—' - δf—2> = (w -

= l, , ί i-5)

< 3 i r 2 ) - δi3i

and from (105), in virtue of (4),

(106)

αί4 ; 0 ) =

x2+s —

(4;θ) _

(s = 1, , n — 4)

The reader will easily verify, on ground of previous formulas, that
the 4(n — 1) supporting sequences

\ , biίLV (k - 0, , n - 2 i = 0,1,2,3)

generate the first four fugues whose form is that as demanded by
Theorem 3.

The complete proof of Theorem 3 is based on the following

LEMMA 1. Let the generating sequence

α!/c;0) (s = 1, , n - 1 k = 3, , n - 2)

have the form

(107)

(.k\0) _
i

(k;0) _

(s = 1, , n — k)

then the n — 1 supporting sequences

fc(λ O)

generate a fugue which has the form of the k + 1 -ί/i fugue as demanded
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by Theorem 3, and the generating sequence a{

s

k+U0) (s — 1, , n — 1)
has the form of (107), where k is to be substituted by k + 1.

Proof. In virtue of formula (86), the generating sequence

π(k;0) π(k;0) π(k\Q)
Mi , U/2 y y U"rι—l

has the form as in (107) for k = 3. The n — 1 supporting sequences
δi(3;0), 62(3;0), •••, &(3; 0) form the fourth fugue of the period as
demanded by Theorem 3. The generating sequence

7(fc+i;θ)
, , U,w_!

too, has the form as in (107) for k = 3, in virtue of formula (106).
Thus the lemma is correct for k = 3. Let it be correct for k — m.
That means that the n — 1 supporting sequences

Zj(m i) IJro ΐ) . . /.(m ΐ)
Ί > ̂ 2 > > y » - 1 f (i = 0, - 2)

form the m + 1 -th fugue as demanded by Theorem 3, and that the
generating sequence

(m+l;0) ^ ( w + l O)
-l a2

has the form

(108)

i — •L/jr2,ι+ί i (ΐ = 1, . . . , m - 1)

(s = 1, , n — m — 1)
(m+l;0) __

From (108) we obtain, as before,

(109) b{

s

m+U0) = 0 (s = 1, , n - 2)

and from (108), (109), in virtue of (42),

(110)

/π(m+V,Q) ZJm+l O) _

|k(w + i;θ)
Jm—l + s (s = 1, — m — 1)

From (110) we obtain, in virtue of (4)

{m+ί,l)

(m + l l)
m—2+s

(m_+l;l)

(m + l l)

= ^2,2/ί

= ^ P 2 , 2 /

— (w —

= ^ 2 , 2 ί

>
2,2+i 1

J^2,m + s y

D)PM ,

(s

(i

= 1,

= 1, ,
• " , % -

m

m
- 2 )

- i )

or
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(111)
αi-ί 1 ' 1 ' = (w - Z>)P2,2 ,

(i = 1, . . , m - 2 )

(s = 1, , ίi. — m — 1)

We shall now prove the formula

γ(m+l;ί)

(112)

(i = 1, . . . , m — t — 1)

(s — 1, , n — m — 1)

,t = 1, , m — 2 .

Formula (112) is correct for t = 1, in virtue of formula (111). We
shall prove that, being correct for t, it is correct for t + 1. From
(112) we obtain, as before,

(113) &im+1;ί) = 0 (s = 1, , n - 2) b'fL+

L

ut) = D- Dt+1 ,

and from (112), (113), in virtue of (42)

(114)

αίT? l ! t ) - δί?,+1;t) = l / P ί + 2 , ( + 2 + ί , (i = 1, , m - t - 2)

αί-iϋ'Λ. - 6L"_Vi{U = d/Pt+2,m+s , (s = 1, , n - m - 1)

αr_| i^ } - - δ iΐ-ϊi'ί, = (w - D)P1+Jιt+ι , (j = 1, , ί)

From (114) we obtain, in virtue of (4)

(115)

6 Δ)

u,m-t~2+s — ujrt+2>t+2/jrt+2}m+s , V» — JL, , Λ«r — 7f6 — -L;

α ^ T i ^ ! ^ = (w - D)Pι+j>t+1Pt+2,t+2 , (i = 1, , t)

α (mfl ; ί + l) — ion J~)\J-^
n—2 — \ w ± J ) Γ tΛ-2,tΛ-2 >

and from (115), carrying out the necessary cancellation and multi-

plication

(i = 1, , m — t — 2)

(s = 1, •••, w - m - 1)

i,ί+2 \J — J-> J ̂  ' -1-/
(116)

l t + 1) —

With (116) formula (112) is proved. We now obtain from (112), for

t = m-2,
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/n(m+Um—2) __

(117) -

^ f t - 1 ' = x m - l , w - l

and from (117), as before,

(118) &<»+"«-« = 0 (β = 1, , n - 2) i

From (117), (118) we obtain, in view of (42)

(s = 1, , n — m — 1)

(119)

Zv(m+i;m—2) 1/P
1̂ — -L/- ί m,m 9

i m—2) I»(m+r,i»-2)

+ l:m-2) /.(m + l m-2) _ / . . .

+ V,m-2) ϊj(m + i;m-2) _ . . . T) .

- 2 ) = D -

1 . . . >w onn Λ\

{J — 1, , Ύϊl — Δ)

and from (119), in virtue of (4), and after carrying out the necessary
cancellation and multiplication

(120)

/^(m+l m-1) _ ^ J / p

α (w.+i,w. i) — ion J)\ ~P
n—m — l + j — \W U)JΓ iJrJjm ,

(s = 1, , n — m — 1)

( i = 1, . . ,m - 1)

From (120) we obtain, as before,

(121) b{

s

m+um~l) = 0 (s = 1, , n - 2) b(

n

mΛum~1] = D - Dm ,

and from (120), (121), in virtue of (42)

~ ( m + l;m—1) ZV(JΛ + I;TO—l) /7/P

(̂TO + i m-i) /.(m + i m-i) _ / . . .

— ±, , n — m —

VJ — ±, , 7W

or

(122)
= 1, ' , n — m — 2)

(j = 1, . . . , m - 1)

fj(m + i ; i»- l) — n,% _ 71

From (122) we obtain, in virtue of (4) and after carrying out the
necessary cancellation and multiplication

(123)

/n(m+l;m) 1 IT)

- ϊ i T i , = (w - D)P1+J,m+Jd ,

(s = 1, , w — m — 2)

(i = 1, . . . , m )
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From (123) we obtain, as before,

(124) δt»+i;m) = o ; (s = 1, . . . , ^ - 2) bl^t1''7'

and from (123), (124), in virtue of (42),

yίm-fl m) ZJm+l m) 1 I'D
ll ϋl — •L/jrm+2,m+2 >

D-D,
d

α( ?+i;«, _ 6(T#+i;», = l / p m + 2 > m + 2 + s , (S = l , . . . , n - m - 3)

a^L^lj - δiί.ϊiϊiy = (w - D)Pι+j,m+1/d , (i = 1, , m)
(125)

From (125) we obtain, in virtue of (4) and after carrying out the
necessary cancellation and multiplication,

/Λ(m+i;iB+l)

(126)

— -V-* m+3,m+2+s 1

α(m+i;m + l) — (in TY\ ~P Irl

%_m_3_f_j — \ίV ±JJJL i+ j ,m + 2/ ^ >

— Pm+2,m+2

From (126) we obtain, as before,

(127) b(

s

m+um+1) = 0 (β = 1, , n - 2)

and from (126), (127), in virtue of (42)

(s = 1, , n — m — 3)

(j = 1, « , m + 1)

— U -LJmΛ-2 y

(128)
^(m+l m + l) _ n+s,m+z+s , (s = 1, , n - m - 4)

b^^tf = (w - D)P1+j>m+2/d , (i = 1, ., m + 1)

&J!Li ' m = w — Z/ .

From (128) we obtain, in virtue of (4), and after carrying out the
necessary cancellation and multiplication

(129)

m+4,m+3+s (s = 1, . . . , % — m — 4)

( i = 1, . . . , m + 1)

i m + 2) _
m + 3,m + 3

We shall now prove the formula

„<«+!;«+*) = l / P m + f e + 2 j m + f e + 1 + s , (s = 1, , n - m - k - 2)

alZSLTHίl,- = (w - D)P1+ί,m+k+1/d , (i = 1, , m + 1)

(130) = (w - D)Pm+2+t,
m+k+1

(ί = 1, , k -

k = 2, •• ,n — m — 3 .
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Formula (130) is correct for k = 2, in virtue of (129). Presuming it
is correct for k, we shall prove its correctness for k + 1.

From (130) we obtain, as before,

(131) b{

8

m+iim+k) = 0 (s = 1, ., n - 2)

and from (130), (131), in virtue of (42)

(132)

= D - Zλ + k + l

,w — m —fc — 3 )

α w _ f c _ 1 + ί O w _ f c _ 1 + ί — \W U)JΓm+2+t,m+k+i i

From (132) we obtain, in virtue of (4) and after carrying out the
necessary cancellation and multiplication

= 1, ,n — m — k — 3)

(j = 1, . . . , m + 1)

(t = 1, ••-,&)

αi-+

m^i3fc/)} = (w - D)P1+j,m+k+2/d ,

r>

which is formula (130) with k being replaced by k + 1 this proves
formula (130).

We now obtain from (130) for k — n — m — 3

Λ(m-fl;w—3)
um+2+t —

( i = 1, . . , m + 1)

(ί = 1, , w — m — 4)

Λ(w+i;»-3) _ 1 / p
" Ί — J-/-IΓ Λ—I W—l J

(134)

Λ(m+l;Λ~3) _ p
U"n—l — Γ n—2,n—2 >

and from (134), as before,

(135) &<«+"»-» - 0 (s = 1, , n - 2) b^ΛUn~"] = D- Dn_2 ,

From (134), (135) we obtain, in virtue of (42),

(136)
α(.+ii--.) _

Λ—3)
t

Λ—3)

(-;i;-3) = ( W _ D)Pι+j,n_2/d , (j = 1,
v(m + l;w—3) /ΛM

, m + 1)
nnn Λ\

/»(m+l;w—3) — η n jΓ)
un—1 — ^^ -L>' >

and from (136), in virtue of (4), and after carrying out the necessary
cancellation and multiplication
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/αy.+i;.-« = ( W _ D)P1+j,nJd , (j = 1, , m + 1)

(137) jαίΓίϊr" = (w - D)Pm+2+t,^ , (t = 1, . , w - m - 3)

From (137) we obtain, as before,

(138) δ<«+"—» = 0 (s = 1, , n - 2) δί,"ΐ1:"-ι) = D- Dn^ ,

and from (137), (138), in virtue of (4),

α _ 6 = (W

~(m + l;»-2) ZJOT + I W-2) _ /,,., 71\P /r/ ( Ί — 1 Ύ

~(»i + l;w—2) ~L(m-\-l;n—2) /,,., Tl\T> (+ 1 . . . Ύl ΎYi

α m + 1 + ί — om+ι+t — yw — JJ)J"m+2+t,n~i i [i — l., * ,n — m

From (139) we obtain, in virtue of (4), and after carrying out the
necessary cancellation and multiplication

(140) aϊXSV - d/P2,m+ι+t , (ί = 1, , n - m - 2)

According to formula (109) (one line of the period), formula (113)
(m — 2 lines of the period), formula (121) (one line of the period),
formula (124) (one line of the period), formula (127) (one line of the
period), (131), (n — m — 4 lines of the period) and formula (138) (one
line of the period-totally 1 + m — 2 + 1 + 1 + 1 + w — m — 4 + 1 =
n — 1) the m — 2 -th fugue has the form as demanded by Theorem
3. Since (140) is formula (107) for k = m + 2, the Lemma 1 is
completely proved.

In view of the Lemma 1 we obtain that the (n — 5)(n — 1) lines

form n — 5 fugues, beginning with the fifth fugue, as demanded by
Theorem 3 we further obtain, applying the lemma for k = n — 2,
h + 1 = n — 1, that the generating sequence αίΛ~1:0>, (i = 1, , n — 1)
has the form, following (108)

π(n-l;0) _ Λip /• _ 1 ^ _ o \
Lt/̂  — /-*• 2 1 + ΐ ) V ̂  — "^ > % ϊv — O l

(141)
~{n — l O) E>

^tt-^ — i — -^1,1

From (141) we obtain, as before,
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(142) b{

s

n~u0) = 0 (s = 1, . . . , n - 2)

and from (141), (142), in virtue of (42)

(143)
_ 1/p (i — 1, , n — 4)

« — l O)
—2

From (143) we obtain, in virtue of (4), and after carrying out the
necessary cancellation and multiplication

/π(n-l;l) _

(144)
a^rz

ul) = (w — D)P2>2 ,

We shall now prove the formula

(145)

{n-Uk) _ 1 ip

(n-l;k) _ Jl p
k ("I A +

(i = 1, - Λ - 3)

α i V 4 + s = (w - D)P1+8tl+k ,
~(Λ—l Jfc) __ p

U = 1, -- ,n - 4 .

(8 = 1,

In virtue of (144) formula (145) is correct for k = 1. We prove, by
completely analogous methods used to prove previous, similar formulae
that it is correct for k + 1, thus verifying its correctness. We now
obtain from (145), as before,

(146) VΓVΛ) = 0 (s = 1, , ϋ - 2) b£r™ = D- Dk+1 ,

and again from (145), for k = n — 4,

( 1 4 7 ) c i 4, / ™ P / 1 ^
«2ΪS = (W — ΰ ) Λ + .,n-3 > (8 = 1, , W — 4)

-^w—1 ' = = -^%—3,^—3

From (147) and (146) (for k = n - 4) we obtain, in virtue of (42),

(148)
(»—I Λ—4) ϊvίw—i w—4)
2 O 2 —
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and from (148), in virtue of (4), and carrying out the necessary
cancellation and multiplication,

(149) \alls

Un 3) = (w - Z))P 1 + S , W _ 2 , (β = 1, • • • , » - 3 )

From (149) we obtain, as before,

(150) &ί—li"-» = 0 (s = 1, , n - 2) 6^ 1 ; i ί- 3 ) = Z) - Z>κ_2 ,

and from (149), (150), in virtue of (42)

(151)

(n—V,n~ 3)

(s = 1, , ̂  — 3)
Λ-i π—3) ϊv(»-i;»-3) — w — U .

From (151) we obtain, in virtue of (4), and carrying out the necessary
cancellation and multiplication

(152)
{n—Un—2) = (w - D)P1+s>n_Jd , (s - 1, , n - 2)

and from (152), as before,

(153) &i-ι.-*> = 0 (s - 1, •, n - 2) δ ^ 1

From (152), (153) we obtain, in virtue of (42),

/α(n-l;n-2) _ J( -l;n-2) = ^ _ typ^^Jd ,

(154) lα ί ϊ7 1 : *- 2 > - 6ί*τ 1 : — 2 ) = (w - D)P2+s>n_ί/d ,

d

(β = 1, , w - 3)

and from (154), in virtue of (4),

π(n;0) — p IP — 1 ip - 3)

Thus

(155)
(n;0) _

,^: = (w - D)Pί,nJ{w - D)PtlU_1 = PM .

(β = 1, ••-,%- 2)
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Comparing (40) with (155) we see that

α^ 0 ) = αί0) , (s = 1, . . . , r c - 1)

i.e.,

(156) αin ( n-1 ) } = αi0) (s = 1, , n - 1)

which proves that, in case d Φ 1, the Jacobi-Perron Algorithm of the
basic sequence a{

s

0) (s = 1, , n — 1) from (34) is purely periodic and
its length T = (n - 1)%. Since, in virtue of (142), (146), (150), (153)
the n — 1 supporting sequences

δ r ; f e ) , δ r i ; f c ) , •• ,δiw--1:fc) (k = 0,1, ...,n-2)

form a fugue which is the n -th fugue of the period, we see that
this last fugue, together with the 4 + (n — 5) = n ~ 1 preceding
ones form the n fugues of the period, as demanded by Theorem 3.

In case d = 1, we obtain from (55)

(157) <eo ) = 1/P2fl+. , (s = 1, , n - 2) a™ = PU1 ,

so that, comparing (157) with (40), we obtain

(158) a{rl) = αl°> , (s = 1, , n - 1)

so that the length of the period is here T = n ~ 1 from (41), (44),
(48) (54) we obtain that in the case d = 1 the period has the form
as demanded by Theorem 3.

The reader should note that proving case d Φ 1 we presumed
n ^ 6. The special cases n = 2, 3, 4, 5 are proved analogously.

We shall now give a few numeric examples. Let the generating
polynomial be

fix) = x5 - 15a;4 + 54a;3 - 3 = 0 ,

which can be easily rearranged into

fix) = (x - 9)(x - 6)x" - 3 = 0

and has the form (17) with

D = 9, A = 6, A = D3 = A = 0 d = 3

9 < w < 10 (w - 9)(w - 6)w3 - 3 = 0 .

The Jabobi-Perron Algorithm of the basic sequence
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(w - 9)(w - 6)w2 (w-9)(w-6)w (w - 9)(w - 6) nn R

3 3 3 '

or

w3 — 15w2 + 54w w2 — 15w + 54 a

is purely periodic with period length T = 20. The period has the
form

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

3
9

9

9

1

9

9

9

3

3

9

9

3

9

3

9

3

9

9

0 0 0 3 .

Let the generating polynomial be

f(x) = x6 - Sxδ - 5x* + 15x8 + 4α2 - 12a? - 1 = 0 ,

which is easily rearranged into

f(x) = (x - S)(x - 2)(x - l)x(x + l)(x + 2) - 1 = 0

and has the form (17) with
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Z> = 3, A = 2, A = 1, A = 0, A = - 1 , A = - 2 d = 1
3 < w < 4 ,

(w - S)(w - 2){w - l)(w + l)(w + 2)w - 1 = 0 .

The Jacobi-Perron algorithm of the basic sequence

<> = (w
<> = (w

α<0) = (w

α<0) = (w

α<°> = w -

is purely

the form

— 2){w —

- 3)(w -

- 3)(w -

- 3)(w -
- 2

periodic

2)w(
2)(w
2)(w

2)

and

M; + :

+ 2)

the

0

0

0

0

0

l)(w
(w -f

+ 2)
• 2 )

= w

= w4

= w3

= w2

= w

period length

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

—
—

—

—

—

is

1

2

3

4

5 .

2wr
2w3

Sw2

5w

2 ,

T

- lw3

- 7w2

- Aw -

+ 6,

+ 8w* + 12w ,
+ 8w + 12 ,

M 2 ,

= 5. The period has

Let the generating polynomial be

f(x) = .τ3 - 16a; - 2 = 0 ,

which is easily rearranged into

f(x) = (x - 4)x(x + 4) - 2 = 0

and has the form (17) with

D = 4, A = 0, A = - 4 d = 2
4 < w < 5 ,

(w - 4)(w + 4)w - 2 = 0 .

The Jacobi-Perron algorithm of the basic sequence

(w — 4)w _ w2 — Aw

2 2 w

is purely periodic and the period length T = 6 the period has the
form

0 4
0 8

0 2
0 8

0 4
0 4 .
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6* The Jacobi' perron algorithm for polynomial of increasing
order• In this section we shall show that, by imposing further
conditions on the coefficients of the GP from (17), one can select
increasing order polynomials from the algebraic number field K(w)
generated by f(w) — 0, D < w < D + 1, such that their Jacobi-
Perron algorithm is purely periodic. This result is stated in

THEOREM 4. Let the coefficients of the GP in addition to (17)
fulfil the inequalities D — D{ Ξ> 2d(n — 1), i.e., altogether

D. D;, d rational integers d > 1: n > 2
(159) * / , _ , _ ,

d\(D - Dt); D - A ^ 2d(w - 1) (i = 1, 2, . . . , n - 1)
Let w be the only real root in the open interval (D D + 1). T%βw
£Λe Jacobi-Perron algorithm of the basic sequence

aΐ\w) = ΣJ-o*. (w - /?)*- , (β = 1, , n - 1) Λ. = 1

(160) ft. = Σ CD - ^ Φ - i) i2) (D - Djs) , (s = 1, , n - 1),

1 ^ ii < j* < < Js ^ w - 1

is purely periodic and its length T — n for d > 1, and T — 1 /or
d = 1. The period has the form

s ) = A?ί (i = 1, . . . , n - 1 - s) ,

(161) h-s) = kjd (i = n - s, ••., n - 1; s = 1, , n - 2)

b'f-v - kjd (i = 1, •••, w - 1)

d > 1 .

(161a) 610) = A:, (i = 1, . . . , n - 1) d = 1 .

Proof. This is essentially based on the simple formula

(162) \af\w)} = ki (i = 1, , n - 1) .

Since, as will be proved later, w is irrational under the conditions
(159), we have to verify the two inequalities

(163) hi < af\w) <ki + l (i = 1, •, n - 1) ,

or, in virtue of (160)

(164) 0 < (w - DY + kλ(w - D)1-1 + - -. + k^{w - D) < 1 .

The left-hand inequality of (164) follows from w > D and k{ > 0.
We shall prove the right-hand inequality

(165) (w - DY + kx{w - DY~ι + + k^(w - D)< 1 .
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Since 0 < w — D < 1, we obtain (w — D)1 ^ w — A and we shall
prove, since

(w - BY + k,(w - D)1-1 + + ki^(w - D)

^(w - D) + k,(w - D) + + ki^(w - D) ,

(166) (w - D)(l + kx + k2 + . + fc^) < 1 .

From w > D, (w - D)(w - Z)x) . (w - Dn^) — d = 0, we obtain

A) (w - D.^))(167) w D

< d/((D - DX{D - A) (D - A-0) .

We shall now prove the inequality

(168) ks(w - D)< 2-{n-1~s) , (s = 1, .., n - 2) .

Let the A be arranged in nondecreasing order, so that

(169) D - A ^ - D - A ^ ^ - D - A-i .

In virtue of (169), and taking into account the values of ks from
(160) we obtain

ks(w - D) ^(w - D)Σ(D ~ Di)(D - A) (D - A)

(n ~ 1V^ - D){D - A)(J5 - A) (D - A)

cin- 1
s
(D - DX)(D - A) (D -

in virtue of (17). Therefore

(170) ks(w - D) < ^—-
(D - D9+1)(D - A+ 2) - (D - Dn_i

But D - A ^ 2d(w - 1) therefore we obtain from (170)

(2d(n - l))^-8-1

n- 1>
s

2n~s~1(n - \γ-s-χ

n — 1 β ^ - 2 g + 1 < 1_
1) (n - s -

which proves formula (168).
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We further obtain from (167)

w-D< d 1 . 1
(2d(n - I))71-1 2n-\n - iy~γdn~2 ~ 2n~ι

In virtue of this result and of (168), we now obtain from (166)

(w - P)(l + * , + . . . + k ^ ) < - L + - L + ... + J ^ r

O?ι—1 O%—2 p O«—1

Thus (162) is proved.
In virtue of (163), we obtain the inequalities

so that

d

(162) and (171) provide the key to our proof of Theorem 4. The
further course of the proof is similar to methods used in previous
papers ([10], [12]) and we shall, therefore, give here only a very
general outline of same. Denoting in the sequel

(173) a?\w) = a?^ , (i = 1, . ., n - 1)

we obtain from (160), (162)

αί°Λ = (w- D)ap + ki+ι , (i = 0, •, n - 2)<C = 1 ,
π(0) Ij(0) _ π(0) _ I.

(174) αfΛ - δ|°Λ = (w- D)af (i = 0, . . , n - 2) .

We further obtain from (24), for f(w) = 0,

(w - D)n + &i(w - ΰ ) " - 1 + A;2(w - D)n~2 + + kn_,{w - D) - d = 0 ,

w — P d d

since, from (174), α!0) — b[0) = w — P, we obtain

I ,γ(0)

(175) = - ^
a[0) - &ί0) d

We shall now carry out the Jacobi-Perron algorithm of the basic
sequence (160) and obtain from (162)
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(176) b(

s

0) = ks , (8 =

and from (174), (175), in virtue of (4)

a[0) - b[0) = w - D ,

α(o)χ _ b^ = (w — D)af] , (ί = - 2)

(177)
^ ( 1 ) _ Λ ( 0 )

From (177) we obtain, in virtue of (162), (171)

(178) 6<» = Λ. (s = 1, , n - 2) 6«i, =

and from (177), (178), in virtue of (174), (175)

(α 11 - δί11 = w - D ,

(178a)

, w - 3 )

, Λ - 3 )

αίfit = aϋLJ

It will now be easy to prove formula

(179) n(s) . _ α (β) Λ

Q — 1 . . . 47 9
o — JL, , It — ^

(ϊ = 1, , n — s — 1)

Formula (179) is correct for s = 1, 2 in virtue of formulas (177), and
(178a). It is then presumed that it is correct for s — m and proved
that it is correct for s = m + 1.

We now obtain from (179), in virtue of (162), (171)

(i = 1, •••, n - s - 1)

(180) δί, i._1 + i = fe-'-'+i

s = 1, , n — 2 .

We further obtain from (179), (180) for s = n - 2

•, w - 2)

so that, in virtue of (174), (175), (4)
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la[n-2) - b[n~2) = w - D ,

| < 7 2 ) - b[\T' = (w- D)afld , (j = 1, , n - 2)

(181) αj—" - αΓ/d (i = 1, , n - 1) .

From (181) we obtain, in virtue of (171)

(182) δί- 1 ' = kjd , (i = 1, , n - 1)

and from (181), (182), in virtue of (174)

/rf , (i = 1, •, rc - 2)

so that, in virtue of (4) and (175)

(183) αί*} = αί0) , (i = 1, , n - 1)

which proves that the Jacobi-Perron algorithm of the basic sequence
α|0) (i = 1, , n — 1) is purely periodic and its length T = n for
d> 1. We further obtain from (177), for d = 1,

so that in this case the Jacobi-Perron algorithm is purely periodic
and its length T = 1.

From (176), (180), (182) we conclude that the period of the
algorithm has the form as demanded by Theorem 4, for d ^ 1.

We shall take up the numeric examples of § 5 to illustrate
Theorem 4.

1. f(x) = x5 - 15a;4 + 54a;3 - 3 = (x - 9)(x - 6)x3 - 3 = 0 .

Developing f(x) in powers of x — 9 we obtain

f(x) = (x- 9)5 + 30(a; - 9)4 + 324(a; - 9)3

+ 1458(a; - 9)2 + 2187(a; - 9) - 3 = 0 .

The basic sequence has the form

a[0) - (w - 9) + 30 - w + 21

α<0) = (w - 9)2 + 30(w - 9) + 324 = w2 + 12w + 135

α(o = ( W _ 9)3 + 3O(W _ 9)2 + 3 2 4 ( ^ _ 9) + 1458

= w3 + Zw2 + 27'w + 243

^l0) = (w - 9)4 + 30(w - 9)3 + 324(^ - 9)2 + 1458(^ - 9) + 2187
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The period of the Jacobi-Perron algorithm of these numbers has the
form

30

30

30

30

10

324

324

324

108

108

1458

1458

486

486

486

2187

729

729

729

729 .

2. f(x) = x6 - 3x5 - 5x4 + 15a;3 + 4x2 -

= (a? - 3)(x - 2)(x - l)x(x + l)(x + 2) - 1 = 0 .

Developing f(x) in powers of x — 3 we obtain

f(x) = (x- 3)6 + 15(a? - 3)5 + 85(£ - 3)4 + 225(α; - 3)3

- 3)2 + 120(α? - 3) - 1 - 0 .

The basic sequence has the form

< - (w - 3) + 15 = w + 12 ,

α<0) = (w - 3)2 + 15(w - 3) + 85 = w2 + 9w + 49

αί0) = (w - 3)3 + 15(w - 3)2 + 85(w - 3) + 225

= ws + 6^;2 + 22^ + 78

a[0) = (w - 3)4 + 15(w - 3)3 + 85(w - 3)2 + 225(w - 3) + 274

= w4 + 3w3 + 94w2 - 258w + 40

αl0) = (w - 3)5 + 15(w - 3)4 + 85(w - 3)3 + 225(w - 3)2

- 3) + 120 = w5 - 5w3 + 4 ^ .

)2

The period of the Jacobi-Perron algorithm of these numbers has the
form

15 85 225 274 120 .

3. f(x) = xz - 16α> - 2 = (x - 4)x(x + 4) - 2 = 0 .

Developing f(x) in powers of x — 4 we obtain

f(x) = (x - 4)3 + 12(.τ - 4)2 + 32(x - 4) - 2 = 0 .

The basic sequence has the form

a[Q) = (w ~ 4) + 12 = w + 8

αl0) = (^ - 4)2 + 12(w - 4) + 32 = w2 + 4w .

The period of the Jacobi-Perron algorithm of these numbers has the
form
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12
12

6

32
16

16 .

We shall now return to formula (11) in order to calculate w and
obtain for Theorem 3 :

for Theorem 4 :
<> = w - D + k, = lim (Aίv)/Ai,v)) ,

where the A{

Q

υ), A{;Lγ from Theorem 3 are not the same as A(

Q

V\ A[v)

from Theorem 4. Yet, as the first author has proved, there are
always indices vs for the Aiv) from Theorem 3 and indices vA for the
A\v) from Theorem 4 such that

7* Units of the field iΓ(w)* Let the coefficients of the GP

f(x) = (x- D0)(x - A) (x - ΰ j - d

now fulfil the conditions (17), (18), (19) from Theorems 1, 2 and the
supplementary inequalities from Theorem 3, i.e., altogether

Di9 d rational integers d ^ 1 n ^ 2

A > A > > A»-i d\(D0- A) ,

A - A ^ 2d(^ - 1) , (i = 1, w - 1)

(184) and in the special case d = 1 moreover

A - A ^ 2 or A - A ^ 4 for w = 3 ,

A - A ^ 2 or A - A ^ 3 or A - A ^ 3 or

A - A , A - A > 2 for n = 4 ,

and let be

(185) /(w) = (w - D0)(w - A) (w - D.-O - d = 0

A < w < A + 1 .

Perron [18] has proved the following important theorem :

// the supporting sequences of the Jacobi-Perron algorithm fulfil
the conditions

(186) b(

n% ̂ n + b[υ) + δί > + bl% , (v = 0,1, • •)
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then f(w) is irreducible in the rational number field.

We shall apply Theorem 3. Here

d

In order to verify (186), we thus have to prove Do — Ό{ ^> nd. But
in virtue of (184) we have, indeed,

Do- Di^ 2d(n - 1) ^ nd, since n ^ 2 , (i = 1, . . . , n - 1) .

Thus f(w) is irreducible in the field of rational numbers, which is
true already under the conditions (159), and w, as well as the other
roots of f(x) are algebraic irrationals of degree n. Thus, in virtue
of Theorem 2 and the conditions (184), f(x) has n different real roots
which are all algebraic irrationals of degree n. According to the
famous Dirichlet theorem, the exact number of (independent) basic
units of the field K(w) is N — rι + r2 — 1, where

r1 is the number of real roots of f(x) ,

r2 is the number of pairs of conjugate complex roots of f(x) .

In our case rί — n r2 = 0, so that N = n — 1 . We shall now prove

THEOREM 5. Under the conditions (184) the n algebraic irrationals

(188) ek = {w ~ D k r , (k = 0,1, , n - 1)
a

are n different units of the field K(w).

That the numbers (188) are all different follows from Di Φ Djr

(i φ j iy j — 0,1, , n — 1). We further note that one of the
numbers (188), for instance

e.-i = (w - Dn^)n/d

can be expressed by the other n — 1 numbers. We obtain from (185)

d/(w - ZVi) = (w- D0)(w - A ) (w - Dn_2) ,

dn/(w - Dn

and from this

d
(w — Dn_γ)

so that

.-l) + " =

(w
n

(w

—

d

- DX(w

D 0 ) M _ (w

- A ) " •

- A)" .
d

• (w

(w

- A.-.)'

- A.-.)"
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(189) e~U = βcA β%_2 .

There is a simple algebraic method to prove that the ek are all
units (see the Appendix by H. Hasse) for this purpose, in view of
(189), it suffices to show that the ek are algebraic integers. This,
however, does not disclose the more organic connection between a
unit of a field and the periodic algorithm of a basis of the field
after a unit of a field has been found by some device, it is easy to
verify that it is one, indeed. The problem of calculating a unit in
a quadratic field K(-\/m) is entirely solved by developing \/~m in a
periodic continuous fraction by Euclid's algorithm.

In a joint paper with Helmut Hasse [16] it was proved that in
the case of a periodic Jacobi-Perron algorithm carried out on a basis
w, w\ , w71-1 of an algebraic field K(w), w = (Dn + d)ίln d, D
natural numbers, d \ D, a unit of the field is given by the formula

(190) β-1 = a^altγ ... α ^ - 1 ' ,

where S and T (see (6)) denote the length of the preperiod and the
period of the algorithm respectively.1

Turning to Theorem 3, we obtain S = 0, T = n(n — 1) for d Φ 1,
and formula (190) takes the form

(191) e-1 = IKir1 '-1 <^i = Π S Π U a«ir1>+4) .

Following up the various stages of the proof of Theorem 3, one can
easily varify the relations

(192) TIU <l{n% = Pί9lPl.t P-1,-1 ,

(193) ΠΠo2 αί?ir1}-* = d~ΨuιP2i2 Pn-Un^, (i = 1, . . n - 1) .

In virtue of (192), (193) we obtain from (191)

(194) β-1 = d-«-»(PltlPt9t P^un^)n .

From (39) we obtain

(195) PuιP2>2 Pn_un

 d

w — D

and from (194), (195)

d96) β-i = _ A _ , β = /
, e

(w-D)n d

1 Formula (190) holds for any algebraic irrational w.
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which proves Theorem 5 for k = 0, since D = DQ. Yet it is rather
complicated to prove the remaining statement of Theorem 5, namely
that the other ek (k = 1, , n — 2) are units of K(w) which can be
derived from a periodic algorithm like e0. We say deliberately
periodic algorithm and not periodic Jacobi-Perron algorithm, which
has its good reasons in the following observation : if one reads the
author's joint paper with Professor Helmut Hasse carefully enough,
he will soon realize that in order to prove formula (190) two pre-
sumptions are necessary—first that the numbers b[v), biv\ , b^
(v = 0,1, •) be all integers; second that the algorithm be periodic,
while the formation law by which the b^ are derived from the α v)

is altogether not essential. In this chapter we shall define a new
formation law for the b\v) and obtain, on ground of it, a periodic
algorithm for n — 1 polynomials chosen from the field K(w). In this
algorithm the b\v) will all be rational integers so that formula (190)
can be applied. These results are laid down in Theorem 6. Before
we state this theorem, we shall explain the new formation law for
the b[v) and introduce, to this end, a few more notations.

DEFINITION. Let w be the only real root in the open interval
(Do, Do + 1) of equation (185), so that

(w - D0)(w - A) (w - Dn_,) - d = 0 .

Let the elements of the basic sequence of an algorithm G be poly-
nomials in w with rational coefficients, i.e.,

(197) αi0) = a?\w) = Σ!=o C.w8^ (s = 1, . , n - 1)

if the b{

s

v) (s = 1, , n — 1 v = 0,1, •) are rationals, then, in
virtue of (4), the a^\ too, are polynomials in w with rational
coefficients for all s, v, i.e.,

(198) a{

s

v) = a{:\w) = ΣUoC^w3^ (s = 1, ., n - 1 v = 0, 1, . . . )

G is called the Modified Algorithm of Jacobi-Perron, if the 6f} are
obtained from the α v) by the formation law

(199) Vs

v) = a{

s\Dk) (s, v as in (198)) .

Here Dk is one of the numbers DQ, Dlf - - -, Dn^; Dk remains the
same during the process of G.

We shall now introduce the following notations
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, Dn^Riyi = w — Diyi DiΛ any of the numbers Do,

(200) Ri}i Φ Rjfj for i Φ j

From (185) and (200) we obtain

- 1).

(0 < % I

(0 =

( 0 <

S i
S i

i =

<

<

ί n

n
n

, —

- i )

- i )

1 ) .

(201)

We are now able to state

THEOREM 6. Under the conditions (186) let

(202) Rltl, i?2,2, , Rn-2,n-2

be any n — 2 of the n — 1 polynomials

- ^ 0 , 0 ? " j -Lk—l,k—U •* fc + l,/c + l> * " " • * » — l , w — 1 > (/C = 1 , , t t "

fee Modified Algorithm of Jacobi-Perron of the basis

i^^4; a{ — JX>i,n-ι~i-Lk,k J [i — L, ' , n — Δ) Q>n-i —

is purely periodic the length of the period is T = n(n — 1)
d > 1 and T = n — 1 /or d = 1. T%e period of length T = n
consists of one fugue its generator has the form

(205)

for

— 1

\Dk -

ΓΛ-e period of length n(n — 1) consists of n fugues the generator
of the first fugue has the form

Dk - A,i

(Dk - D^^d-1

Dk - Dn_2,n_2

Dk - Dn_%,n_%

(206a)

Dk - DM

The generator of the i -th fugue (i = 2, , n — 3) has the form
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(Dk - Duι

Dk - £._!

Dk - Dn^

(206b)

(Dk - i ) , . , , . ^ - 1

\Dk - DM .

The generator of the n — 2 -th fugue has the form

(Dk - A.i

Dk

T
(206c)

- A

The generator of the n — 1 -£& fugue has the form (205) ίλe genera-
tor of the n -th fugue has the form

(206d)

(Dk -

Dk -

- !>._,,,-,

Dk - DtΛ .

The reader should note that the generators (205) and (206a)-
(206d) consist of rational integers only. The differences Dk — Diri

(i = 1, , n — 1) are algebraic sums of natural numbers and since
d I Dk, d I Di,it so is d\Dk — Diti. One further notes that these
generators contain no zeros, since Pk<k Φ RiΛ and therefore Dk Φ DiΛ,

Proof of Theorem 6. We first make the following observation :
since, in virtue of (202), (203), we can have either

±k,k — -Lk,k —

we shall choose

(207)
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We shall now carry out the Modified Algorithm of Jacobi-Perron for
the basic sequence (204). We obtain from (204), since every factor
a\0) (i = 1, , n — 2) contains the factor Pktk, and in virtue of (199),

(208) 6J°> = 0; (i = 1, , n - 2) WU = Dk - Duι .

From (204), (208) we obtain, since RίΛ - (Dk - Dlfl) = w - Dk = Pkfk

(209) π(o) /,(o) _ τ> p
WΊ+i u l + i — -**Ί,w—2—i-L k,k 1

(0)
*

and from (209), in virtue of (4) and (201), (207)

(a? =
U

(i = 1, ••-,%- 3)

(210) Uίi, = R.-Un-ιPk,k/d ,

From (210) we obtain, since every αj1' (i = 1, , n — 2) contains the
factor P i > t > and in virtue of (199)

(211) 6I1' = 0; (i = 1, , Λ - 2) 6"!, = (Dk - D._ ι,._1)d-1 ,

and from (210), (211), since

{Rn-UnJd) - (Dk - D^^dd-1 = (w - D^d-1 = P,,^-1 ,

(211)
oίϊ, - feίΐ, = JBI,_3-i-B»-1,»-Λ,^-1 , (i = 1, , w - 4)

From (211) we obtain, in virtue of (4) and (201), (207),

if = R^n-^iRn-l.n-iPkJd , (ΐ = 1, , % - 4)

(212)

From (212) we obtain, since every αf (i = 1, , n — 2) contains the
factor Pfc.fc, and in virtue of (199)

(213) 6f» = 0; (i = 1, , n - 2) 6«it = Dk - £„_,.„_, ,

and from (212), (213), since Λ,_,,B_, - (i?» - i)n_2>n_2) = w - Dk = Pk,k
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(214)

/α<2> - δ<2> = R1,%.tRΛ^,<t.ιPk,t/d ,

aϊ^ - b{% = Rι,n^_iRn_1,n.ιPt,k/
π(2) _ r(2) — τ> P Id
Wn—3 Vn—3 — Λ β _ 2 , n ~ l-Γk,klU/ >

^(2) jL(2) _ T> P Id

From (214) we obtain, in virtue of (4) and (201), (207)

3> = Rl,n-4-iRn-3,n-lPk,kld , (ί = 1, , U ~ 5)

(215)
Λ-4 —

πi3} — J? P

(3) _
w—1 —

(216)

We ishall now prove the formula

a^ = Run-^t-iRn-t.n-fUd , (ΐ = 1, , tt - 2 - ί)

π(t) — P P Id

π{t) _ p P Id

π(t) — 7? p /// — -i . . . /• p \
^n — t + j — •Li/n—t,n—2—j-L k,k 1 \J — -1- > > ̂  ^ /

^ n —1 — ±\>n—t,n—t 9

\ί/ — O, , fί/ — 6 .

Formula (216) is correct for t — 3, in virtue of formula (215). Let
it be correct for t = m (m = 3, , n — 4). From (216) we obtain,
for t = m, since every α w ) (i = 1, , n — 2) contains the factor
Pk>k, and in virtue of (199),

(217) b^ = 0; (i = 1, ., n - 2) 6^\ - Dfc - !)._,„._„ ,

and from (216) (for t = m) and (217), since

Rn-»,n-» ~ (Dk ~ ί>-*fn-») = 117-2)* = P*ffc

(218)
ry(w) __ Zj(m) _ I") P Id

(w) . _ him) p
re — m + j v w — m + j •L*'n — m,n—2—o

, (i = 1, , n - 3 - m)

i = l, •• , m - 2 )

From (218) we obtain, in virtue of (4) and (201), (207)
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; m + 1 ) = RL,n-2-m-iRn-m-l,n-lPk,k/d J (ί = 1, , W — 3 — m)

(219)

π(in+i) p P Id

Usn—i—m — 1Λ"n—m—l,n—2Γk,klU/ f

n ( m + l) _ Γ> p

^ ( m + 1) _ D
XW'Λ—1 — •LX'n—m—l,n—m—l

(j = 1, «.,m - 1)

But (219) is formula (216) for t = m + 1, which completes the proof
of this formula. We now obtain from (216) for t = n — 3

(220)

π(n-3) _ p p
^ 3 + j — •L*'3,n—2—jjrk,k 1

-γ (•«. 3) P

\C6π_i — -tt3,3

From (220) we obtain, since every α^~3) (ί = 1, , n — 2) contains
the factor PA,Λ, and in virtue of (199)

(221) 6^-3) - 0; (i = 1, , n - 2) δ ^ ^ = Dk - A, 3

and from (220), (221), since P3,3 - (Dk - A,3) = w - Dk = Pkik

(222)

yίw—3) h(n—3)

U = !,'•-,n-S)

From (222) we obtain, in virtue of (4) and (201), (207),

Λn-2) _ p p ifJ. n(n-2) _ p p IJ

(223)
o}n-2) _ j ^ 2 n_2_.pk ki (j = i ... n — A) a{n~*] —

and from (223), since every a[n~2) (i = 1, , ̂  — 2) contains the
factor Pfc,fc, and in virtue of (199);

(224) ¥Γ2) = 0; (i = 1, . , n - 2) 6 ^ ) = £>* - A, 2 .

From (223), (224) we obtain, since R2>2 - (Dk - D2,2) = w - Dk = P,,/c ,

j{n-2) _ J(w-2) — ̂  P Id

"2 + j ^2+j Ή'2,n—2—j-Lk,k j \J -̂  J y ' ^ ^*/

(225)

and from (225), in virtue of (4) and (201), (207)
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'αί l i β ) = Run-t

(226)

Here we are making use of the notation (37) u; v = u(n — 1) + v.
In virtue of formulae (208), (211), (213), (217), (224) the first n-1
supporting sequences of the algorithm form a fugue which has the
form of the first fugue as demanded by Theorem 6.

From (226) we obtain, since every α{1:0) (i = 1, , n — 2) has
the factor Pkιk, and in virtue of (199)

(227) 6Γ'0) - 0; (i = 1, , n - 2) b™ = Dk - Duι ,

and from (226), (227), since R1Λ - (Dk - Duι) = w - Dk = Pk,k ,

ίπ{u0)

(228)
f w - 3 )

l<e°> - b^i = p k Λ .

From (228) we obtain, in virtue of (4) and (201), (207),

m ) = Λ L . - W Λ - L . - Λ , * . (i = 1, , » - 3)

(229) \a™l = Λ._1,._Λ,4 ,

and from (229), since every a[ul) (i = 1, , n — 2) contains the
factor Pkιk, and in virtue of (199),

(230) 6Γ> = 0; (i = 1, , n - 2) δίfi\» = Z)» - £)._,,._, .

From (229), (230) we obtain, since #»_!,„_! - (D* - Z>»_i,._i) = w - Dk =

/7 ( 1 ; 1 ) — /) ( 1 ; 1 ) — 7? P

Λ ( i ; i ) Λ^1"'1) — P

and from (231), in virtue of (4) and (201), (207)

(232)

- 4)

F r o m (232) w e o b t a i n , s ince e v e r y α | 1 : ί > ( i = 1, ••,» — 2) c o n t a i n s
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the factor PkΛ, and in virtue of (199) ,

(233) 6P> = 0; (i = 1, , n - 2) 6»i» = (Z>4 - Dn_2,n.2)/d ,

and from (232), (233), since

- ({Dh - Dn_2,n_2)/d) = (W- Dk)/d = PkJd ,

(234)

345

aft? - &ίϊ? = Λi..-wΛ.-,,._ii>*.t/d , ( i = 1, , n - 5)

(ί;2)

From (234) we obtain, in virtue of (4) and (201), (207) ,

αf3) - Run-t-jR^n-fjcJd , ( i - 1, , n - 5)

(235) \a^+s = Rn^,n-sPk,Jd , (β = 1, , 3)
,,(1:3) _ τ>

From (235) we obtain, since every αί1;3) (ΐ = 1, •••,« —2) contains
the factor PkΛ, and in virtue of (199),

(236) δί1;3) = 0; (i = 1, , n - 2) 6»i3' = 2?4 - £„_,,„_, ,

and from (235), (236), since Λ,_,,,._, - ( ΰ , - iVs^-s) = w - Dk = Pk,k

'αίl5S) - &ίlι3> = Λi,.-^.-..._Λ,*/d ,

¥5' - δίi J' = Run-s-iRn-^-^Jd , ( i = 1 , . - , » - 6)

^ , - 6«i«+. = Λ»_,,._Λ,*/d , (β = 1, 2, 3)
(237)

From (237) we obtain, in virtue of (4) and (201), (207),

(238)

f4) = i

(s = 1, 2, 3)

Λ(i;4) — /? p

«( i ;4 ) _ τ>
^n—ί — •L*>n—4,n—4

We shall now prove the formula

(239)

<•" = R1,n-1-t-jBn-t,n-ιPkJd , (j = 1, , n - t - 2)

αi,1!1,'.^. = Λ»_«,»_.P*,*/d , (β = 1, 2, 3)

αi'lV+i+u = Rn-t,n-%-uPk,k , (« = 1, , ί - 3)

ί = 4, , w — 3 .
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Formula (239) is correct for t = 4, in virtue of (238). We presume
(239) is correct for m ̂  4, i.e.,

(240)

a0 ' — ICί,n-l-m-j-Kn-m,n-l*k,k/U' 1

π(i;m) — 7? P
^n—m + i+u — •L*"n—m,n—Z—uJrk,k J

i = 1, , n — m — 2)

(s = 1, 2, 3)

(w = 1, , m — 3)

I — J-*/n—m,n—

From (240) we obtain, since every αj l ί w ) contains the factor P ^
(i = 1, . . . f n — 2), and in virtue of (199)

(241) b^m) = 0; (i = 1, . , n - 2) 6i1iT) = D* - £>M,._™ ,

and from (240), (241), since

Rn-m,n-m ~ (Dk - Dn_m>n_m) = W - Dk = Pkfk ,

(242)

αίϊ f - ί̂ + r5 = Rl,n-»-2-iRn-«,n-lPk,k/d , (^ - 1, , 71 ~ 7Π ~ 3)

m,n-s*k,k/a \ b ~ LJ ΔJ ύJ

«, -^.-P*,* » (M = 1, , m - 3)

jd m) —
υn-m-2+s ~

n— l — Un—l — -*-k,k

From (242) we obtain, in virtue of (4) and (201), (207),

(243)

(l;m+l) _ Έ> ID P
' i — •LXΊ,n—m—2—j L*"n—m,n—lrk

w-m-3+s — I*'n-m-l,n-sjrk,kla >

(i;m + i) p p
'ίi—m + u — •L^n—m—l,n—Z—ujrk,k >

(l m + l) _ D
Ti — 1 • z l / % — m — ί , n — m — 1

= 1,

= 1, .

- m - 3)

= 1, 2, 3)

. . , m — 2)

Substituting m + 1 for £ in formula (239) we obtain formula (243)
which completes the proof of (239).

From (239) we now obtain for t = n — 3 ,

(244)
Λ ( i ;w-3) _ D p
^ f ί t — 2^3,w—3—u1 k,k >

and from (244), since every αί1;%~3) (i = 1,
factor Pktk, and in virtue of (199)

(246)

(d;w-3) Jd w-3) _ _

d w—3) ϊvd w—3)

— 0

(s = 1, 2, 3)

& = 1, , n — 6)

2) contains the

(s = 1, 2, 3)

(u = 1, . - . , » - 6)
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From (246) we obtain, in virtue of (4) and (201), (207)

/̂ (i;%—2) __ β P Id

(OΛΠ\ J/ϊ(i;«-2) — 7? P Id

\^CiL±i J Λ(*3 — J'-*'2,n—3-*- k,kl^ y

a{

z%Z~2) = R2,n-z-uPk,k y (v, = 1, , n — 5)

From (247) we obtain, since every ail;n~2) (i — 1, , n — 2) contains
the factor Pkyk, and in virtue of (199)

(248) δί 1:*-8) = 0; (i - 1, , n - 2) 6ίίiwr2> = Dk - D2>2 ,

and from (247), (248), since

#2,2 — (Dk ~ D2y2) = w - Dk = Pk>k

(249)

— T? P Id
— 112,71-2* k,kIa i

(i;.-2,

{i:n-2) J.d n—2) —
2 ~ " O

(ί;n-2) ^(l w-2) _ Γ> Ώ Id
3 — Oz — J^2tn-^k,kla i

(lln-2) __ Zj(l;w-2) _ r> p
S+i ^3+1 — •L*'2,n—Z—irk,k 1

(Un-2)
w—1 w—1

From (249) we obtain, in virtue of (4) and (201), (207) ,

(250)
(i = 1, - 4)

In virtue of formulae (227), (230), (233), (236), (241), (248), the n - 1
supporting sequences, starting with the n -th sequence of the
algorithm, form a fugue which has the form of the second fugue as
demanded by Theorem 6.

The proof of Theorem 6 is essentially based on the following

LEMMA 2. // the generating sequence

α ί t ϊ 0 > ; ( ΐ = l , - . . , r a - 1; ί = 1,

has the form

(251) at+j — jχlyn_ί_t_jrkyk ,

,n-4)

i = 1, - ί - 2)

ί/ie n — 1 supporting sequences
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. ftt s) (β = 0 , 1 ,

/orm α fugue which has the form of the t + 1 -ίfe fugue as demanded
by Theorem 6, cmc£ ί&β generating sequence

(ί+l;θ) (t+i\0)

/orm (251) where t is to be replaced by t + 1.

Proof. The Lemma 2 is correct for t = 1, as can be easily
verified by the formulae (226), (250) and the remark following formula
(250). We shall presume that the Lemma 2 is correct for t = m — 1
(m ^ 2) and shall prove its correctness for t + 1 = m. We obtain
from (251), on ground of the second statement of the Lemma 2 (viz.
f or t + 1 = m)

(252) J ~(ra;O) r> p
Λ^m + j —-^l^—l—m—j^kyk 1

(i = 1, . ,m)

i = 1, . . . , rc - m - 2)

α- (m O) —

From (252) we obtain, since every α< m;0) (i = 1, , n — 2) contains
the factor Pktk, and in virtue of (199)

(253) 6ίm;0) = 0; (i = 1, . ., n - 2)

and from (252), (253), since i2 l f l - (Dk

(254)
«(w;0) k(m;o) __

/y(w O) Z)(m;θ) _
am+j Om+3 —

π(m;0) _ jL(*;o) =

— JJ1}1

(i = 1, « , m - 1)

(i = l , . . . , w - m - 2 )

From (254) we obtain, in virtue of (4) and (201), (207),

(m,D _ RUn_2_iRn__un_1pkik/d , (i — 1, , m — 1)

(255)
U - 1, , n - m - 2)

From (255) we obtain, since every alm'Λ) (i = 1, , n — 2) contains
the factor Pfc,fc, and in virtue of (199) ,

(256) blm'Λ) = 0; (ΐ = 1, -, n - 2) 6 ^ υ = Dk - Dn^1>n^ ,

and from (255), (256), since

Rn-l,n-l ~ (Dk — Dn-l,n-ί) = W — Dk — Pkfk ,
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ΐ f - ftίTl11 = Rl,n-S-iRn-Un-lPk,k/d . (l = 1, , »» - 2)

<257) -j αίΓJίV, - δ^ίV. = Λ1,.-i-«_ίΛ,-i.^.1P».*, (j = 1,-• ,n-m-2)

Q"n—2 On—2 — •**«—l,tι—l-*^k,k 9

n(m;ί) ΪJro l) _ p

^ί l —1 y f t - l x fc,fc

From (257) we obtain, in virtue of (4) and (201), (207),

/αjm;2) = RUn-3-iRn-2,n-iPk,k/d , (ΐ = 1, , m — 2)

β « n — 2 + i = : : : •Kl,n—l—m—j-Kn—2,n—l*k,k f \J=*-i°°°i/M/ ^ •"/

\ώOθ) Ί«-n-3 — K>n-2,n-l±k,k 9

We shall now prove the formula

(259)

ίarΛ) - Ri.n-i-t-Jtn-t.n-iPk.Jd , (i = 1, - , m - ί)

αiίiίVi = Ri,n-l-m-jRn-t,n-lPk,k , (j = 1, ' ' ' , U ~ Wl - 2)

&T-t-2+u = Rn-t,n-u-LJc,k 9 V^ ~ •*•> * " * > ^)

«(m;ί) _ D
^ n — l — £X"n—t,n—t 9

t = 1, , m — 1 .

Formula (259) is correct for t — 1,2, in virtue of formulae (255),

(258). Let it be correct for t = s ^ 2, i.e.,

(260)

(Li""s — Klfn_1_s_iKn_Sfn_1rk>k/d , (i — 1, , ifϊi s)

βim s) __ Jβ J£ p (jz=z\ % Wl 2)

a (m\S) P ~D ini 1 . . . Q\

n—s—2+u — J-^n—s,n—u-Γk,k 9 V^ — ±9 9 ύ /

n(m;s) _ p

From (260) we obtain, since every α | m ; s ) (i = 1, •••,% — 2) contains

the factor P i > f t > and in virtue of (199),

(261) br °> = 0; (i = 1, , n - 2) 6£i«> = i ) » - £>„_,,„_, ,

and from (260), (261), since # B _ S > K _ S - (Dh - Z>π_s,B_β) = w - Dk = Pk,k,

(262)

s) ϊv(w s) — p p P / / 7 /'V — 1 . . . /yw o 1 "\
— ί^l + i — * * Ί , i i — 2 — s— i -*-*n—s,n I-*- k,kl^/ 9 \ ̂  — J > " ^ " /

α (m s) /v(w s) —

»—s—2+w vw—s—2+1* — -

α ^ \ s ) - 6L-:is) = Pk,k .

From (262) we obtain, in virtue of (4) and (201), (207)
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(263)

(arS+1) = Run-Z-s-iRn-^s.n-lPkJd , (i - 1, , 7Π - 8 ~ 1)

α^/i+M = Rn-l-s,n-uPk,k j (^ = 1, , S + 1)

κ^n—1 J^n—1—s,ίi—1—s

But (263) is formula (260) where s is to be replaced by s + 1; this
completes the proof of formula (259),

We now obtain from (259), for t = m — 1,

(264)

*

( - , Π - 7YI ~ 2)

= 1, , m - 1)

From (264) we obtain, since every αiw ; m~1 } (ΐ = 1, , n — 2) contains
the factor Pktk, and in virtue of (199),

Oi — U, ^ — 1, , 71 — Δ)

and from (264), (265), since

(266)

n{m\m—l) Î ίm m—1) p p P //7

^(m m—1) "U{m\m—1) D

From (266) we obtain, in virtue of (4) and (201), (207),

n(m;m) _ p T> p
Wj — •L*'l,n—l—m — j J *'n—m,n—l-L k,k >

^w — l — ±*"n—m,n—m

i = 1, •-., n - m - 2)

(u = 1, . . . , m )

From (267) we obtain, since every α m ; m ) (i = 1, , n — 2) contains
the factor Pkfk, and in virtue of (199),

(268) 6 ί " ) = 0; (i = 1, , n - 2) δ ^ = 2?4 - D - » f — ,

and from (267), (268), since Rn^m>n.m - (Dk - Dn_m,n_m) = w - Dk =

± k , k y
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aL υ i — ^Un~2-mr^n-m,n-\.rk,k 1

(269) αίί?} ' bin*' = Bi,,-*-M-jR»-M.^-iPk,k, U = 1, ' . n - m - 3)

a (m;m) (m ra) ~D T) /ηl

α (m w) ~L{m\m) Γ)

N n — 1 "n — l — -L k,k

From (269) we obtain, in virtue of (4) and (201), (207) ,

7(m;m+l) = Rl.H-t-n-jRn-n-Un-lPkJd , (j = 1, , Π ~ M ~ 3)

(270) W^JZ^U = Rn-m-l,n-uPk,k/d ,

and from (270), since every α^m;w+1) (ί = 1,
factor Pkfk, and in virtue of (199),

(271) 61m;m+1) - 0; (i = 1, . . . , n - 2) 6^* + l ϊ

From (270), (271) we obtain, since

(272)

(u = 1, •••, m + 1)

, n — 2) contains the

- Dn_m_ll%_M_1)/d .

( i = 1, . . . , w - m - 4)

α ^ - ΐ i . - b^-^lu = Rn-m-Un-uPkJd , (U = 1, , Tϊl + 1)

~(ra;m + l) ϊv(m;m + l)

\dn-i ~ Vn-l —

and from (272), in virtue of (4) and (201), (207)

(273) • a^Z-lXu = Rn-m-2,n-UPk,k/d ,
β(m;m + 2) _ -β

, U ~ 7Π ~ 4)

= 1, , m + 2)

From (273) we obtain, since every aίm*m+2) (i = 1, , n — 2) contains
the factor Pfcffc, and in virtue of (199),

(274) 6ί— ̂  - 0; (i - 1, , n - 2) δi«+ 2> = JD4 - i )^ m _ 2 , ._ w _ 2 ,

and from (273), (274), since

tin-m-2,n-m-2 \J-^k ~ -LJn-m-2,n-m-2) = W ~~ Dk = Γu,k i

,π(m\m+2) Zj(w;m+2)

(m;m+2) ^(m m+2)

(275)
_ r> P Irl
~ •Lln-m-2fn-wtrk,kja

2)
Z)(m;m+2) _
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From (275) we obtain, in virtue of (4) and (201), (207),

(m m+3) = R^^^.R^^^P^Jd , (j = 1, , U ~ ΎΠ - 5)

α££ί6

8l« = Rn-m-3,n-uPk,k/d , (u = 1, , m + 2)
(276)

n—TO—3,%—m—3

~ ( T O ; T O + 3 )

.W-w-1 —

We shall now prove the formula

a{rm+t) = Ri,n-»-i-t-ίRn-»-t,n-iPk,k/d , (i = 1, • , n - m - 2 - ί)

Ct-^_m_2—ί4-w — ^n—m—t,n—u-*-k,kl^/ 9 \™ — -̂  > > " ^ ~Γ ' " Z

ίθr7r7\ J r # ( w ' m + ί ) P P /Ό* — 1 . . . f 9\
^ύl I ̂  ΛCt'^,_ί^.j — ±\>n-.m — t,n—m~2—i-Lk,k 9 K" — •*-> > ̂  — ' " /

£ = 3, •••, w - m - 3

Formula (277) is correct for ί = 3, in virtue of (276). As before,
(277) is proved by induction.

We now obtain, from (277), since every a\m'm+t) (i = 1, - ,n — 2)
contains the factor Pktk, and in virtue of (199),

h(m\m + t) _ Λ. (A — 1 . . . /̂  _ O \ IΛm m + t) —
Ô  — U, ̂  — 1 , , ̂  — Δ) 0 % _ ! —

We further obtain from (278), for t — n — m — 3

(279)
TO + S+i — J-^3,n—m—2--ίjrk,k 9

(u = 1, « ,m + 2)

(i = f cl, •••, w - m - 5)

From (279) we obtain, since every a\m;w~3) (ΐ = 1, , n — 2) contains
the factor Pktk, and in virtue of (199),

(280) 6ί" -3> = 0; (i = 1, , n - 2) 6^Γ~3 = 2)Λ - A, 3 ,

and from (279), (280), since R3y3 - (Dk - D3,3) = w - Dk = Pk>k ,

(281)

(X>1 ' 0^ ' — •E*l,\-*-*Z,n—\-*-k,kld/ 9

^(m w-3) Ij(m;%-3) _ Γ> P //7
^ l + w ^ l+ί t — •L*'Z,n—u-Lk,klU/ 9

,(m;n—2)

0 i
p

itn-m-2-i-L k,k 9

(u = 1, . . . , r a + 2)

(i = 1, , w — m — 5)

From (281) we obtain, in virtue of (4) and (201), (207) ,

αjm;-«) = Rtιn_.pktk/d , (ΐ = 1, , m + 2)

(282) αίΓπi?^ = R2,n-m-2-iPk,k 9 U = 1, , n - m - 4)
(m w-2) _ p
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From (282) we obtain, since every aim;n~2) (i = 1, , n — 2) contains
the factor Pktk, and in virtue of (199),

(283) b{rn-2) = 0; (i = 1, , n - 2) 6£?r 2 ) = Dk - D2f2 ,

and from (282), (283), since R2y2 ~ (Dk - D2,2) = w - Dk = Pktk ,

(284)

fβ{m;n—2) ^(m;~2) __ J£ P Id

a (m;n—2) l>(m;n—2) — JD P Id (i — 1 . . mn Λ- 1 \
l+i — "i+z — L*/2,n-Ί-—i *-k,klU/ > \ ̂  — •*- y 1 *'^ > •*•/

u ' m + 2 + j ι um+2+3 — ±*/2,n~m—2—o± k,k 1 \J — XJ y ι v "*> * /

^ ( w ίi—2) Zv(m;%—2) p
V t tw-l ϋw—l ~-~ Γk,k

From (284) we obtain, in virtue of (4) and (201), (207)

(285) αLm

+

+i+i} = Kn-^-jPk.k

U

(i = 1, , m + 1)
(i = 1, , n - m - 3)

We note that formula (285) is obtained from formula (252) replacing
in the latter m by m + 1.
We further note that the n — 1 supporting sequences

b[m;s), δ^m;s), , b%Lf (s = 0, 1, , w — 2)

generate a fugue which has the form of the m -\- 1 -th fugue, as
demanded by Theorem 6. Thus the Lemma 2 is completely proved.

We now obtain, on ground of the lemma, and in virtue of formula
(251) for t = n — 3, since (251) is correct for £ + 1, too,

(286)

(w-3;0) __ (ί = 1, . . . , » - 3)

V^w-l — -^1,1

from (286) we obtain, since every αίB- 3 ; 0 ) (ΐ = 1, •••,» — 2) contains
the factor P A l f c and in virtue of (199)

(287) δ r 3 : 0 ) = 0; (i = 1, , Λ - 2) δM 3 1 0 ' = 2?* - A . i ,

and from (286), (287), since RιΛ - (Dk - Duι) = w - Dk = Pk>k ,

(288)

n(n~3;0) 3k(w-3;O) __ p
\CLn-i Vn-ί — -Lk,k

From (288) we obtain, in virtue of (4) and (201), (207),
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(289)

(i = 1, •.., w - 4)

Λ(w-3;i) — P P p

Λ(w-3;i) _ p p
^ n — 2 — •**'»—1,»—l* k,k 9

.W'w—l — ±X;n—l,n—l f

and from (289), since every α^~3:1) contains the factor PΛ>fc

(i = 1, , n - 2), and in virtue of (199)

(290) ί>r3 ; 1 ) = 0; (i = 1, , n - 2) δ ^ 3 ^ = Dk - D^-i .

From (289), (290) we obtain, sinceRn- l tn-i - (Dk-Dn_1>n_ι) = w-Dk = Pk>k

, n - 5)

Λί«-3;i) ΪJ(Λ-3;I) _ p p
^ 7 1 — 2 V 7 i — 2 — ±x'n—l,n—ljrk,k 1

and from (291), in virtue of (4) and (201), (207),

(αί-8!2> = Run-lr-iRn-2.n-lPk.kId , (i = 1,

(292) ^(w-3-,2) _ τ> τ> p ^(Λ-3-,2) _ p p
^ T C — 4 — -£*'1,1-1*'«—2,»—l-^ Jfc,fcι ^71—3 — •LX"n—2,n—lΓk,k 1

~(n—Z;2) p p /»(«—3;2) p
W'rj—2 — "^•'w—2,TO—2jrk,kt ^n—l — J^n—2,n—2

It is now easy to prove the formula

(293)

αί-8ϊ*> - Run-t-1-iRn-t.n-fk.kld , (i = 1, , W - ί - 3)

n(n—3;ίj T> T? P

αiV4Vi = Rn-t.n-jPk.k , 0" = 1, •-•,*)

κt — 1, , n — 4 .

Formula (293) is true for ί = 1,2, in virtue of (289), (292). It is
then presumed that (293) is true for m ;> 1 and proved, as before,
that it is correct for m + 1, too, which completes the proof of (293).
From (293) we obtain, since every αiw~3;<) (i = 1, , n — 2) contains
the factor Pktk, and in virtue of (199),

(294) bln~3U) = 0; (ΐ = 1, , n - 2) b^U) = Dk - Dn_Un_t ,

and further for t = n — 4,

[ » i — •tt>i,2-H'4,n-l-Lk,k/U/ >

(295)

(n-3;n-4) _
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From (295) we obtain, since every α^~3;%~4) (ΐ = 1, , w — 2) contains
the factor Pfc>fc, and in virtue of (199),

(296) &<•-»••-<> = 0; (i = 1, , n - 2) δ ^ - 4 * = Dk - D4,4 ,

and from (295), (296), since R4>4 - (Dk - D4>4) = w - Dk = Pk}k ,

3 ; Λ - 4 ) _ 3 ? p Z ' ^ — 1

From (297) we obtain, in virtue of (4) and (201), (207),

(298) α£78ϊ*-3) = R^-j
Λ(n-3;tt-3) _ f>
α Λ-l — -^3,3

( i = 1, , n - 3)

From (298) we obtain, since every a[n~3;n~3) (i = 1, , n — 2) contains
the factor Pk}k, and in virtue of (199),

(299) δί-*"-^ = 0; (i = 1, , n - 2) bϊs?*-* = Dk - D3,3 ,

and from (298), (299), since i?3,3 - (Dk - A,3) = w - Dk = Pktk,

(299a)

(«-3;n-3) JJ(Λ-3;Λ-3) _

k(n—3;rc—3)
= Rs,»-iPk,k 9 U = 1 , • • - , * & - 3 )

, — 1 ' ^ 7 1 — 1 ' ~ -Lkyk »

From (299a) we obtain, in virtue of (4) and (201), (207) ,

(α^-3 ; %-2 ) _ % .pfc Jd , (j = 1, , n — 2)

( 3 0 0 ) {n_,,n_2) _

and from (300), since every af~^n~2) (j = 1, , ̂  — 2) contains the
factor P ^ , and in virtue of (199),

(301) &(-*-*> - 0; (ί = 1, , n - 2) δϊL-Sϊ-2> = (Z>* - A,?)/ώ .

From (300), (301) we obtain, since (R2f2/d) - ((Dk - D2y2)/d) = Pk,k/d,

(302)

^1 ^1

Ί{n—Z\n—2) Λ(w—3;n—2)

and from (302), in virtue of (4) and (201), (207),

(303)
τ(w-2;0) _
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Formulae (287), (290), (294), (299), (301) show that the n - 1 support-
ing sequences

Iv(»-3;fc) JMw-3;fc)
01 * °2 > - υ, 1, *, 71 — Δ)

form a fugue which has the form of the n — 2 -th fugue as demanded
by Theorem 6.

From (303) we obtain, since every α^~2;0) (j = 1, , n — 2) con-
tains the factor Pktk, and in virtue of (199)

(304) bϊ"-^ = 0; (ί = 1, , n - 2) &£r*°> = Dk - Dίtl ,

and from (303), (304), since Rltl - (Dk - Duι) = w - Dk = Pkfky

jr(»-2;0) ^(n-2;0) _

(305)

From (305) we obtain, in virtue of (4) and (107), (108) ,

(308) Cfc 2 : 1 ) = Rn-l,n-lPk,k ,
r*{fi—2;1) ~D

It is now easy to prove the formula

, ^ - 3)

(307)
/γ(w—2;ί) T> p
W'ίi—2—t + i — -Li/n—t,n--iJ- k,k

U"n~l — •Ll'n—t,n—t i

t = 1, .- , n - 3 .

Formula (307) is correct for t = 1, in virtue of formula (306), (307)
is then proved by induction.
From (307) we obtain, since every αiw"2 ; ί ) (i = 1, , w - 2) contains
the factor PΛfJfe, and in virtue of (199),

(308) 6^-2;ί) = 0; (ί - 1, , n - 2) δ^i 2 ; ί ) = £>A - !>-,,*-, ,

and further from (307), for t - n - 3 ,

(309) (i = 1, , w - 3)

From (309) we obtain, since every α^-2:*~3) (i = 1, . . . ,
tains the factor Pfc,fc and in virtue of (199),

— 2) con-

(310) δ ί - * -a> = 0; (i - 1, , n - 2) ^ n " 3 ) = £>* -
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and from (309) (310), since R3tZ - (Dk - D9tZ) = w - Dk = Pk>k ,

(w—2;n—3) Z.(w—2;%—3) __ JD JD ί ί = 1 W 3)

(%—2\n—3) Zj(%—2;w—3) T>

From (311) we obtain, in virtue of (4) and (201), (207),

γ(»—2;Λ-2) _ p
(312)

and from (312), since every α|w~ 2 ί l~ 2 ) (ΐ = 1, •••, w — 2) contains the
factor PA, f c, and in virtue of (199),

(313) &{—*—2> = 0; (i = 1, . . , n - 2) δ ^ 2 5 — 2 > = Dk - D2,2 .

From (312), (313) we obtain, since R2>2 - (Dk - D2y2) = w - Dk - Pktk,

(314)

/ (% 2*%—2) X\(n~2\n 2) ~D ~D
&L 0 1 = = Ή'2>n_ιJΓktk ,

y(w—2;w—2) Zj(%—2;%—2) D p

y(w—2;%—2) ~L(n—2;n—2) T>

and from (314), in virtue of (4) and (201), (207),

(315)
αί- l ί 0> -

, Ύl — O)

(i - 1, ., n - 2)

α£lls0> = RJd .

Formula (304), (308), (313) show that the n — 1 supporting sequences
fyn-2jo (i — x^ . , . n __ ι^ A; = o, 1, , w — 2) form a fugue which has
the form as demanded by Theorem 6.

From (315) we obtain, since every αl*~1:0> (i = 1, , n — 2) con-
tains the factor Pktk, and in virtue of (199),

(316) &r i : 0 ) - 0, (i = 1, , n - 2) δ£ϊlϊ0> - (D, - A,i)/d ,

and from (315), (316), since (RJd) - ((Dk - Dlfl)/d) = (w - DΛ)/d = Pktk/d9

^ Ί + ΐ ^ l + i — •c^iyn-2-ί-Lk,k!a J \l ~ L, , Ύb —

From (317) we obtain, in virtue of (4) and (201), (207),

(318)
(n-VΛ)

From (318) we obtain, since every α|n"1 : 1 ) (i = 1, , n - 2) contains
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the factor Pkyk, and in virtue of (199),

(319) δί- 1 : 1 ) = 0, (i = 1, , Λ - 2) b£?Λ) = Dk- Dn_Un^ ,

and from (318), (319), since R^,^ - (Dk - Dn_Un^) = w - Dk = Pk,k,

(320)
«(»-l;l) h(n-l) _ p p P Id

^(TO-I I) Zv(ίi-l l) _ p P Id

π(n-l;l) IV(Λ-I I) _ p

,n- 4)

From (320) we obtain, in virtue of (4) and (201), (207),

(321)

4)

π{n~l\2) _ r> p
^ί i—3 — -^m—2,%—2^ Ar,Jfe >

π(n-l\2) _ p
^ w — 1 — •Lifn—2,n— 2 >

and ifrom (321), since every αίn"1 ; 2 ) (i = 1, , n — 2) contains the
factor Pktk, and in virtue of (199),

(322) 6i-1;2> - 0; (i = 1, . , n - 2) b^1'^ = Dk - Dn_2,n_2 .

From (321), (322) we obtain, since Rn_2tn_2-(Dk-Dn_2,n_2) =w -Dk =Pk)k,

(323)

•~{n—l;2) Zv(τι—1,2) ~D ID Ό I rj
W-i O] — JΛ,ι,n-l-K>n-2,n-l-L k,klU >

Λ(«-i;2) ΪJ(Λ-I;2) _ p P Id
Usn—3 Vn—3 — JΛ'n—2,n—lΓk,klUj 1

CLn—2 ' ^»—2 ' " -^n—2,n—2-^kfk >

and from (323), in virtue of (4) and (201), (207),

(324)

(ί = 1, , n - 5)

α«
^-(Λ—i;3) __ p P ' (X(w~1;3) = i2 P '

It is now easy to prove the formula

a i - 1 : 0 - Run-t-iRn-t,n^Pk,kld , (i = 1, , tt - 2 - ί)

(325) p
Λ—t,n—1—jΓ k,k

\Z =z of , lit o
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Formula (325) is correct for t = 3, in virtue of formula (324), (325)
is then proved by induction.

From (325) we obtain, since every aϊ-n~ut) (i = 1, , n — 2) con-
tains the factor Pktk, and in virtue of (199),

(326) bi-ut) = 0; (i = 1, ., n - 2) bE?" = Dk - 2?,-*,.-* ,

and further from (325), for t = w — 3,

(326a)

y(Λ—l w—3) _ _

γ(»-l;»-3) _

γ ( n — l w—3)

γ ( t t—l w—3)

. , n - 4)

From (326a) we obtain, since every c&jw~1:*-3) (i = 1, - . . , ̂  — 2) con-
tains the factor Pktk, and in virtue of (199),

(327) δί-^-3> = 0; (i = 1, , n - 2) &£;1;-3> - Dk - A,s ,

and from (326), (327), since J?3,3 - (Dk - D3,3) = w - Dk = Dk>k ,

(328)
n(n—Un—3) Iv(n —l w—3) Γ) T>
^2+3 u2+j — ±l/3,n—1 — ό Γ k,k j

~{n — l,n—3) Ivίw — l , w — 3 ) D
^ 1 ^ 1 — * kk

i = l, • - . , » - 4)

From (328) we obtain, in virtue of (4) and (201), (207),

(329)

[n—Un-2) _

i —

{n~l\n-2) _

+ ί —

(9i-i;w-2) _ r>

j = l f • . . , » - 3 )

From (329) we obtain, since every α<«-1;ίt-2) (i = 1, . . . , % — 2) con-
tains the factor Pkyk, and in vir tue of (199),

(330) &5—1=—*> = 0; (i = 1, , n - 2) 6^lnι;m-2) = Dk - ΌίΛ ,

and from (329), (330), since i?2,2 - (Dk - A > 2 ) = w - Dk = Pk>k,

(331)

(n-Un-2)
1

{n — l\n~2) l v ( w — I Λ — 2 )
~ ~ °l+ι ~ £ί2,n-l-3-Lk,k 1 \J — -Lj

From (331) we obtain, in virtue of (4) and (201), (207),

(332) ' ' " "'—'-•'- — ' J = l, ',n-
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Comparing formula (332) with formula (204), we obtain

(333) αf = a^0) = αί*(—1)} , (ί = 1, . , n - 1) ,

so that the Modified Algorithm of Jacobi-Perron for the basic sequence
(204) is indeed purely periodic with length of period T = n(n — 1)
for d > 1.

For d — 1 we obtain, comparing formula (226) with (204),

(334) αΓ = αΓ> - α*-1' , (i = 1, , n - 1) ,

so that in this case the Algorithm is purely periodic with length of
period T = n — 1.

Formulae (316), (319), (322), (326), (327), (330) show that the
n — 1 supporting sequences

ftn-l.k) Zjfw-l fc) . # . Un-i k) ytc — \J,

form a fugue which has the form of the n -th fugue as demanded
by Theorem 6. Thus, for d > 1, and from what was proved before,
the n(n — 1) supporting sequences of the Modified Algorithm of
Jacobi-Perron form n fugues of the form (206a)—(206d). In case d = 1,
they all have the form (205). By this Theorem 6 is completely proved.

The reader should note the necessity to presume n > n0, (n0 a
constant) while carrying out the proof of Theorem 6. The cases
n = 2, , n0 are easily proved separately by the same mothods used
for the proof of Theorem 6.

We shall now find units of the field K(w) by means of the
Modified Algorithm of Jacobi-Perron.

As Hasse and I have proved in our paper [16], a unit e of the
field K(w) is obtained from a periodic Jacobi-Perron Algorithm by
means of formula (190), viz.

S + T—1

e-1 = Π <% ,

where S and T denote, as before, the lengths of the pre-period and
period of the periodic Jacobi-Perron algorithm respectively.

It is one of the most striking and basic properties of any periodic
algorithm G with integral supporting sequences

b^ , (ΐ = l, .-•,*&-1; v = 0,1, •..)

b{i] rational integers, that formula (190) holds for this general case
of the G. The proof of this statement is not too complicated and
follows exactly the lines of the methods used in [16], though certain
additional results are necessary (see, for example, my paper [12]).
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We then obtain from (190), since in our case again S = 0, T — n(n — 1)
for d > 1, as in (191),

%{n—1)— 1 n—1 %—2

-1 = Π oi Λ = Π Π αl'lr1

v=0 i=0 k=0

Now it is not difficult to verify, following up the various stages of
the proof of the Modified algorithm of Jacobi-Perron, that the relations
hold

(335)
Π <er1)+*> = Rlt.-Jd , (i = 0,1, , n - 3, n - 1)
ft=0

n—2

Π /7((»-2)(»-l)+A;) _ E>
Ce-w—i — -Ll>ι,n~l

We thus obtain from (191), in virtue of (335),

(336) ejΓ1 = (RUn_,Yld*-1 .

From (201) we obtain 1/Bltn^ = i?o,o/^, and, since i20>0 = Rktk ,

(337) Rί>n^ = d/Pk,k .

From (336), (337) we now obtain

or

(338) ek =
 (w ~Ί

Dk)n (k = 1, • , n - 1) ,
d

so that with (196), (338) Theorem 5. is now completely proved by
means of the Modified Algorithm of Jacobi-Perron, since (338) in-
cludes the case d = 1, too.

The n — 1 units β0, eu , en_2 are all different, since Dk > D& + 1

(& = 0,1, , n — 2). It is proved below that they are independent
(see the Appendix by Hasse) in the sense that there cannot exist an
equation of the form

e?°e?i e%Li* = 1 ,

where the ao,a19 , an_2 are rational integers not all equal zero.

Concluding we shall illustrate (338) by a numeric example. Let
the GP be a fourth degree polynomial

f(x) - (x - 10)(a? - 6)(a? - 2)(x + 4) - 2 - 0

f(w) = 0; 10 < w < 11

Do = 10; A = 6; D2 = 2; D3 = - 4 ; d - 2

w is a fourth degree irrational.
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We obtain from f(w) — 0:

w* - 14w3 + 20w2 + 248w - 482 = 0 ,

w' = 14w3 - 20w2 - 248w + 482 .

Thus

(w - 6)4 = -10w8 + 19Gw2 - 1112w + 1778

(w - 2)4 = 6w3 + Aw2 - 280w + 498

(W + 4)4 - 30w3 + 76w2 + %w + 738 .

Substituting these values in (338) we obtain the independent units

e, = 5ws - 98w2 + 556^ - 889

e2 = 3^ 3 + 2w2 - UOw + 249

e3 = 15^3 + 38w2 + Aw + 369 .

Appendix* (By Helmut HASSE, at present Honolulu (Hawaii)).
In § 7 of this paper L. Bernstein, by applying a modified Jacobi-
Perron algorithm to suitable bases of a certain type of totally real
algebraic number-fields K of degree n ^ 2, obtained a system of n
algebraic units in K with product 1. I shall prove here under slightly
stronger conditions that every n — 1 of these units are independent.

The fields K in question are generated by a root w of a poly-
nomial of type

(1) f(x) = JlQ(x-Dv)-d,

where the Dv and d are rational integers, d ̂  1, satisfying the con-
ditions (184), viz.

( 2 ) Do > A > > Dn_x ,

( 3 ) Dv = Do mod. d ,

( 4 ) Do- A- ̂  2 φ * - 1) , (v = 1, , n - 1) ,

and in the special case d = 1 moreover the inequalities (19), viz.

(A - A ^ 2 or A - A ^ 4 for w = 3 ,

( 5 ) ] A - A ^ 2 or A - A ^ 3 or A - A ^ 3 or

( A - A, A - A S 2 for n = 4 .

In addition to these conditions I shall have to presuppose the in-
equalities

( 6) A*-i - D2k ̂  2 (2 ̂  2fc ̂  rc - 1)
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to be satisfied in the special case d = 1.
I shall prove

THEOREM. Let w be a root of a polynomial of type (1) whose
coefficients satisfy the conditions (2), (3), (4), (5), (6). Then the n
algebraic numbers

= (w -Dmγ ( m = o, 1, , n - 1)
d

are algebraic units with product

Π em = 1 ,

and every n — 1 of them are independent.

Proof, (a) By (3)

(w - DmY = ΐί (w - D.) mod. d ,

and by (1)

Π (w - Dv) =f(w) + d = d.

Hence

(w - Dm)n = 0 mod. d ,

so that the em are algebraic integers,
(b) By (1) their product

ffβ. = fftf-d* - DmY

Hence the em are algebraic units.
(c) According to Theorem 2, the generating polynomial f(x) has

w different real roots

(each of which may take the place of the above w), and the relative
position of these roots between and outside of the sequence (2) is
such that, for every fixed v, in virtue of the congruences (3)

- Dm I >

fd for all m Φ v except possibly one

—d for the possible exception m Φ V .

The possible exception occurs for one of the two Dm which
include w{v) (so far v > 0 and for even n also v < n — 1), and hence



364 LEON BERNSTEIN AND HELMUT HASSE

only for n ;> 3 (since for n = 2 both roots w(0), w(1) are excluded by
Do, A). From these inequalities it follows that the units

d

for every fixed v satisfy the inequalities

'dn-ιld = dn~2 for all m Φ v except possibly one

—dn~ι\d — —dn~2 for the possible exception m Φ v
Li Li

Since the exception does not occur for n = 2, and since in virtue of
the presupposition (6) the factor 1/2 may be dropped in the special
case d = 1, these inequalities imply throughout

I e™ I > 1 for m Φ v .

On the strength of the product relation then necessarily

I e™ i < l .

Now the polynomial f(x) is irreducible, as Bernstein derived at the
beginning of § 7 from Theorem 3. under the conditions (4). Hence
for each fixed m the e{Z] are the algebraic conjugates of em. Hence
by a well-known theorem of Minkowski1 the latter inequalities imply
that for any fixed pair m0, v0 the determinant

I l o g I e{Z] I \mφmQ,v^vQ =£ 0 .

From this it follows that every n — 1 of the n units em are in-
dependent.

Note. In spite of this very simple theory of the unit system
em, Bernstein's more lengthly subordination of these units under a
modified Jacobi-Perron algorithm by means of Theorem 6. seems to
me still to be of importance. "The more organic connection between
a unit in a field K and a periodic algorithm of a basis of K", as
Bernstein put it after Theorem 5, may be essential for attacking the
important question whether those units are fundamental units of a
ring (Dedekind order) in K. An answer to this question may lead
to lower estimates of the class number h of K2

2 See H. Hasse, Zahlentheorie, 2. Aufl., Berlin 1963; 28, 2, Hilfsatz.
3 Compare for this: H. Hasse, Uber mehrklassige, aber eingeschlechtige reel-

quadratische Zahlkoerper, Elem. d. Math. 20 (1965), 49-59.
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BEST CONSTANTS IN A CLASS OF
INTEGRAL INEQUALITIES

DAVID W. BOYD

In this paper a method is developed for determining best
constants in inequalities of the following form:

S b (Cb Λ(p+q)/r

\y\*\y{n)\*w(x)dχ£Ki\ \ y{n) \rm{x)dx\
where yia) = yι(ά) = = y{n-ι\a) = 0 and y{n~1] is absolutely
continuous.

It is first shown that for a certain class of m and w,
equality can be attained in the inequality. Applying variational
techniques reduces the determination of the best constant to
a nonlinear eigenvalue problem for an integral operator. If
m and w are sufficiently smooth this reduces further to a
boundary value problem for a differential equation. The method
is illustrated by determining the best constants in case (a, b)
is a finite interval, mix) = wix) = 1, and n = 1.

A number of special cases of the inequality have been studied but
usually without obtaining best constants. An exception to this is the
case n — l,q = 0,p = r which was studied very thoroughly by Beesack
[1], who gave a direct method for determining best constants. The
method of [1] was modified by Boyd and Wong [5] to apply to the
case n — 1, q = 1, r = p + 1. Recently Beesack and Das [2] obtained
constants for the case n — 1, r = p + q but these were not in general
best possible.

We shall state our result only for n = 1 although it will be clear
that the analogous result for n > 1 is valid. In our closing remarks
we indicate a number of other inequalities to which the method of
this paper applies.

1. Preliminaries* Throughout we assume that p, q, r, α, b are
real numbers satisfying p > 0, r > 1,0 ^ q < r and —oo ^ α < δ ^ o o .
The functions m and w are measurable and positive almost everywhere.
We write dμ(x) = m(x)dx and

for 0 < s < oo .

The space Ls

m is the set of functions with | | / | | s < °°, with the usual
identification. We shall use the notation fn—+fiί \\ fn — f\\s —* 0, and if

IV

s ^ 1 so Ls

m is a Banach space, we write fn •/ for weak convergence
in Ls

m. We denote the dual of Ls

m by Lsή so for s > 1, s' = s/(s — 1).
We shall consider integral operators of the type

367
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( 1 ) Tf{x) = \k(x, t)f(t)dμ(t) ,
Ja

where k{x, t) ^ 0 a.e. A function / is in the domain of T if

T\f\(x) < - a.e.

For Theorem 1, the operator T becomes

( 2 ) TJ(x) = w{x)^m{x)-ιίλX f(t)dt ,
J

so that k(x, t) = w(xylPm(x)~llpm(tyιχ[a}X}(t). A necessary and sufficient
condition for the domain of Tι to contain Lr

m is that

\X m(t)-1{r

Ja

l)dt < for a ^ x < b .

This follows from Holder's inequality and its converse.
If T maps Lr

m —»L8

m, where s = prftr — g), with norm || T|| <
then we can define the functional J on Lr

m by

(3) J ( / ) =

It then follows from Holder's inequality that

(4) J(f)<\\T\\*\\f\\*+q.

2. Main results.

THEOREM 1. Suppose that w, me Cι(a, 6), that w(x) > 0 a.e. and
m(x) > 0 for a < x < b, that p > 0, r > 1, 0 ^ g < r, ami ίfcaί ίfeβ
operator Tx defined by (2) is compact from Lr

m—+Ls

m(s = pr/(r — q)).
Then the following eigenvalue problem (P) has solutions (y, λ) with
y e C2(a, 6) ami (̂a;) > 0, y'(x) > 0 in (a, 6).

'r-'m - qypyfq^w) + pyv~ly'qw = 0

= 0 a^d lim (r\yfr~ιm — qyvy'q~ιw) — 0

( i ) -A.

There is a largest value λ sucfe ίfcai (P) Λ.as a solution and if λ*
denotes this value, then for any feLr

m,

b Γx

a Ja
^-^—\\ \f\'m(x)dx\

p - j - q Ija )

Equality holds in (5) if and only iff— cyf a.e. where y is a solution
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of (P) corresponding to λ = λ*, and c is any constant.

The proof will require two lemmas which we state in reasonable
generality.

LEMMA 1. Suppose that p > 0, r > 1, 0 ^ q < r, and that T, as
defined by (1) is a compact operator from Lr

m—>Ls

m, (s = pr/(r — q)).
Let J be defined by (3), and

( 6 ) Z *

Then, there is an element /0 6 Lr

m with | | / 0 | | r — 1 such that J(f0) = ϋΓ*.

Proof. Since «/(/) < J ( | / | ) unless / is of constant sign a.e., we
can restrict consideration in (6) to / Ξ> 0. Let {fn} e Lr

m be a sequence
with /„ ^ 0, | | Λ || ^ 1 such that J(fn)->K*. We begin by assuming
g > 0 so that 1 < rjq < co. By the weak sequential compactness of
the unit balls of Lr

m and LrJq ([7], p. 68), and by the compactness of
T, we may assume that there are functions

such that fn > /, fl > h, Tfn —* g in the appropriate spaces; clearly
Tf' — g. Furthermore, by the uniform convexity of Lr

m and LrJq we
may assume that fn and fl are strongly (C, l)-summable to their weak
limits ([7], p. 462), so that

Σ Λ >f and K = n-*
fc = l

Now, we have

( 7 ) J(/J - Γ^M^ - \\{TfnY - g*)f*

Now, since /J >h in L^/(/ and since gp e Lsiv = L{ZlqV, the second
integral in the right member of (7) tends to zero as n —> oo. To show
that the first integral tends to zero we consider separately 0 ^ #> < 1
and 1 ^ £ > < C O . If 0 <: p < 1, we use the inequality | Ap — Bp | g
I A - £ |p for A ^ 0, β ^ 0 to obtain

The second step follows from Holder's inequality with exponents s/p =
r/(r — q) and rfq. The final term in (8) tends to zero since Tfn —> g
in L s

m .
In case 1 ^ p < oo, we consider instead
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( 9 )

by Minkowski's inequality. As in (8), the right member of (9) tends

to zero. Thus, if An = Ϋ (Tfn)
pfl and Bn = Γgpfq

n, we have that
Ja Ja

Λ — JDn
0 .

But {An} and {Bn} are bounded sequences (A, = J(fn) ^ || Γ | | p by (4),
Bn^\\g\\p ^\\T\\P by Holder's inequality and Tfn-*g), and thus
\An- Bn\^p\ Aιίp - Bip I II T\\p~γ shows t h a t An - Bn — 0 as required.
Hence, we have

= \bgphdμ .(10)

In case g = 0, (10) also holds with h = 1, by a similar argument.
Now we show the existence of f0 for which J(f0) = K*. The cases

0 ^ g < 1 and 1 ^ q < r are considered separately. If 0 ^ g < 1,
define f0 = f. Since φ(t) = ίg is concave, we have

(li) h = (n-1 Σ Λ)g ^ ~̂1 Σ Λ = k .
1 1

Now, since/%—>/o in Z4, we have

(12)

I C
1
1

I J

b Γb

y Jo \ 9 J n
J

\ fq — fq

I Jo Jn

Similarly, \ gphn-+\ gph. Thus, combining (10), (11) and (12) we

obtain

J(f*) =
(13)

= K* .

However | | / 0 | | r ^ 1 so J(/o) ^ K* and hence (13) implies J(/o) = K*
from which it is clear that | | / 0 | | r = 1.

In case 1 ^ q < r, let /„ = h1'9. Now, instead of (11), we have
f l ^ h n . S i n c e \ \ h n - h\\rlq-*Q, a n d s i n c e |h'J" - h ι l q \ ^ \ h n - h I 1 " w e
have
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Thus hHq -> hίlq = f0 in Lr

m and since T is continuous, ThHq -> Tf0 in
L;. However fn ^ hιiq and k(x, t) ^ 0 a.e. so Tfn ^ Th\lq, a.e. and
thus Tf=g^ Tf0 a.e. Thus (10) implies if* ^ J(/o), which again
means that J(f0) = K* and | | / 0 | | r = 1.

REMARK. A simple sufficient condition for T to be compact from
Lr

m—*Ls

m is that k have finite (r', s)-double norm. That is

(14) I

(see [9], p. 319; the proof there applies even if 0 < s < 1).

Using (4), we see that K* ^ || T\\p ^ ||| T\\\p so (14) also supplies
an upper bound for if* (rarely the best).

For the operator T1 given by (2) one may calculate that

(15) HI 2^ IIIs = Γ w ( α 0 r / ( r - g ) m ( a 0 ~ g / ί r ~ f f ) Γ Γ ^ ^ .

In the paper of Beesack and Das [2], the following inequality is proved:
If pq > 0, p + q > 1, y(a) = 0 and ?/ is absolutely continuous, then

(16) \b\y\p\v' \qw(x)dx ^ K,φ, p, q)[ I y' \p+qm(x)dx ,
Ja Ja

where K^b, p, q) is explicitly given. The constant K^b, p, q) equals
the best constant K* if and only if for some c ^ 0

G x \p(ί-q)lq

m(ί)-i/c-i>dίJ (r = p + q ) .
The constant K^b.p.q) given there is in fact equal to (q/r)qlr\\\ T Ί | | | P ,
so, unless (17) holds we have

(18) if* < i Γ 1 ( δ , p , g ) < HIT, HI-.

LEMMA 2. Suppose that T is given by (1), and that k(x, t) > 0
for almost all (x, t) with a ^ t ^ x ^ 6. Lei p > 0, r > 1, 0 ^ g < r,
cmd suppose T is a bounded operator from Lr

m—>Ls

m. Let J be defined
by (3), if* by (6). Lei / sαίΐs/τ/ | | / | | r = 1 and J(f) = K*. Then f
is of constant sign a.e. and

( a ) fφQ a.e.
(b ) / satisfies a.e. the equation

(19) rλ/'-Hs) - q(Tff{x)fq-\x) - p\k{t, x)(Tfy~\t)fq{t)dμ{t) = 0 ,
Ja

where λ — λ* = if*(p + q)/r. Furthermore X* is the largest value of
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λ for which (19) has a solution f with \\f\\r = 1.

Proof. ( a ) We have seen that / is of constant sign a.e. so we
assume / ^ 0 a.e. Let E — {x: f(x) = 0}; we must show that E is a
null set. First choose a function heLr

m such that h(x) ^ 0, and
h(x) > 0 if and only if xeE. Such h exist: if μ(E) < oo, take h =
χE, while if μ{E) = oo, let

F % = F Π [- n, n] n {#: m(a?) ^ w} ,

so μ(2£w) < oo, and define h = X 7»%tfn where {TJ is chosen so γw > 0

and Σ T M ^ ) < °°

For ε > 0, define fe=f+ eh, and let F = T/, F ε - Tfe, H = TΛ.
since J(f)/\\f\\?+Q is maximal, we have

0 ^ J(/ β ) - J(f) S (\\f\\l+q - l)J(f)

( 2 0 ) {(1 + ε\\h

= 6'H AHJT^-Vί/), (where 7 = (p + g)/r, and 1 < f < 1 +

= 0(εr) as ε I 0.

First assume that q > 0, so if CE — [α, 6]\^, we may write

(21) J(f) - J(f) = e« \ F>h< + \ (Fΐ - F*)f« .
JE JCE

From (20) and (21) we immediately deduce that

0 ^ \ Fphq ^ f Ffhq = 0(εr-q) ->0 as ε [ 0 .
JE Jε

Thus, F(a;) = 0 a.e. on E so k(x, t) = 0 a.e. o n ί / x OE7.
Next, we note that JP\x) > 0 a.e. on CE, since &(#, t) > 0 a.e. for

a ^ ί ^ a; ^ δ. Thus, for almost all x in C^, we have {d/de)Fffq =
pFΓιHfq- Hence, if 0 < ε < ε0 we have.

(22) <pFv~lHfq ^ s-^Ff - F p ) / 9 a.e. on CE, p ^ l

(23) pFe

p-Ήf9 < er\F* - Fp)fq a.e. on CE, 0 < p < 1 .

Thus, if p ^ 1, (20), (21) and (22) imply that

(24) 0 ^ ( pFp~Ήfq ^ ε-1^ (Ff - F^)/9 = Oίε^1) -+ 0 as ε j 0 .

Thus, since F(x) Φ 0, we have H(x) = 0 a.e. on CE. A similar argument
using (20), (21) and (23) proves H(x) = 0 a.e. on CE, if 0 < p < 1. Thus
fc(x, ί) = 0 a.e. on CE x E, and hence on (E x CF) U (CF x F ) . But,
since &(#, t) > 0 a.e. for α <̂  ί ^ a; <Ξ 6, the last sentence implies that
ExCE has plane measure zero and so either μ(E) — 0 or μ(CE) = 0.
However, μ{CE) = 0 implies that / = 0 a.e. contradicting /(/) = K* φ 0.
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Thus μ(E) — 0 as required.
In case q = 0, (21) no longer holds. In this case, let

A = {x: F(x) = 0}

so k(x, t) = 0 a.e. on A x CE. Clearly μ(A Π CE) = 0, since k{x, ί) > 0
a.e. for α ̂  £ ̂  # ̂  6. Instead of (21) we have

(25) J(fε) - J(f) = e*\ H*+\ (Fi - F*) .
JA JCA

Proceeding as in (24), we use the second integral in (25) together with
(20) to show that H(x) = 0 a.e. on CA, so Jc(x, ί) = 0 a.e. on CA x E.
Now if B — CA Π E has μ(Z?) > 0, we would have k(x, t) = 0 a.e. on
B x B with contradicts &(#, ί) > 0 a.e. for α ̂  ί ^ x ^ 6 and thus
μ(B) = μ(E\A) = 0. We already have shown that μ(A\E) = 0. Thus
fc(&, 0 = 0 a.e. on (A x CE) (j (CA x JB?) means &(«, ί) = 0 a.e. on (Ex CE) (j
(CE x E), which leads to a contradiction as before. (We note that if
p < r, a simpler argument is available using the first integral in (25).)

(b) Consider the functional

- J(f) - Γ[λ/r ~
Ja

We shall show that if J(f) = K*, and if | h \ ̂  /, then for λ = λ* =
K*(p + g)/r, we have

(26) 3/(/; Λ) - lim ε~ι(I(f + ελ) - /(/)) = 0 .
£->0

First, suppose that \h\ ̂  f and that | ε | ^ 1/2. Now define A(ε) =
J ( / + εfe) and β(ε) = | | / + εh\\r

r. Then A and B are differentiable at
e = 0, and

(27) A'(0) - ( (pFp~ψH + qFpf«-ιh)dμ
Ja

(28) B'(0) = ["rf-'hdμ .

To see this, note that (d/de)F?f? = pFΓΉfϊ + qFffΓ'h a.e. since

/ > 0 a.e. by (a), and .F> 0 a.e. since &(#, t) > 0 a.e. for α <£ ί ^ a? ̂  6,

and thus /£ > 0 a.e., Fε > 0 a.e. for | ε | ^ J and | Λ-1 ^ /.

But, we have

^-w sJS/ } {{Hj {\r}
by Holder's general inequality with exponents s/(p — 1), s and r\q.
Similarly, one shows Fvfq~ιh is integrable. And, for | ε | ^ -| one may
bound I (djde)Fff! | in terms of Fp~1Hfq and Fvfq~ιh. For example,
if p ^ 1, <7 ̂  1, one has
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(30) JLFI
dε

( Q \

a.e.

with similar bounds if 0 < p < 1 or 0 ^ # < 1. Thus, Lebesgue's
dominated convergence theorem gives (27). A similar argument gives
(28).

By assumption /(/)/||/| |?+ f f = A(0)/B(0){p+q)lr is maximal and hence

— (A(ε)B(ε)~ip+q)lr)
dε

= 0 .

Differentiating and using A(0) = K* and J3(0) = 1, we obtain

(30) A'(0) - K*((p + q)/r)B'(0) = 0

or if we write λ* = K*(p + q)/r, we obtain

(31) Γ (rλ*/ r-^ - pFp-ιfqH - qFpfq-ιh)dμ = 0 .
Jα

By Fubini's theorem we have

§ k(x, t)h(t)dμ(t))dμ(x)

Thus, if we write T" for the operator with kernel &(ί, x) we have
from (31) and (32)

0 = Ϋh(x){r\*fr-1 - q(Tf)*f*-1 - vTr({Tf)*-ιf*)}dμ(x)
(33) "

- h(x)G(x)dμ(x) .

To obtain (19) set /φ) = f(x) sgn G(a ) in (33) and use the fact
that f(x) Φ 0 a.e.

To see that λ* is the largest value of λ for which a solution to
(19) is possible with | | / | | r = 1, note that if (19) holds then (33) and
hence (31) hold for any \h\^f with λ in place of λ*. Thus, setting
h = f in (31) (with λ for λ*), we obtain rx\\f\\r

r-(p + q)J(f) = 0,
and thus λ = (p + q)J(f)/r ^ (p + q)K*Ir - λ*.

REMARK. Part (a) of Lemma 2 may be strengthened by allowing
k to vanish on more extensive sets. However, the precise condition
that is needed to insure fΦO a.e. depends on the relationship of p, q
and r. For example, if q > 0 and p < r, and if there are no sets
E with μ{E) > 0 and μ(CE) > 0 such that k vanishes on (E x CE) (J
(CE x E) then for / as in Lemma 2, one has f Φ 0 a.e.
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Proof of Theorem 1. By Lemma 1, sup{J(/): | |/ | | r^l} = iΓ*<oo,
and there is an / ^ 0 with | | / | | r = 1 and J(f) = K*. Since m(x) > 0
and w(&) > 0 a.e., Lemma 2 applies and we have fΦO a.e. in [α, 6],
and / satisfies

(34) \rfr-ι(x)m(x) ~ qF(x)pf(x)q-ιw{x) - pΫ Fp~ιfqw = 0 a.e.
JX

where F(x) = [ f(t)dt.
Jα

We claim that by modifying / on a set of measure zero, we will
have feC'ia, b),f(x) Φ 0 in (α, b) and / will satisfy (34) everywhere.
To see this, rewrite (34) as

(35) / - 1 - A(x)fq~' = B(x) a.e.

where A(x) ^ 0, and B(x) > 0 for all xe(a,b).
Consider the equation ζ7*"1 - ζζ*-1 = η. For η > 0, £ ^ 0 this has

a unique positive solution ζ = φ(ζ, η) which can be extended to be C°°
on an open region containing the set {(£, η): £ ^ 0, η ^ 0, ξ + 7) > 0}.
To see this, consider the function ψ(ζ) = ζ r - 1 — £ζ 9 - 1 for fixed ζ, r and
#. First suppose q ;> 1, and £ > 0, then α/r'(ζ) has a single positive
zero ζ0 — Co(ί), and r̂ decreases from ψ(0) = 0 to ^(ζ0) < 0 and is
strictly increasing on [ζ0, oo) to + c>o. Thus τ/r(ζ) = rj has a unique
solution for η > 0 which we denote 9>(£, )y). We define φ(ξ, η) for
ξ > 0 and 0 ^ ^ > ^(ζo(f)) to be that solution of -η = ^(ζ) with ζ > ζ0.
If g ^ 1 and f ^ 0, then ψ is strictly increasing from ψ(0) = 0, hence
^r(ζ) = η has a unique solution for η :> 0. Thus, for # ^ 1, ψ(ξ, rj) is
defined on an open set containing Q = {(ξ, ^ ) : f ^ 0 , ) 7 ^ 0 , ζ + ^ > 0 } ,
and since φ'(φ(ξ, η)) > 0, the implicit function theorem shows that
φ e C00. To show that φ(ζ, η) — ^(0, 0) = 0 as (ζ, rj) -> (0, 0) in Q, we
note that if 0 ^ ξ ^ δ, 0 ^ η ^ δ and ζ, = αδ 1 " '- 1 ' with a = 2ll{r~q\ then

W~l)«r-l) ^ a^" 1^-^ - l)δ ^ δ (if δ ^ 1) .

Thus φ(ζ, η) <, aδιl{r~l) for 0 ^ f ^ δ, 0 ^ 97 ̂  δ proving the assertion.
If 0 ^ g < 1 and ζ > 0, then ^ is strictly increasing from - c o to

00 on (0, 00) so ψ(ζ) = 37 has a unique solution for all η. If 0 ^ (? < 1
and £ < 0, then ψ(Q—^00 a s ζ — > 0 + o r ζ - ^ o o , and ^ has a minimum
at a point ζ0 where ψ(ζ0) = y\ξ \i'-vnr-o a n ( j 7 > 0 . If £ = 0, ψ(ζ) = η
has a unique solution for η ^ 0. Again we have φeC™ on an open
set containing Q and that φ(£, 57)—>0 as (£, rj) —> (0, 0) in Q.

Now, from (35), by modifying / on a null set, we have

(36) f(x) = <p(A(x), B(x)) for all x e (a, b) .

If WymeC1 then A, B are absolutely continuous so (36) shows that /
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is absolutely continuous. But then FeC1 so in fact, A,BeCι and
(36) shows that / e C1. That f(x) Φ 0 for x e (α, b) follows immediately
from (36).

Now, defining y = F and differentiating (34) once gives (P) (i).
The conditions (ii) and (iii) are apparent from (34). The problem (P) thus
has solutions for λ = K*(p + q)/r. To identify the largest eigenvalue
of (P) as K*(p + q)/r, we note that a solution of (P) gives a solution
of (34) and by Lemma 2 the largest eigenvalue of (34) is K*(p + q)/r.

The inequality (5) and the statement concerning equality are now
obvious.

REMARK. If m(x) > 0 and w(x) > 0 for all x e [α, b], and if q > 0,

then A(x) > 0 unless # = a and B(#) > 0 unless x = 6. Hence equation
(36) shows that f(x)>0 for all #e[α, 6]; and feCι[a, 6]. We also
note that if lima._6 A(#) is finite and lima._>α i?(&) is finite then f(a) < oo
and f(b) < oo. This will be used in § 3.

3* Some inequalities on a finite interval* As an application of
Theorem 1, we obtain the best constants in case (α, b) is a finite
interval and m{x) = w(x) = 1. We immediately consider

S I (Γ1

o 11/ N 2/ΊffdflJ ^ ίΓ(p,g,r) | j o | y' \r

(p + q)lr

where y is absolutely continuous and y(0) = 0.
Some special cases of (37) are known. The case g = 0,p = r = 2fc

(k a positive integer) is inequality 256 of [8], which was derived there
by classical variational methods using the Weierstrass sufficient condition.
This case was handled by elementary methods in [3]. OpiaPs inequality
is the case p — q = 1, r = 2. If q = 1, r = p + 1, the best constant
can be obtained by Holder's inequality (see [5], for example). The
case r = p + q was considered in [6] but the best constant was found
only when q = 1 or r = 1.

Note that if q > r, there is no inequality of the form (37), since
for y(x) = 1 - (1 - x)ι-r, q~' < Ύ < r~\ the left member of (37) is
infinite while || y'\\r < oo. The case p = 0 is simply Holder's inequality
with K(0, q, r) = 1.

THEOREM 2. For r ^ 1, p > 0, 0 ^ q ^ r, the inequality (37) is
valid with a finite constant K(p, q,r). The best such constant is
given by the following expressions

( a ) if p > 0, r > 1, 0 ^ q < r,

(38) iΓ(p, q, r) = ( r ~ q)pP β^Kp, q,
(r - l)(p + q)
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where

= j p ( r - i) + ( y - g ) y
I (r - l)(p + q) I

S
1 Γ Wtf — 1\ 1 ~(q + P+rp)lrp

i l + n«—iL ί I {l + (? -
o I r — q )

r — q

(b) If r = 1, then

K(p, g, 1) =

U
( c ) If q = r, then

(39) j r ( P l r, r) = p

If r = 1, q = 0, there is strict inequality for all y ^ 0 while in all
other cases there is equality only for multiples of a single function
y(p, Q, r, x) which is in C~(0,1), and is concave if 0 <Ξ q < 1, convex
if q > 1, linear if q — 1.

For special cases of (a), (28) reduces to a simpler form. First,
if r — p + q, we have

(40) K ( p , q , p + q) = q(p + q γ - ι { p L { p , q) + q}~*, q ^ O

where

In particular,

\ 2 g log g } , g ^ 0,1 .
2q —

If q = 0, and r > 1, we have

K(p, 0, r) =

, r) =

where r' = r/(r — 1). Note that A(p, r) is the norm of the mapping

T: Lr->LP where here Tf(x) = \'f(t)dt. By (4), if | | / | | r - 1 we have

J(f) ^ II T\\p, where || Γ| | is the°norm of T as a mapping from l4->

χs

m, (s = pr/(r - g)), and so we always have K(p, q,r) ^ A(s, r)3'.
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We also note that in (38), if q Φ 1, one may make the replacement

(41) (r - q)I(p, q, r)~*> = rp+1(q - l)Up, q, r)~p ,

where

UP, Q,r) = ±(r - q) PV^l =F tγ~ιdt + r P V ^ α + tγdt ,
J Jo

where T1 = l—[(r — q)/q(r — 1)],7 = (p + q — r)/rp, and the upper sign
is used with q > 1, the lower sign with q < 1.

Proof. In case (a), Theorem 1 applies since certainly ||| ΓJH < oo.
We seek solutions of the problem (P). We first observe that by the
remark at the end of § 2, we have y e C2[a, b] and 0 < y'(0) < oo, 0 <
y'(l) < oo except in case q = 0 when we have y'(l) = 0. To see this
note that the functions A and B which appear in (35) are here just

A(x) = q(Xr)-ιy{x)\ B(x) =

But y(l) - ( V ( ί ) d ί ^ Hi/'llr < °°, so A(l) < oo, and

J
o

I ffl l̂ (r-q)/r

y-ιy'q ^

which shows that B(0) < oo.
Notice that equation (i) of (P) has the integrating factor yf from

which we obtain

(42) (r - l)λ?Λ - (ί - l)yvy'q - αλ ,

where a is a constant which is evaluated by using \\y'\\r = 1 and
/') = rλ/(p + g). Thus we have

( 4 3 ) a = {r _ i) _ (g ~ Dr = pr - p - g + r > Q ̂
P + ^ p + ?

Solving (42) for y = XllpG(y') and differentiating leads to a variables
separable equation for ?/', and if we write z = yr we have, for q Φ 1

(44) dx = ±— \

χ / r — l)(r - q)zr~q~2 +

To obtain boundary conditions, we use (42) and (ii) and thus,
since 2(0) Φ 0 and 2(1) Φ 0 for q Φ 0, we obtain
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(45) z(0)r = a/(r - 1) and z(l)r = aq/(r - q) .

We now integrate (44) from x = 0 to x = 1 using (45) and make
the change of variables (for q Φ 1)

ra q — 1

which leads to equation (38).
For q = 1, we note that I(p, 1, r) = p, β = 1, and so (38) gives

ίΓ(p, 1, r) — (p + I) " 1 which is the correct result by our earlier remarks.
In the equation y — XllPG(y'), G is increasing if q > 1 and decreasing
if q < 1. Thus, since y is increasing, we must have yf increasing if
q > 1 and decreasing if q < 1. The solution to problem (P) with
λ = λ* can be seen to be unique in the following way. We know
that a solution of (P) must satisfy y — XllpG{y') and thus also yf —
xUpG'(yf)y", and hence yf satisfies

Cy'ix) d?

(46) λ1^ G'(z) — = x.
Jv'(O) Z

But, for q Φ 1, Gf(z) does not change sign on the interval from y'(0)
to y'(l) so (46) has a unique solution for y'{x), and hence (P) has a
unique solution when λ = λ*.

To obtain the alternate expression for (r — q)I(p, q, r)~p given in
(41), we make the change of variable t = 1 — a(r — l)""1^** in (44).

To obtain the formula (40), we make the following change of
variables in (38)

= Λ _ τ(q - 1)
— 1) /

Then t = (p/g(r — l))spi2(s)-\ and ί = 0,1 correspond to s = 0,1 and
one has

(47) /(p, g, r) = const |ifi(e)^^+<1^+1-»/^-1(p5(s)-1 +

= const {^(p, Q') + q}, since r = p + q .

The formula (40) can be obtained in a more direct way by making
the substitution u = (q/rX)llP(y/yf) in equation (i), where we assume
q Φ 0 so y\x) > 0 for x e [α, 6]. Then the conditions (ii) give ^(0) = 0,
u(ΐ) = 1, and equation (i) reduces to

(48) (r - 1) {l - r(f ~ ]\ uΛ - pf^Y'u' (r = p + q) .
I g(r — 1) J V q I

Separating variables and integrating gives (40).
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I y' \dt, and then if q > 0
o

I y \p I y' \qdx ^ [\zPl9z')qdx
J

using Holder's inequality with exponents 1/g > 1 and 1/(1 — q). Equality
holds only if zPlqz' is constant, and y — z which means y(x) = cxql{p+9).
For q = 0, we have

y \pdx ̂ [ \z \pdx ^ z(l)p = [ \ z\x) \dx .
Jo Jo

Equality holds only if y = z, and z(x) — z(l) for all x, so y(x) — z(x) = 0.
For case (c), we let q—*r— in formula (38), using the equation

(41) to evaluate lim (r — q)I(v, q, τ)~p. This shows that the best
constant is given by (39), because if yr eLr and q < r, then

[\y\p\y'\9-+[\y\p\y'\r

Jo Jo

by dominated convergence. To handle the case of equality we cannot
apply Lemma 2 directly since the proof of Lemma 2(a) used r > q.
However, if there is an / with J(f) = K(p, r, r) — ϋΓ* then we know
that / ^ 0 a.e. Now referring to the proof of Lemma 2(a), since
r > 1 we do have (24) which proves that if Έ — {x: f(x) = 0}, then
k(x, t) — 0 a.e. on CE x E. This means that

(CE x E)f] {(x, t): 0 ^ t ^ x ^ 1}

is a set of measure zero. This implies that E differs from an interval
[c, 1] by a set of measure zero. To see this, let

c = sup {x ^ 1: [0, x] Π E is of measure zero} ,

and let d = inf {x :> 0: [x, 1] Π CE is of measure zero}. Clearly d^ c.
But, if d > c, and β = (d + c)/2, then [c, e] Π £? and [β, d] Π CE have
positive measure; but then CE x J57 intersects {(x, t): 0 ^ t ^ x ^ 1} in
a set of positive measure which is absurd.

However if equality held for such an /, we would have (writing

Ax) = V'(x))>

(49) jQ \y\'\y' \rdx = # * { j | y' |

Define z(t) — y(ct) so z'(t) = cy'(ct), and from (49) we obtain
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S I ΓΓ 1 Λ(P+r)lr

\z\p\z' \rdx = κ*c-'lr-1)ir 11 I z' \rdx\
But, if c < 1, then κ*e~p^-ί)lr > if* contradicting the maximality of
if*. Thus c = 1, so /(a?) = 2/'(α) > 0 a.e. on [0,1].

Still proceeding on the assumption that there exists an / with
J(f) — K* we have shown f(x) > 0 a.e. on [0,1], so the proof of
Lemma 2(b) is valid and / satisfies

(51) \rfr~\x) - τF(xYfr-\x) - p[ Fp~ιfrdt = 0 a.e.
Jx

where F(x) = y(x) = \*f{t)dt, and λ = (p + q)K*\r.
Jo

If a? is any point where f(x) > 0 and (51) holds then (51) shows that
Xf'-'ix) > Fp(x)fr-\x), so Fp(x) < X a.e. But F is strictly increasing
so F(x)p < X for 0 ^ E < 1. Now we can solve (51) for / and obtain

(52) f{x) = φ(A{x), B(x)) for almost all x e [0,1) .

where φ(ξ, η) = (37/(1 - i))1 / ( r"1 }, A(x) = X-'FixY < 1 for 0 ^ x < 1, and

^ 7 3 1 - 1 / ^ > 0 for 0 ^ a? ̂  1. Now we proceed as in
the proof of Theorem 1. If we modify / on a null set so that it
satisfies (52) everywhere then we obtain /eC^O, 1), and f(x) > 0 for
0 ^ x < 1. Thus we see that if J(f) = K* and y' = f then y must
be a solution of the problem (P), with λ = λ* = (p + r)K*/r. But a
solution of (P) must be a solution of (42) (with q — r) which is

(53) \y» - ypy'r = pX/(p + r) .

However if (53) has a solution then it must also satisfy

(54) \yiX\x - uψrdu = (pX/(p + r))1/rx .
Jo

To see that (54) has a unique solution for 0 ^ x ^ 1, we note that

S XHP / 1 -I \

(λ - ΐ ^ ) 1 ^ - p-V^Sί— + 1, -i.) = (pλ/(p + r))ι

0 \ T p /

) ι l r

using the formula for if(p, r, r) = K* and λ = (p + r)K*/r. Since
λ — ̂  > 0 for 0 ^u < λ1/p, (54) has a unique solution 7/ = y(x) which
is strictly increasing and has y(0) = 0, y(l) = XllP. To complete the
proof we must show that y in fact satisfies (i), (ii) and (iii) of (P).
By the implicit function theorem yeC2(a,b), and differentiating (54)
twice shows that y satisfies (i). Clearly y(0) = 0. For the other part
of (ii), we note that for 0 ^ x < 1, we have

(λ - y>(x))ίlry'(x) - (pX/(p + r)f'r ,
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a n d s ince yp(x) —• λ a s x —> 1 — , w e h a v e y'(x) —> oo a s a? —• 1 — . B u t

this means that

(56) (λ - yp(x))y'(xy-1 = (p\/(p + r))y'{x)-χ > 0 as x > 1 .

To verify that || y' \\r = 1, let us first introduce the function g by

(57) g(t) = (pλ)~llr(p + r) 1 / r Γ(λ - tf*)1"^ ,
Jo

so flf(2/(.τ)) = a? for x e [0,1] and hence y(g(t)) = t for t e [0, λ1 / p]. Now

(58) fV<«rd» = - i £ - 1 1 ^
Jo p + r Jo λ — 2/p(a;)

= (~^—) (λ - tψ'^
Vp + r / Jo

where we use the change of variable x = g(t). Now using the formula
for λ, we obtain

(59) [y'(xydx = ^ s f i V^f + 1
j o p-\-V\V>P'\V p

REMARKS. ( 1 ) As was mentioned above, the method of this
paper applies to inequalities of the form (1) with n > 1. In this case
T becomes

w { x ) ι l l ί > m { x ) - l l Ί ) [x (χ~ fl*"1 f ( t ) d t .
u (n — 1)!

A discussion of the special case p = q = l,r = 2 will be found in [4j
where, for m(x) = w(x) = 1, [α, 6] = [0,1], the best constant is shown
to be asymptotic to Iβnl

( 2 ) The method is equally applicable to inequalities in which the
function y is restricted by other boundary conditions. For example,
if [α, b] is a finite interval we may treat

S b fCb \ (p + q)lr

ypy"qw{x)dx ^ K\ \ y"rm{x)dx \

y(a) = y(b) = 0 .

In this case, if / is a given function in Lr

m, the boundary value problem

S b

G(x, t)f(t)dt, where
a

G(x, t) ^ 0 a.e. Hence our lemmas apply.
( 3 ) When Theorem 1 is specialized to the situation studied by

Beesack in [1] (q = 0, p = r), the results are not as general as his.
This is because we can effectively handle only those inequalities where
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we can insure in advance that equality is possible. There is some
compensation in the fact that the existence of solutions to the Euler-
Lagrange equations (P) is a conclusion of our theorem rather than a
hypothesis as in [1] and [5].
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AN EMBEDDING THEOREM FOR
LATTICEΌRDERED FIELDS

PAUL CONRAD AND JOHN DAUNS

In this paper we develop a method for constructing lattice-
ordered fields ("^-fields") which are not totally ordered ("o-
fields") and hence are not /-rings. We show that many of
these fields admit a Hahn type embedding into a field of
formal power series with real coefficients. In order to establish
such an embedding we make use of the valuation theory for
abelian -S^-groups and prove the "well known" fact that
each o-field can be embedded in an o-field of formal power
series.

Let G be an j^f-ήeld that contains n disjoint elements, but not
n + 1 such elements. An element 0 < S G G is special if there is a
unique «5^-ideal of (G, +) that is maximal without containing s. We
show that the set S of special elements of G form a multiplicative
group if and only if S Φ 0 and s"1 > 0 for each se S. If this is the
case, then there is a natural mapping of S onto the set Γ of all values
of the elements of G. Thus Γ is a po-group and if, in addition, Γ
is torsion free, then there exists an ^-isomorphism of G into the
a f i e l d V(Γ, R) of all functions v of Γ into the real field R whose
support {Ί e Γ \ v(y) Φ 0} satisfies the ascending chain condition. If G
is an o-field, then the above hypotheses are satisfied and hence the
embedding theorem for o-fields is a special case of our embedding
theorem. The authors wish to thank the referee for many constructive
suggestions.

NOTATION. If S is a subset of a group G, then [S] will denote
the subgroup of G that is generated by S. If G is a po-group, then
G+ will denote the set {g e G | g ^ 0} of positive elements. A disjoint
subset of an j5f-group G is a set S of strictly positive elements such
that a A b = 0 for all pairs α,6eS.

2* A method for constructing lattice-ordered rings* A po-set
Γ is called a root system if for each 7 e Γ, the set {a e Γ \ a ^ 7} is
totally ordered. A nonvoid subset Δ of a root system Γ is called a
W-set if it is the join of a finite number of inversely well ordered
subsets of JΓ, and an /-set if it is infinite and trivially ordered or
well ordered with order type a). In [2] it is shown that Δ is a W-
set if and only if A does not contain an /-set; while in [10] five other
conditions are derived which are equivalent to A not containing an /-set.

385



386 PAUL CONRAD AND JOHN DAUNS

If Γ is a root system and if v: Γ —* R is a function into the real
field R, then the support of v is defined as supp v = {7 e Γ \ v(y) Φ 0}.
The set V = V(Γ, R) of all v whose support satisfies the ascending
chain condition (A.C.C.) is a po-group if one defines v to be positive
if V{Ί) > 0 for each maximal element 7 in supp v. Such a V{Ί) will
be referred to as a maximal component of v. In [5] it is shown that
V is an ^f-group for an arbitray po-set Γ if and only if Γ is a root
system. For a root system Γ

W = ΪF(Γ, jβ) = {t; e F(Γ, R) | supp v i s a W-set}

is an ^-subgroup of V.
Now suppose that the root system Γ is also a strictly po-semi-

group:

a < β—»a + 7 < /3 + 7 and 7 + tf < 7 + /?

for all a, β, 7 e A For u, v e T7 define ^v e W by

= Σ n{ά)v(β) .

Then TF is a ring (see [2], p. 76, or [10], p. 333). If 0 < u, ve W,
then 0 < uv and so W is an j^-rmg and also a real vector lattice. If
Γ is an o-group, then V = W is a totally ordered division ring (see
[8], p. 137]). Throughout, a "field" is always commutative while a
"division ring" is not necessarily commutative.

In § 6, there are two examples of strictly po-semigroups which
are root systems and hence can be used to construct ^f-ήngs. Al-
though it does not appear likely that all such semigroups can be
reasonably characterized, the next lemma completely characterizes all
po-groups which are also root systems.

LEMMA 2.1. Suppose that a group Γ has a totally ordered sub-
group H with positive cone H+. If H+ <1 Γ, then Γ with this positive
cone H+ is a po-group and a root system. Conversely, each po-group
that is a root system is of this form.

Proof. Clearly, Γ is just the join of disjoint totally ordered cosets
and so in this partial order Γ becomes a root system and a po-group.
Conversely, suppose that Γ is a po-group and a root system. Let [Γ+]
be the subgroup of Γ generated by its positive cone Γ+. Then H =
[Γ+] <1 Γ is a directed po-group. If H were not an o-group, then
there would exist a, β, 7 e H such that a :> β, a ^ 7 and such that β
and 7 are not comparable (notation β\\y). But then -/9 | | - 7 , and
-/3, —ye{der\d^ -a} which contradicts the fact that Γ is a root
system.
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Now let Γ be a po-group and a root system and suppose that
H = [Γ+] <] Γ is the unique totally ordered normal subgroup such that
Γ is the disjoint union of totally ordered cosets of H. It is well known
that if Γ is abelian and torsion free then the given partial order can
be extended in a not necessarily unique way to yield a totally ordered
group. The latter may fail for nonabelian groups. However, if Γ is
torsion free with H <\Γ and Γ/H finite, then the given total order
on H can be extended uniquely to a total group order on Γ (see
{14], p. 326). The hypothesis that Γ/H is finite can in fact be weakened
to require merely that any finite set of elements of Γ/H generate a
finite subgroup (see [14], p. 325).

PROPOSITION 2.2. Suppose that Γ is a torsion free po-group, and
H = [Γ+] is a totally ordered subgroup with Γ/H finite. Then
W(Γ, R) — V(Γ, R) is a lattice ordered division ring. Moreover, the
lattice order of V(Γ, R) can be extended to a total ring order on
V(Γ, R).

Proof. Let Γ1 be the totally ordered group having the same
underlying set of elements as Γ given by the unique extension of the
partial order of Γ to a total one. As has already been remarked
([8], p. 137), V(ΓU R) is a totally ordered division ring. Since the
support of v e V(Γ, R) is the join of a finite number of inversely well
ordered sets in Γ, when supp v is viewed as a subset of Γ19 it will
satisfy the A.C.C. Thus v e F(Λ, R) and V(Γ, R) S V(Γ19 R). Clearly,
V(ΓU R) S V(Γ, R). Since V(Γ, R) = V(Γl9 R) as sets, the lattice order
of V(Γ, R) can be extended to a total order.

COROLLARY. In the previous proposition V(Γ, R) satisfies the
following three conditions:

( i ) V(Γ, R) contains n pairwise disjoint elements but not n + 1
such elements.

(ii) If 0 < v 6 V(Γ, R) has just one maximal component (such a
v is called special), then so does its inverse. All the special elements
form a multiplicative group.

(iii) The multiplicative group of special elements is torsion free.

In § 4, we show that, conversely, an j*f'-field with these three
properties can be embedded in V(Γ, R).

3* Special elements in an ^-ring* In order to obtain an em-
bedding theorem for an ^-field G, we assume that the special elements
in G form a multiplicative group. In this section we investigate what
this hypothesis means. In particular, we show that such special
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elements behave like elements in /-rings in that they distribute over
joins and intersections.

Let G be an abelian ^-group. A convex subgroup of G which
is also sublattice is called an Sf-ideal. An i/^-ideal L of G is called
regular if it is maximal with respect to not containing some element
geG. If this is the case, then G/L is an o-group (see [4] or [5]) and
hence there exists a unique ^f -ideal that covers L. Let Γ = Γ(G) be
the set of all pairs of ^-ideals (Gr, Gr) such that Gr is regular and
Gr covers Gr. We shall frequently identify Γ with the set of pairs
(Gr, Gj). In particular, define a < β in Γ if GαSG> Then (Γ, ^ ) is
a root system. If g e Gr\Gr, then we say that 7 is a value of g. If
0 < g has exactly one value, then g is called special and in this case
its unique value will be denoted by v(g). If geG has exactly one
value then g is comparable with zero and so either g or — g is special.
If α, δ, eG are special, then a A b = 0 if and only if t (α) || v(b). If
L is an ^-ideal of G such that G/L is an o-group and 0 < g e G\L
implies that g > L, then G is called a lex-extension of L. It follows
that each coset L Φ L + x consists entirely of positive elements or
entirely of negative elements. If a and b are positive elements of an
^f-ring G, then a < b will mean that na < b for all integers w > 0.
If a < δ, c > 0, and δc =£ 0, then wαc < be for all % and so ac < δc.

3.1. In [4] it is shown that for 0<geG, the following are
equivalent:

(1) gr is special;
( 2 ) G(g) — {z e G \ | z \ ̂  ng for some integer n > 0} has exactly

one maximal ^-ideal;
( 3 ) G(g) is a lex-extension of a proper .2^-ideal L.
Consequently, if α is special and L is the unique maximal ^-ideal

of (?(α), then G(a)/L is an archimedian o-group and G(a) is a lex-
extension of L.

LEMMA 3.2. // G is an abelian ^f-group and 0 < geG, then
Tg = {z e G I 0 ^ # < g) is a convex semigroup that contains 0 but not
g and so [Tg] = {y — z\ y, ze Tg} is an ^-ideal of G and [Tg]+ = Tg.

Proof. By Theorem 11 on page 81 in [8] it suffices to show that
Tg is a semigroup. But this is well known for o-groups, and since
G is a subdirect sum of o-groups, it follows that Tg is a semigroup.

COROLLARY. [Tg] is the largest (proper) j^f'-ideal of G(g) if and
only if g is special.

Proof. If [Tg] is the largest ^-ideal of G(g), then g is special by
3.1 (2). Conversely, suppose that g is special and let L be the largest
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of G(g). Since g$[Tg] it follows that [Tg]^L and since
nL+QL+ < g for all positive integers n,L^[Tg] = L.

LEMMA 3.3. Suppose that a and b are special elements in an
Jzf-ring G with an identity and that a~ι and δ"1 exist.

( i ) // αr1 e G+, then a~ι is special.
(ii) // ar\ b~ιeG+, then Tab = TaG(b)+ = G(a)+Tb and [Tab] is

the largest J^-ideal in G(ab). Thus ab is special.

Proof. ( i ) Let L be a proper i/^-ideal of G(a~ι) and consider
0 < q e L. Since q < na~ι for some n > 0, we have gα2 < %α and so
qa2 e G(a). If qa2 £ Ta, then since G(a)/[Ta] is an archimedian o-group,
[Ta] + wgα2 > [Tα] + a for some w > 0. Then since G(a) is a lex-
extension of [Ta], nqa2 > α and so nq > cr1. But then L^G(a~ι), a
contradiction. Thus qa2 e Ta and so gα2 < a, and hence g < α"1.
Therefore L+ u Tor1 and hence by the above corollary a~ι is special.

(ii) If xe Ta and yeG(b)+, then fcw < α and y < kb for some
& > 0 and all n > 0. Thus &w$τ/ ^ ay ^ kab and hence m?/ ^ α6 for
all n, and since ab Φ 0, α̂;̂ / < ab for all ^. Thus TaG(b)+ g ίΓαδ.
If ^ G Tα6, then « < ab and sir1 < α. Then z = (^δ-^δ G TaG(b)+.
Therefore Γα6 = TaG(b)+ and similarly Tαδ = G(a)+Tb.

Now suppose that L is a proper .Sf-ideal of G(αδ) and 0 < g e L.
Since g < ^α6 for some n, qb"1 < na shows that gδ"1 e G(a). If gδ"1 g Tα,
then as above mqb'1 > a for some m > 0 and so L^G(ab), a contra-
diction. Thus gδ-1 G Ta and hence <? = (qb^b e TaG(b)+ = Tab. Hence
L+ S Γαδ and αδ is special.

Conditions (4) and (5) in the next theorem show that special
elements behave like elements from an /-ring. A commutative Jίf-Άeld
is totally ordered if and only if the positive cone is closed under
division (see [8], p. 139). This is one reason for putting requirements
on the special elements, rather than on all the positive elements.

THEOREM I. For a lattice ordered division ring G with an
identity the following are equivalent.

(1) The special elements form a multiplicative group or the
null set.

( 2 ) If a is special, then a-1 > 0.
(3) If a is special, then a~ι is special.
(4) a(c V 0) = ac V 0 for special elements a and all ceG.
( 5 ) a(y V z) — ay V az for special elments a and all y, zeG.

Six additional conditions each equivalent to (4) and (5) are obtained
by writing (c V 0)α = ca V 0, (y V z)a = yaV za, and by replacing "V"
with "Λ".
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Proof. The implications (1) -> (3) -> (2) and (5) —> (4) are trivial
and (2) —> (1) follows from Lemma 3.3.

( 2 ) — > ( 4 ) . Since a and or1 are both positive, the left multipli-
cations by a and or1 are inverse order preserving mappings and hence
are lattice automorphisms.

( 4) — (2). If a is special, then α(l V 0) = a V 0 = a and so 1 V 0 =
1. Thus aia,-1 v 0) = 1 V 0 = 1 and hence cr 1 = or1 V 0 > 0.

( 4 ) - > ( 5 ) .

a(y V z) = a[((y - z) V 0) + z]

= ((<M/ — as) V 0) + az = ay V az .

The equation

a(y Λz) = a(-(-y V -z)) = -(a(-y V -z))

= -(-ay V — α«) = ay Λ az

shows that "V" may be replaced by " Λ " throughout. Finally, each
of the above arguments applies equally well to (c V 0)α, (y V z)a,
(c A 0)α, and (y A z)a.

Suppose that each element in the lattice ordered division ring G
has at most a finite number of values and that the special elements
in G form a multiplicative group S. Then each 7 e Γ is the value of
a special element (see [4], p. 118) and the map v of seS onto its
value v(s) is an o-homomorphism of S onto Γ. In particular, Γ is a
partially ordered group and of course a root system.

PROPOSITION 3.4. If G is a finite valued £f-field, i.e., each
element has only a finite number of values, and if the special elements
of G form a group and the associated value group Γ of G is torsion
free, then the order of G can be extended to a total order.

Proof. Extend the partial order of Γ to a total order. An element
0 Φ g e G has a unique representation g = gγ + + gn where each gt

or —Qi is special and | gt | Λ | g3- \ = 0 if i Φ j (see [4]). One of the
v(gi) will be the largest in the total ordering of Γ, say 7 = v(gj). Define
g to be positive if Gy + g > Gy. Clearly this is a total order of the
set G that extends the given lattice order and a straightforward
computation shows that G is an o-field.

An element 0 < b of an ^ - g r o u p G is basic if {g e G | 0 ^ g ^ b}
is totally ordered. A basis for G is a maximal pairwise disjoint subset
of G which, in addition, consists of basic elements. G has a finite
basis if there exists a basis consiting of n elements or equivalently
if G contains n disjoint elements but not n + 1 such elements. For
a structure theorem for a group with a finite basis see ([8], p. 86).
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If G is a lattice ordered division ring with a finite basis, if the
special elements form a group and if Γ(G) is torsion free, then there
exists an extension of the lattice order of G to a total order of G.
The proof of this fact is the same as the proof of the last proposition.

4* An embedding theorem for o-fields* In this section it is
shown that an arbitrary totally ordered field F can be embedded in
the o-field V(Γ(F), R). Only the statement of this embedding theorem
and not the method of proof will be used in subsequent sections.
The proof assumes some familiarity with the valuation theory of fields.

Let F be an o-field and i*7* be the multiplcative group of all
strictly positive elements of F. Then F * is the set of all special
elements, and the mapping v of feF* upon its value v(f) in Γ =
Γ(F) is an o-homomorphism. Thus Γ may be regarded as an addi-
tive o-group with identity θ, and v is the natural order valuation
of F (see [1] or [11]). Note that 1 e FΘ\FΘ, Fθ is the valuation ring of
F, and Fθ/Fθ is the residue class field. Also, Fθ/Fθ is an archimedian
o-field and hence essentially a subfield of the real numbers. As
before, V = V(Γ, R) is the o-field of formal power series with exponents
from Γ and with real coefficients. For yeΓ, let xr be the element
in V such that

, x (1 if a = 7
χr(a) =

(0 otherwise .

Note that xθ = 1. Although V(Γ, R) in general contains several o-
isomorphic copies of the reals, it contains Rxθ as a distinguished copy,
and V(Γ, R) is an o-algebra over the reals under component-wise
multiplication by Rxθ.

Let E be a not necessarily ordered division ring with a valuation
w: E\{0}-+Γ(E) in the sense of [16] except with the order of Γ(E)
reversed. Thus in case E is ordered w would be an order preserving
map. If E c D where D is another valuated division ring whose
valuation extends w, then D is called an immediate extension of (£7, w)
provided the value group of E, that is w(E), is also the value group
of D, and if the residue class fields of E and D are isomorphic. By
Zorn's lemma, every (E, w) has a maximal immediate extension.

THEOREM II. ( i ) If F is an o-field with value group Γ, then
there exists a value and order preserving isomorphism π of F into the
o-field V(Γ, R). (ii) Moreover, if JaΓ is a rationally independent
basis for the divisible hull of Γ, and for each 3e/l,0<xδeFis
arbitrary with value δ, then π can be chosen so that xδπ = x\
(iii) Now assume in addition that R c F is any o-isomorphic copy
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of the reals and r —»r is the unique o-isomorphism of R onto R.
Then in addition to satisfying (ii), π can be so chosen that rπ = rxθ.

Proof. We only outline a proof in the sense that [13] and [16]
are quoted for all the difficult steps (also see [1], p. 328). By [13],
any totally ordered field F can be embedded in a totally ordered field
E so that the order induced on F from F c E is the orginal order of
F, both E and F have the same value group Γ = Γ(F) = Γ(E), and E
contains an isomorphic copy of the reals, i.e., R ~ RaE. Since v(l) =
d, necessarily, R\{O}SEΘ\EΘ and also EθjEθ = R. The reader should
recall that the real field R has no nontrivial automorphisms, since R
admits exactly one total order. Let r-+r denote the o-isomorphism
of R onto R. The field E with the natural order valuation v: E/{0} —> Γ
has a maximal immediate extension EQM. Denote the valuation on
ikf also by v. We define de M with value 7 to be positive if Mθ + df~ι

is positive in MθjMθ for some 0 <feF with value 7. This is the
unique extension of the order of E to M. Let M* = {d\0 < de ikf}.

It will be shown next that the subgroup

ikf* n (MΘ\MΘ) = {0 < deM\v(d) = θ)

is divisible. If 0 < d e M with v(d) — θ, define c e R by c = inf {r | d < r l} .
Then v(d - c 1) < θ and d = c(l + λ), λ = (l/c)d - 1 with v(\) < θ.
If m > 1 is any integer, then in order to show that c£1/m e M* Π (MΘ\MΘ)
take c = 1 and define pne M* n (MΘ\MΘ) by taking terms up to λ"
from the formal power series expansion of (1 + λ)1 / m. Then {pn \ n =
1,2, •••} defines a so called pseudo convergent sequence (see [16],
p. 39]). If this sequence has a pseudo limit ([16], p. 47), then that
limit is dιlm. However, by ([16], p. 51, Th. 8), M contains a pseudo limit
for each of its pseudo convergent sequences. Thus dιlm e ikf * Π (MΘ\MΘ)
and hence ikf* splits, ikf* = T x ikf* Π (MΘ\MΘ), where T is some com-
plement of ikf* Π (MΘ\MΘ). For te T define t π = xv{t) and for r G 5
define rπ = rx^. Then this determines a value and order preserving
isomorphism π of the subfield if of ikf that is generated by R U T into
V. Moreover, ikf and V are maximal immediate extensions of K and
Kπ respectively. By ([16], p. 222, Th. 4), π can be extended to a value
preserving isomorphism of M onto V so that the following diagram
•commutes:

K > ikf

Kπ > V(Γ,R) .

I t is asserted that π:M—*V preserves order. Since each element of
Mβ is congruent modulo Mβ to an element of the form r with r 6 R,
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and since rπ = rx\ it follows that π induces an order preserving iso-
morphism πθ: Mθ/Mθ —• Vθ/Vθ = R But d e M is positive by definition,
provided for any 0 < k e K with v(k) = v(d), we have Mθ < Mθ + dλr1.
However, since &7Γ > 0, and since {Mθ + dk~λ)πθ = (Vθ + d7r)(F^ + AΓ̂ TΓ),

it necessarily follows that dπ > 0.
The set {#δ | <5 e J} described in the theorem generates a subgroup

of M* whose intersection with Λf * n (MΘ\MΘ) is zero and so we may
pick Γ D {#δ | δ e Δ). Finally, in performing the embedding any subfield
RaM isomorphic to R could have been used.

REMARK. Hahn's theorem for an abelian o-group G states that G
can be o-embedded in V(Γ, R). (See [8], p. 60). There are now several
short elementary proofs of this result in the literature. It would be
a considerable achievement to also have such a direct proof of the
above theorem.

5* An embedding theorem for a class of i^-fϊelds* The em-
bedding theorem for an o-field is actually a special case of the more
general embedding theorem for .^-fields which is developed in this
section.

Suppose that H is a subgroup of finite index in a torsion free
abelian group Γ. Then Γ/H is a direct sum of cyclic groups.

ΓJH =[H+ 8(1)] 0 0 [H + s(k)]

where the order of [H + s(ί)] = d(i), d(l) ̂  ^ d(k) and d(i + 1) | d(i).

LEMMA 5.1. The subgroup of Γ generated by the s(i) is a di-
rect sum [s(l)] 0 0 [s(&)] In particular, c£(l)s(l), , d(k)s{k) are
rationally independent elements of H.

Proof. Suppose that Σ m(i)s(i) = 0, where the integers m(i) are
not all zero. Since Γ is torsion free, the g.c.d. of the m(i) can be
factored out and so we may assume that the m(i) have g.c.d. 1. But
since the linear combination must become trivial modulo H, d(i) \ m(i)
and hence d(k) \ m(i) for all i, a contradiction.

THEOREM III. Suppose that G is an ^f -field with a finite basis
and that the special elements of G form a group. Then the set of
values Γ of G is a po-group and a root system. If Γ is torsion free
then there exists a value preserving Jϊf -isomorphism of G into the
^-field V(Γ,R).

Proof. It follows from § 3 that Γ is a po-group and a root system.
Then by Lemma 2.1 there exists a totally ordered subgroup H of Γ
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such that the index | Γ: H\ = n of H in Γ is finite and H+ is the positive
cone for Γ. Thus Γ = \J{H + 7k \ k = 1, , n} is a disjoint union
of totally ordered cosets, where Yi e Γ is chosen as % = ^. Just as
in the proof of Proposition 3.4 each geG is uniquely of the form
g = gι + —-gny where if #; ^ 0, then either gi or — & is special,
where | gt \ A | Qj \ = 0 if i Φ j , and where gi "lives" on H + yif that
is gi e Gr for all 7 e Γ\(H + 7<). Let F be the set of all elements that
"live" on H, that is

F= {geG\geGr for all yeΓ\H} .

Then F is a totally ordered subfield of G. For clearly, F is a totally
ordered convex subring of G, and if g is special, then by hypothesis
g~ι is also special. Thus g~ι lives on H + y{ for some i. If i Φ 1,
then g g-1 = 1 lives on if + 7* which is impossible. Therefore 0"1 e F
and thus JF7 is a field. Now assume that Γ is torsion free; then by
Proposition 2.2 V(Γ, R) is an ^-field. As before, for each 7 e Γ define

1 if a = 7

0 otherwise .

In particular xθ = 1. As previously

Γ/iί = [ff + β(l)] 0 0 [H + s(k)]

with orders d(l) ^ ^ ώ(&) so that d(ί + 1) | d(i). The reader should
note that n = ώ(l) d(k) and that (̂Λ;)̂  | n. For each i = 1, , k
pick 0 < Zi e G that lives on H + 7* and has value 7<. In particular,
each 3< is special. By Lemma 5.1, the cί(l)s(l), , d(k)s(k) are ration-
ally independent elements of H and hence by Theorem II there exists
a value and order preserving isomorphism π of the o-field F into
V(Γ, R) such that

( i ) the support of fπ is contained in H for each feF, and
(ii) zί{i)π - ^ ( ί ) s ( i ) .

We shall extend π to an isomorphism of G into F. Consider

g(l)(H + 8(1)) + + 0(&)(fΓ + s(k)) e Γ/H

where g(ί) are integers in 0 ^ g(i) < d(i) and let geG live on this
coset. Then

where g e F. Since g lives on one of the n distinct cosets of Γ/H, g
is special and conversely every special element is of the above form.
Define
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gπ = gπx9{ί)a{1)X9{2)s{2) X9{k)S{k) .

Thus we have extended π to a one to one mapping of all special
elements S of G. (Note that the map S —• F.g—^g is not a homo-
morphism of multiplicative groups unless Γ — H, while g —> g(i) is a
homomorphism of S into the integers modulo d{i).) lΐ he S also lives
on this same coset as g, then so does h + g and g(ΐ) = Λ(ί) = (h +
for all i, thus

Therefore (h + g)~~ = h + g and so (h + (/)τr = fcπ + gπ. Next it will
be shown that π: S —> F is a homomorphism of multiplicative groups.
Take g, he S and write

g(ί) + h(i) = n(i)d(ί) + r(ί), 0 ^ r(i) < d(ί), i = 1, , A: .

Then since

(l) . . . ~r(k)

yi fc γ ' * zk ,

it follows t h a t

(hg)~ = ^ Γ ( 1 > d ( 1 ) ^ ( Λ ) d ( f c ) ; (Λflr)(i) = r(i), i = 1, k .

Thus

(hg)π =
Now each aeG has the above mentioned unique representation

a = aγ + + an where a{ lives on H + T4; define απ = α ^ + . . . +
αwττ. Clearly, π is a map of G into F that preserves addition and
values. If b e G with b = 6X + + bn and αδ = ^ + + cn where
b{, Ci live on H + τ», it remains to show that cxτr + + cwπ =
Σ (α^ίδj π). Each ct is of the form ct = Σ ' α A where Σ ' denotes
the sum over those distinct pairs (i,j) for which ΊffjeH + yt. It
suffices to show that ctπ = Σ ' (a^φjπ). However, first, since aiy

bde —S I) S we have (afi^n = (^^(6^); and, secondly, since π pre-
serves addition, Σ ' (aiπ) Φjπ) = ( Σ ' a<6j)̂ . Thus it follows that
(ab)π — (aπ)(bπ). Therefore π is a homomorphism of the field G into
the field V(Γ, R) that is clearly not zero and so it must be an iso-
morphism. If a = αx + + an where the a{ live on H + yi9 then
a V 0 is just the sum of the positive a{. Therefore (α V 0)π = aπ V 0
and π is a value preserving ^-isomorphism of G into F. This com-
pletes the proof of the theorem.

An ^-field F is an α-extension of an J^-field (?, if for each
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0 <feF, there exists an element 0 < geG such that f< mg and
g < nf for some positive integers m and n, and G is a-closed if it
does not admit such an extension.

The next corollary shows that the field V, into which G was
embedded in the last theorem, has an intrinsic characterization.

COROLLARY. Under the same hypotheses as in the previous
theorem, V is the unique a-closed a-extension of Gπ.

Proof. V is α-closed as an .5f-group and, clearly, it is an α-
extension of Gπ. In order to prove the uniqueness of V, let GaD
be any other α-extension of G. Since D satisfies all the hypotheses
of Theorem III, for g e D\G, gπ can be defined exactly as in the proof
of Theorem III to yield and ^-embedding of D into V that extends
π. Furthermore, Dπ gΞ V is an α-extension. Finally, if D is α-closed,
then so is also Dπ and hence Dπ = V. Thus π extends to an j*f-
isomorphism of D onto V leaving G element wise fixed.

REMARK. Under the hypotheses of Theorem III we can extend
the order of G to a total order (Proposition 3.4) and hence by Theorem
II there is an o-isomorphism of the o-field G into the J*f -field V(Γ, R).
It would be nice to be able to prove that this isomorphism is also an
^-isomorphism, but this we have not been able to do.

6* Examples and questions* The first example shows that Γ
need not be torsion free even if G is an .S^-field with a finite basis
in which the special elements form a multiplicative group. Similar
examples exist in which G is actually a real algebra.

6.1. Take an algebraic extension G = Q[w] of the rationals Q,
where w e R, wn = 2, i.e., w = 2ίln for some n ^ 2. For

y = c0 + c,w + + cn_xw
n-1 e Q[w]

with c{eQ define y ^ 0 if and only if all c< ̂  0. Note that this order
differs from the natural order of Q[w] as a subset of R. Then in the
context of the notation of § 5, the multiplicative group of special
elements S is generated by S — [{cw \ 0 < c e Q}], H = {θ}; Γ is the
cyclic group of order n and hence not torsion free.

6.2. Take n = 2 above in 6.1 but redefine y = c0 + cxw > 0 if and
only if cx ^ 0 and c0 ^ 0.

6.3. Let Γ b e a cancellative multiplicative semigroup with identity
that contains an element k in the center such that km Φ kn for all
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distinct positive integers m and n. For a,beΓ, define a ^ 6 if a =
knb for some integer n ^ 0 where &° = 1. Then a straightforward
computation shows that Γ is a strictly po-semigroup and a root system;
in fact, Γ is the join of disjoint totally ordered sets each of which
is countable.

6.4. In the multiplicative abelian semigroup Γ generated by α,
b, k with fc° = 1, define <&*&'&* > apbqkm provided one of the following
four cases holds.

Case 1. i > p.
Case 2. i = p = 0, j = q, but n > m.
Case 3. i = p > 0 and j > tf.
Case 4. i = p > 0, j = q, but n > m.

Note that the subsemigroup {aΨk*1 \ ί ^ 1} is lexiographically ordered.
Aside from being a strictly po-semigroup and a root system, Γ has
two noteworthy features. It is not the union of disjoint chains such
that the elements from distinct chains are incomparable, and it has
no convex semigroup ideals.

In conclusion we list some questions we could not answer.
(a) Can the partial order of each ^-field be extended to a total

order?
(b) If F is an £f -field in which each square is positive, then is

F an o-field?
( c) Does each ^-field contain a unique maximal totally ordered

subfield?
(d) When can a lattice order of a commutative integral domain

be extended to a lattice order of its field of fractions?
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SUMMABILITY OF FOURIER SERIES BY TRIANGULAR
MATRIX TRANSFORMATIONS

H. P. DIKSHIT

Hille and Tamarkin have proved a result for the Norlund
summability of the Fourier series of f(t) at t = x, under the
hypothesis (i) φ(t) = {fix + t) + f(x - t) - 2f(x)}/2 = o(l), t -^ 0,
which includes as a special case the corresponding result for
the Cesaro summability. However, under the lighter condition

S t

φ(u)du = o(t), t —» 0, Astrachan has proved a theorem for
q

the Norlund summability which does not cover the correspond-
ing Cesaro case. The object of the present paper is to prove
theorems for the Norlund summability and another triangular
matrix method of summability which are subtler than Astra-
chan's theorem in the sense that they include as a special case
the corresponding result for the Cesaro summability.

1* Definitions and notations* Let Σ~=o vn be a given infinite
series with the sequence of partial sums {sn}. We shall consider
sequence-to-sequence transformation of the type

oo

(1.1) un = Σ dnksk

in which the elements of the matrix D — ((dnk)) are real or complex

constants and dnk — 0 for k > n. The sequence {un} is said to be the

sequence of Z)-means of {sn}. If lim^.^ un exists and is equal to u

then we say that the series Σ~=o vn or the sequence {sn} is summable

D to the sum u.

Let {pn} be a sequence of constants, real or complex and let us

write Pn = Po + Vι + + pn ^ 0> P-i = V-ι = 0. Then the matrix D

defines a Norlund matrix (N,pn) [7], if

(1.2) dnk = pn_k/Pn , (n ^ k ^ 0) .

The conditions for the regularity of the (N, pn) mean are

(1.3) UmpJPn = 0 and £\pk\ = O(\Pn\) , n-*c.
n—»oo k=Q

In the special case in which

)

the (N, pn) mean reduces to the familiar (C, a) mean.
The product of the matrix (C, 1) with the matrix (N, pn) defines

399
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the matrix (C, 1) (ΛΓ, pn). Thus D defines the matrix (C, l) (iV, pn) if

(1.5) dnk = —±— ± p^JPv , (0 ̂  k ^ n) .

Similarly, one defines the (iV, pn) (C, 1) matrix as a product of
the (N, pn) matrix with the (C, 1) matrix. In Astraehan's notations
[1] the (N, pn) (C, 1) summability is denoted by (N, pJ CΊ.

Let f(t) be a periodic function, with period 2π and integrable in
the sense of Lebesgue over ( — π, π). We assume without any loss of
generality that the constant term in the Fourier series of f(t) is zero,

so that Γ f(t)dt = 0 and

(1.6) f(t) - Σ (an cos nt + δw sin nt) .

We write throughout:

ψ(t) = γ{f(x + t) + /(a - ί) - 2/(s)}

f Γ ~ ̂ )β"V(^)^, α > 0; Φ0(t) -φ«(0 τ f τ1 (a)

9>β(ί) = Γ(a + l)Φa(t)β"; a ^ 0

J^ w , or more precisely Jnjt£n = i"» -

where [λ] denotes the greatest integer not greater than λ.
K, denotes a positive constant not necessarily the same at each

occurrence.

2 Introduction* Concerning the Cesaro summability of Fourier
series Bosanquet [2] has proved the following.

THEOREM A. // <pa(t) = o(l) as t —> 0, ίfce^ £/&e Fourier series of
f(t), at t = x, is summable (C, a + δ) for every δ > 0 ami a ^ 0.

Theorem A is known to be the best possible in the sense that it
breaks down if δ = 0.

For the Norlund summability of Fourier series we have the follow-
ing result due to Hille and Tamarkin [5].

THEOREM B. A regular (N, pn) method is Fourier effective, if
the sequence {pn} satisfies the hypotheses:
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(2.1) Rn = 0(1) ,

(2.2) Σ

(2.3)

a s n —• oo.

Theorem B implies mίer aϊia that if φ{t) = o(l) as ί —> 0, and {pn}
satisfies the hypotheses (2.1)-(2.3), then the Fourier series of f(t) is
summable by a regular (N, pn) method.

Replacing the hypothesis: φ(t) = o(l) as t —> 0 of Theorem B by
the lighter hypothesis: φ^t) = o(l) as ί —• 0, Astrachan [1] proved the
following.

THEOREM C. A regular (N, pn) method is Ka effective (0 < a <̂  1),
if the sequence {pn} satisfies the hypotheses (2.1), (2.2) and

(2.4) ±k
Λ = l

(2.5) g

a s w —• CXD .

Hille and Tamarkin have also pointed out in [5] that the sequence
{pn} defined by (1.4) satisfies the hypotheses of Theorem B f or 1 > a > 0
and therefore, (C, a) summability for such a a is Fourier effective.
Thus Bosanquet's Theorem A when a = 0 is an immediate consequence
of Theorem B. It is therefore natural to expect that the hypothesis:
φ^t) = o(l) as t —• 0, may lead to (N, pn) summability of the Fourier
series of f(t) and that such a result may include Theorem A when
a = 1, as a special case. However, Astrachan's Theorem C in this
direction only implies the summability (C, d) for d ^ 2, whereas one
needs the summability (C, <5), <5 > 1, in order to cover Bosanquet's
Theorem A when a = 1. Thus there is a gap of approximately 1 be-
tween the orders of (C) summability implied by Theorem C and the
corresponding case of Theorem A. This emerges from the following
reasoning.

The result of Lemma 8.1 in Astrachan [1], which is required for
the proof of his Theorem C states that

(2.6) t(n-k)\ J*pk_21 = O(| Pn \/n) ,

as n —• co. Since the left hand side of (2.6) is greater than Kn we
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observe that Kn2 ̂  \Pn\. It may be pointed out that for Astrachan's
proof of Lemma 8.1 one has to assume p0 = 0.

The object of our Theorem 1 is to show that it is indeed, possible
to obtain a result for the (N, pn) summability of Fourier series which
has also the scope of covering Bosanquet's Theorem A for a = 1.

Astrachan [1, Th. II] has also obtained the following result for the
(N,pn) (C,l) summability of the Fourier series.

THEOREM D. The (N,pn) (C, 1) method is Ka effective (0 < a ^ 1)
provided the sequence {pn} satisfies the hypotheses (2.1)-(2.3) and the
regularity condition (1.3).

Due to possible oversight, Astrachan has not shown that the regu-
larity conditions follow from his statement of Theorem D. Further, his
proof of Theorem D contains a deficiency, which has been pointed out
and supplied by the present author in [4],

Silverman has shown in [8, Th. 1] that a necessary and sufficient
condition for a (N, pn) matrix to be permutable with the (C, 1) matrix
is that it be a Cesaro matrix. This implies that

(C,l)-(N,pn)Φ(N,pn).(C,l)

except when {pn} is defined by (1.4). In view of this Astrachan's
technique of obtaining his Theorem D from Theorem B fails in the
case of the (C, 1) (ΛΓ, pn) summability and one has to give a direct
proof to conclude the (C, 1) (ΛΓ, pn) summability of Fourier series of f{t)
under the hypothesis: φ^t) = o(l) as t —> 0. More precisely, we observe
that since the (C, 1) mean is a very special case of the (N, pn) mean
viz. the case in which pn — 1, the convenience of expressing the (C, 1)
mean of the Fourier series of /(£), essentially as a difference of the
Fejer's and Dirichlet's kernels of φγ(t) [1, p. 546], disappears totally
in the case of the (N, pn) mean.

Thus for the (C, l) (iV, pn) summability of Fourier series, we obtain
Theorem 2 which also covers Theorem A when a = 1.

3. We prove the following results.

THEOREM 1. // φjf) = o(l) as t —> 0 and {pn} is nonnegative,
monotonic nondecreasing sequence such that pn—*e<> as n—>co, {pn+1 — pn)
is nonincreasing, Rn = 0(1) and (2.5) holds, then the Fourier series
of fit), at t — x, is summable (N, pn).

THEOREM 2. // φλ(t) = o(l) as t —> 0 and {pn} is a nonnegative,
monotonic nonincreasing sequence such that Sn = 0(1), then the
Fourier series of /(ί), at t = x, is summable (C, l) (iV, pn).
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REMARKS. It is easy to see that if {pn} is nonnegative and non-
decreasing then (n + l)pn ^ Pn and therefore Sn = 0(1). Further, in
this case

Σ k Mm-il = - Σ Σ ( P . - Vμ-d + n±(pμ- pμ_x) = O(Pn) ,
k — 1 k = l μ=ί μ—1

if Rn = 0(1). Thus the sequence {pn} used in Theorem 1 also satisfies
the hypotheses of Theorem B.

As demonstrated by the present author in [3] if {pn} is a non-
negative sequence then the hypotheses: Rn = 0(1) and Sn = 0(1) im-
ply that

Pk Σ , , * = 0 ( 1 ) , (A; = 1,2,3,-..),

from which it is immediate that PM->oo as ϋ-^oo, It may be ob-
served that with a slight modification in author's analysis in [3] it is
possible to even drop the condition Rn — 0(1) to get the same conclusion.

4* We require the following lemmas for the proof of our results.

LEMMA 1. // {qn} is nonnegative and nonincreasing, then for
0 ^ a ^ b ^ co and 0 ^ t ^ π,

b

Σ exp KQr,

where τ = [1/ί] and ζ)m = g0 + Qι + + gm.
This lemma may be proved by following the technique of proof

of Lemma 5.11 in McFadden [6].

LEMMA 2. // {pn} is a nonnegative and monotonic nondecreasing
sequence such that {pn+ι — pn) is nonincreasing and Rn = 0(1), then
as n—> °o

Σ Pk(n - k) exp (ikt) = 0(nPτ) + O(t~2pn)
k=0

uniformly in 0 < t ίg π.

Proof. We write by Abel's transformation

Σ Vk{n - k) exp (ikt)
k=0

= Σ *̂{P*(» - *)} Σ exp (ivt)
k

= (1 - exp ΐt)-'Γ Σ Λ{P*(» - k)} - Σ Λ{P*(» - &)} exp i(A; + l)ίl
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Ί[ n—ί n—ί I

nPo — Σ (n — k)Apk exp i(k + ϊ) — X pk+1exj)i(k + l)t I
k=Q k=Q J[ n—ί k

nPo — Σ Σ Λp» exp i(v + l)t —
fc=O i/=0

Thus

n

Σ ^ ( ^ — k) exp ifcί

k=Q

n—ί

expiί(fc + l ) ί l

^ 11 — exp it | -Ί np0 + Σ Σ
A;=0

1
I J

L
^ Kt-'lnpo + K Σ Σ (Pv+i - P.) + Vn max Σ exp ifcί 11

A;=l | J

(by Lemma 1 and AbeΓs Lemma, since {pu+ι — pv} is nonnegative,
nonincreasing and {pn} is nondecreasing)

since {pn} is nondecreasing and Rn = O(l) which also implies Pn+JPn =
This completes the proof of Lemma 2.

LEMMA 3. // {pn} is nonnegative and nonincreasing, then as

Σ ~ Σ (v - Λ)p4 exp i(i; - fc)ί = O(ί"2) + θ(t~Ψt ±-±
*=0 P p A:=0 V v = r P y

uniformly in 0 < t ^ π.

Proof. Applying AbeΓs transformation we get

= Σ

k
exp iί)-

P . + 1

— exp i(v — A:

± exp i(μ - k)t

- exp i(Λ -

= (1 - exp it)- — &) exp i(v — k + l ) ί

_ ^ ~ — Z — exp i(n — k + l)t\ .

Changing the order of summation of the inner sums, thus we have
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say.

Σ 4"

κt-]

exp k)t

-(v - k) exp i(v - k + l)t

^ 1 e χ P i(»-

exp k

1 2 3

Again by a change of order of summation we have

Σ^

v=0 P

i(v - k

-max Σ pfc exp i(v — k

(by AbeΓs Lemma. If r = 0 the first part is taken asjO.)

^ Kt-2 + Kf1Pv Σ — ,

by virtue of Lemma 1 and the fact that (n + 1 ) ^ ^ Pn.
Similarly,

Σ ^ β"1 Σ
" P..

exp i(v - k

P r

1 +

by Lemma 1.
Finally, by Lemma 1 and AbeΓs Lemma we have

Σ n

This completes the proof of Lemma 3.

5* Proof of Theorem 1. For the Fourier series of f(t), at t
we have
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ππ Jo sin (t/2)

Therefore, if tn denotes the (N, pn) mean of {sk(x)} then

% o s in

Integrating by parts, we get

- i - Γ - M L / f p. &fc cos (fc + λ)t\dt
2/ /

j Γ **<*> JΣ P cos ίk + i
Λ V 2

. * cos

πPn Jo tan (ί/2) U=o Pn k si
+ i f *> _

2πPn Jo tan (ί/2) U=o Pn k sin (ί/2)

say.
Thus, in order to prove the theorem it is sufficient to show that

as n —> oo,

(5.1) Lj = o(l) (i = 1,2, 3 and 4) .

Since Φx(ί) cot t/2 = o(l) as ί —> 0, it follows from Theorem B that
L4 — o(l) as t̂  —> co, when one appeals to the remarks contained in
§3 of the present paper.

We write

Σ *>-*(-1)' ±- = 0(1) ,

as n—> oo? since {p%} is nonnegative and nondecreasing and Rn = 0(1).
Thus, we have Lι = o(l) as n—> oo.

Also, L3 = o(l) as w—> oo, by virtue of Riemann-Lebesgue Theorem
and the regularity of the (N, pn) mean which is implied by the hypo-
theses: {pn} is nonnegative and Rn = 0(1).

Finally, to show that L2 = o(l) as n—>oo9 we observe that

*•<*> = o ( l )
sin t/2

as t —* 0 and that the kernel occuring in L2 is the real part of the
complex valued function

Jexp — ί[ n + — )t\ X pk(n — k) exp ikt = Mn(t) ,

say.
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Therefore, in order to prove that L2 — o(l) as n —• oo, it is enough
to show that as n —• oo

(5.2) 1 = \*g(t)Mn(t)dt = o(l) ,
Jo

where g(t) = o(l) as t —• 0.

We write, for a fixed 3 such that 0 < 3 £ π,

(5.3) / = (J" ' + J^_χ + Qg(t)Mn(t)dt = /, + /2 + 78,

say.

Since

Afn(ί) - θ ( - l - Σ P*(^ - * ) ) = O(n) ,

we have, as n —• oo

(5.4) / ι =

For the interval o < 3 <L t t=k π, we have from Lemma 2

( J - ) + 0(1) =

as n—• oo, by the hypotheses: i?% = 0(1) and t h a t pn —> oo as w—> oo.
Therefore, as n—>oo,

(5.5) J8 - o(l) .

Since </(£) = o(l) as ί —̂  0, to demonstrate the t r u t h of I2 — o(l)
as n —• oo we prove t h a t

I? = Γ \Mn(t)\dt ^ ίΓ.

By Lemma 2, we have

by virtue of the hypotheses: Bn — 0(1) and (2.5). Thus, as n

(5.6) 72 = o(l) .
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Combining (5.3)-(5.6), we get (5.2) and therefore L2 = o(l) as n—»oo.
This completes the proof of Theorem 1.

6* Proof of Theorem 2. If t\ denotes the (C, 1) (ΛΓ, Pn) mean
of the sequence {sk(x)} then

ti ~ f(x) = — 7 T Σ Σ %***(*) - f(x)

f l

(n + l)τr Jo^(ί) fepΓ^o1'''-* sin(ί/2)

Integrating by parts, we get

t\ - f(χ) = fl(^> Σ - | - Σ Λ-*( -1)'
7Γ(W + 1) ^=o P v fc=o

- 1 \'-MLJ± J-±p>kk cos (fc + λ)t\dt
π(n + 1) Josin (i/2)l-o Pu άiPv k V 2 / /

- 1 Γ - ^ ^ ί Σ ^ - Σ A-* cos f fc + λ)t)dt
2π(n + 1) Josin (t/2)\zA Pvΐ** \ 2 / J

2ττ(^ + 1) Jtan(ί/2) l P+ 1) Jotan(ί/2) l-o Pv at *"~k sin (t/2)

= d + C2 + C3 + C4 ,

say.
Thus, in order to prove the theorem it is sufficient to show that

as n—> co

(6.1) Cd = o(l) (j = 1,2,3 and 4) .

Since {pn} is nonnegative and nonincreasing, we have by Abel's
Lemma

as v —> oo, by virtue of the fact that P n —> oo as n ~> oo. By virtue
of the regularity of the (C, 1) mean we now get CΊ = o(l) as n —> oo.

Further, since [Φx(ί)/sin (ί/2)] cos t/2 = o(l) as £ -* 0 and the (C, 1)
mean is regular, Theorem B implies that C4 = o(l) as ^ —•> oo, when
one observes that the sequence {p%} used in our Theorem 2 satisfies
all the hypotheses of Theorem B.

That C3 = o(l) as n —* oo, follows from the Riemann-Lebesgue
Theorem and the fact that the (C, 1) and the (N, pn) mean are both
regular.



SUMMABILITY OF FOURIER SERIES 409

Finally, we observe that [Φ^Q/sin (t/2)] = o(l) as t —> 0 and there-
fore, in order to prove that C2 = o(l) as n—* oo, it is sufficient to
show that as n —• oo

(6.2) E = [g(t)Jn(t)dt = o(l) ,
Jo

where g(t) = o(l) as t •—> 0 and

1 £ ( fc) e χ p ί ( p _ m mJn(t) f £ £ (y
π(n + 1) *=o pv k=o

Let us write for a fixed δ such that 0 < <5 <̂  π,

<6.3) £7 - (j + j ^ + fyg(t)Jn(t)dt - ̂  + E2

say. Since

we have as n —• oo

<6.4) ^ - θ(^jo

% \g(t))dή = o(l) .

For the interval 0 < δ <̂  ί ^ π, we have by Lemma 3

n + 1 *=o u n+1

as n—>oo, since Pπ—>oo as w—* oo and (C, 1) mean is regular. Thus,
as n—>oo,

(6.5) # 3 - o(l) .

Since g(t) = o(l) as ί —> 0, to prove that E2 — o(l) as n —> oo 9 it
is enough to demonstrate that

E?= Γ \Jn{t)\dtSK.

By Lemma 3 we get

< _A_(S A + _JL_[S rmj ± AΛdt
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since Sn = 0(1). That E£ ^ K, now follows from the fact that

I n τ> n Λ 1 n Λ υ T)
y ^ -Lk y ^ -L __ L sp L y > -Lk

n +

since STO = 0(1). Therefore, as n—> oo

(6.6) ί?£ "

Combining (6.3)-(6.6), we get (6.2) and therefore, C2 = o(l) as

This completes the proof of Theorem 2.
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LINEAR TRANSFORMATIONS OF TENSOR PRODUCTS
PRESERVING A FIXED RANK

D. Z. DJOKOVIC

In this paper T is a linear transformation from a tensor
product X® Finto U® V, where X, Y, U,V are vector spaces
over an infinite field F. The main result gives a characterization
of surjective transformations T for which there is a positive
integer k(k < dim U,k< dim V) such that whenever zeX®Y
has rank k then also TzeU®V has rank k. It is shown
that T = A®B or T = So (C<g>D) where A, 5, C, D are ap-
propriate linear isomorphisms and S is the canonical isomor-
phism of V® U onto U®V.

Let F be an infinite field and X, Y, U, V vector spaces over F.
We denote by T a linear transformation of the tensor product I ® 7
into Z7(g) V. The rank of a tensor ze X(g) Yis denoted by ^(2). By de-
finition p(o) = 0. The subspace of X spaned by the vectors xlf , xn e X
will be denoted by < xlf , xn >.

LEMMA 1. Let k be a positive integer such that zeX(g)Y and
p(z) = k imply that p{Tz) = fc. T/iew p(z) ̂  A: implies that p(Tz) ^ &
/or αW z.

Proof. If this is not true then for some zeX®Y, z ^ O , we
have p(s) < k and ^(Γ«) > k. There exists ίeX(g) F such that
ρ(t) + /θ(«) = k and moreover ^(z + Xt) = k for all λ ^ 0, λ e F. Let

T2 Σ ^ (8)^ , m = ρ(Tz).
i = l

Since Uiβ U are linearly independent and also ^ e F w e can consider
them as contained in a basis of U and Vf respectively. The matrix
of coordinates of Tz has the form

0\

0 0/

where Im is the identity m x m matrix. Let

Ώl

be the matrix of coordinates of Tt. Then the [minor | Im + XAm | of
the matrix of T(z + Xt) has the form

411
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1 + a,X + a2X
2 + .

Since F is infinite we can choose X Φ 0 so that | Im + XAm \ Φ 0. For
this value of X we have

ρ(z + Xt) = k , ρ(T(z + Xt)) ^m> k

which contradicts our assumption. This proves the lemma.

LEMMA 2. Let k be a positive integer such that zeX®Y and
p(z) ^ k imply ρ(Tz) ^ k. If Tis surjective and k < dim U, k < dim V
then p(z) ̂  p(Tz) for all z.

Proof. Assume that for some z we have ρ(z) < ρ{Tz). Clearly,
we can assume in addition that p(z) — 1. Therefore k > 1. By as-
sumption p(z) ̂  k implies that p(Tz) ^ k. Let s ^ k be the maximal
integer such that there exists z e X(g) F satisfying />(£) < s and ^(Tz) = s.
Let

8

Tz — 'V u (5̂ ) W

We can choose us+1 e U, vs+1 e V such that us+1 g < ^ , , us > and
^ s + 1 ί < ^i, , v8 > . Since t&<e 27 are linearly independent and ^ e F
also linearly independent we can assume that these vectors are contained
in a basis of U and F, respectively. Since T is surjective there exists
t e X(g) Y such that p(t) = 1 and the (s + 1, s + Incoordinate α s + 1, s + 1

of Tt is nonzero. The minor of order s + 1 in the upper left corner
of the matrix of T(z + Xt) has the form

Since αβ+1,β+1 Φ 0 we can choose X Φ 0 so that the minor is nonzero.
For this value of λ we have

ρ(z + Xt) ̂  ρ(z) + 1 ̂  β ̂  fc ,

+ λί)) ̂  s + 1 .

If s = k this contradicts our assumption. If s < k this contradicts
the maximality of s. Hence, Lemma 2 is proved.

LEMMA 3. Let k be a positive integer such that ze X 0 Y and
p(z) = k imply that p(Tz) = k. If T is surjective and k < dim U,
k < dim V then ρ(z) = p(Tz) for each ze X(g) Y satisfying ρ(z) ^ k.

Proof. The assertion is trivial if p(z) = 0 or A:. Let 0 < ρ(z) < k.
Choose t 6 X ® Y such that
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ρ(z + t) = ρ(z) + ρ(t) = k .

Using this and Lemmas 1 and 2 we deduce

ρ(T(z + ί)) = p(Tz + Tt) =k ,

ρ(Tz) + ρ(Tt) ^ k ,

p(Tz) + p(t) ^ k ,

ρ(Tz) ^ p(z) .

Since by Lemma 2, /θ(Γ2) ^ jθ(s) we are ready.

The following Theorem is an immediate consequence of Lemma 3
and Theorem 3.4 of [3]:

THEOREM 1. Let k be a positive integer such that z
and p(z) = k imply that p(Tz) = k. If T is surjective and k < dim U,
k < dim V then

( 1 )

or

( 2 )

where

A:

C:

T = A

T= S°(

X-+U ,

X->V,

ί<g)B ,

C®D)

B: Y

D: Y

are bijective linear transformations and S is the canonical isomorphism
ofV<S)U onto ?7® V.

This theorem gives a partial answer to a conjecture of Marcus
and Moyls [2].

From Lemma 2 and Theorem 3.4 of [3] we get the following
variant:

THEOREM 2. Let k be a positive integer such that ze X (g) F and
p(z) ^ k imply that p(Tz) ^ k. If T is bijective and k < dim U,
k < dim V then (1) or (2) holds.

When X = Y = U = V, dim X = n, k = n ~ 1 we get a result of
Dieudonne [1],
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EXTENSIONS OF A FOURIER MULTIPLIER
THEOREM OF PALEY

JOHN FOURNIER

Let A be the class of continuous power series on the unit
circle T, that is those continuous functions / whose Fourier
coefficients f(ri) are 0 for negative indices n. It is known that
the most that can be said about the size of the coefficients of
such / is that they are square summable. For instance Paley
proved the following: Suppose that Σ7 I w(n) |2 = oo. Then
there is an / in A with Σo° \f(n)w(ri) | = oo. In other words
the I2 sequences are the only multipliers which map A into
the class of absolutely convergent power series.

The main result of this paper is that Paley's theorem can be ge-
neralized as follows: Let G be a compact Abelian group with a par-
tially ordered dual group Γ. Denote by A the class of continuous
functions f on G whose Fourier coefficients f(y) vanish off the non-
negative cone S of Γ. Let E be a totally ordered subset of S and
w be a function defined on E which is not square summable. Then
ΈtE I f(Ύ)w(y) I = oo for some / in A.

The class A when Γ is in fact a totally ordered group is a fre-
quently considered generalization of the algebra of continuous power
series. In this situation S itself is totally ordered so that Σs I w(τ) |2< °°,
whenever Σ | f(y)w(y) | < oo for all / in A. This was obtained for
G = Tn by Helson [4] and in general by Rudin [8, p. 222]. Their
proofs differed from Paley's although his method can be made to work
in the situations they considered.

Now the power series discussed in the first paragraph are the re-
strictions to the circle of those functions which are continuous on the
closure of the unit disc and analytic in its interior. From this point
of view it would be natural, when G = T2, to let A be the class of
restrictions, to the distinguished boundary of the unit bidisc, of func-
tions which are continuous on the closure and analytic in the interior
of the bidisc. These are precisely the continuous functions on T2

whose Fourier coefficients /(m, n) vanish off the first quadrant S of
Z2. The full analogue of Paley's theorem would be that every sequence
w with the Paley multiplier property, Σ | w(N)f(N) | < co for all /
in A, is square summable.

It is not known whether this strong version of theorem holds.
The Helson-Rudin proofs for the case when S is a half space depend
on a property of the analytic projection L taking trigonometric poly-
nomials Σr/(7)7(α) into Σs/CrMα). Specifically, || Lf\\p ^ Kp || / ||,

415
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for p < 1. The corresponding projection when S is the first quadrant
does not have this property [12, Th. 4] and [13, p. 208].

Except for this, however, the above mentioned proofs work in
the double power series case. A simple counterexample to the full
analogue of Paley's theorem would provide a simple proof that the
double analytic projection is not bounded from L1 to Lp for any p < l .
As Helson observed, by a theorem of Bohr [2, p. 468, Th. 5], there
are Paley multipliers on power series in infinitely many variables which
do not even tend to 0; so the infinite dimensional version of Paley's
theorem is false. This paper is the result of an attempt to settle
the question for two or more variables.

What our main theorem says about Paley multipliers w on double
power series is that Σΐ=i I w(Nk) I2 < °° for any sequence {Nk}ΐ=i, of
pairs of nonnegative integers, which is increasing in the strong sense
that the Nk are distinct and the sequences of first and second com-
ponents are nondecreasing. It follows easily that all such Paley mul-
tipliers w tend to 0 but perhaps not fast enough to make Σ s \ w(N) |2 <
oo. So it is still not known if the only Paley multipliers on double
power series are square summable. The proof of the main theorem
does not involve properties of the analytic projection, however, and
this suggests that Paley's theorem may not be as closely related to
the boundedness of the projection as the previous proofs suggest.

As we shall see in § 3, Paley multipliers can be thought of as
coefficients in a semi-lacunary series on a somewhat larger group than
G. The proof of the main theorem takes advantage of this fact and
the method can be applied to lacunary Fourier series in other situa-
tions. In order to present the idea in a simple setting, we begin in
§ 2 with such an application to semi-lacunary trigonometric series. In
§ 3 we use the same general approach to prove the main theorem.
Section 4 contains a discussion of Paley multipliers on power series in
several variables; a number of special results not depending on the
main theorem are obtained. In §5, we investigate Bohr sets, that is
those subsets of S whose characteristic functions are Paley multipliers.
It turns out that all such sets are finite unions of sets in each of
which no two elements are related under the partial ordering of Γ.
Finally, in § 6, we return to the subject of Fourier series whose re-
strictions to S are lacunary and obtain some information about such
series from our main theorem.

Notation and terminology have been taken from [8], which is a
good source for the facts which we shall assume in what follows.

2* We begin with an illustration of our method in a simple setting.

THEOREM 1. Let E — {mΛ}~=1 be a set of positive integers with
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mn+ι > 2 mn for all n. Suppose that f is a function in U(T) with
f(m) = 0 for all nonnegative m which do not belong to E. Then

Proof. We can assume that || / ||x = 1. Factor f — gh where g

and h are in U(T) with \\g\\2 = \\h\\2 — 1.

Then f(m) = l/2ττ Γ g{θ)h{θ) exp (-imθ)dθ
J—π

( 1 ) i.e., /(m) = <flr, χ n>

where χ(θ) = exp (iθ) and <(.,.)> is the usual inner product in the Hu-
bert space L\T).

By assumption the inner product in (1) is 0 for most nonnegative
m. The theorem is a consequence of the following result about such
inner products.

LEMMA 2. Let H be a Hilbert space and Mt c M2 c c MN be
closed subspaces of H. Let A19 A29 •••, AN be unitary linear opera-
tors on H with AιMιdA2M2d aANMN. Suppose that g and h are
elements of H satisfying:

( i ) AnheAn+1Mn+i for n = 1,2, . . . , J V - 1
(ii) g is orthogonal to the subspaces An+1Mn for n — 1,2, •••,

N-l.
Then ΣΠ<9,Anh>\2£4\\g\\2.\\h\\\

To prove the theorem let H be L2(T) and take Mn to be the closed
subspace of L2(T) generated by {χmh | - mn ^ m < 0}. Clearly

Λfi c ikί2 c c Mn c Mn+ι c .

Define An by Awfc = χOT Â: for all k in ί ί .
The subspaces AnMn are the closed linear spans in L2(T) of

{χmh I 0 ^ m < mn}. So, ΛΛίi c A2M"2 c c A%MW c An+1Mn+1 c .
Also as mw < mn + 1, A f̂e e An+1Mn+1 for all ^.

Finally An+ίMn is the closed subspace generated by

{χmh I mw + 1 - mn^m < mn+ι} .

Now mw + 1 — mΛ > 2 mn — mπ = mw so that mn+1 — mn ^ m < mn+1 im-
plies mn < m < mn+1. For such m, <(̂ , χmK} = f(m) = 0 by assumption.
Therefore ζg, ky = 0 for every generator A: of An+ιMn and hence for
all k in An+ίMn and (ii) holds.

The lemma applies for any fixed N to yield

N

71 = 1
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Therefore Σ?=i I/W> I2 ^ 4.

Proof of Lemma 2. Again normalize by assuming | | 0 | | = ||/&|| = l .
By Mo we shall mean the subspace of H consisting of 0 alone.

For n — 0,1, , N let feΛ be the orthogonal projection of h onto
Mn. Then the sequence kx — k09 k2 — klf , kN — kN_λ is orthogonal and

N

( o \ V II Z* h II2 — II l fr II2 < 1
1

Now for each n, An(h — kn) is orthogonal to AnMn. But for
m<n, AJi e Am+1Mm+1 c AnMny and Amkm e AmMm a AnMn. So for dis-
tinct m and n, An(h — kn) and Am(h — km), are orthogonal with norm
at most 1.

Write <flr, Awfe> = <(/, A. ίλ-fcJ) + <g, An(kn-kn^)y + <g, Awfcn-i> =
α» + δ» + cw say.

By (ii) cΛ = 0 for all w.
By BesseΓs inequality,

F i n a l l y \bn\ ^ \\g\\.\\An(K - kn^)\\ = \\kn - kn^\\ so t h a t b y (2)

The triangle inequality for I2 yields [Σf I <J9, Anh> |2]1 / 2 ^ 2.

Results like Theorem 1 are well known for lacunary series, i.e.,
series with f(m) = 0 for all m off E [14, p. 205, Remark (a)]. The
fact that the same is true for semi-lacunary series is implicit in an
argument of Rudin, [9, §5.7], and seems to be well known among
Fourier analysts. So the novelty of Theorem 1 lies in the method of
proof rather than the conclusion. On the other hand, the most general
situation in which our method works seems different from the one in
which the usual technique works; we shall compare them in § 6.

For the moment, let us remark that a simple modification of the
above handles the case when, for some λ strictly between 1 and 2,
mn+1 > Xmn for all n. It turns out that if / is as in Theorem 1 then
Σ ^ \f(m) I2 ̂  (Vk + I)2 II / II2, where k is an integer chosen so that
Xk ^ λ/(λ - 1).

3* In what follows, G will be a compact Abelian group and Γ
will be the dual group of G, with the group operations written addi-
tively. S will denote a semigroup in Γ which contains 0. We let A
be the algebra of continuous functions f on G for which f(y) is 0 off
S. For definiteness, the reader may find it convenient to imagine
that G = T\ Γ = Z\ and that S is the first quadrant in Z\



EXTENSIONS OF A FOURIER MULTIPLIER THEOREM OF PALEY 419

Let M be the class of Paley multipliers on A, that is those se-
quences {w(7)}reS with Σ*l/(7)w(7)| finite for all / i n A. In other
words for each w in M, the mapping /—*{f(7)w(j)}res sends A into
l\S). In fact, by the closed graph theorem, this is a bounded linear
operator. So M is a normed linear space with the operator norm:

]| w \\M = s u p Σ l/(7)w(7) I (/ in A and || / Ĥ  = 1) .

Observe that if v is a sequence with | v(y) | ^ | w(y) | for all 7 in
S then \\v \\M ̂  || w |U In particular this is true if v is a truncation
of w which agrees with w on part of S and is 0 elsewhere.

For any sequence e(7) = ± 1 we have that | Σ s ε(7)/(7)^(7) | ^
II v) lU ll / I loo. Therefore the mapping /—> Σ ^ ε(7)^(7)/(7) is a bound-
ed linear functional on A of norm no greater than | |w|U By the
Hahn-Banach theorem it has a norm preserving extension to all of
the continuous functions on G. This means that there is a bounded
regular Borel measure μ on G with | | μ | | ^ \\w\\M and

= ί /
for all / in A. Taking / = 7 for any 7 in S we obtain:

= \ y(x)dμ(-x) = I Ύ(-x)dμ(x) =
j 0 J<?

The property that for every choice of signs 5(7) there are mea-
sures μ satisfying (1) characterizes M and was used by Helson and
Rudin in their proofs of Paley's theorem ([4] and [8, p. 222]).

Now S induces a partial ordering of Γ under the rule: 7i ^ 72 if
and only if 72 — 7i e S. The order relation is transitive and invariant
under addition but it may happen that 7X ^ 72 ^ 7i without 7L = 72.

We can now state and prove our main theorem.

THEOREM 3. Let weM and EczS be totally ordered under the
order induced by S. Then

Proof. It is enough to prove the theorem for \\w\\M = 1 and E
finite. Let 71 <£ 72 ^ ^ 7iV be the elements of E. Denote by v
the truncation of w to E: V(Ύ) = w(i) if ΎβE and v(y) = 0 otherwise.
As observed above \\v\\M ̂  1.

Let ε(7) be any sequence of ± 1 on S. There is a bounded re-
gular Borel measure μ on G with || μ \\ ^ 1 and £(7) = e(7M7) for all
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7 in S.
Fix K > 1. As E is finite there is a trigonometric polynomial P

on G with HPH, ̂  K2 and P(τ) = 1 on E [8, Th. 2.6.8]. Then / =
P*μ is a trigonometric polynomial with the following properties:
(2) | | / | | x ^ K\f(i) = 6(y)w(Ύ) on E and 0 elsewhere in S, and
/(7) = 0 off the support of P.

It is a theorem of Little wood [5] that, if for each choice of signs
there is an / satisfying (2) and with / = 0 off E, then ΣJE I w{y) |2 ^
BKA where B is a fixed constant. Our problem is to reach the same
conclusion assuming only that f(y) = 0 on the rest of S.

In order to make use of the random signs ε(γ) in the above, we
introduce the Rademacher functions. Let Q be the Cartesian product
of N copies of Z2, the additive cyclic group of order 2. Denote the
elements of Q by t = (tlf , tn) with each tj = 0 or 1. Define the
w'th Rademacher function τn by

1 if tn+ι = 0

By (2), for each t in Q we can find a trigonometric polynomial

f(t, x) on G so that ί |/(ί, x) \ dx ^ iί2, [/(ί, )Γ(^) = 0 off the support

of P and

if 7 =
( 3 ) " ^ /J x " 0 for all other y in S

Letting dt be the Haar measure on Q which assigns mass 2~N to

each point, we get \ \ \f(t, x) \ dxdt ^ K2. That is, if we assume for
JQJG

the moment that / is a measurable function on Q x G, then fe Lι(Q x G)
with norm no greater than K2.

In fact, / is a trigonometric polynomial on QxG, that is, a finite
linear combination of continuous characters on QxG, but to be sure
of this we must look at the set of such characters, i.e., the dual
group of Q x G.

To begin with, the complete set of characters on Q is the set of
Walsh functions ψ(m)(t)y m = 0,1, , 2N - 1 [3, pp. 376-377], which
are defined as follows. We write

m = 2ni + + 2Λ*, 0 ^ n, < n2 < < nk

and let ψ(m)(t) = rni(t) rn2(t) rnk(t), with the convention that
ψ(O)(t) = 1. R, the dual group of Q is the set of all such functions,
under multiplication.

The dual group of Q x G is R x Γ [8, Th. 2.2.2] so that the
products ψ(m){t)y{x) form the complete set of continuous characters
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on Q x G.
For fixed t, f(t, x) is a trigonometric polynomial on G whose

coefficients are 0 off the support of P. As Q and R are finite, all
functions on Q are trigonometric polynomials and in particular [f(t, )]A(7)
is a trigonometric polynomial on Q for each 7. So, the finite sum/(ί, x) =
Σjresuwp y(%)[f(t,-)]A(y) is a trigonometric polynomial on Q x G.

Write /(ί, B ) Λ = ΣϊίLV Σrerα(ra, 7)iKm)(ί)7(a). Clearly α(m, 7) = 0
unless 7 e supp P and in view of (3) we have

, , x , (w(7n) if 7 = 7n and m = 2"
( 4 ) α ( m , 7 ) = .

(0 otherwise for 7 in S

We have no information about α(m, 7) when 7 is in supp P but not
in S but this will not matter.

The proof now proceeds much as in Theorem 1 with the products
ψ(2n"1)yn playing the role of the thin set of characters {χmn}»=i.

F a c t o r f ( t , x) = g ( t , x ) h ( t , x) w h e r e g , h e L 2 ( Q x G) a n d \\g\\2 =
11 /} 11 — 11 f 111/2 < τr
II ^ I12 — II / | | i ^ -ft-.

For all m, 7

α(m, 7) = I I g(t, x)h(t, x)y(x)ψ(m)(t)dxdt ,
( 5 ) JQJG

i.e., a(m, 7) = <flr, ψ(m)7hy .

We wish to apply Lemma 2 with Anfc = ψ(2n-ι)ynk for all ifc in
U(Q x G). Assume for a moment that subspaces Mn can be chosen so
that the hypotheses of the lemma hold. Then, in view of (4) and (5)

I2 = Σ
1

which is what we want, as K is any constant larger than 1.
It remains to chose the Mn so that the assumptions of the lemma

are satisfied. This is the only part of the proof where the total or-
dering of E is used.

Let Mn be the closed linear span in L2(QxG) of {ψ(m)jh | (m, 7) Φ
(0, 0), 0 g m < 2n, -7« ^ 7 ^ 0 } . As 7i < 72 < < 7* it is clear
that MΊ C M2 C c Mn.

The set {^(m) | 0 ^ m < 2n} is the subgroup of the Walsh func-
tions generated by rQ, rx, •• ,rΛ_1. Therefore, Awikf% is the closed sub-
space generated by {ψ(m)jh | (m, 7) Φ (2n~\ 7W), 0 ^ m < 2 % , 0 ^ 7 ^ 7«}.
Certainly Aiik^ c A2M2 c c ANMN. Moreover

for n<N and (i) holds. Again this depends on the fact that 7n fg Ύn+1.
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Finally if m < 2n, rn is not one of the factors of ψ(m). So

ψ(m)ψ(2n) = ψ(m)rn = ψ{m + 2%) .

Therefore, An+1Mn is the closed linear span of

I (m, 7) =*= (2% 7»+1), 2 ^ m < 2*+1, 7»+1 - 7. ^ 7 ^ 7%+1} .

Now when m and 7 satisfy these restrictions, then γ e S a s 7«+i — 7* ^ 0,
and by (5) and (4), <g, ψ{m)jh)> = α(m, 7) = 0, That is <#, k} = 0 for
every generator & of An+1Mn and hence for every k in An+ίMn. (ii)
holds and the proof of the theorem is complete.

In fact the argument actually works under somewhat weaker as-
sumptions than those above.

DEFINITION. A set IczΓ is called convex if {7 | Ύ1 ^ 7 ^ 72} c /
whenever 7X and 72 are in I.

THEOREM 4. Lei I(zΓ be convex and w be a sequence defined on
I. Define

II w ||7 = sup Σ 1/(7)^(7) I (fe C,(G), || / |U = 1) ,

where d(G) = {/e C(G) |/(τ) = 0 o / /}. Lβί £ c / 6e totally ordered.
Then Σ*

Outline of proof. The method of Theorem 3 works in this
situation. The main change is that statements which held for all 7
in S in the proof of Theorem 3 now hold for all 7 in /. Lemma 2
applies with Mn taken to be the closed linear span in U(Q x G) of
{ψ{m)yh I (m, 7) Φ (0, 0), 0 ^ m < 2W, and ^ - 7 ^ 7 ^ 0}. We omit
the details.

In the special case G = T, S = {n | n ^ 0}, I = {n | nt ^ n <* ̂ 2}, I
itself is totally ordered and we conclude that Σ/1 w(w) |2 ^ 4 || w ||*.
With the constant 4 replaced by a much larger one, this was obtain-
ed by Steckin [11, Lemma 2] as a consequence of Paley's theorem.

The definition of | |w| | z makes sense for any set / and does not
depend at all on S. Furthermore a set may be convex with respect
to several orderings of Γ. For instance, let G = T2, Γ = Z2,1 = first
quadrant in Z2. We can take S to be any quadrant and in each case
I is convex with respect to the order induced by S. So, S plays an
indirect role in Theorem 4 which may be restated as follows:

THEOREM 4'. Let I be a subset of Γ. Define \\w\\f as before.
Then Σ # I w(y) I2 ̂  4 || w ||7 for any set Ed which is totally ordered
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under some ordering of Γ with respect to which I is convex.

4* We now treat the case of power series in a finite number of
variables. That is, G=T\Γ=Zn, and S={N=(NlfN2, , Nn) | N3^
0 for all j}.

The main theorem tells us that, when w is a Paley multiplier, 4
||w||Sf is a uniform bound on ^E\w(N)\2 for all totally ordered sub-
sets E of S. Unfortunately, such sets E are essentially one dimen-
sional. For instance, the Nγ axis {N in S\ N3 = 0 for j > 1} is a
maximal totally ordered subset of S.

It is possible, however, to give bounds on Σz> I w(N) |2 for some
sets D which are not as thin as totally ordered sets. For simplicity
we prove the following theorem only for the case n = 2.

THEOREM 5. Fix an integer L>0 and let D be the set

{NIL^N^SL and N2^0}.

Then for every w in My Σz> I W(N) I2 ̂  36 || w \\2

M.

Proof. Since truncation does not increase norms in Mt assume
that w = 0 off D.

Let Kn(θ) be the Fejer kernel Σ ; = _ κ [1 - | m \/(n + 1)] exp (im θ).

Put K(θ) = exp (i2LΘ)[2K2L^(θ) - KL^(Θ)]. Then (l/2τr)Γ | K(θ) \ dθ ^

3, K(m) = 1 if L ^ m ^ 3L, and K(m) = 0 if m < 0. Define a measure

v on T2 by ί 2f(θ,φ)dv(-θ, -φ) = (l/2τr)Γ f(θ,0)K(-θ)dθ. Then
II v II ^ 3, 0 = l^on D, and 9(iV) = 0 if N, <0.

Now let S, be the half space {N\ N2 > 0, or iV2 = 0 and iVL ^ 0}.
w can be thought of as a Paley multiplier on CSl(T2), the continuous
functions whose coefficients vanish off Sx. For, suppose that / is such
a function. Let g = f*v. Then g eA and || g ||co ^ 3 || / 1 .̂ Extend
w to S1 by setting it equal to 0 on the rest of Sλ. Now,

Σ \f(N)w(N) I = Σ I §(N)w(N) I ̂  || w IU || flr |U ^ 3 || w IU || / || .
-Si i5

So, as a multiplier on CSl, w has norm a t most 3 | | w | | M . I t follows

from the main theorem t h a t

The same kind of conclusion can be obtained in dimension n for
sets D of the form:

{NI Nn ^ 0 and L3 ^ N3- ^ 3L, for j = 1, 2, . . , n - 1}
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where L19 L2, •• ,LΛ_1 are any fixed nonnegative integers. Of course
the last coordinate need not be the one that is free in the above.

As we shall see in the next section, the main theorem implies
that, in the context of power series in a finite number of variables,
w(N)—+0 as N—> oo whenever w e M. This fact can also be derived
from the following lemma of Helson.

LEMMA (Translation Lemma). Let G be a compact Abelian group.
Suppose that μ is a finite regular Borel measure on G and {7n}? is
a sequence of distinct elements of Γ. Define measures Xn by dXn(x) =
yn(x)dμ(x). Let Xn—>σ in the weak star topology. Then σ is singular
with respect to the Haar measure of G [8, Lemma 3.5.1].

THEOREM β. With G = Tn and S as above, w(N)—>0 as N—> co
for every Paley multiplier w.

Proof. Suppose that the theorem is false. Let w have the pro-
perty that I w(N) I ^ 1 on an infinite set B of JV's.

First assume that B contains an infinite sequence {N(k)}? such
that for each k and all j , N!-k) ^ k. Then in fact the sequence can
be chosen to be lacunary in the sense that for each k and j , Njk+1) >
2N{

j

k). Let v be equal to 1 on this sequence and 0 elsewhere. As v
is dominated by w, it is a Paley multiplier.

Therefore there is finite regular Borel measure /i on Γ 1 so that
μ(N{k)) = 1 for all k and μ(N) = 0 for all other N in S. Consider the
m e a s u r e s Xk d e f i n e d b y dXk(x) = e x p ( — i N { k κ x ) d μ ( x ) . F o r a l l k, \\Xk\\ ~
\\μ\\, so that a subsequence of the λ£s converges in the weak star
sense to a measure σ.

χk(0) = 1 for all k, so that σ(0) = 1. For any N Φ 0, Xk(N) = 0
for all large k. Hence σ(N) = 0 for N Φ 0. This means that dσ is
dx, the Haar measure on Tn. But by the translation lemma, dσ is
singular with respect to dx, & contradiction.

The preceding three paragraphs prove the theorem for the case
n = 1 as then any infinite B would contain such a sequence {N{k)}.

For n > 1, we conclude that B contains no such sequence. It
follows that there is an integer k for which the cone {N \N3 > k for
all j} does not intersect B. In other words B is contained in the union
of the (k + 1) n hyperplanes {N in S\ Nd = h} where j runs from 1
to n and h from 0 to k. The intersection of B with one of these
hyperplanes, for particular choices of j and h, is infinite. Let S1 be
the positive cone in Z*"1. Define a sequence v on Sλ by

v(Nlf N2, , Λ/V-0 = w(N19 N2, , Nj-19 h9 Nj+19 , Nn^) .

It is not hard to see the that v is a Paley multiplier on CSl (Tn~ι)
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with I v(N) I ̂  1 for infinitely many N in S1# The theorem follows by
induction on the dimension n.

The idea for the application of the translation lemma in the above
came from Rider's treatment of the infinitite dimensional case [7, § 3].
In fact Rudin made a similar application in [9, Th. 4] to obtain the
result in the one variable case.

So, for the case of power series in two or more variables Theorems
3, 5, and 6 provide a variety of restrictions which must be satisfied
by any Paley multiplier. We now give an example for the case of
two variables of a sequence which satisfies these restrictions but is
not square summable. It resembles one given by Bohr in infinitely
many variables [2, p. 468, Th. 5] and arose from a suggestion of Pro-
fessor Walter Rudin.

For m ^ 0, n ^ 0, let w(m, n) = l/(m + n + 1).
Observe that any totally ordered set E intersects the line lk =

{(m, n) I m + n = k} in at most one point. For any such E,

Σ I w(N) |2 = Σ Σ I w(N) |2 ^ Σ V(fc + I)2 = ^76 .
E k0 EΠl

Hence w satisfies the conclusion of Theorem 3.
Next let D be any set of the type considered in Theorem 5. For

k < L, lk Π D is empty and for any fe, lk n D has at most 2L + 1 ele-
ments. Therefore,

Σ i w(N) |2 - Σ Σ I w(N) |2 ^ Σ (2L + l)(k + I)"2

D k = L ijcΠD L

£ 2 L + 1 <£3

and the conclusion of Theorem 5 holds for w.
Finally, it is clear that w(N)—>0 as N—>°°.
On the other hand,

Σ I w(N) I2 - Σ Σ I MAT) |2 - Σ (£ + i)(* + l)~2 = °°
S k=0 lkΓ)S k=0

It is not known whether w is a Paley multiplier sequence. This
example shows, however, that in the context of power series in two
as more variables, our results do not imply that M = 12(S). The
question is therefore still open for the case of n variables,

5* We modify a definition of Rider [7, p. 558].

DEFINITION. Let G, S, and A be as in § 3. A subset B of S will
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be called a Bohr set if there is a constant K so that Σ * I /(?) I ^
K\\f\U for a l l / i n A.

In other words, B is a Bohr set if the sequence which is 1 on B
and 0 elsewhere in S is a Paley multiplier.

The reason for the name Bohr set is the following theorem of
Bohr [2, p. 468, Th. 5]. Let G be the complete direct sum Tω of
countably many circles and Γ be the direct sum Z™, [8, §8.7.9]. Let
S = {N e Z°° I Nj >̂ 0 for all j) and let A be the space of continuous
functions on Tω with coefficients supported by S. Let B = {NzZo°\Nj =
δi3 for some %}. Then Σ * \f(N) | ^ || / ||TO for all / in A. Other ex-
amples of Bohr sets and an account of the connection with Dirichlet
series appear in [7].

We use Theorem 3 to obtain necessary arithmetic conditions on
Bohr sets.

THEOREM 7. Let B be a Bohr set and K the constant of the de-
finition. Then every totally ordered subset of B has at most AK2

elements.

Proof. By assumption the multiplier w which is 1 on B and 0
elsewhere has norm at most K. If EaB is totally ordered, Σ # l =
Σ * 110(7) I2 ̂  4KΛ

Observe that the theorem certainly holds for Bohr's example B.
Totally ordered subsets of B have one element as no two elements of
B are related under the order induced by S.

DEFINITION. A subset B or Γ will be called unrelated if no two
elements of B are related under the order induced by S.

LEMMA 8. A subset B of Γ contains no totally ordered set with
more than K elements if and only if B is the union of at most K
unrelated sets.

Proof. It is obvious that such a union contains no totally order-
ed set with more than K elements.

Conversely, suppose that the totally ordered subsets of B have
at most K elements. Let E be a totally ordered subset of B, maximal
with respect to containment. We shall find a set Bx consisting of ex-
actly one minimal element from each such E. As E is finite the set
F of minimal elements of E is nonempty. By the maximality of E,
F is a maximal equivalence class in B: i.e., for any y in F, F = {7'
in B | 7 <Ξ 7' ̂  7}. Thus if IS" is another maximal totally ordered subset
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of B and Fr is the set of minimal elements of E' then either F—F'
or F and F' are disjoint. The axiom of choice yields a set i?x con-
sisting of one element from each such F, that is one minimal element
from each such E. By the maximality of the E'&, Bx is unrelated.
Moreover as every totally ordered subset of B is contained in such
an E,B ~ Bι contains no totally ordered set with more than K — 1
elements. The lemma follows by induction on K.

THEOREM 9. Every Bohr set is the union of at most 4if2 unrelat-
ed sets, where K is the constant in the definition of Bohr set.

Proof. Combine 7 and 8.
It can be shown that every unrelated subset of the positive cone

S of Zn is finite. This means that, for the case of power series in
n variables, Bohr sets are finite. This statement is equivalent to
Theorem 6, as it is easy to see in any case that there is an infinite
Bohr set in S if and only if there is a Paley multiplier which does
not tend to 0. In fact we can use Theorem 7 in place of the Transla-
tion Lemma in the proof of Theorem 6. Simply observe that the
lacunary sequence discussed in the second paragraph of the proof of
Theorem 6 is increasing with respect to the order induced by S and
can have at most 4iΓ2 elements, contrary to the assumption that it is
infinite. Therefore there is no such sequence and the last paragraph
of the proof of Theorem 6 applies.

We now turn to the case of power series in infinitely many vari-
ables; i.e., G is the complete direct sum Tω, Γ is the direct sum Z°°
and S = {N \ N3 ^ 0 for all j}. Bohr's example shows that there are
infinite Bohr sets in this case.

In [7, p. 560] Rider gives sufficient arithmetic conditions for a set
to be a Bohr set: Let B c S satisfy:

(c) the elements of B are linearly independent over the integers.
(d) whenever Ne S and N = Σ? βiN{i) where the β{ are integers,

Σf βi = 1, and the N{i)eB for all i, then NeB.
Then B is a Bohr set.
It is easy to see that these conditions force any such B to be

unrelated. For if N{1) < N{2) are in B, then by (d)

j|f (*> = JV(1) + k(N{2) - iV(1))

is in B for all k ^ 0. But M{2) + N{1) - 2N{2) - 0 contrary to (c).
On the other hand, an unrelated set need not be a Bohr set. For

instance let Bk = {N in S\ N3 = 0 unless j = 2k — 1 or 2k, and
ΣΓ N3 = k). Let B = \JT Bk. It is easy to see that B is unrelated.
Let w be the sequence which is 1 on B and 0 elsewhere. Apply
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Theorem 4' with I = S, using the order induced by {N in Z°° | JNΓ,. ;> 0
for j Φ 2k and N2k ^ 0}, to obtain: k + 1 = Σ * J w(-M) |2 ^ 4 || w \\2

M.
Therefore w is not a Paley multiplier and 1? is not a Bohr set. We
can modify this example so that it becomes an unrelated Sidon set
which is not a Bohr set.

Nevertheless any set consisting of exactly one element from each
Bk satisfies (c) and (d) and is therefore a Bohr set. It is not clear
whether every infinite unrelated set must contain an infinite Bohr set.

It is shown in [2] that there is a connection between Dirichlet
series and power series in infinitely many variables. Theorem 9 can
be restated as follows:

THEOREM. Suppose that B is a set of positive integers so that
there is a constant K, with Σ s I c(n) I ̂  K whenever there is a Dirich-
let series f(s + it) = ΣΓ c(n)n~s-u with | f(s + it) | ^ 1 for all s > 0.
Then B is the union of at most AK2 sets in each of which no ele-
ment divides any other.

6. Conclusions similar to Theorem 1 can be obtained under weaker
assumptions. Once again G, Γ, S, and A are as in § 3.

DEFINITION. A set δ c f is called a Sidon set if there is a con-
stant K so that Σ * I ZOO I ^ ^ Π I / I U for every trigonometric poly-
nomial / for which / is 0 off B, [8, § 5.7].

THEOREM 10. Let B be a Sidon set and I be a convex subset of
Γ. Suppose that f is in U{G) and f(y) — 0 whenever 7 is in I but not
in B. Let E be a totally ordered subset of B Π I. Then Σz? I/OO I2 ^
4 i P | | / | | ? . The constant K is the one appearing in the definition of
Sidon set and does not depend on I or E.

Proof. Let g be a trigonometric polynomial with g = 0 off /.
Put h = fag. Then h = 0 off B Π J and in particular off B. By the
definition of Sidon set,

< i ) Σ I g ( y ) f ( y ) I = Σ I £ ( τ ) I ^ K | | h m ^ K \ \ / | | x . \ \ g \ u .
I B

Since the trigonometric polynomials with coefficients supported on
/ are dense in C7(G), (1) holds for all g in CT(G). Putting W(Ύ) = f(y)
we have that || w\\z^K\\f \\lm By Theorem 4, Σ * I w(y) |2 ^ 4iP || / \\l

Observe that in the above / is arbitrary off /.

COROLLARY. Let E = {mj~= 1 be any Hadamard set of positive

integers {i.e., there is α λ > 1 so that mn+1 ^ Xmn for all n). Suppose
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that fe L\T) and f(m) = 0 for all m ̂  0 which are not in E. Then
ΈAE \f(m) \2 ̂  K\\ f \\l for some constant K depending on E.

Proof. It is well known that every Hadamard set is a Sidon set.
Theorem 10 applies with / — S = {m j m ^ 0} and B = E.

As a Sidon set need not be a Hadamard set Theorem 10 genera-
lizes Theorem 1.

If S is a half space, it is not necessary to know that E is a Sidon
set to obtain the conclusion of Theorem 10.

DEFINITION. A set EczΓ is said to be of type Λ(s), s > 0, if for
some r < s, there is a constant Brs so that || / ||s ^ Brs \\f\\r for every
trigonometric polynomial / whose coefficients are 0 off E.

In [9, Th. 1.4], Rudin shows that if there is such a constant Brs

for one r < s, then there are such constants Brs for all r' < s.
The following argument was shown to us by F. Forelli. It re-

sembles the one used by Rudin in proving Paley's theorem for half
spaces [8, p. 222], and is the technique mentioned at the end of §2.

THEOREM 11. Suppose that S is a half-space, that is, that Γ is
totally ordered. Let EaS be a A (2) set. Then there is a constant
K so that ΣE 1/(7) Γ ̂  K || / ||f for every f with f = 0 on S ~ E.

Proof. First suppose that / is a trigonometric polynomial. Let
g(x) = Σs/(7)7(ίc) be the analytic projection of /. There is a constant
K, so that IMIi/a^ ϋMI/lk [8, Th. 8 7 6]. The coefficients of g
vanish off E so that || g ||2 ^ J?(1/2)21| g ||1/2 ̂  K2 \\ f \\u say. Then

the desired result with K — (K2)
2.

We obtain the same conclusion for arbitrary / by convoluting /
with a sequence of trigonometric polynomials which form an approxi-
mate identity.

Every Sidon set is of type A (2) [8, § 5 7 7]. So when S is a half
space and / = S, Theorem 10 is a special case of Theorem 11. When
S is smaller than a half space, however, the proof of 11 breaks down
for the same reason as Rudin's proof of Paley's theorem: The analy-
tic projection may not be a bounded operator from L1 to Lr for r < l .

One reason for considering theorems like these is that by an argu-
ment due to Banach [1, Th. a], they are equivalent to theorems about
interpolating I2 sequences by Fourier coefficients of continuous func-
tions. We demonstrate this idea by applying it to Theorem 10.
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THEOREM 12. Let B be a Sidon set and I a convex subset of Γ.
Let E be a totally ordered subset ofBΠl and suppose that a sequence
v is defined on E so that ΣE I v(y) |2 < <*>. Then there is a function
f in C7(G) with f(y) = v(y) for all 7 in E. Moreover f can be chosen
with II / ||co ^ 2Kf \\v\\2 for any fixed Kf larger than the constant K
associated, with B.

Proof. Let D be the closed subspace of elements / of Cτ with
/ = 0 on E. Consider the bounded linear operator L: C2/D —* l\E)
defined by L([f]) = {f(7)}reE- We must show that L is onto and that
II I/"1 II g 2K. The range of L is dense in l\E) and L is one so that
L is onto if and only if L* is [8, p. 259, C l l ] .

Now (Cj/D)* = DL the annihilator of D in (Cz)*. Also (C7)* -
M(G)/(Cj)L where M(G) is the space of bounded regular Borel measures

on G and (C/)1 is the set of such measures μ for which 1 f(x)dμ( — x) =

0 for all / i n C7. Since the trigonometric polynomials in C7 are dense,

(C,y = {μ m M(G)\μ = 0 on / } . T h e n D - {μ + (CI)
L\β = 0 off E).

To any 12(E) sequence w associate the L2(G) function g(x) —
Σ r e e Φ W a ; ) . L*(w) is the coset g + (C7)

x in DL.
Pick μ in (C/)1 and a finite subset F of E. Let P be a trigono-

metric polynomial with P = 1 on F. Then the function h = (g + μ)*P
is a trigonometric polynomial. On I, //(γ) = 0 so that fe(τ) = g(Ύ)P(Ύ).
In particular fe(τ) = 0 on I — B. By Theorem 10,

But jj/^ϋ ^ \\g + Aί|| | | P | | i and | | P | | i can be taken arbitrarily close
to 1. Therefore ΣF \ w(y) |2 ^ 4K2 \\ g + μ ||2 for all finite subsets .F of
E. Hence ||flf + ^ | | ^ (1/2JBΓ)(ΣZ; I w(7) |2)1 / 2 for all /i in (CZ)L. That is,

=mΐ\\g + μ\\ (μeidV)

^ (1/2JBΓ) II W[U -

This means that L* is onto [8, p. 259, Cll] and IKL*)"1!! ^ 2K.
Therefore L is onto.

Moreover || L~ι \\ = \\ (L~γ \\ = \\ (L*)"11| ^ 2K.

A similar interpolation theorem can be derived from Theorem 11.
For the circle group, for instance, it is well known that if B is

a Sidon set of integers and v is a 12(B) sequence then there is a con-
tinuous / with II/IU ^ 2ϋΓ||i;| |2 and f(n) = v(n) on B [10, Th. 5.1].
Also if / = {n I nγ ^ n ^ n2} and v is 0 off If] B then the trigonometric
polynomial g(θ) = Σ r n s ^(^) exp (in θ) has the right coefficients but, as
B is a Sidon set, || 01|«, ^ 0-1K) Σ/ns I v(%) |, which may be much larger
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than 2JBL||V||2. SO the interpolating continuous function, in order to
have small norm, may need some nonzero coefficients off B. Theorem
12 says that such an / can still be taken as a trigonometric polyno-
mial with coefficients supported by the smallest interval / containing
the support of v.

This paper is based on my Ph. D. dissertation at the University
of Wisconsin. Many of the ideas arose in conversations with various
faculty members there. I would especially like to thank Prof. Frank
Forelli for suggesting the problem and supervising my research.
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A SUBCOLLECTION OF ALGEBRAS IN A
COLLECTION OF BANACH SPACES

ROBERT PAUL KOPP

Let D(p, r) with 1 ̂  p < oo and •— oo < r < 4- oo denote the
Banach space consisting of certain analytic functions f(z)
defined in the unit disk. A function f(z) = Σ~=o a>nZn is a
member of D(p, r) if and only if

Σ (n + l) r I an \p < °° .

We define the norm of / in D(p, r) by

By the product of two functions / and g in D(p, r) we shall
mean their product as functions, i.e., [fg](z)=f(z)g(z). The
purpose of this paper is to discover which of the spaces D(p, r)
are algebras.

THEOREM 1. // D(p, r) is an algebra, then there exists a real

O with \\fg\\ ^c | |/ | | | | f lr | | for every f,geD(p,r).

Proof. Let h be a fixed element of D(p, r). It suffices to show
the map f—+hf is a bounded linear transformation from D(p,r) to
itself. The proof is based on the closed graph theorem [2, p. 306].
Suppose h is a multiplier from D(ply rx) to D(p21 r2) and suppose

( i ) Λ — / i n Dip^n) and
(ii) hfn-+g in D(p2,r2).

Then fn(z)—>f(z) for each z in the unit disk and so h(z)fn(z)-+h(z)f(z).
On the other hand by (ii), h(z)fn(z)—>g(z) for each z in the unit disk.
Hence g = hf, and so by the closed graph theorem multiplication by
h is a continuous linear transformation. It follows from this [2, p. 183]
that D(p, r) is equivalent to a Banach algebra, and from this the
theorem follows immediately.

COROLLARY 1. // D(p, r) is an algebra and c > 0 as above, then
^c\\f\\vfeD(p,r) and

Proof. For each / in D(p, r) let Tf denote the multiplication
operator from D(p, r) to itself determined by /, i.e., Tf(g) = fg. Then
for zQ satisfying | z0 \ < 1 the map Tf -> f(z0) is a multiplicative linear
functional on the Banach algebra of multiplication operators

Tf,feD(p,r)

433
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with the usual norm. Hence

\f(Zo)\^\\Tf\\ = s u p \\fg\\£c\\f\\,geD(p,r).
I l 0 l l = i

THEOREM 2. If p — 1, then Dip, r) is no algebra for r < 0. And
if 1 < p < oo, then D{p1 r) is no algebra for r ^ p — 1.

Proof. The function f(z) = Σ~ + l)]s* is an unbounded
function on | z | < 1 but lies in D(l, r) if r ^ 0. And similarly the
function /(s) = Σ~=o l/[(^ + 1) log (n + l)]zn is an unbounded function
on I z I < 1 in .D(p, r) if p > 1 and r ^ p — 1. Therefore by Corollary
1 the spaces are not algebras.

THEOREM 3. If p = 1, ί/̂ w JD(P, r) is an algebra for r ^ 0,
i/ 1 < p < oo ίfeβπ D(p, r) is an algebra for r > p — 1.

Proo/. ( i ) Suppose first f(z) = Σ^=o < V and
in D(l, r) with r Ξ> 0. We will show /# e J9(l, r)

bnz
n lie

Σ<
A; = 0

1)1

Σ Σ (i + H 1)1 <*>k I I δj I where j = n - k
k=Qj=0

Σ
A;=0 j=0

= 11/11 H e l l .
(In) Now suppose r > p — 1, and let

OO CO

fix) = Σ anz
n and g(z) = Σ bnz

n

be]two elements of Dip, r). We will show there is a constant K such
that H/0 || ^ K\\f\\ \\g\\. Define q by the equation 1/p + 1/g = 1 .

Σ<
fc=0

+ IT

fΣ
U=0

α* | (n - k + 1)'" |

Applying Holder's inequality we get
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where

We complete the proof of the theorem by showing

sup [Cn] < oo .

-k

= (n - A;

\PIQ

since

rq/p = — 1) > 1

\PIQ
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TWISTED COHOMOLOGY AND ENUMERATION
OF VECTOR BUNDLES

LAWRENCE L. LARMORE

In the present paper we give a technique for completely
enumerating real 4-plane bundles over a 4-dimensional space,
real 5-plane bundles over a 5-dimensional space, and real 6-
plane bundles over a 6-dimensional space. We give a complete
table of real and complex vector bundles over real projective
space Pk, for k ^ 5. Some interesting results are:

(0.1.1.) Over P5f there are four oriented 4-plane bundles
which could be the normal bundle to an immersion of P 5 in
R9, i.e., have stable class 2h + 2, where h is the canonical
line bundle. Of these, two have a unique complex structure.

(0.1.2.) Over P5 there is an oriented 4-plane bundle which
we call C, which has stable class βh — 2, which has two distinct
complex structures. D, the conjugate of C, i.e., reversed
orientation, has no complex structure.

(0.1.3) Over P5, there are no 4-plane bundles of stable
class hh — 1 or Ih — 3.

0.2. In reading the tables (4.5.2) and (4.6), remember that if ξ:
Pk~^B0(n) or ξ: Pk—»BU{n) is a locally oriented (i.e., oriented over
base-point) real or complex vector bundle, and if

aeIP(Pk;πk(BO(n)fζ))

(local coefficients if f unoriented) or a e Hk(Pk; πk(BU(n))y then ξ + a
is a vector bundle obtained by cutting out a disk in the top cell of
Pk and joining a sphere with some vector bundle on it.

0.3. Since some of the homotopy groups of B0(n) are acted upon
nontrivially by Z2 = πγ{B0{n)) for n even, we study cohomology with
local coefficients in § 3.

1.2. From here on, we assume that all spaces are connected
C. W.-complexes with base-point, all maps are b.p.p. (base-point-
preserving) and that all homotopies are b.p.p.

For any space Y, we choose a Postnikov system for Y, that is:
for each integer n ^ 0, a space (Y)n and a map Pn: Y-+(Y)n which
induces an isomorphism in homotopy through dimension n, where all
homotopy groups of (Y)n are zero above n; for each n ^ 1 a fibration
pn: (F)n—>(y)n_1 such that pnPn = Pn_ lβ The fiber of each pn is then
an Eilenberg-MacLane space of type (πn(Y),ri). If X is a space of
finite dimension m, then [X; Y], the set of homotopy classes of maps
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from X to F, is in one-to-one correspondence with [X; (Y)m].

DEFINITION (1.2.1). For any integer n ^ 1, let Gn(Y) be the sheaf
over (Y)ι whose stalk over every y is defined to be πn(p~ιy), which
is isomorphic to πn(Y) (where p = p2 pn: (Y)n—> (F)x) if n ^ 2;
fti((Y)u y) if n = 1. If X is any space and f:X-^(Y)ι is a map, let
π n (F,/) be the sheaf f~ιGn{Y) over X. This sheaf depends only on
the homotopy class of /. If g:X—»(F)m is a map for any integer
m ^ 1, or if Λ: X—> F is a map, let π n (F, #) denote πn(Y, p2 pm#)
and let ττΛ(F, n) denote πn(Y,PJί).

DEFINITION (1.2.2). If / and g are maps from X to (F)Λ for any
w ^ 2, which agree on A, and if F: X x 7—•(F)w_1 is a homotopy of
p Λ / with pwflf which holds A fixed, let δ*(/, g; F) e Hn(X, A; πn(Y, /)) be
the obstruction to lifting F to a homotopy of / with # which holds
A fixed.

REMARK (1.2.3). If g: JSΓ—>(F)Λ is another map which agrees with
/ on A, and if G is a homotopy of png with p̂ /z, which holds A
fixed, then <5W(/, 0; F) + <?*(#, A; G) = dn(f, h; F + G), where, for each
(x, t) e X x I,

ί ) i f 0 - ^ *
t-l) if J ^ ί ^ l .

DEFINITION (1.2.4). Let X be a space, let AaX be any subcomplex
(possible empty), let /: X—>(F)Λ be a map for some integer % ^ 2, and
let a be an element of Hn(X, A; πn(Y, /)). We define / + a to be that
map from X to (F)w, unique up to fiber homotopy with A held fixed,
such that pn(f + a) = pn/and Sn(f,f -{- a) = α, where C is the constant
homotopy.

REMARK (1.2.5). If b is any other element of Hn(X, A; πn(Y,f)),
then / + (α + 6) = (/ + α) + 6.

REMARK (1.2.6). If g:(X',A')-+(X,A) is a map, where (XΆ9)
is any other C. W. pair, then (/ + a)g = gf + g*a.

MAIN THEOREM (1.2.7). For any a e Hn(X, A; πn(Y, /)), f + a is
homotophic to f, rel A, if and only if δn(f, f;F) = a for some homotopy
F of pnf with itself which holds A fixed.

Proof. Let C be the constant homotopy of pnf with itself. On
the one hand, if F is any homotopy of pnf with itself which holds
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A fixed, let a = δn(f, f; F). Then δn{f + α, /; F) = δn{f + α, /; C) +
δn(f,f;F) = — a + a = 0. Thus F may be lifted to a homotopy of
f+ a with / . On the other hand, if G is a homotopy of / + α with
/, then <?*(/, /; p.G) - δ (/, / + α; C) + δ*(f + α, /; pnG) = a + 0 = α.

DEFINITION (1.2.8). Let Lf be the subgroup of Hn(X, A; πn(Y,f))
consisting of all a such that / + a is homotopic to /rel A. Then the
set of all homotopy (rel A) classes of liftings of pnf to (Y)n which
agree with / on A is in a one-to-one correspondence with the quotient
group Hn(X, A;πn(Y,f))/Lf; each coset a + Lf corresponds to f + a.
If g: X-+ Y is a map such that png = f, let Ln

g = L/β If Λ: J5Γ->(Γ)m

is a map such that pn+1 pmh = /, for m ̂  n, let L; = Lf.

REMARK (1.2.9). If aeHn(X, A; πn(Y,f)), then Lf+a = Lf.

Proof. Let F be any homotopy of pnf = p n (/ + α) with itself,
and let C be the constant homotopy. Then δn(f + a, f + a; F) =
δn(f+a,f; C) + δ (/,/; F) + δ " ( / , / + α; C) = - a + «•(/,/; F) + α -

1.3. In order to calculate I/7 in specific cases, such as X a
projective space, A = base-point, and Y = B0(m) for some m, we
use a spectral sequence which has the following properties:

(1.3.1) fEr = Etg = H*(X, A;πq(Y,f)) if 2^q^n,l^p^q + 1.
(1.3.2) £#'* = 0 for all other values of p and q.
(1.3.3) dr: E™ -> E?+r>q+r~l for all r ^ 2.
(1.3.4) KΞ * - £Γ (JΓf A;πn(Y,f))/Lf, which, by (1.2.7) and (1.2.8)

can be put into one-to-one correspondence with the set of rel A homotopy
classes of maps X—*(F)n whose projection to (F)Λ_i is rel A homotopic
to p Λ /.

Basically, what is happening is as follows (where, for any space
Z and any map g: A—+ Z, the set of rel A homotopy classes of maps
X-+Z which agree with g on A is denoted (([X; Z: #]"); consider the
function:

[X; (Y)n: f\A]Ά[X;( Y),_i: pnf | A] .

Now (pn\ is just a function of sets, but {PnWVnf) is an Abelian group
with 0 the homotopy class of / itself. This group, E£'n of our spectral
sequence, depends on the choice of / .

We define our spectral sequence via an exact couple:

%-—> A*
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where E2

PfQ is as defined in (1.3.1) and (1.3.2), where i2,j2, and k2 have
bi-degrees ( — 1, —1),(2,1), and (0,0) respectively; and where (for all
t^n,Mt = space of maps from X to (Y)t which agree with pnj on
A, compact-open topology):

(1.3.5) Dlq = πg_p(Mg, pn

qf) if 0 ^ q ^ n, and p ^ q.
(1.3.6) Dp>q = 0 if q < p or q < 0.
(1.3.7) DP'q = ΏΓι>q-1 if q > n.

Note that J9f'9 is only a group if g = p + 1 and only a set if g = p.
This will not affect our computation, however.

We proceed to define the homomorphisms i29j2 and k2.
(1.3.8) If q > n, let i2 be the identity. If q ^ n, let i2 = {pq\.
(1.3.9) lίpSq and 0 ̂  g < w, any xeDP'q represents a map

g: X x J M -> (Y)q, where #(#, v) = pn

qf{x) for all (α?, v) e X x 3/9-^ U i x
Iq-p. Let i2(α;) = (sM)-V+2(flr), where sq~p: HP+2(X, A; πq+1(Y,/)) —
Hq+\X x I 9 - p , X x 3/*-* U A x i*-*; πq+1(Y, g)) is the (g - p)-fold sus-
pension and Ύg+2(g) is the obstruction to finding a lifting h: X x J9"^ —*
(Y)q + 1 of gr such that h(x, v) = pΐ+1f(x) for all (a;, v)eXx dlq+p [jAx Iq~p.
(If p > q or q < 0 or q ^ n, j 2 : Dψq —> Ei+2>q+ι is obviously the zero map,
since E2

p+2'q+1 = 0.) This obstruction is zero if and only if g can be
lifted; it follows immediately that:

(1.3.10) The sequence Dξ+ί>9+1 -^-> Dξ'q - ^ Ep+2>q+1 is exact.
Furthermore, since every homotopy, relA, of pnf with itself

represents a loop in Mn^:
(1.3.11) Lf is the image of j 2 : DΓ2>n~ι -> Ef. For any 2^q^n,

1 ^ p ^ q, and any a e E2

p'q, let

b = sq~pa e Hq(X x I9~p, X x dlq~p U i x / ^ πq(Y, Q) ,

where C(«, v) = 2>;/(α) for every (α?, v) e X x Iq~p. Let ft2(α) e JD?'β be
that element represented by the map C + b (cf. 1.2.2). It follows from
(1.2.3) that k2 is a homomorphism if p < g; if p — g then DPfQ is only
a set anyway. (For other values of p and g, fc2 = 0.) Since pg(C + b) =
pqC, and C represents QeDξ*q:

(1.3.12) Imfc 2c:Keri 2.
If, on the other hand, a map g: X x Ig-p-+(Y)q such that g = C

on X x dlq~p U A x 79"p is a representative of a given α e K e r ί 2 , then
pqg is homotopic, rel X x d/9"*' U A x /, to p9C via a homotopy i*7, then
a = k^-η-^iC, g; F)). Thus:

(1.3.13) Ker i2 c Im k2.
Somewhat more difficult to show is:

(1.3.14) Ker fc2 = Imj2 if p ^ q.

Proof. Let 2 ^ q <; w, 1 ^ p ^ g. Let g(x, v) = pj/(a?) e (Γ) f f for
all (x, v) e X x /*-*; ^ represents 0 e Dξ q. Let 6 e Etq. Then 6 e Ker k2
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if and only if sq~pb e Lg (cf. 1.2,7). If b = j2a, then a represents F, a

homotopy, rel X x dlq~p u A x Iq~p of pqq with itself, and sq~pb =

δg(g, g; F) e Lg. If, on the other hand, sq~pb e Lg, then sq~pb = δq(g, g; F)

f o r s o m e h o m o t o p y F, r e l X x dlq~p U i x i * " * , o f pqg w i t h i t s e l f ; l e t

α = [F] e Dp-2'q~\ and j2a = b.

1.4. Since only finitely many of the E2 terms are nonzero, we
obtain E^ after a finite number of steps. We also have, by straight-
forward algebra, an exact sequence

0 >E»±=-+D.-±+D. , 0 .

Consider now the commutative diagram with exact columns:

JDΓ' "-1 = ̂ (Mn_u pj) [F]

, A; π%( Y, /)) δ (/, /; F)

mono Ikoo \kz X

?•" =[X;(Y).:f\A] \

kepi I ioo I io / + x

mono

A typical element of D2~
2tn~ι is a r e l l x 9 / U i x / homotopy class

of homotopies of pnf with itself; if F is such a homotopy, j2[F] =
δ (/,/; F) f by (1.3.9). If a? e #*(X, A; πw(F,/)), k2x = / + x, by (1.3.11).
Thus I m i ^ L , , and EZn = H*(X, A\π%(Y,f))ILf, the set of rel A
homotopy classes of liftings of p n /.

1.5. If g: (X\ A')-+(X,A) is a map, # induces a map of spectral
sequences.

(1.5.1) g*:fE?>q-^f9E?>q for all p, q, r. If fe: F ~ > ^ is a map,
where Z is any other space, h determines a map hm: (Y)m —> (Z)m for
each m ^ O [1]. Then fe#: πx( F, ̂ /0) —> πx(Z, 0̂) induces a sheaf homo-
morphism from Gn(Y) to (h^~ιGn(Z) which in turn induces a homo-
morphism.

(1.5.2) K:H*(X,A;πm(Y,f))-*H*(X,A;πm(Z,hf)) for all m^O
and a map of spectral sequences

(1.5.3) h*: fEr — *ΛEV'* for all p, q, r.

2* Nonbase-point-preserving homotopies*

2.1. Using the techniques of § 1, we can compute all b.p.p.
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homotopy classes of maps from a finite-dimensional space X to a
space Y. What if we want to know, instead, all free homotopy
classes of maps?

2.2. Let /: X —> Y be any b.p.p. map, and let aeπ^Y, y0). By
the homotopy extension property, we can find a free homotopy F:
X x J-+ Y of f such that F\{x0} x I represents a. Let fa(x) = F(x, 1)
for any xeX;fa is unique up to b.p.p. homotopy, and fab(fa)b for
any other b e πx(F, y0).

THEOREM (2.2.1). If f and g are any b.p.p. maps from X to Y,
then f is freely homotopic to g if and only if fa is b.p.p. homotopic
to g for some a e π^Y, y0).

Proof. If fa is b.p.p. homotopic to g, then / is obviously freely
homotopic to g since / is freely homotopic to fa. If, on the other
hand, F: X x I—• Y is a free homotopy of / with g, let a be that
element of πx( Y, y0) represented by the loop F ({x0} x /. Then fa — g
(up to b.p.p. homotopy).

THEOREM (2.2.2). If n^ 2,/: X-> (Y)n is a map,

aeH«(X,xo;πn(Y,f)) ,

and beπ^Y^yo), then ( / + a)b = fb + l*(α), where It is the homo-
morphism induced by the map lh (cf. 1.5.2), where 1 is the identity
map on (Y)n.

Proof. The theorem follows from naturality of obstruction theory.

3* Sheaves of local coefficients*

3.1. The homotopy groups of BO(n) are sometimes acted on
nontrivially by 7Γ1# We must therefore study twisted sheaves.

DEFINITION (3.1.1). A twisted group is an ordered pair (G, T), G
an Abelian group, T:G—>G an automorphism of order 2. If X is a
space, a (G, Γ)-sheaf over X is a fiber bundle over X with fiber G
and structural group Z2, action determined by T. Let Gτ[u] be the
((?, T)-sheaf over PTO obtained by identifying (x, g) with (Tx, Tg) for
all (x, g) e S°° x G, where Γ: S°° —> S°° is the antipodal map.

DEFINITION (3.1.2). If a<zH\X,xQ\Z2) and f:(X,x0)^(Poo,*) is
a map where f*u = a (u = fundamental class of PJ), let Gτ[a] =
f-ιGτ[u]. We call a the twisting class of Gτ[a\.
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PROPOSITION (3.1.3). Gτ[u] is universal in the sense of Steenrod
[6], that is, if G is a (G, T)-sheaf over a space X, G = Gτ[a] for
some unique a e Hι(X, xo; Z2).

Proof. PTO = BZ2.

REMARK (3.1.4). If F: X x I-^P*, is a free homotopy of / with
itself, where f*u = a, then F induces an automorphism of Gτ[a]; 1
or T depending on whether F | {x0} x / is a trivial loop in Pw or not.

3.2. If X is a space, BaAczX are closed, and S is a sheaf
over X, we have a long exact sequence:

> Hn(X, A; S) > Hn(X, B; S) > Hn(A, B; S)

— H"+1(X, A; S) >

PROPOSITION (3.2.1). If S is a sheaf over a space X, and AaX
is closed, we may find an isomorphism

s: H*(X, A; S) > H*(X x /, X x dl U A x I; S x I) ,

called the suspension, of degree 1, where S x I = p^S; p: X x /—* X
being the projection.

Proof. Let S' be that subsheaf of S such that S ' | A = 0 and
S' | (X - A) = S I (X - A). According to Bredon [1],

H*(X, A; S) = H*(X; S')

and

H*(X x I, X x dl\j A x I; S x I) = H*(X x I, X x dl; S' x I).

Now H*(X x /, X x {t}; Sf) = 0 for any tel [1], and by the long

exact sequence of (X x I, X x dl, X x {1}) and excision we have an

isomorphism H*(X x {0}; S' x I) -=-> H*(X xI,Xx dl; S' x I) of degree

1; the left group is isomorphic to H*(X; S').

3.3. Let X be a space, AczX closed. If a: S —> S' is a homo-
morphism of sheaves over X, we get a homomorphism a*:H*(X, A; S) —>
H*(X, A; S'). If S and S' are sheaves over X and

E: 0 > S -^-> S" -£-> S' > 0

is an extension of S' by S, then £7 determines a long exact sequence
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> Hn(X, A; S) — H"(X, A; S") ~ Hn(X, A; S')

-?L> H*+ί(X, A; S) . . . .

where δE is called the Bockstein of E.

PROPOSITION (3.3.1). If S and S' are sheaves over X and if

E: 0 > S - ϊ-> S" -^-> S' > 0

and

F:0 >S-̂ -> U-^S' >0

are elements of Ext (£', S), then δE+F = δE + δF.

Proof. We use the Baer sum construction to find

E + F: 0 > S > V > S' > 0;

our result follows from the commutative diagram, where each row is
exact:

!• 1 V
0 > S x S > W > S' > 0

._ 1 _ i - ί _o
3.4. As Abelian groups Ext (Z2, Z2) = Z2; the nonzero extension

is ZA. Fix a space X; we study Ext of sheaves over X.

PROPOSITION 3.4.1. As sheaves over X,

Ext (Z2, Z2) = Z2 + H\X, xo; Z2) .

For any a e H\X, xo; Z2), (0, a) corresponds to the extension

El: 0 > Z2 -^-> (Z2 + Z2)
τ[a] - ^ Z2 > 0 ,

where T(x, y) = (x + y, y), i^x) = (x, 0), αwd p2(x, y) = y; (1, α) corres-
ponds to

Ei: 0 > Z 2 ̂ - > Z 4

Γ [ α ] - ^ Z2 > 0 ,

where T(x) = — x for all x e Z4, m(l) = 2, cmd e(l) = 1.

Proof. Routine computation shows that El + Eg = Ex

a%l for any
x,yeZ2 and α, b e Hι(X, xQ; Z%). On the other hand, suppose that
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E: 0 > Z2 - U G — Z2 > 0

is some extension. Then the stalk of G at x0 is Z4, in which case
G = Z[[a] for some aeH\X, xo; Z2), or it is Z2 + Z2. In that case,
we have an exact sequence of stalks at x0:

0 • Z2 > Z2 + Z2 > Z2 > 0 .

Since G is locally isomorphic t o Z2-\-Z2, i t is a fiber bundle w i t h fiber
Z2 + Z2 and s t r u c t u r a l g r o u p A u t {Z2 + Z2). B u t t h e only nontr iv ia l
a u t o m o r p h i s m which commutes w i t h it: Z2—>Z2 + Z2 and p2: Z2 + Z2-+
Z2 is T g iven above. So t h e s t r u c t u r a l g r o u p of G m a y be reduced
t o Z2) G = (Z2 + Z2)

τ[a] for some α e H\X, xo; Z2). This gives us t h e
isomorphism.

We h a v e t h e following c o m m u t a t i v e d i a g r a m w i t h b o t h rows exact ,
for a n y a e H\X, xQ; Z2):

0 > Zτ[a] > Zτ[a] > Z2 > 0

m 4 e

DEFINITION (3.4.2). Let βτ[a] (or simply βτ, when α is understood)
denote the Bockstein of the top row of the above diagram, and let
(Sι

q)
τ[a] (or (Sι

q)
τ) denote the Bockstein of the bottom row.

REMARK (3.4.3). Π*βτ = (Sq)
τ .

PROPOSITION (3.4.4). For any n ^ 0 and any x e Hn(X, A: Z2),
{Sι

q)
τx = Sι

qx + x U a.

Proof. Samelson [5].

P R O P O S I T I O N (3.4.5). For any n^O and any x e Hn(X, A) Z2)
S(x) = x\ja9 where d is the Bockstein of E°a: 0—> Z2—> {Z2 + Z2)

τ[a] —>

Proof. The result follows immediately from (3.3.1), (3.4.1), and
(3.4.4).

3.5. Let T(n, m) = (m — n, m) for any (n, m)e Z + Z. If S and
S' are sheaves over a space X, and if μ: S ® S' —> S" is a sheaf
homomorphism, then we have a cup product defined from

H*(X,A;S)®H*(X,B;S')

to #*(X, A U B; S") for any closed Aa X and Ba X. We have thus
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cup products generated by the following relations:

Zτ[a] <g) Zτ[b] = Zτ[a + δ], Z2 <g) (Z2 + Z2)
τ[a]

= (Z2 + Z2)
Γ[α], Z®(Z+ Z)τ[a]

= (Z + Z)Γ[α], ZΓ[α] <g) (Z + Z)Γ[α] = (Z + Z)Γ[α]

(where w 0 (p, g) = (wp, 2np — nq)), Z[[a] ® i£f[δ] = i£f [α + δ],

and many others.

Let (X, A) be a C. W.-pair. Let a e H\X, xo; Z2) and

a = βτ[a]{l) e iΓ(X; £Γ[α]) .

We have the following commutative diagram; where

iyX = (x, 0), T(x, y) = (y - x, y), j\x = (x, 2x)f

and q2(x, y) = y - 2x.

Λ y yτ\π\ %ι > (7 4- y^Xύλ ^2

 > y > o

I" I"
11

 ) (Z + Z )τ\a] Q2 > Z > 0

0 > ^ J ^ > (Z + Z) Γ [α] - ^ Z Γ [ α ] > 0 .

PROPOSITION (3.5.1). The Bocksteίn homomorphisms ^ and δ2 are
both cup products with a.

Proof. By (3.4.3) and (3.4.4) we may compute that

and is generated by ΰ = /5Γ(1).
Let xe Hn(X, A; Z). If n = 0, then the universal example is

X = P^, A = 0 , # = 1. Then α = ΰ. Now H\P^\ Zτ) = 0, so (JΊ)*:

iϊ°(P ro; Z) <- iϊ°(Pco; (Z + ^) Γ ) is an isomorphism, and p2j\ = 2. Thus
l g Im(ί>2)^, so ^(1) = ΰ. If n ^ 1, the universal example is X =
iΓ(Z, w) x Pβo, A = * x PTO, x = vn x 1. Then α = p*ΰ, where p: X—^P^
is projection onto the second factor. Now routine computations using
(3.4.3) and (3.4.4) show that Hn+1(X, A; Zτ) ~ Z2 and is generated by
(vn x 1) U p*ΰ, which is mapped onto Π*vn x u under Π*: H*{; Zτ)—+
H*(; Z2). The result follows from (3.4.5).

Let x G Hn(X, A) Zτ). If n = 0, x = 0. If n = 1, the universal
example is X = K(ZT, n), A = PM, and x = vj, where K(Zτ,n) is
obtained as follows:1 Let i£(Z, w) be a topogical group, let T(#, y) =
(flf-1, Γ2/) for all # e K(Z,ri) and 7/ e S°°. Let

1 Personal communication from C. T. C. Wall.
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K(Zτ,n) = K(Z,n) x S°°/T .

We have inclusion and projection

Poo - ^ - > K{ZT, ri) -?-> PT O

where ΐ[τ/] = [*,?/] and p[g, y] = [2/];P«> may thus be considered to be
a subset of K(Zτ,n), and its cohomology group is a direct summand1.
Then v^eHn(K(Zτ,n),Pco;Z

τ[u]) is the fundamental class.

Tint V Λ . ΓΎ \ s^, rχ
JΓL ( A , Ά, ZJ2) = Z/2

is generated by Π*vZ; Hn+1(X, A; Z2) = Z2 generated by Π*vξ U u.
Thus, by (3.4.3) and (3.4.4), Hn+1(X, A; Z) = Z2 generated by vζ{Jΰ,
and the result follows from (3.4.5).

(3.5.2). We summarize the results of (3.4.5) and (3.5.1) in the
following commutative diagram with all rows exact:

> Hn(X, A; .

II*

H"{X, A; Z) ~

^ ^ Hn(X, A; (Z + Zf) ^ > H%X, A; Z) - ^

IU 177*

^ Hn(X, A; (Zz -f Z2)
r) C-^-> Hn(X, A; Z2) - A

JT7* hi*

, A; Zτ)

, A; Z2)

J77*

, (Z + Z)τ) Hn(X, , A; Z)

3.6. Applying the results of 3.4 and 3.5, we compute the coho-

mology of real projective space Pk, for k^l:

(3.6.1) H"(Pk; Z,) =

(3.6.2) Z) ~

Z2, generated by un, if n ^ k

0 if n > k .

Z2, generated by ΰn, if n

even, 0 < n ^ k

Z, generated by 1, if n = 0

0, if n odd, 0 < n < k

Z, generated by t(Pk), the

top class, if n = k odd

0 if n > k .

(3.6.3) H (Pk; Z
τ[u]) ~

Z21 generated by un, if n odd,

0 < n ^ k

0, if n even, 0 < n < k

Z, generated by t(Pk), the top

class, if n = k even

0, if n> k .
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(3.6.4) H*Pk, *; Zτ[u]) s

(3.6.5)

(3.6.6)

(3.6.8)

0, if n = 0

Z, generated by ΰ, if w = 1 .

(3.6.7) H*(Pk; (Z + Z)Γ[u]) =

sH*(Pk\ Zτ[u\) if n > 1

Z2 + Z2) = fl*(Pft; Z2) 0 ^ ( P , ; Z2

; Z+ Z) = H"(Pk; Z) © fl*(P4; Z)

Z, generated by (j\)*

iί n = 0

0, if 0 < n < fe

Z, generated by \(i^

(q2)~iιt(Pk) if w = ft is even

Z, generated by iUi)*t(Pk) =

(p2)ΐ1ί(PA;) if n = ft is odd

0, if ^ > ft

% , generated by (ί j^l

if w = 0

0, if 0 < n < ft

Z2, generated by (p2)^uk

(= ΠM\)*t(Pk)) if ft

even, - Π^(JdΛPk) if ft

odd) if % = ft

θ, if w > ft .

4* Evaluation of the differentials*

4.1. We need two remarks.
(4.1.1) If Y1 and Y2 are spaces, and h: Y1-^ Y2 is a map, h induces

a map (Yi)«_i—•(ϊr

2)n_1 and a sheaf homomorphism λ: τrΛ(YΊ, 1) —•
πn(Y2,h). If ftΓ+1 and ft?+1 are the nth ft-invariants of Y1 and Y2

Zulu]) s

respectively, Ujc^1 - h*kΐ+2 e H^((YX^, πn(Y2, h)).
(4.1.2) Let X and Y be spaces, 2 <̂  m < n integers such that

πk(Y) = 0 for all m < k < n, and / : X - > ( F ) % a map. If the ft-
invariant A;%+1 of Y is based on the relation 0(1, km+1) — 0, where Θ
is a map cohomology operation and 1: (Y)m^ -^ (Y)m-ι is the identity
map, then; for any

x e ; πm{Y, / )) , dr(x) = , s2x), r = n-

where P: X x S2 —• X is projection,

s2: ί ί*(X, a?0) -> ί ί* + 2 (X x S2, X x * U a?0 x S2)
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is suspension and K-i = Vm pn: (Y)»

Proof. Let (S\ *) be a circle, which we think of as the unit
interval with end-points identified. Let C: X x S1 —>(Y)m be the
constant homotopy of pZf with itself. Now pm(C + sx) = pmC, where
C + sx is as defined in (1.2.2) and dr(x) = δn(f,f; C + sx) by (1.3).
Finally, sδ%(/,/; C + sx) = (C + s£)*&w+1 = s~ιθ(pl_JPy s2x).

4.2. Kervaire [3, p. 162] gives us the following table of homotopy
groups:

50(1) £0(2) £0(3) £0(4) £0(5) £0(6) £0(n) for 7 ̂  % ^ «

7Γl

7Γ2

7Γ3

7Γ4

^ 5

Z2

0
0
0
0

z2z
0
0
0

z2Zz
0

z2

z2Zz
0

z + z
Z2 + Z2

z2Z2

0

z
z2

z2z20

z
0

z2^ 2

0

z
0

z2 z2 -\- z2 z2 z o.

Now π^BOin)) = Z2 acts on πk(B0(n)) for all n ^ 1, k ^ 1; this
action is trivial if πk(B0(n)) is stable, that is, k < n; because BO is
simple. For % even, Z2 acts nontrivially on πn(B0(n))> because the
first relative fc-invariant of B0{n) —• 5 0 is

kn+ι = ^ [ w j w . G Hn+1(B0; Zτ\wγ\) .

(Because Π*kn+\ the reduction mod 2, must be wn 4 1). ^ 2 acts trivially
on τr4(BO(3)) because if acts trivially on π^BO) and the map Z ~
π4(BO(S)) —• π4(B0) ~ Z is just multiplication by 2. Since Z2 can only
act trivially on Z2, we need only now examine the action on 7Γ4(BO(4))
for k = 4, 5, 6.

PROPOSITION (4.2.1). We may choose generators x and y of
τr4(SO(4)) such that T(x) — — x, T(y) — x + y, and the maps

and i\: ττ4(i5O(4)) > π,(B0(5))

have the properties i\(ϊ) = x + 2y, i\(x) — 0 and i\(y) = 1.

Proof. We know that i\ is onto. Choose x to be a generator of
Kerί 4, and pick α such that i\a = 1. Now 2α — ij(l) e Keril, since
i\i\ = 2. So 2a — ΐj(l) is a multiple of x. It can't be an even multiple,
because then i\(l) would be divisible by 2, and iX(J5O(3)) is a direct
summand of ττ4(i?O(4)). So for some k, 2a — %\{1) = {2k — l)x. Let y =
α - fcx; then ij(l) = x + 2#, ij(a ) = 0, and i\(y) = 1. Now T(x) G Ker ij,
so T(x) must be - x. T(x + 2y) = x + 2y so T(τ/) = i(x + 2y - Tx) =
a? + 2/- We are done.



450 LAWRENCE L. LARMORE

We represent ττ4(50(4)) as ordered pairs of integers, where (p, q)
represents px + qy.

PROPOSITION (4.2.2). 7Γ5(5O(4)) and ττ6(50(4)) may be represented
as ordered pairs of elements of Z2, such that i\(x) = i\(x) = (x, 0),
iί(α, y) = il(®, V) = y, and T{x, y) = (x + y, y) for all x,ye Z2.

Proof. πb(B0(n)) and πQ(B0{n)) are the images, under η and rf
respectively, of πjβθ(n)), for n = 3, 4, or 5. Apply (4.2.1).

REMARK (4.2.3). There are two possible choices of x in (4.2.1) we
retroactively make that choice such that the image of π5(BU(2)) ~ Z2,
under the classifying map of the reallification B 17(2) —•50(4), is generated
by (O,l)eτr5(50(4)).

4.3. We need to describe /^-invariants for B0(n).
(4.3.1) For all n, ¥ of B0(n) is zero, since the projection

P,: B0(n) > (B0(n)\ = K(Z2,1) = £0(1)

has a lifting, namely, the map induced by the inclusion of 0(1) in
O(n). Also ¥ = 0, since πz(B0(n)) = 0.

(4.3.2) For 50(3), kδ = ± β&w2, where /94 is the Bockstein of Z->
Z-^Z4 and ψ: H2(; Z2)-+H4(; Z4) is the Pontrjagin square [2], and ¥
is based on the relation SgΠ^k5 + w2 U Π*¥ = 0.

(4.3.3) For 50(5), λr5 - 2/34^ti;2 - /Swi (see [4]), and A:6 = w6, based
on the relation S2JI*kδ + w2 U Π*¥ = 0.

(4.3.4) Using (4.3.2), (4.3.3), we get that for 50(4), ¥ = cβ&w2,
where c: H*(; Z) -> H*(; (Z + Z)τ) is (j\)* as described in (3.5.2), and
¥ is of order 4 and generates ίf5((5O(4))4; (Z + Zfiw,]). Also, &6 is
based on the relation S'2qΠ*¥ + w2{j Π*¥, where

Si: H*(; (Z2 + Z2)
τ[a\) > H*+2(; (Z2 + Z2)

τ[a])

is that unique operation which is ordinary S% on each factor when
a — 0, and w2 U is as described in (3.5).

(4.3.5) For BO(β), ¥ = 2βJ$w2 = βw\, and ¥ = β^w^w^ based
on the relation βτ(S2

qΠ^¥ + w2 U Π*¥) = 0.

4.4. Using (4.1.1) and (4.1.2) we can now evaluate some differen-
tials dr — dζ for a map /: X—>(Y)k.

(4.4.1) If Y = 50(1) or 50(2), dr - 0.
(4.4.2) If 7 = 50(3) and k < 4, dr = 0. If A = 4, d2 = 0: by

(4.1.2), ds(») = β(x" + » U /*w») e Jϊ4(X; ^ ) for all x e H\X\ Z2). This
was also known to Dold and Whitney [2]. If
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k = 5, d2(x) = SlΠ^x + f*w2 U Π^x e H6(X; Z2) ,

for all x e H\X; Z) by (4.1.2); dz = 0, and dt requires special compu-
tation.

(4.4.3) If Y = £0(4) and k < 4, dr = 0. If k = 4, d2 = 0; and by
(4.1.2),

d3(x) = cβ(x3 + x\J f*wt) e H\X; (Z + ZflΓw,])

for all x e H\X; Z2); if

k = 5, d2(x) = S\Π+x + f*w2 U Π*x e H\X; {Z2 + ^ 2)Γ[/*wJ)

for all x e H\X; {Z + Z)τ[f*w1]) by (4.1.2), d3 = 0, and dt must be
computed specially.

(4.4.4) If Y = BO(5) and k<5,dr = 0. If

k = δ, d2(x) = SI/7^ + /*w2 U Π*x e fZ"5(X; ^ 2)

for all x e iϊ 3(X; Z),d% = 0, and

d4(a>) = ίκ5 + /*W! U x* + f*w2 U xs + f*ws U »2

+ f*wt U * + Im d2 e £;4

5'5 = #"5(X; Z,)/Im rf2

for all x e fl '(X; Z,).

Proo/. We have a map S: ΣK(Z, 1)—BSO, such that S*wi+ί = sw*
for all i ^ l , where u is the fundamental class. Now (BO(5))4 = (BO)t
has the same homotopy as BO up through dimension 7, so we identify
.£P((BO(5))4 with H\BO) for 0 ^ jfc ^ 7. Let Λ: ^ ^ ( Z , , 1)—(BO(5))4 be
given by the commutative diagram:

ΣK(Z2,1) - A , (Z?O(5))4=

> BO .

(BO(5))4 has an JT-space structure μ: (JBO(5))4 X (BO(5))4->(SO(5))4 and
/^*^6 = Σ U ^ i x ^6_i. Let QX be the space obtained from X x S1 by-
collapsing x0 x S1; let J : QX—>2TX be the map which collapses X x *,
and let p^.QX—>X be projection onto the first factor. For any
xe(H*X), let qx = p*x and let Qx = J*sx, both in H*{QX). We
showed in [4, 5.1] that qaU qb = q(a U b), qa\J Qb = Q(a (J δ), and
Qα \jQh = 0 for all α, 6 e H*{X). Let C: X->if(Z 2,1) be a classifying
map for a given xeH1(X;Z2)9 and let F : QX-+ (£O(5))4 be a map,
which represents a homotopy of psf with itself, defined by composing
the following maps:
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Λ QX-J^U ΣX x XI^J^ί, ΣK(Z2,1) x (BO(5))4

> (J5O(5))4 x (BO(5))4 - ί U (BO(5))4 .

By (1.3), d4(a?) contains δδ(f,f; F). Now routine computation shows
that f*w6 = Q(x5 + xAf*w, + a?3/*w2 + x2f*w3 + α/*w4), and the result
follows from [4, 5.2].

(4.4.5) If Γ = £0(6) and k < 6, dr = 0. If fc = 6, d2 = 0 and
d3(x) = βτ{SlΠ*x + / * ^ 2 u Π*x) e iϊ6(X; Zτ[f*wx]) for all a? e ίί3(X; ^ ) ;
d4 = 0 and

+ Im d2 e E£>6 = iP(X; ^ [ /

for all xeH'iX ZJ.

Proof, same as (4.4.4).

4.5. We are now ready to classify real vector bundles over Pkf

for k ^ 5.

DEFINITION (4.5.1). A locally oriented real π-dimensional vector
bundle over a space X shall be a b.p.p. homotopy class of maps from
X to B0(n). If f:X-+B0{ri) represents a locally oriented v.b. ξ,
let ~ £, or f conjugate, be that locally oriented v.b. given by a map
g:X—>B0(n) which is connected to / via a free homotopy which
sends the base-point of X around a nontrivial loop of BO(ri). Obviously
~ ξ = ξ, and conjugate classes of locally oriented vector bundles
correspond to equivalence classes of vector bundles.

TABLE (4.5.2). For k ^ 1, let h: Pk-+B0{l) be the canonical line
bundle. Let " φ " denote Whitney sum. We give a complete list of
all locally oriented real ^-dimensional vector bundles over Pk, each n
and k; all bundles are self-con jugate unless otherwise specified.

Let G denote (q^tiP^) = £{ii)*t(Pt) which generates

H\P4; (Z + ZY[u\) .

Also (pi)~ιub generates H5(P5; (Z2 + Z2)
τ[u]). Locally oriented real

^-dimensional vector bundles over Pk, for n — 1 g k ^ 5:

Over

1

h

Pi

2

A 0 1

Over P 2

1

h

2

τP =

2h =

(Λ01)

stable

3 f t - 1

2 + ΰ*

+ pt{

class

if p

Pz),
/14-
odd;

for

1 if
r

all

P

pβZ;

even,

= T-p.

3

h®2

2h@

3h =

1 = 3 + u2

(h © 2) + uz
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Over Pz

1

h
2

hφl
2h

3
h@2
2A01
Sh

4
Λ03
2/^02
3/ι01

Over P 4

1

h

2
h@l
2h

3=3+a4

h®2
(h@2) + 0

/pZj /TNI \ _ι_ v;4

3λ = 3Λ + z74

4=4+(^4,0)
2/ι©2
2Λ02+(w4, 0)

4Λ=4+(0,«4)=4Λ + («4,0)
2/ι©2+(0, w4); stable

class 6A-2
2/ι02+(w4,^4) =

~(2/*02+(O, w4))
^p = feφ3+pG for all

peZ; stable class
/ι+3 if p even, 5Λ-1
if p odd; ~EP = E-P

FP=3h®l + pG for all
pβZ; stable class
3&+1 if p even,
7Λ-3 if p odd;

5
λ©4
2Λ03
3Λ,©2
4/i©l

((2/ιφ2)-r(0, «4))®1;
stably 6λ—1

Fiφl; stable class
lh-2

Over P 5

1 2

fc /iφl
2Λ

3

3+u5

/^©2 + ̂ 5

A=A+it5;

2/i©l
2Λφl+^

B=B+u*;

Sh

4

4 + (u5,0)
4+(0, M5)
4 + ( M 5 , M5) = ~ ( 4 + (0, M5))

2 ^ 2

+ ( ϊ > 2 ) l M 5

2fce2+(0,^»)

3Λ©1

4Λ,-h(w5, 0)
4/z, + (0, it5)

D + ('M.5, 0) =

5=5+^ 5

/^φ4
Λ,φ4+^5

2/̂ φ3
OZj ^TΛO I Λ I 5
ώ / l ' ζ p ΰ ~T~ Hi

Q Ij ^TΛO

Olj/TNO I ΛJ5

4fe01
4Λφl + ^

6

^Φ5
2/tφ4
3/ιφ3
4Λφ2

5Λ01
Gh
C@h@l
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4.6. Similarly, we can classify all complex vector bundles over
Pkf for k ^ 5. We give a table of homotopy groups:

BUQ) BU(2) BU(n) for 3 S n

0

z
0

z
0

0

z
0

z
Z<,

0

z
0

z
0

The only nonzero yfc-invariant in this range is k6 of BU(2), which
is Π^c^) + S2

qΠ*c2, where c{ e H2i(BU(2); Z) are the Chern classes.
We thus have:

REMARK (4.6.1). For any space X, all complex line bundles over
X correspond to H2(X; Z).

REMARK (4.6.2). For any space X of dimension ^ 5, all complex
^-bundles, for n ^ 3, over X correspond to KU(X), satisfying the
exact sequence 0 -> H4(X; Z) -> KU(X) -> H2(X; Z) — 0.

REMARK (4.6.3). If /: X-+(BU(2))δ is a map, then

d2(x) = Π^x) + S2

qΠ*x e H5(X; Z2)

for all x e H\X\ Z); d, = 0; d,(x) = Π*(f*c2 U a) + Im d2 for all

a? e ίίXX; Z) .

Proo/. Let S: S2 = ΣK{Z, 1)-~>BU be the generator of π2(BU);
then S*ct — σ, the fundamental class of S2, and S*c2 = 0. The result
follows just as in (4.4.4).

TABLE (4.6.4). We summarize complex ^-bundles over Pk, 2n —
1 <̂  k ^ 5. The reallification is given in square brackets.

Over P2 Over P 3

1

H

[2]

[2h]

[4]

\2h 0 2]

1

H

[4] [4]
[2h 0 2]

Over P4

1

H

[2]

[2Λ]

2 [4]

# 0 1 [2/* 02]

2# = 2 + w4 [4fr]

iί 0 1 + fί4 [2/t 0 2 + («4, 0)]

3

# 0 $
2 # ©

ZH =

[6]

ί [2A © 4]
1 = 3 + a* f4Λ © 2]

i ί © 2 + zί4 [6Λ]

Stable class 3H - 1
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Over P 5

1 [2]

H [2h]

2

2 + u5

i?01

2H

2H + u*

C

C + tt*

[4]

[4 + (0, u*)]

[2h 0 2]

[2h © 2 + (0, ̂ 5)]

[4fc]

[4Λ + (0, u*)]

[C]

[C]

4.7. We give a few representative examples of evaluating those
difficult differentials. Is /: P5 —> (2?O4)5 is a map representing a 4-plane
bundle ζ, then df(%) is defined if and only if

d{(u) = Ud+βiu* + uf*wΛ) = 0 e # 4 ( P 5 ; (Z + ^ ) r [ / * ^ ] ) .

If d2(u) = 0, then ώ{(^) = 0 if and only if there is a map F: QPδ ->
(BOi)5 which represents a homotopy of / with itself, such that
F*w2 = qf*w2 + Qu, where QX is as given in [4; 5].

EXAMPLE (4.7.1). If ξ = 4 or 4fe, then /*w2 = 0, so d2(u) = (ΰ\ 0)
and d4(u) is not defined. Thus 4, 4 + (u\ 0), 4 + (0, ^ 5 ) , and 4 + (u5, ̂ 5)
are all distinct oriented vector bundles.

EXAMPLE (4.7.2). If ξ = 2h © 2, then /*w2 = u2, so d2(%) = 0.

Let Ύ]ι be that line bundle over QPb such that w^) — qu; now
2-plane bundles over a space X with ^ = x are classified by H\X\ ZΓ[x]);
let 7]2 be that 2-plane bundle over QP5 with w^^) = qu classified by
Qu. Then w2(η2) = Qu. Let c: QPb —> J5O(4) be the classifying map
of Ύ]ι Θ % Θ 1; c*w2 = g ^ + Q U a n d (^ 0 )̂ 2 φ 1) I P 5 = 2Λ 0 2. Thus
F, the projection of c onto (Z?O(4))5, and d{(u) = 0.

EXAMPLE (4.7.3). If f = C, then /*w2 = ^2, so df(w) = 0, and d{(u)
is defined. Now p5C = p5(2A 0 2) + (0, iZ4),

U

and so d4(%) = 0 if and only if we can lift the map
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p
δ
F + q(0, ΰ*): Qp

5
 > ((J3O(4))

4

to (i?O(4))5, where F is the map given in (4.7.2). Now the Λ-invariant
fe6 is based on the relation S2

qίl^k5 + w2 U Π*k5 = 0, and (pδF)*k6 = 0,
so (p5F + α)*/b6 = SJ/7^ + {pbF)*w2 U #*α which, when α = q(0, ΰ4),
equals SJ?(O, u") + (<^2 + Qw) U g(0, u4) = Q(0, u5). So, by [4; 5.2], d,(u) =
(0, u5). Thus C + (0, ̂ 5) - C, but C + (u5, 0) is different. We also
have that there are two complex structures on C, because since C
is the reallification of the complex bundle C, C = C + (0, u5) is the
realliίication of C + w5.

4.8. We would like to know how vector bundles behave under
tensor products. If L is any line bundle over any space, L^L — 1.
Furthermore:

REMARK (4.8.1). If rjl and η2 are locally oriented real w-plane
bundles over a space X, which agree on Xk~\ and if ξ is a locally
oriented real m-plane bundle over X, then i^fa, τj2) = δk(η10 ζ, η10 f)
and j^Sk(rjif rj2) = ̂ ^(^ ® f, ^2 ® ?)> where ΐ: B0(n) —> SO(^ + m) and
^: B0(n) c B0(nm) are the maps induced by the inclusion of O(w) in
O(n + m) and 0(nm). Similarly for complex vector bundles.

REMARK (4.8.2). If ζ is an oriented real vector bundle which has
a complex structure, and if η is any other locally oriented real vector
bundle, then ζ 0 η also has a complex structure.

Proof. Let C(η) be the complexification of η, and let £' be a
complex bundle whose reallification is f. Then we can see routinely
that the reallification of £' 0 C{η) is £ ® 37.

With the above information, we can almost completely determine
the action of " 0 " and "(g)" on all locally oriented real vector bundles
over Pjc, k ^ 5. For example,

A ® h = £, C 0 λ = C, 4 0 h = 4A, (4 + (0, O ) 0 λ = 4fe + (0, u5),

Tp®h= Tp,Ep®h = Fp, (4Λ + (u5, wB)) 0 1 = 4h 0 1 + ̂ 5 .

The only unsolved questions are whether A0/& = 2 ? 0 1 ; i t i s also
possible that A0ft = δ φ l + (O,%5); and whether 5 © 2 equals 2/^03
or 2h 0 3 + ^5.
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A RADICAL COINCIDING WITH THE LOWER RADICAL
IN ASSOCIATIVE AND ALTERNATIVE RINGS

W. G. LEAVITT AND YU-LEE L E E

In a recent paper by the second author a construction was
given which was shown to coincide with the lower radical in
all associative rings. In the present paper this construction
is considered in various classes of not necessarily associative
rings. It is shown that while the construction still defines a
radical, it will in general properly contain the lower radical.
More precisely, it is shown that the radical constructed coincides
with the lower radical if the semisimple class of the lower
radical is hereditary (or, equivalently, if the radical of a ring
always contains the radicals of all its ideals).

From this condition it follows that the construction coincides with
the lower radical in all associative and alternative rings, but an
example is given which shows that this is not true in general. We
conclude by showing that an apparently quite different construction
due to J. F. Watters [5] yields exactly the same class of rings.

We will assume that all rings considered in this paper are from
some universal class <%/ of not necessarily associative rings. We will
use the following construction, which is equivalent to that of [4].
Let j y be an arbitrary class of rings and J ^ o its homomorphic closure.
Then define J K = {Rz^\R has a nonzero ideal i e j ^ _ J , and Aω —
\Jn JK. Then define %/(Sf) = {R e ^ \ R/Ie JK for all ideals I of R}.
It is clear from this definition that we have

LEMMA 1.

LEMMA 2. j ^ £ ^ implies

It is also easy to check that the proof of [4, Th. 1] makes no
use of associativity. Thus we may state

THEOREM 1. ^(Stf) is a radical class.

We will replace [4, Th. 2] by the following generalization:

THEOREM 2. If ^ is a radical sub-class of ^ , then & =
if either of the following two equivalent conditions is satisfied:

( i ) The semisimple class S^ of 0* is hereditary,
(ii) Writing &»(R) for the ^-radical of R, then

459
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for every ideal I of every Re^/.

Proof. The equivalence of (i) and (ii) follows from [1, Lemma 2,
p. 595]. Thus assume that && is hereditary. By Lemma 1 we have
& £ W{^) and suppose there could exist Re %<(&*), R £ &. Then
R has a nonzero homomorphic image in 6^^, so (without loss of
generality) assume Re &(0*) Π &&. Thus Re^n for some n, and
since & (Ί S?& = 0 it is clear that n ^ 1. Let m be the smallest
integer such that there exists a nonzero R e &>m Π 6^^. Then R has
a nonzero ideal Ie^m_γ. Since £^^ is hereditary leSf.ζ? contrary
to the minimality of m. Thus &

COROLLARY 1. If & is a radical class then in any associative
or alternative ring the ^-radical and the ^/(^)-radical coincide.

Proof. This is clear since the intersection of & with any universal
associative or alternative class is again a radical class and semisimple
classes are always hereditary in associative [2, Corollary 2, p. 125] or
alternative classes [1, Corollary 2, p. 602].

Note that a sufficient condition for property (ii) is that έ^(I)
shall be an ideal of R. This is already known to be true in associative
rings [2, Th. 47, p. 124] or alternative rings [1, Th. 2, p. 600]. From
this last remark it also follows that the proof of [4, Th. 2] could
have been applied equally well to alternative rings.

THEOREM 3. Let £s?(Stf) be the lower radical for an arbitrary
class Ssf. Then S?{Sz?) = r^{^f) if S^^f{S^f) is hereditary.

Proof. Suppose S^f(J^) is hereditary. From Lemma 1 and the
minimality of <2f{s$f) among radical classes containing szf [2, Lemma
5, p. 13] it follows that £?{jχr) S ^(^f). But by Lemma 2, sf^^ίSzf)
implies g^(J^) S &(£f(J&)). Then if S^(ssf) is hereditary if follows
from Theorem 2 that %s(£f{J*f)) = ^(Szf) and so ̂ (s$?) = g^(j^).

We can thus conclude that the ^(j^)-radical coincides with the
lower radical in any associative or alternative ring.

Note. The class ^ of all idempotent rings is a radical class
whose semisimple class is nonhereditary [3, Th. 2, p. 1116]. It is also
true that %/(^) = ̂  for if R $ ̂  then since all subrings of R/R2

are zero rings, R/R2 has no accessible subrings in Jf Thus R g ^/{^)
and so ^/{^) — ̂ J\ This example shows that the conditions of
Theorems 2 and 3 are not necessary.

Also remark that there are classes j y for which &(£/) is not
the lower radical. One example is the class & = i^(^r) where %*
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is the class of all zero rings. Let R be the ring constructed [see 3]
over Zz in symbols u,v,w satisfying relations u2 = w2 = 0, uv = vu —
uw = u, and wu = vw = wv = v2 = v. The only ideal of R is H —
{0,u,v,u + v} for which H2 = H. Now ^ is a hereditary class
so by a result of A.E. Hoffman [see 6, Theorem 1,] we have
^ Π &{%) = 0. Now the lower radical of a hereditary class is
hereditary. Thus £f(%T) is hereditary and so Rg^f(^). On the
other hand, R/He ^ and R has the accessible subring J — {0, u) e 5Γ.
Hence Re &(%*).

It should also be noted that while ^{s/) need not equal
it is nevertheless true for all classes Jϊf that
This is an easy consequence of the fact that

In a paper [5] which is soon to appear the following construction
is given: Let ^/έ be an arbitrary homomorphically closed subclass
of some universal class ^ . For β e ^ define Mσ0 = 0, and for an
arbitrary ordinal a Mσa=\Jβ<aMσβ, if a is a limit ordinal, or
Mσa/Mσβ is the ideal of R/Mσβ generated by all accessible ^f-subrings
of R/Mσβ, whenever a — β + 1. If 7 is the ordinal for which Mσγ =
Mσr+1, write Mσ(R) = Mσ, and let ^T^ - {i2e ^ | Mσ(J?) = R}.

THEOREM 4. ^ ^ = g/(^r).

Proo/. Let iί be a ring for which Mσ(i?) = R, and let / ^ R be
an ideal of R. Then 0 — Λίσ0S J, and there must exist some ordinal
a such that Λf^Sl but Mσa+1ξ£I. Write A = Mσai B = Mσa+ί. Since
/ is an ideal of R, it follows from the definition that B/A contains
an accessible ^Γ-subring W/A of R/A such that W£I. Then the
natural homomorphism R/A—+R/Igives W/A-* W with W accessible.
Thus since ^ is homomorphically closed, we have a nonzero W e Λί.
It follows that J S / J G ^ C for some n and since I was arbitrary,
i2 € 3^(^r). Thus ^ C ' S ^(^/T).

The converse is clear, for suppose R e ^/{^t) and I = 71̂ (72) =
Λfσr(i2). If IΦR, it follows that β/I has an accessible ^^-subring,
contradicting Mffr(i2) = Mffr+1(2e). Thus Mσ(R) = R whence i2 e ΛTa' and
so ^ C ' = g^(^T).
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CHARACTERIZATION OF CERTAIN INVARIANT
SUBSPACES OF Hp AND Lp SPACES DERIVED

FROM LOGMODULAR ALGEBRAS

SAMUEL MERRILL, III, AND NAND LAL

Let A = A(X) be a logmodular algebra and m a represent-
ing measure on X associated with a nontrivial Gleason part.
For 1 ^ p ^ oo, let Hp(dm) denote the closure of A in Lp(dm)
(w* closure for p — oo). A closed subspace M of Hp(dm) or
Lp(dm) is called invariant if fe M and g e A imply that fg e M.
The main result of this paper is a characterization of the
invariant subspaces which satisfy a weaker hypothesis than
that required in the usual form of the generalized Beurling
theorem, as given by Hoffman or Srinivasan.

For 1 ^ p ^ oo, let Ip be the subspace of functions in Hp(dm)

vanishing on the Gleason part of m and let Am = ifeA: \ fdm — ok

THEOREM. Let M be a closed invariant subspace of L2(dm) such
that the linear span of AmM is dense in M but the subspace R =
{feM:fA_I°°M} is nontrivial and has the same support set E as M.
Then M has the form χE F'(P)L for some unimodular function F.

A modified form of the result holds for 1 <̂  p <Ξ oo. This theorem
is applied to give a complete characterization of the invariant subspaces
of Lp(dm) when A is the standard algebra on the torus associated with
a lexicographic ordering of the dual group and m is normalized Haar
measure.

!_• Invariant subspaces* In 1949 Beurling [1], using function
analytic methods, showed that all the closed invariant subspaces of
if2 of the circle have the form M = FH\ where \F\=1 a.e. In
1958 Helson and Lowdenslager [3] and [4] extended the result to
some but not all subspaces of the H2 space of the torus, using Hubert
space methods. In the past 10 years the latter arguments have been
extended by Hoffman [5, Th. 5.5, p. 293], Srinivasan [8], [9], and
others to prove the following generalized Beurling theorem. If m is
a representing measure for a logmodular algebra A and if M is an
invariant subspace of L2(dm) which is simply invariant, i.e., if

(1) the linear span of AmM is not dense in Λf,
then M = FH2 for | F\ = 1. In the general case (even the torus case)
not all invariant subspaces satisfy this hypothesis. Our purpose is to
extend the characterization by weakening hypothesis (1).
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We assume throughout the paper that A = A(X) is a logmodular
algebra [5] of continuous complex-valued functions on a compact
Hausdorff space X and that m is the unique representing measure on

X for a complex homomorphism of A, i.e., 1 fgdm = I fdm \ gdm for

all f,geA. Furthermore we assume that this complex homomorphism
lies in a Gleason part P(m) containing more than one element. A
function feH°°(dm) is called inner if | / | = 1. For each feH2(dm)

we write f(φ) — I fdφ for φ in P(m), where φ also denotes the

representing measure for the homomorphism φ.
In [10] Wermer showed (for A a Dirichlet algebra) that there

exists an inner function Z such that Z maps P{m) onto {λ: | λ | < 1}
and such that the equation

(2) G(Z(φ))=f(φ)
associates with each / in H2(dm) an analytic function G(λ) = ΣΓ=o Urλ71

for | λ | < 1 where an — I Znfdm. (See [5] for the extension to log-
modular algebras.) Denote by F the boundary value function of G
(i.e., the function in L\dθ) whose Fourier coefficients are an, where
dθ is normalized Lebesgue measure on {| λ | = 1}).

Elementary arguments (including the Riesz-Fischer theorem) esta-
blish that the mapping Φ(f) — F can be extended to a bounded linear
transformation of L2(dm) onto L2(dθ), using the fact that L\dm) —
H\dm) © HUdm) [5, Th. 5.4, p. 293].

Denote by ^ p the closure (in Lp(dm)) of the polynomials in Z;
denote by ^ p the closure (in Lp(dm)) of the polynomials in Z and
Z. (For p= oo, the closure is taken in the w* topology.) Thus
^ 2 = ^Γ 2 0 ^ L and Φ, restricted to ^f\ is an isometric isomorphism
onto U(dθ), induced by the correspondence Z-+eiθ.

Actually Φ can be extended to a continuous transformation of
Lι(dm) onto L\dθ) induced by formula (2) and for 1 <; p ^ oo carrying
^fp isometrically onto Lp(dθ). (This map also carries Hp{dm) onto
Hp{dθ).) This follows from the following result of Lumer [6, Th. 3, p.
285] (and our Lemma 5 below): The correspondence Z—>eiθ induces an
isometric isomorphism of £?p onto Lp(dθ) for each p, 1 ^ P ^ oo, which
carries ^ p onto Hp(dθ). See also Merrill [7, Proof of Th. 1]. For /
and geL2(dm), Φ(fg) = Φ(f)Φ(g) (see the proof of Lemma 10 in Wer-
mer [10]). We call Φ the natural homomorphism of Lι(dm) onto Lι(dθ)+

Define P = ίfe Hp(dm): ( Znfdm = 0, n = 0,1, 2, .. Λ for 1 ̂  p g co,

so that H\dm) = %ί2 0 J2. Using (2) it is not hard to check that
p = {fe Hp(dm):f(φ) = 0,φe P(m)}. For any subset S S L\dm), denote
by [S] the closed linear span of S.

DEFINITION. Let M be a closed invariant subspace of Lp(dm). M
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is called simply invariant if AmM is not dense in M (w* dense for
p =z oo) and doubly invariant if AMC M. We call M sesqni-invariant
if ZM S M but M is not invariant under A.

There exist closed invariant subspaces of L2(dm) which are sesqui-
invariant, i.e., neither simply nor doubly invariant. For example, let
M = P. If P satisfied (1) so that it had the form FH\ F inner, then
F would be in I2, so that ZF would be in I2 by Lemma 1 below. But
if I2 = FH2, then ZeH2, which is not the case.

Our main purpose in § 2 is to relax hypothesis (1) and to obtain
a characterization of certain invariant subspaces of L2(dm) not covered
by the Beurling theorem, in terms of the support set of M, a unimodular
function, and P. At the end we extend the result to 1 <^ p ^ oo.
Examples in which I2 is nontrivial are given in § 3 together with
applications of the main theorem. First we give three lemmas of a
preliminary nature which collect elementary and known facts.

LEMMA 1. If feP, then ZnfeP.

Proof. Clearly it suffices to show that Zfe H2, for then ZfL T 2

and hence Zfe P. Let heHl{dm) and write

an = \znfdm, bn = ί Znhdm .

Then ( Zfhdm - aQbx + aj)o = 0 so Zfe H2.
J

LEMMA 2. Let MQL2(dm) be a closed subspace. Then the follow-
ing are equivalent

( i ) AM S M
(ii) H-MSM
(iii) HZM = ZM = [AmM].

Proof. That (i) implies (ii) follows from the w* density of A in
H^idm). To see that (ii) implies (iii) observe that by definition of Z,
HI = ZH2 and hence Hι

m = ZH\ by taking closure in L1. By con-
sidering conjugate spaces and applying Corollary to Theorem 6.1 in
Hoffman [5, p. 298], we have HZ = ZH~. Using (ii), H^M = ZH°°MQ
ZM C HZM. In any case HzM = [AmM] by the w* density of Am in
Hz. This establishes (iii).

To show that (iii) implies (i), it suffices to show (iii) implies (ii).
We haveseen that Hz = ZH°° or ZHZ = H~. Using (iii) this yields
jff-ΛΓ = ZHZM S ZZM = M.

LEMMA 3. Let M £ L2(dm) be a closed invariant subspace. Then
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the following are equivalent.
( a ) M — FH2 for some unimodular function F.
(b) MQ{AmM]Φ{<d).
( c ) MQZMΦ{0}.
(d) M, is not invariant under Z.

Proof. The equivalence of (a) and (b) is the generalized Beurling
theorem. Items (b) and (c) are equivalent by Lemma 2. If (a) holds
then so does (d). For if M were invariant under Z then since FeM,
ZFeM = FH2, so that ZeH2 which is not the case. On the other
hand, if (d) holds, ZM is a proper closed subspace of M, i.e., (c) holds.

DEFINITION. If fe L\dm), we define the support set of / (denoted
by Ef) as the complement of a set of maximal measure on which /
is null. If M is a closed subspace of L\dm), the support set of M
(denoted by EM) is defined as the complement of a set of maximal
measure on which all feM are null. Clearly Ef and EM are defined
only up to sets of measure zero.

2* The invariant subspace theorem*

THEOREM 1. Let A be a logmodular algebra and m a fixed
representing measure such that the part P(m) contains more than
one element. Let M be a closed sesqui-invariant subspace of L2(dm)
and let E be the support set of M. Let R = M Q [I°°M] and L =
M1 θ [Ϊ°°ML] where M1 = {fe χEL2(dm): f j_ M}. Then

(3) L is nontrivial and the support set of L is E if and only
if %2?£=Ŝ 2 and M has the form M— χE-F-I2 for some unimodular
function F, and

(4) R is nontrivial and the support set of R is E if and only
ifχEe^2andM has the form M=χE.F (I2)L = XE-F-(j2f2®P) for
some unimodular function F.

We need several lemmas, the key fact being Lemma 8.

LEMMA 4. Let Z be the Wermer embedding function. If θ is
Lebesgue measure on T, then θ{Z(x): xe X} = 1 and m{Z~ι{E)) = 0 if
and only if Θ{E) = 0, for each measurable subset E of T. Moreover,
if F in L^dθ) corresponds to fe ^f1 under the natural homomorphism
Φ, then f(x) = F(Z(x)) a.e.

Proof. Suppose that Θ(Z(X)) < 1. Then there exists a closed set
K S T\Z(X) such that Θ(K) > 0. The functions fn(t) = 1/(1 +np(t, K)),
where p denotes distance, are continuous for each n and converge to
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χκ(t) point wise everywhere and in U(dθ). Let gn and g denote the
images in J ^ 2 of fn and χκ, respectively, under the natural correspond-
ence. Hence gn—>g in U(dm) and by passing to a subsequence we may
assume that gn(x) —> g(x) a.e. (dm). Since the fn may be approximated
by trigonometric polynomials, gn(x) = fn(Z(x)) a.e. (dm), and the latter
sequence converges to zero a.e. (dm) by the definition of the fn. Hence
g(x) — 0 a.e. (dm). But this contradicts the fact that g corresponds
to a nonzero function. Thus Θ(Z(X)) = 1.

This also proves that if Θ(E) > 0, then m(Z~\E)) > 0. Now
suppose that Θ(E) = 0, i.e., that χs(t) = 1 a.e. (dθ), where S = T\E.
Choose closed sets K, £ iSΓ2 £ , , £ S, such that 0(lΓn) -* 0(S). Using
the argument of the previous paragraph, we can show that the
characteristic function of Kn corresponds to that of Z~x(Kn). Thus
the characteristic function of Z~ι(Kn) converges in U(dm) to the
function 1. But the characteristic function of Z~ι(Kn) also converges
to that of Z~ι(\J Kn). Thus the latter function is 1 a.e. Thus
m(Z~ι(S)) = 1 so that m(Z'1(E)) = 0.

To obtain the last assertion of the lemma, let FeL\dθ) and /
the corresponding function in the isomorphic image of U(dθ) in U(dm).
Choose a sequence Fn of polynomials in eiθ and e~iθ which converge to
F in U(dθ) and a.e. Let fn correspond to Fn so that fn—>f in U(dm)
and can be replaced by a subsequence which converges a.e.

Since Fn are polynomials, fn(x) = Fn(Z(x)) a.e. (dm). Since Fn(t) —•
F(t) a.e. (dθ), the first part of the lemma implies that Fn(Z(x))-+F(Z(x))
a.e. (dm). Thus f(x) = F(Z(x)) a.e.

LEMMA 5. If 1 <; p ^ oo, then

Hp(dm) = F 0 P

where 0 denotes algebraic direct sum. Denote by Np the closure of
Tp 0 Ip in Lp(dm) (norm closure for 1 ^ p < oo; w* closure for p —
oo). Then

Lp(dm) = ^fp@Np .

Proof. First assume l < p ^ o o . If / e Hp(dm), then / defines a
bounded linear functional on Lq(dm) which (via Lumer's isometry)
induces a bounded linear functional on Lq(dθ), which in turn is
represented by some FeLp(dθ). It is easy to show that

ί Znfdm = \ einθFdθ

for all integers n. Hence FeHp(dθ), and by Lumer's isometry there
exists ge %ίp with
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ί Znfdm = \ Zngdm

so that / — geP. Hence Hp(dm) = %ΓP 0 P , l < p ^ oo.
Now let p — 1 and fe H\dm). Since the lemma holds f or p = 2

and if1 is the closure of j T 2 0 / 2 , there exists gne r 2 and /&Λe/2

such that the functions fn = gn + feΛ converge in L1 to /. We will
have shown that Ήι(dm) = ^ Γ 1 © / 1 if we can establish that {gn} forms
a Cauchy sequence. For this it suffices to show that whenever / —
g + h for ge %T2 and fee/2, then \\g\\, ^ H/Hi.

Applying Lumer's isometry for p — 1 for the second equality and
for p = oo for the fourth, we have

Hflflii = ( |flr|dm = ί | Φ(g) \dθ = sup ( Φ(g)Φ(q)dθ

f f
= sup I gqdm = sup \ /gcίm <^ \\ f \\1 ,

where g ranges over ^f°°. Thus Hp(dm) = β>fp © /p, 1 ^ p =
For the second part of the lemma, denote

ikP = j / e Lp(dm): I Znfdm = 0 all integers

It can be shown that Lp(dm) = . 5 ^ 0 I P by the same arguments we
used for the Hp case. We can complete the proof of the lemma by
showing that Mp = Np, 1 ^ p ^ oo.

Clearly Np C M p . Let feMp. Since HZ(dm) 0 Hp(dm) is dense
in Lp(dm) [5, Th. 6.7, p. 305] and Hp{dm) = J p 0 P by the first part
of the lemma, we can choose gn e J^p and hn e Np such that

\ k(gn + feΛ)dm > I kfdm

for all /c e Lq(dm). Write k = k, + k2 where ^ e = ^ g and fc2 e Mq. Thus

kγgndm = I ^ ( ^ + Λ%)dm • 1 fcjdm = 0 .

Also 1 k2gndm = 0. Thus I kgndm—>Q. Since the subspace Np is norm

closed for 1 ^ p ^ oo, it is also weakly closed, so fe Np. If p = oo,

clearly /GΛΓ 0 0 .

LEMMA 6. Le£ Mbe a closed sesquί-ίnvariant subspace of L2(dm)f

and let R = ikf θ [^°°^]- If feR and Ef is the support set of f,
write f for the characteristic function of Ef. Then f _L I2.

Proof. Observe that for any f,geR the function fg is orthogonal
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to both J°° and I~. For if h e J°°, gh e I~M so that / ± g h , i.e., fg lh.
Similarly fg LΪ00. In particular | / | 2 = ffλ. I°° and I°°. It follows
easily from Lemma 5 that | / | 2 lies in Jzf1. If .P is the function in
L1(dθ) corresponding to |/ | 2 , we have \f{x)\2 = F(Z(x)) by Lemma 4.
In particular f(x) — 0 if and only if F(Z(x)) = 0 so that / = F<>Z.
Since FeL2(dθ)y it follows that fe^f2, i.e., / I / 2 .

LEMMA 7. Suppose that M is a closed sesqui-invariant subspace
of L2(dm) and let R — MQ [/°°Λf]. Then there exists feR with
Ef = ER.

Proof. If f,ge R, note that there exists h e R with Ek = Ef[jEg.
For let F = Eg\Ef. Since χF e £f2 by Lemma 6, χFg e R. Then / +
χFg e R and has support set Ef\jEg. Now let a = sup {m(Ef):fe R).
Choose fne R with m(Efn)—+a and 2 ^ S #/2 S . Alter the functions
fn by the technique above so that their supports are disjoint. Then
/o = Σ"=i 2~nfn e J? and has support G with m((?) = a. If m(£f

i2) > α,
then there would exist a set of positive measure in ER\G and a function
# G i? such that # would not vanish on that set. But then Efo (J Eg

is the support set for some function in R, although m(Efo U Eg) > a.
This contradiction shows that Efo = ER.

LEMMA 8. Let Mbe a closed sesqui-invariant subspace of L2(dm),
R — MQ [7°°M], and let E be the support set of R. Then there exists
a unimodular function FeL2(dm) such that χEFeR. If m(E) — 1,
then FeR.

Proof. By Lemma 7, there exists feR with Ef — E. Define

lf(x)/\f(x)\,xeE

Then \F(x)\ = 1 a.e., and / = F\f\.
As in the proof of Lemma 6, since feR, there exists a function

FeL\dθ) such that \f(x)\* = F{Z(x)) a.e. Thus F ^ O a.e. and
\/F e L2(dθ). Let h be the function in the isomorphic image of
L2(dθ) corresponding to \/F. By Lemma 4, \/F(Z(x)) = h(x) a.e.,
i . e . , \f\ = he ,ζf2. I t f o l l o w s t h a t f=F\f\e F^f2. C l e a r l y [Znf] s
F^f2 for all integers n. Writing N = [Znf], we have FN = [ZnFf].
But ZnFf = Zn(\f\/f)f= Zn\f\ on E, and is zero off E. Therefore
ZnFfe£f\ so that FNQ^f2. However, FN is invariant under Z
and Z, so that its isomorphic image in L\dθ) is doubly invariant and
must have the form QL\dθ) where Q = Q2eU(dθ). Thus FN = gj2^2

where # is the corresponding idempotent in S^2. It is clear from the
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definition of N that q = χE. Hence N = FχE^f\ so that FχE eN^

REMARK. If M is a closed sesqui-invariant subspace of L2(dm),
then ML (as defined earlier) is a closed subspace of L2(dm) invariant
under H°°(dm) and Z. Let L = Mλ Q [I~MX]. Then dual forms of
Lemma 6, 7, and 8 hold with L in place of R.

Proof of Theorem 1. First we assume that M= χEFP for some
unimodular function F and that χEe^2 and show that χEFeL, so
that EL = E. To this end let h e P. Then

χEFχEFhdm = \ = 0

by assumption, so that χEFeMλ. To see that XEFA.I^M1, let hel°°
and keM1. It suffices to show that χEF±.hk, i.e., that χEFh±k.
But this follows since k 1 M. A dual argument shows that Λf =
χEF(Γy and χEe^2 imply that χEFeR so that 2?Λ = £7.

Conversely, let us suppose that EL = £7. By Lemma 8, there exists
a unimodular function FeL2(dm) such that χEFeL. It follows that

( 5 ) FH\dm) a AT a χ ^ / 2 .

To prove the first inclusion in (5) it suffices to show that ML a
.Fίίi where this time ML denotes the orthogonal complement in all of
U(dm). Thus let heAm, so that hM^M and χEF ± hM. Since the
functions in ikf vanish off E by assumption it follows that F J_ feM,
i.e., Fh j_ Λf, so that i^ϊfi C M1 as required.

To obtain the second inclusion, let g e I°° and suppose that f±M
in χEL2(dm). It follows easily from Lemma 5 that I°° is dense in I2.
Thus it suffices to show that χEFg±f, i.e., that χEF±gf. But this
follows since χEF j_ I°°ikfL by construction.

Multiplying (5) by F we have

( 6 ) H\dm) ̂ FM^ χEP .

We use the invariance of M under Z to show that FM = χEP.
For let fe FM and write f = f1 + f2 where f e %r2, f2 e P. By Lemma
6, χE e ̂ f2 so that

f=XEf= XEA + XEf2

is the unique orthogonal decomposition of / into ^f2 and P. However,
since / and χEf2 are both in H2 (Lemma 1), it follows that χEfeH2.
Therefore χEf e βf2. But χEf vanishes on the complement of E so
that either (i) m(E) = 1, or (ii) χEf = 0.

If case (i) holds, H2 a FM a P so that either FM = P or there
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exists feFM with I Znfdm Φ 0 for some nonnegative integer n. By

considering the least integer for which such an / exists, it is not
hard to see that FM would not be invariant under Z. Thus M = FP.

If case (ii) holds, / = χEf2 e P and χEf = fe χEP. Thus FM s χEP.
Together with (6) this implies that FM = χEP. So that M = χE-F-P.

We turn now to case (4) in which R is nontrivial and the support
of (R) = E. Let N = ML = {fe L\dm)\ Ef ^ E and f± M). Then N
is the complex conjugate of a sesqui-invariant subspace and

N1 θ [I^N1] = MQ [I°°M] = R .

We apply (a trivial modification of) the first part of the theorem to
N. For this we need to know that EN = E. If G = E\EN is not
the null set, then χG-L\dm) s M which is not possible. Thus EN = E
and N — χE-F-ϊ2 for some unimodular function F. Hence

We now extend the main result to a more general class of sub-
spaces of U(dm).

THEOREM 2. Let M be a closed sesqui-invariant subspace of L2(dm).
Let Mι = {feM:f-L°°(dm) g M) and M2 = MQMίy and R2 = M2Q
[I-M2]. Assume that E2, the support set of M2 is the same as the
support set of R2. Then

where F is unimodular, Eι is the support set of Mι and χE2 J_ I2.

Proof. Since Mx is a closed doubly invariant subspace of L2(dm),
there exists a measurable set £ Ί S I such that Mx = χEι-L2(dm) (see
Helson [2, Th. 2, p. 7]). It is easy to check that

M2 = {feM:f=0 on EJ .

Since M is sesqui-invariant, M2 Φ {0}, and is itself sesqui-invariant.
By Theorem 1, M2 = χE2-F-P for some χE2 i_ P and F unimodular.

The final theorem of this section characterizes the invariant sub-
spaces of Lv(dm) for 1 ̂  p ^ oo.

THEOREM 3. Fix p in the range 1 ̂  p ^ oo. Let M be a closed
sesqui-invariant subspace of Lp(dm) and let E be the support set of
M. Let R = {feMnL«:f±I~M} and L = {fe M1 f] L*\fL Ϊ~M^}
where q is the conjugate index to p and M1 — {feχE Lq(dm):f±M}.
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Then
( i ) M = χE-F(^fp + Ip) where χE e ^f2 and F is a unimodular

function if and only if E is the support set for R.
(ii) M = χE*F Ip where χE e S^2 and F is a unimodular function

if and only if E is the support set for L.

Proof. It is easy to show that if M has form (i) or (ii) then E
is the support set of R or L, respectively. Let us prove the converse.
First we prove the theorem for p — 1. Suppose that E is the support
set of R. Let N = M Π L2(dm); N is a closed sesqui-invariant subspace
of U{dm). Let i2* - {fe N:f±I~N}. Since RaR*, we get E is the
support set of iϋ* which in turn is the support set for N. Applying
the L2 invariant subspace theorem to N, we get N = χE F(^f2 + I2).
Since NQM, we get χE-F{£?1 + Γ) S Λf. For / e M, define k=\f\112

for I /1 ^ 1 and 1 for I /1 < 1. Take h e iϊ2(cίm) outer such that | h | = fe.
It is easy to see that 1/h e H~(dm) and therefore f/h e M. Since
f/heL2(dm) also, we get f/heN= χE-F(^2 + I2) and therefore fe
XE-F^1 + I1). Thus we get M - x^F-i^f1 + Γ). When # is the
support set for L, we get M = χE*F Iι by applying an argument
similar to the above.

Now let us prove the theorem for p = oo. Suppose that E is the
support set for R. Let JV = [M] (where [ ] denotes closure in L\dm).
Let i2* = {feN:f±I°°N}. It is clear that E is the support set for
N which in turn is the support set for iϋ*. By the L2 invariant
subspace theorem we get N = χE F(^f2 + I2). Since MS Nf] L°°(dm),
we get M ξΞtχE-F(^f°° + I°°). By applying the L1 invariant subspace
theorem to Ή1, we get M1 = χE-G-T1, \ G | = 1. It is easy to see that
χE GP±χEF(^f- + I~) and therefore Af= Z^ F(=^°° + /TO). When ,&
is the support set for L, we get M = χ^ i^ J00 by applying an argu-
ment similar to the above. The proof for 1 < p < 2 is similar to the
one for p — 1 and that for 2 < p < oo is similar to the one for p = oo.
Thus the theorem is true for 1 rg p ^ oo.

3* Applications* We give an example of a logmodular algebra
and a representing measure m for which I 2 is nontrivial and show
that the above theorems, together with known results, completely
characterize the invariant subspaces of L2(dm).

EXAMPLE 1. Let T = {λ e C: \ λ | = 1} and let A = A(T2) be the

logmodular algebra of continuous functions on T2 which are uniform
limits of polynomials in einθeimφ where

(n, m)eS = {(n, m): n > 0} U {(0, m): m ^ 0} .

The maximal ideal space of A can be identified with
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with normalized Haar measure m identified with θ = φ — 0. The part
of m is {0} x {φ: | φ \ < 1}. The Wermer embedding function is given
by Z = eίφ, %2 is the U closure of the polynomials in eimφ, m = 0,1, ,
and I2 is the L2 closure of the polynomials in einθeimφ for n ^ 1.

Let now If be a closed invariant subspace of L2{dm). Observe
that M is doubly invariant if and only if eiθM = M. In this case
M = χE-L2(dm), for some measurable set E S T2.

If M θ <̂ Af ^ {0} and M = eiφM we show that R Φ {0} and that
ER = E2 (see Theorem 2). To see that R = MQeiθM, let #eΛf,
g±eiθM. Since Λf is sesqui-invariant 5rlβ"imV^M, for m = 1, 2, .
Hence #±[J°°lf].

Define Jl^ = {fe M.\ e~inθfe M, n = 1, 2, ...} and M2 = MQMι.
Then Mi = χEι-L2(dm) for some measurable Et. We show that Theorem
2 applies to Af2. Let K be the complement of ER in T2.

Since χκ£^\ we get χ^M2 c Λf2. Also χκ-M2_ιR so χ*ikf2c
βwikf2 and therefore χκM2 = χκ(eίθM2). But M2 cannot contain a doubly
invariant subspace, so ER = E2. Theorem 2 applies and

for some unimodular function F'. Writing F = e~ίθF', we have M2 =
χE2-F I2. Note that the proofs of Lemmas 4, 6, and 7 are much
simpler for the torus case than for the general case.

If MQeiφM Φ {0}, then M = FH2 by the generalized Beurling
theorem.

Suppose that we now replace T x T with B x T, where B is the
Bohr compactification of the real line and consider A — A(B x T).
Again Haar measure is associated with a nontrivial part. Denote
by χτ(x) the characters on B, where τeR. I2 is generated by the
characters χT(x)eimφ for τ > 0. Clearly (3) holds for M, = χj2 and (4)
holds for M= %r(/2 0 =2f2), for any fixed τ. However one can use
the example in Helson and Lowdenslager [4] to construct a sesqui-
invariant subspace of H2(dm) for which both L and R are trivial.
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MULTI-VALUED CONTRACTION MAPPINGS

SAM B. NADLER, JR.

Some fixed point theorems for multi-valued contraction
mappings are proved, as well as a theorem on the behaviour
of fixed points as the mappings vary.

In § 1 of this paper the notion of a multi-valued Lipschitz mapping
is defined and, in § 2, some elementary results and examples are given.
In § 3 the two fixed point theorems for multi-valued contraction map-
pings are proved. The first, a generalization of the contraction
mapping principle of Banach, states that a multi-valued contraction
mapping of a complete metric space X into the nonempty closed and
bounded subsets of X has a fixed point. The second, a generalization
of a result of Edelstein, is a fixed point theorem for compact set-
valued local contractions. A counterexample to a theorem about
(ε, λ)-uniformly locally expansive (single-valued) mappings is given
and several fixed point theorems concerning such mappings are proved.

In § 4 the convergence of a sequence of fixed points of a convergent
sequence of multi-valued contraction mappings is investigated. The
results obtained extend theorems on the stability of fixed points of
single-valued mappings [19].

The classical contraction mapping principle of Banach states that
if {X, d) is a complete metric space and /: X —> X is a contraction
mapping (i.e., d(f(x), f(y)) ^ ad(x, y) for all x,y e X, where 0 ̂  a < 1),
then / has a unique fixed point. Edelstein generalized this result to
mappings satisfying a less restrictive Lipschitz inequality such as local
contractions [4] and contractive mappings [5]. Knill [13] and others
have considered contraction mappings in the more general setting of
uniform spaces.

Much work has been done on fixed points of multi-valued functions.
In 1941, Kakutani [10] extended Brouwer's fixed point theorem for
the n-cell to upper semi-continuous compact, nonempty, convex set-
valued mappings of the n-ce\\. In 1946 Eilenberg and Montgomery
[7] generalized Kakutani's result to acyclic absolute neighborhood
retracts and upper semicontinuous mappings F such that F(x) is
nonempty, compact, and acyclic for each x. In 1953, Strother [22]
showed that every continuous multi-valued mapping of the unit interval
of I into the nonempty compact subsets of / has a fixed point but
that the analogous result for the 2-cell is false. In [22] Strother also
proved some fixed point theorems for multi-valued mappings with
restrictions on the manner in which the images of points are embedded
under a homeomorphism of the space onto a retract of a Tychonoff
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cube. Plunkett [20], Ward [23], and others have shown that the
spaces which have the fixed point property for continuous compact
set-valued mappings constitute a fairly small subclass of those which
have the fixed point property for continuous single-valued mappings.

In this paper, we combine the ideas of set-valued mapping and
Lipschitz mapping and prove some fixed point theorems about multi-
valued contraction mappings. These theorems place no severe re-
strictions on the images of points and, in general, all that is required
of the space is that it be complete metric. Some results in this paper
were presented to the American Mathematical Society on November
18, 1967; an abstract of that talk may be found in [18]. A slightly
different version of Theorem 5 below was announced later in [15].

1Φ Basic definitions and conventions* If (X, d) is a metric
space, then

( a) CB(X) = {C I C is a nonempty closed and bounded subset of X},

(b) 2X — {C I C is a nonempty compact subset of X},

(c) N(ε, C) = {x e X \ d(x, c) < e for some ceC} if ε > 0 and

CeCB(X), and
( d) H(A, B) = inf {e | AaN(e, B) and BaN(e, A)} if A, Be CB(X).

The function H is a metric for CB(X) called the Hausdorff metric.
We note that the metric H actually depends on the metric for X and
that two equivalent metrics for X may not generate equivalent Haus-
dorίf metrics for CB(X) (see [11, p. 131]). We shall not notate this
dependency except where confusion may arise. It will be understood,
unless otherwise stated, that the symbol H stands for the Hausdorff
metric obtained from a fixed preassίgned metric.

Let (X, dx) and (Γ, d2) be metric spaces. A function F: X -> CB( Y)
is said to be a multi-valued Lipschitz mapping (abbreviated m.v.l.m.)
of X into Y if and only if H(F(x), F(z)) ^ adL(x,z) for all x, zeX,
where a :> 0 is a fixed real number. The constant a is called a
Lipschitz constant for F. If F has a Lipschitz constant a < 1, then
F is called a multi-valued contraction mapping (abbreviated m.v.c.m.).
A m.v.l.m. is continuous.

A point x is said to be a fixed point of a single-valued mapping
/ (multi-valued mapping F) provided f(x) = x(xe F(x)). Since the
mapping i: X-+CB(X), given by i(x) = [x] for each xeX, is an
isometry, the fixed point theorems in this paper for multi-valued
mappings are generalizations of their single-valued analogues.

2* Preliminary results* In this section we present some ele-
mentary results which will be used in later sections and introduce
some notation and terminology. The proofs of many of the theorems
are straightforward. From a remark in [23, p. 161] if F: X —>2F is
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a m.v.l.m. and Ke2x, then (J {F(x) \ x e K} e 2Y.

LEMMA 1. Let F:X-+2Y be a m.v.l.m. with Lipschitz constant
a. If A, Be 2X, then H(\J {F(a) \ a e A}, \J {F(b) \beB})^ aH(A, B).

THEOREM 1. Let F: X-+2Y be a m.v.l.m. with Lipschitz constant
a and let G:Y—+2Z be a m.v.l.m. with Lipschitz constant β. If
GoF: X->2Z is defined by (G<>F)(x) = (J {G(y) \ y e F(x)} for all xeX,
then GoF is a m.v.l.m. with Lipschitz constant a-β.

THEOREM 2. Let F: X—>2Y be a m.v.l.m. with Lipschitz constant
a and let F: 2X «-> 2Y be given by F{A) = \J {F(a) \azA] for all A e 2X.
Then F is a Lipschitz mapping with Lipschitz constant a.

Let (X, d) be a complete metric space and let F: X —> 2X be a
multi-valued contraction mapping. By Theorem 2 F is a contraction
mapping and therefore, since (2X, H) is complete [2, p. 59], has a
unique fixed point Ae2x. In the next section (see Theorem 5) we
prove that such an F has fixed points. The existence of the fixed
point A of F does not seem to imply the existence of a fixed point
of F and in fact, as the next example illustrates, there seems to be
little relation between the set S of fixed points of F and the fixed
point A of F (except the containment of S in A; see the last part of
the proof of Theorem 9).

EXAMPLE 1. Let I = [0,1] denote the unit interval of real numbers
(with the usual metric) and let /:/—>/ be given by

Define F:I-*2T by

F(x) = {0} U {/(#)} for each xel. It is easy to verify that (a) F is
a multi-valued contraction mapping, (b) the set of fixed points of F
is {0, 2/3}, and (c) the fixed point of F is

{•§-, 0, /(0), /(/(0)), /(/(/(0))), •} .

THEOREM 3. Let F: X—>CB(Y) be a m.v.l.m. with Lipschitz
constant a and let G: X—> CB(Y) be a m.v.l.m. with Lipschitz constant
β. If F U G: X->CB(Y) is given by (F U G)(x) = F(x) U G(x) for all
x e X, then F U G is a m.v.l.m. with Lipschitz constant max {a, β}.

The following example shows it is not in general true that the
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intersection of two multi-valued contraction mappings is continuous
(we define the intersection of two multi-valued mappings only when
the image sets have a nonempty intersection at each point).

EXAMPLE 2. Let P = {(x, y) | 0 <£ x ^ 1 and 0 ^ y <, 1}, let F:

P —> CB(P) be defined by F(x, y) is the line segment in P from the
point {(1/2) a?, 0} to the point {(1/2) a?, 1} for each (x, y) e P, and let
G: P —> CB(P) be defined by G(x, y) is the line segment in P from the
point {(1/2)'X, 0} to the point {(1/3) x, 1} for each (a?, y) e P. It is easy
to see that F and G are each multi-valued contraction mappings and
that F π G, which is given by

IV 2 / J for

l{(a, 2/)G/2 I x = 0}, £ = 0

all (x,y)el2, is not continuous.
Let X be a closed convex subset of a Banach space. If A e CB(X),

then let cό (A) denote the intersection of all closed convex sets con-
taining A. We may think of cό as a function from CB(X) into CB(X).

LEMMA 2. Let X be a closed convex subset of a Banach space
(with norm || | |). Then cό: CB(X) —>CB(X) is nonexpansive, i.e., if
A,BeCB(X), then H(cδ(A), cδ(S)) ^ H(A, B).

Proof. Let A, Be CB(X) and let ε > 0. Choose pe cδ(A). Then
there exist αx, α2, " , α n e A and ίx, ί2, , ίΛ e [0,1] such that Σ?=i U ~
1 and || p — Σ?=i ^α* II < ε / 2 For each i = 1, 2, , w there is a point
6, e B such that || αf - δ< || < ίf(A, B) + ε/2. Let g = Σ?=i ^ ' ^ τ h e n
gecό(j5)and \\p - q\\ ̂  \\p - Σ^=i^ α;li + IIΣ?=i^ α i — Σ ί U ^ ' M <
ε/2 + Σ**=i *i II α* - &» II < H(A, B) + ε. This proves that

co (A) c N(H(A, B) + ε, cό(B)) .

Similarly it can be shown that cό (B) c N(H(A, B) + e, cό (A)) Since
ε was arbitrary, the result follows.

The proof of the next theorem is immediate from Lemma 2.

THEOREM 4. Let X be a closed convex subset of a Banach space
and let F: X—>CB(X) be a m.v.l.m. with Lipschitz constant a. If
cό F: X —> CB(X) is given by (cό F)(x) — Έό(F(x)) for all x e l , then
cό F is a m.v.l.m. with Lipschitz constant a.

REMARK. Theorem 3 gives a technique for constructing a multi-
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valued Lipschitz mapping from a finite number of single-valued
Lipschitz mappings by "unioning their graphs at each point". Theorem
3 can be generalized to an arbitrary family {Fλ}λeΛ of multi-valued
Lipschitz mappings if it is assumed that (1) \J {Fλ(x) \ X e A} is a closed
and bounded subset of X for each x e X and (2) there is a real number
μ such that aλ ^ μ for all λ e Λ where aλ is a Lipschitz constant for Fλ.

REMARK. Note that if, in Theorem 4, F is compact set-valued,
then so is cδF. This is an immediate consequence of a result of
Mazur's [3, pp. 416-417].

REMARK. Requiring a multi-valued mapping to be Lipschitz is
placing a very strong continuity condition on the mapping. The
literature on continuous selections suggests that, for a multi-valued
mapping F to have a continuous selection, conditions on the individual
sets F(x) are just as important (if not more important) as restrictions
on the continuity of F [17]. We substantiate this by pointing out
that a multi-valued contraction mapping need not have a continuous
selection, as may be seen by defining F on the unit circle in the
complex plane by F(z) is the two square roots of z.

3* Fixed point theorems* The first theorem of this section is
proved by an iteration procedure similar to that used in proving the
contraction mapping principle of Banach [14, pp. 40-42].

THEOREM 5. Let (X,d) be a complete metric space. If F:X—>
CB(X) is a m.v.c.m., then F has a fixed point.

Proof. Let a < 1 be a Lipschitz constant for F, (we may assume
a > 0) and let pQ e X. Choose p, e F(p0). Since F(p0), F{px) e CB(X)
and pxeF{pQ), there is a point p2zF{pι) such that

d(plf p2) ^ H(F(p0), F(pd) + a

(see the remark which follows this proof). Now, since

and p2

there is a point p3eF(p2) such that d(p2, p3) <̂  ̂ [(Fip^.Fip^) + a2.
Continuing in this fashion we produce a sequence {Pi}T=i of points of X
such that pi+leF(Pi) and d(pif pi+ί) ^ H(F(Pi-d> ̂ (P*)) + «* f°r all
i ^ 1. We note that

d(pi9 pi+1)

^ oc2d(p^21 p^) + 2aι ^ ^ αtato, Pi) +
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for all i ^ 1. Hence

d(pi9 Pi+s) £ d(pif pi+ι) + d(pi+ι, pi+2) +

^ afd(pQ, p,) + i α* + aί+1d(pQ, px) + (i + l) α ί + 1 + . . .

+ α*+i-1d(po, Pi) + (i + 3 ~ I)-****''-1

Σ aήd(po,p1)+ Σ. nan

n-ί / n—i

for all i,j ^ 1.
It follows that the sequence {pJΓ=i is a Cauchy sequence. Since

(X, d) is complete, the sequence {pjjli converges to some point x0 e X.
Therefore, the sequence {F(Pi)}T=ι converges to F(x0) and, since
PiβFiPi^) for all i, it follows that a^ei* 7 ^) . This completes the
proof of the theorem.

REMARK. Let A, Be CB(X) and let aeA. If η > 0, then it is a
simple consequence of the definition of H(A, B) that there exists beB
such that d(a, b) ^ H(A, B) + η (in the proof of the previous theorem
the Lipschitz constant a and subsequently a1 play the role of such an
Ύj). However, there may not be a point beB such that d(a,b)^
H(A, B) (if B is compact, then such a point b does exist). For example,
let l2 denote the Hubert space of all square summable sequences of
real numbers; let a = ( — 1, —1/2, •••, —1/n, •••) and; for each n =
1,2, •••, let en be the vector in l2 with zeros in all its coordinates
except the nth coordinate which is equal to one. Let A = {a, e19 e2. ,
en, •••} and let B = {e19 e2, ---,en, •••}. Since \\a - en\\ = ( | |α | | 2 + 1 +
2/n)h for each n = 1, 2, . . , H(A, B) = (|| α ||2 + 1)* and there is no en

in B such that || a - en\\ ^ iϊ(A, J5).

In [4] Edelstein proved that if X is a complete ε-chainable metric
space and /: X —»X is an (ε, λ)-uniformly locally contractive mapping,
then there is an x e X such that f(x) = x. We generalize this result
to multi-valued functions in Theorem 6, but first we give some defi-
nitions.

A metric space (X, d) is said to be ε-chainable (where ε > 0 is
fixed) if and only if given α, b e X there is an ε-chain from a to b
(that is, a finite set of points xQ,x19 ,xneX such that xQ —
α, xn — 6, and d(x^ly xt) < ε for a lH = 1, 2, , n). A function F: X—>
CB(X) is said to be an (ε, \)-uniformly locally contractive multi-valued
mapping (where ε > 0 and 0 ^ λ < 1) provided that, if x,yeX and
d(x, y) < ε, then H(F(x), F(y)) ^ Xd(x, y). This definition is modeled
after Edelstein's definition for single-valued mappings in [4]. Formally
this definition, in the case of single-valued mappins, is less restrictive
than Definition 2.2 in [4], but Edelstein uses only the properties of
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this type of uniform condition in the proof of his Theorem 5.2 [4].
The proof of Theorem 6 is substantially different from the proof

of Theorem 5.2 of [4]. The basic idea was inspired by Remark 2.34
of [6, p. 691].

THEOREM 6. Let (X, d) be a complete ε-chainable metric space.
If F:X—>2λ is an (e,X)-uniformly locally contractive multi-valued
mapping, then F has a fixed point.

Proof. If (x, y) e X x X, then let de(x, y) = inf {ΣΓ=i d(x^ί9 xt) \ x0 =
x, xlf , xn — y is an ε-chain from x to y}. It is easy to verify that
dε is a metric for X satisfying (1) d(x, y) ^ de(x, y) for all x, y e X and
(2) d(x, y) = ds(x, y) for all x,yeX such that d(x, y) < ε. From (1)
and (2) and the completeness of (X, d) it follows that (X, dε) is com-
plete. Let Hε be the Hausdorff metric for 2X obtained from dε. Note
that if A, B e 2X and H(A, B) < ε, then He(A, B) = H(A, B). We now
show that i^:X-^2 x is a m.v.c.m. with respect to dε and Hε. Let
x, y e X and let x0 = x, xly , xn = y be an ε-chain from x to y. Since
d(Xi-19 xd < e for al i i = 1, 2, , n, HiFix^), Ffa)) ^ \d(x^19 »<) < ε
for all i = 1, 2, , n. Therefore,

Hε(F(x), F(y)) g
i=ι

^), Fix,)) ^X± d{x^, xt) ,
i

i.e., Ht(F(x), F(y)) ^ λ Σ?= 1 d(x^19 xj. Since ^0 = x, xl9 , xn = 2/ was
an arbitrary ε-chain from a? to y, it follows that Hε(F(x), F(y)) <£
λde(a?, 2/). This proves that ί1 is a m.v.c.m. with respect to dε and H£.
By Theorem 5, F has a fixed point. This completes the proof of
Theorem 6.

In [4] Edelstein defines a single-valued mapping / to be (ε, λ)-
uniformly locally expansive (where ε > 0 and λ > 1) provided that, if
x is in the domain of /, then, for any distinct points p and q in the
domain of / such that d(p, x) < ε and d(q, x) < ε, d(f(p),f(q)) > Xd(p, q).
Corollary 6.1 of [4] states "If / is a one-to-one (ε, λ)-uniformly locally
expansive mapping of a metric space Y onto an ε-chainable complete
metric space Xz> Y then there exists a unique ζ such that/(f) = £".
The proof offered for this corollary is that f~ι is (ε, /9)-uniformly
locally contractive for some β < 1. In the following example we show
that this is not necessarily the case and, in fact, that Corollary 6,1
as stated is false.

EXAMPLE 3. Let S = {1, 2, 3, 4, 5, 6} with absolute value distance.
Define f:S-+S by
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/2, x = 1

4, x = 2

6, a = 3
i

1, x = 4

3, a; = 5

5, x = 6

It is easy to verify that / satisfies all the hypotheses of Corollary 6.1

of [4] where ε = 1— and λ = 1— (note also that S is 1—-chainable).
4 4 4

However, / has no fixed point.

Next we prove two fixed point theorems for single-valued (not
necessarily one-to-one) uniformly locally expansive mappings. Conditions
are placed on the inverse of a uniformly locally expansive mapping
which reflect the degree of chainability of the space or the degree of
local expansiveness of the mapping. Example 3 is the motivating
factor for such conditions (note that the mapping of Example 3 has
a uniformly continuous inverse).

We shall use a slightly weaker definition of uniform local expansive-
ness than Edelstein's definition given above. Specifically, a single-
valued mapping / is said to be (ε, X)-uniformly locally expansive (where
ε > 0 and λ > 1) provided that, if x and y are in the domain of/and
d(x, y) < ε, then d(f(x),f(y) ^ \d(x, y).

We need several more definitions before stating the next theorem.
A metric space is well-chained if and only if it is ε-chainable for each
ε > 0 (for compact spaces well-chained is equivalent to connected but
{(x, tan (x)) I 0 <Ξ x < π/2} (j {(π/2, y) \ y ^ 0} is a well-chained complete
space which is not connected). A function g from a space X to a
space Y is said to be s-continuous (for fixed ε > 0) if and only if each
point x of X admits a neighborhood Ux such that the diameter of
g(Ux) is less than ε (in [12], where ε-continuity was apparently first
defined, the requirement was that the diameter of g(Ux) be less than
or equal to ε). A function F: X —> CB(X) is said to be an ε-nonexpansive
multi-valued mapping (where ε > 0 is fixed) if and only if H(F(x),
F{y)) ^ d(x, y) for all x,yeX such that d(x, y) < ε (this definition is
modeled after Definition 1.1 of [6] for single-valued functions).

THEOREM 7. Let (X, d) be a complete e-chainable (well-chained)
metric space, let A be a nonempty subset of X, and let f: A—+ X be
an (ε, X)-uniformly locally expansive mapping of A onto X. If
f"ι(x) e 24 for each x e X and f-1: X~+ 2A is ε-nonexpansive (uniformly
ε-continuous), then f has a fixed point.
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Proof. We first prove the theorem for the case when X is ε-
chainable and f~x is ε-nonexpansive. We shall show that f-1: X —>2A

is (ε, l/λ)-uniformly locally contractive. Let x, y e X such that 0 <
d(x, y) < ε and choose η > 0. Let pef~\x). Since f~ι is ε-nonex-
pansive, H(f-1(x),f-1(y))^d(x,y)<ε. Hence, there exists a point
qef~\y) such that d(p,q)<ε. Therefore, d(f(p),f(q))^\d(p,q),
i.e., d(p, q) < [1/λ + η]d(x, y). This proves that

f-\x) c iNr([i- + ψ(s, y), f-\x)) .

Similarly, it can be shown that /^(y) a N([l/X + n]d(x, y),/
Since η was arbitrary, it now follows that f~ι is (ε, l/λ)-uniformly
locally contractive. Since X is ε-chainable we may now apply
Theorem 6 to conclude that there is a point xQe X such that x0 e / " 1 ^ ) .
Clearly, f(x0) = a?0. We now prove the theorem for the case where x is
well-chained and / - 1 is uniformly ε-continuous. Since f~ι is uniformly
ε-continuous, there exists a δ > 0 such that d ^ , x2) < ^ implies
H(f~ι(x^,f~ι{x2)) < ε. Using a procedure similar to that employed
above, it follows that f~ι is (<?, 1/λ)-uniformly locally contractive. Since
X is well-chained, X is S-chainable and we may now use Theorem 6
to obtain, as above, a fixed point for /. This proves Theorem 7.

A metric space (X, d) is said to be convex (in the sense of Menger)
provided that, if x, y e X, x Φ y, then there exists a point z e X, z Φ x
and z Φ y, such that d(x, y) = d(x, z) + d(z, y). If (X, d) is a complete
convex metric space and F: X—>CB(X) is (ε, λ)-uniformly locally con-
tractive, then F is actually a multi-valued contraction mapping. The
proof is the same as the proof of the corresponding statement for
single-valued mappings in [4]. Using this fact we may now prove
the following:

THEOREM 8. Let (X, d) be a complete convex metric space, let A
be a nonempty subset of X, and let f: A—+X be an (ε, X)-uniformly
locally expansive mapping of A onto X. If f~ι{x) e CB(X) for each
xeX and f~ι: X—>CB(X) is uniformly ε-continuous, then f has a
fixed point.

Proof. Proceeding as in the second part of the proof of Theorem
7 we can show that f~ι is (δ, l/λ)-uniformly locally contractive for
some δ > 0. From the comments immediately preceding this theorem
it follows that f~ι is actually a multi-valued contraction mapping.
Hence, by Theorem 5, there is a n ^ e l s u c h that xQef~ι(x0). Clearly
f(x0) = x0 and the proof of Theorem 8 is completed.

REMARK. The author does not know if Theorem 6 remains true
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when stated for mappings into CB(X). The proof of Theorem 5.2 of
[4] does not seem to generalize for mappings into CB(X) and the
proof of Theorem 6 is not valid for mappings into CB(X) because dε

may not be bounded even though d is. If Theorem 6 were valid when
stated for mappings into CB(X), then Theorem 7 would be valid in
the more general setting and Theorem 8 would be superfluous. (Cf. § 5).

4* Sequences of multi-valued contraction mappings and fixed
points* Suppose (X, d) is a complete metric space, Ft: X—> CB(X) is a
multi-valued contraction mapping with a fixed point xt for each i ==
1,2, •••, and Fo: X—>CB(X) is a multi-valued contraction mapping.
In this section we investigate the following question: If the sequence
{Fi}ζLi converges (in some sense) to FQ, does some subsequence {a^JU
of {Xi}T=i converge to a fixed point of F0Ί

Without further assumptions on the images of points it is easy
to see that the answer to the above question is no; simply let Ft(x)
be the set of real numbers (with a bounded metric) for all i =
0,1, 2, and for all real numbers x and let α?< = i for each i =
1,2, •••. For this reason we shall assume from now on (except in
Lemma 3) that F^x) is compact for all i and for all x.

In this section we shall prove the following:

THEOREM 9. Let (X, d) be a complete metric space, let i ^ : X —> 2X

be a m.v.c.m. with fixed point xt for each ΐ = 1,2, •••, and let
Fo: X—>2 X be a m.v.c.m. If any one of the following holds:

( 1 ) each of the mappings F19 F2, has the same Lipschitz
constant a < 1 and the sequence {Fi}?=1 converges pointwise to Fo;

( 2 ) the sequence {Fi)T=ι converges uniformly to Fo;
or

( 3 ) the space (X, d) is locally compact and the sequence {Fi}?=ι

converges pointwise to Fo;
then there is a subsequence {#* .}~=i of {Xi}T=i such that {α ĴJLi converges
to a fixed point of Fo.

Before giving a proof of this theorem we need several preliminary
results. A proof of Proposition 1 below may be found in [1, pp. 6-7],
Proposition 2 is a special case of Theorem 1 of [19], and Proposition
3 is Theorem 2 of [19]. In each of these propositions f{ is a single-
valued contraction mapping of a metric space (X, d) into itself with
fixed point a{ for each i = 0,1, 2, .

PROPOSITION 1. // all the mappings flffi9 ••• have the same
Lipschitz constant a < 1 and if the sequence {fi}7=ι converges pointwise
to /o, then the sequence { α j ^ converges to α0.
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PROPOSITION 2. If the sequence {/Jjli converges uniformly to f01

then the sequence {αjf=1 converges to α0.

PROPOSITION 3. // the space (X, d) is locally compact and the
sequence {/JΓ=i converges pointwise to /0, then the sequence {αjf=i con-
verges to a0.

The following lemma is a generalization of the lemma in [19].

LEMMA 3. Let (X,d) be a metric space, let Ft: X—>CB(X) be a
m.v.c.m. with fixed point x{ for each i = 1,2, •••, and let F0:X-+
CB(X) be a m.v.c.m. // the sequence {Fi}T=ι converges pointwise to
Fo and if {xid}J=i is a convergent subsequence of {Xi}Z=u then {xi:j}"=1

converges to a fixed point of Fo.

Proof. Let x0 — lim^*, x{. and let ε > 0. Choose an integer M
such that H(Fi.(x0), F0(x0)) < e/2 and d(xij9 x0) < e/2 for all j ^ M.
Then, if j ^ M,

φ F0(x0)) ^ H{Fiό(xi3), Ftjixo)) + H(Fis(xQ), F0(x0))

< d(xij9 Xo) + HiFifa), F0(x0)) < ε .

This proves that Mm^^ Fi.(xi3) = FQ(xQ). Therefore, since x^.eF^iXi)
for each j = 1, 2, , it follows that x0 e F0(x0). This proves the lemma.

Proof of Theorem 9. For each i = 0,1, 2, . . . , let F{: 2
X -* 2X be

defined in terms of Ft as in Theorem 2. Then, by Theorem 2, Ft is
a contraction mapping and therefore has a unique fixed point A{ e 2X

for each i — 0,1, 2, •••. If the sequence {JP<}JLI converges pointwise
to FQ as assumed in 1 and 3, then {JFJJLI converges uniformly on
compact subsets of X to Fo [21, p. 156]; and hence, the sequence
{Fi}T=i converges pointwise on 2X to FQ. A direct argument shows
that if the sequence {FJJLi converges uniformly to Fo as assumed in
2, then the sequence {Fi}?=1 converges uniformly on 2X to JP0. In any
case we may use Proposition 1 in connection with 1, Proposition 2 in
connection with 2, and Proposition 3 in connection with 3 to conclude
that the sequence {AJΠ=i converges to A*. Hence, K = U {A{ | i —
0,1,2, •••} is a compact subset of X. Note that, by the iteration
procedure of Banach [14, pp. 40-42], the sequence {jPf(^)}~=i converges
to A, (where F?(Xi) = F(F(- -(Ffo)). •)), ̂  times); and therefore,
since ^ e Fi{Xi) for all u = 1, 2, , it follows that x{ e A< for each
i = 1, 2, . Thus we have that {a?<}n=i is a sequence in the compact
set K. Hence, {Xi)T=i has a convergent subsequence {a?<.}7=i which, by
Lemma 3, converges to a fixed point of Fo. This completes the proof
of Theorem 9.
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We now make several remarks concerning Theorem 9.

REMARK. If Fo has only one fixed point x0, then (with the
hypotheses of Theorem 9) the sequence {a?<}Π=ι itself converges to x0.
To see this suppose {ccJILi does not converge to xQ. Then there is a
subsequence {xik}ΐ=i of {Xi}T=i such that no subsequence of {£cijfc}~=1

converges to x0. Applying Theorem 9 in the context of the two
sequences {-FyjU and {xik}ΐ=l9 we see that there is a subsequence of
{8<J"=i which converges to a fixed point of Fo. This establishes a
contradiction. (This remark shows that Theorem 9 is an extension of
Propositions 1, 2, and 3 stated above).

REMARK. TO see that local compactness is a necessary hypothesis
in Proposition 3 and, therefore, in part (3) of Theorem 9, the reader
is referred to Example 1 of [19].

REMARK. Let (X, d) be a compact metric space. In this setting
Theorem 9 is a direct consequence of Lemm 3. Let Mf(X) = {G: X—>
2X I G is continuous and G has fixed points} and, if G1 and G2 are in
Mf(X), let p(G19 G2) = sup {if(Gx(z), G2(x)) \xeX}. Define φ: Mf(X) ->

2X by φ(G) = {x e X \ x e G(x)} for each GeMf(X). Using a modifi-

cation of Lemma 3 together with the fact that convergence in (Mf(X), p)
is uniform convergence, it can be shown that φ is upper semi-continuous
(this is a generalization of a result of Wehausen [24] which also
appears in [8]). It follows from a result in [9] that φ is continuous
on a dense subspace of Mf(X). However, φ may be discontinuous
even at some constant functions. In the next example we construct a
sequence {Gn}Z=ι of multi-valued contraction mappings defined on the
unit interval [0,1] which converges uniformly to the mapping given
by G(x) = [0,1] for all x e [0,1] but for which the sequence {<p(Gn)}n=1

does not converge to φ(G) — [0,1]. It is interesting to compare this
phenomenon with results in [8] and [16].

EXAMPLE 4. Let / = [0,1] denote the unit interval of real numbers
(with the usual metric). For each w = l, 2, •••, let Gn:I—>2r be
given by

Gn{x) = \y I 0 ^ y ^ —?— .χ\ U \y
I n + 1 J I n + 1 n

for all x e /. Using Theorem 3 it is easy to see that Gn is a multi-
valued contraction mapping for each n = 1,2, . Clearly, the sequence
{Gn}n=ι converges uniformly to the mapping G: I —> 21 defined by
G(x) = I for each x e I. Since φ(Gn) = {0,1} for all n = 1, 2, . (see
the preceding remark), it follows that {<p(Gn)}Z=1 does not converge to
φ(G) = I.



MULTI-VALUED CONTRACTION MAPPINGS 487

5* Added in proof. In a forthcoming paper with Professor Covitz
on multi-valued contraction mappings in generalized metric spaces the
author has extended Theorems 5 and 6 of this paper to mappings into
CL(X) = {C I C is a nonempty closed subset of X) with the generaliz-
ed Hausdorff distance. These results give an affirmative answer to
problems posed in this remark and show that even boundedness of
point images is not necessary. In addition, it was discovered by the
author that a generalized version of the iteration procedure of Edels-
tein [4] can be carried out to give a proof of Theorem 6 above even
for mappings into the more general space CL(X).
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SEMI-GROUPS OF SCALAR TYPE OPERATORS
IN BANACH SPACES

T. V. PANCHAPAGESAN

This paper deals with the spectral representation theorems
of semi-groups of scalar type operators in Banach spaces.
These results generalize the corresponding ones on semi-groups
of hermitian, normal and unitary operators in Hubert spaces.
In the beginning sections we study some interesting properties
of a W*(\ I I |)-algebra-which generalizes the notion of an abelian
von Neumann algebra to Banach spaces-and unbounded spectral
operators arising out of i£( )-unbounded measurable functions
where E( ) is a resolution of the identity. These results are
applied later to prove the spectral representation theorems on
semi-groups of scalar type operators. The last theorem of
this paper gives an extension of Stone's theorem on strongly
continuous one parameter group of unitary operators to arbitrary
Banach spaces.

This paper mainly deals with the spectral representation theorems
of semi-groups of scalar type operators in Banach spaces, generalizing
those of semi-groups of hermitian, normal and unitary operators in
Hubert spaces. Since all the classical proofs of these theorems vitally
depend on the inner-product structure of the Hubert space they cannot
be adapted to Banach spaces. However, Phillips has obtained in [15]
these spectral representation theorems on Hubert spaces by making
use of the theory of abelian W* (von Neumann) algebras. Here we
adapt his method of proof by suitably generalizing the notion of an
abelian W* algebra to Banach spaces.

In [3] Bade has developed the theory of operator algebras W on
Banach spaces, which are generated in the weak operator topology
by a ^-complete Boolean algebra of projections. Such an algebra W
has its maximal ideal space extremally disconnected, just as in the
case of an abelian TF* algebra. However, W is not a i?*-algebra.
To this end we exploit the work on hermitian operators in Banach
spaces by Berkson [4,5,6], Lumer [12,13] and Vidav [18] and we
define an algebra called a ΫF*(|| ||)-algebra in § 2 of this paper, which
is a J3*-algebra generated in the weak operator topology by a σ-complete
Boolean algebra of projections. The involution * of this algebra is
also strongly continuous (Theorem 1 of § 2) as its counterpart in the
abelian PF*algebra. Thus W*(|| ||)-algebras have all the essential
properties of abelian TF* algebras, though the double commutant
theorem fails for such algebras. (See Dieudonne [7]).

Further in § 2 we introduce an ordering relation among hermitian
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operators on a Banach space and prove that in a W*(|| ||)-algebra a
bounded monotonic net of operators converges strongly. This result
is given here not only for its own interest, but also for its application
later in Lemma 6 of § 4.

The spectral operators arising from unbounded measurable functions
are studied in § 3 and a generalization of Lemma 6 of Dunford [8] is
obtained here in Theorem 4. This is a basic result, which is used in
the theory of semi-groups of scalar type operators to show that the
infinitesimal generator of the semi-group is a spectral operator of scalar
type. Theorem 5 of this section, which states that the residual
spectrum of an unbounded spectral operator of scalar type is empty,
generalizes the corresponding result for maximal normal operators in
Hubert spaces.

In §§4, 5 and 6 we study the semi-groups of scalar type operators
making use of the tools developed in § 2 and § 3. We generalize
Theorems 22.3.1, 22.3.2, 22.4.1, 22.4.2 and 22.4.3 of Hille and Phillips
[11] to Banach spaces. Because of the lack of the inner-product in
our case the relations (13) and (23) are to be obtained here in a way
completely different from [11]. Also Theorem 8 of §4 has to be weaker
than the corresponding Theorem 22.3.2 of [11] as we have to apply
here the generalized Lebesgue bounded convergence theorem which is
available only for a sequence of functions.

As the T7*(|| ||)-algebra W does not in general satisfy the double
commutant theorem, we have to assume explicitly in Theorem 9 of
§5, that the resolvent operators R(X, A) of the infinitesimal generator
A of the semi-group belong to W. However, this explicit assumption
is not needed in the particular case when the operators of the semi-
group are all unitary. (See Theorem 10 of § 6).

1* Preliminaries* The terminology and notation in this paper
are as follows. By a Banach space we mean a complex Banach space.
X always denotes a Banach space. For definitions of boundedness,
^-completeness and completeness of a Boolean algebra (abbreviated as
B.A. hereafter) of projections in X, one may refer to Bade [3]. For
a B.A. 35 of projections in X, S8S denotes the strong closure of 23.
The results on spectral operators that are used in the sequel, can be
found in Dunford [8] and Bade [1, 2, 3].

DEFINITION 1. An element h of a Banach algebra A with the
norm || || will be called hermitian in the norm if for r real,

11 e + irh 11 = 1 + o(r)

as r —> 0, where e is the identity of A.
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If T is an operator on a Banach space X then T is called hermitian
in the equivalent norm || || of X in the sense of Vidav if 7\ as an
element of the algebra 33(X), is hermitian in the induced operator
norm | | . | | of S&(X).

DEFINITION 2. An operator T on a Banach space X is said to be
hermitian in the equivalent norm || || of X in the sense of Lumer, if
[Tx, x] is real for all a; in I with || x || = 1 where [, ] is a semi-inner-
product (see Lumer [12]) on X consistent with the norm || ||.

In [12], Lumer has shown that T is hermitian in || || in the sense
of Lumer if and only if T is hermitian in the sense of Vidav. Hence
we write that T is hermitian in the norm 11 11 to mean hermiticity in
either sense.

(1.1) VIDAV'S THEOREM. Let A be a Banach algebra with the
identity and with the norm 11 11. Let H be the set of elements of A
which are hermitian in || | |. // A = H + iHand if for every he H,
h2 can be expressed in the form h2 = u + iv with u, v in H and uv —
vu, then

( i ) for each x in A, the decomposition x — u + iv u,v in H,
is unique;

(ii) the map * which assigns to each element x = u + iv (where
u, v are in H) the element x* = u — iv is an involution on A; (we
call x* the Vidav adjoint of x);

(iii) IIΊIo, defined by | |&||0 = | | # * # | | 1 / 2 is a Banach algebra norm
on A equivalent to the given norm and moreover \\h\\0— \\h\\ for
every h e H;

(iv) the algebra A with the involution * and the norm || ||0, is
a B*-algebra.

DEFINITION 3. If a Banach algebra A with the norm || || satisfies
the hypothesis of Vidav's theorem (1.1) and is equipped with the
involution * defined in (ii) of (1.1), then we call A, following Berkson
[5], a l^*-algebra in the norm || ||.

The Vidav's theorem (1.1) has been sharpened recently by Berkson
in [5] to the following form.

(1.2) A is a F*-algebra in the norm || || if and only if A is a
Z?*-algebra in the norm || | |.

As pointed out to the author by Bade and Phillips, the above
result of Berkson has the following important consequence for the
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theory of spectral operators.

THEOREM. (1.3) Let 93 be a bounded B.A. of projections on a
Banach space X and let A be the uniformly closed Banach algebra
generated by 93. Then there exists an equivalent norm ||| ||| on X
(i.e., a norm ||| ||| which is equivalent to the given norm of X) such
that the norm of each operator in A, computed relative to ||| |||, is
equal to its spectral norm. Thus the Gelfand map of A is an
isometric isomorphism onto C(m), m the space of maximal ideals of A.

Proof. Since 93 is bounded, all the members of 93 are hermitian
in some equivalent norm ||| ||| of X by remarks in § 3 of Lumer [13].
Hence all the members of the closure of the real linear span of 93 are
hermitian in ||| |||. Now arguing as in the proof of Theorem 3.1 of
Berkson [4], it can be shown that each T in A may be written as
T = R + iJ, with R, J in A and hermitian in ||| |||. Thus A is a
F*-algebra in the operator norm ||| ||| induced by the Banach space
norm ||| ||| of X and hence by Berkson's result (1.2), the theorem
follows.

For results on semi-groups of operators one may refer to Hille
and Phillips [11].

2. TΓ*(|| ||)-algebras. This section deals with the theory of
algebras of operators W on a Banach space X which are generated
in the weak operator topology by a σ-complete Boolean algebra 93 of
projections. Such algebras are the natural generalization of abelian
von Neumann algebras. The theory of such algebras is developed
quite fully in [2], [3] and [9]. It is shown there that

( i ) W is the algebra generated in the uniform operator topology
by &;

(ii) 93s is a complete B.A. of projections whose Stone represen-
tation space m is the maximal ideal space of W;

(iii) The Gelfand map A—+A(.) is an isomorphism of W onto
C(m) and W and C(m) are topologically equivalent under this map;

(iv) Every operator S in W is scalar type of class X*; S =

1 XE(dX), whose spectral projections E(σ) belong to 93s S W. Further,
the space m is extremally disconnected.

Here we make the additional assumption on W that the norm 11 11
on X is such that the operator norm on W is isometric to the supremum
norm in C(m). Such an algebra is called here a TF*(|| ||)-algebra.

DEFINITION 4. By a I7*(|| ||)-algebra w on a Banach space X,
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we mean a pair, consisting of a commutative subalgebra W of
generated by a ^-complete B.A. of projections in X in the weak operator
topology and some equivalent norm 11 11 on X such that every element
S in W has the representation of the form S = R + iJ where R and
J satisfy the following conditions (V):

(( i ) RJ = JR with R and J in W;

l(ii) RmJn(m, n = 0,1, 2 •) are hermitian in the norm || || .

We make the following observations in regard to a W*(\\ ||)-algebra.

REMARK 1. A W*(\\ ||)-algebra W on a Banach space X is precisely
an abelian subalgebra of 35(X), which is a F*-algebra in the operator
norm 11 11, induced by the Banach space norm 11 11 on X together with
the property that it is generated weakly by a σ-complete B.A. of
projections in X.

REMARK 2. A IF*(|| ||)-algebra W is a commutative J5*-algebra
in the operator norm || || induced by the Banach space norm || || of
X and hence the Gelfand map is an isometric isomorphism of W onto
the space C(m) of complex valued continuous functions, where m is the
maximal ideal space of W.

For, the above remark follows from the fact that a σ-complete
B.A. of projections is bounded and from Theorem (1.3) of § 1.

REMARK 3. The Banach algebra W generated weakly by a σ-com-
plete B.A. 35 of projections on a Banach space Xis a T7*(|| ||)-algebra,
under a suitable equivalent norm || || on X. If X is weakly complete,
the hypothesis that 35 is σ-complete may be replaced by the hypothesis
that 35 is bounded.

For, the σ-completeness of 35 implies that δ s is complete and
bounded. Hence the weakly closed algebra generated by 35 coincides
with the uniformly closed algebra generated by 35s. Now the remark
follows by appealing to Theorem (1.3) of § 1.

REMARK 4. An operator S on a Banach space X is scalar type
if and only if it belongs to a PF*(|| ||)-algebra on X.

REMARK 5. If an operator S belongs to a TF*(|| ||)-algebra W,
then S is scalar type and all its spectral projections are in W. Further
every projection in W is hermitian in || ||.

Now we shall show that the *-operation in a J7*(|| ||)-algebra is
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strongly continuous. Though this result is noted in [9] on page 544,
the proof that we are giving here is based on the notions of hermiticity
and semi-inner-product. In addition, this proof is more direct. To
this end, we prove the following lemma.

LEMMA 1. If E is a nonzero projection operator on a Banach
space X then there is an equivalent norm \\ \\ on X in which E is
hermitian and the norm of E computed with respect to || || is unity,
i.e., \\E\\ = 1.

Proof. The B.A. 33 of projections, consisting of 0, /, E and I — E
is bounded and hence there is an equivalent norm 11 11 on X, in which
the members of 33 are hermitian. By Theorem 1.3 of § 1, the Banach
algeba i? generated by 33 is a B*-algebra in the operator norm induced
by the Banach space norm 11 11 of X. Hence \\E\\ = sup E(m) = 1 as

m e fit

EΦ 0.

THEOREM 1. If W is a W*(\\-\\)-algebra on a Banach space Xy

then the involution * defined in W which makes it a V*-algebra
{see Definition 3 of § 1) is continuous in the strong operator topology.

Proof. Since the maximal ideal space m of W is extremally
disconnected, every operator T in W admits a spectral representation
of the form

(1) T = [ T(m)E(dm)

where T(m) is the Gelfand function associated with T and E(.) is a
strongly countably additive spectral measure, having its range in W.
Further, for Borel sets σ of the maximal ideal space m, the projections
E(σ) are hermitian in 11 11 by Remark 5 and hence 11 E(σ) \ | <̂  1 by
Lemma 1.

Let Ta in W converge strongly to T. Since W is strongly closed,
T belongs to W. Hence there exist operators Ra, Jn, R and J in W
such that T = R + ij, Ta = Ra + iJa and Ray Ja and R, J satisfy
conditions (V) of Definition 4. By following an argument similar to
that of Bade (p. 408, [2]), which is available here in view of the
spectral representation (1) of any operator T in W and the fact that
||^(cr)|| <̂  1 for Borel sets σ of the maximal ideal space in, we can
show that limα Ra and limα Ja exist in W in the strong operator
topology. Let \\ma Rax = Rλx and \\ma Jax = JLx for x in X.

Now we shall show that Rλ = R and Jγ — J. If [ , ] is a semi-
inner-product on X consistent with the norm || ||, then,



SEMI-GROUPS OF SCALAR TYPE OPERATORS IN BANACH SPACES 495

(2) and I*-*'*1 - I«Λ *1
[ Jax, x] -+ [ J&, x]

for \\x\\ = 1. Since Ra,Ja are hermitian in || ||, [Rax, x] and [Jax> x]
are real for each a when | | # | | = 1 and hence [R,x, x] and [JjX, x] are
real for || x \\ = 1 by (2). Thus Rλ and Jλ are hermitian in || ||. Similary
RTJι{m, w = 0,l,2, •••) are hermitian in || ||. Hence R1 and Jγ satisfy
conditions (V) of Definition 4. Clearly Tx = RjX + iJλx for xeX.
But T = R + i J by assumption, with R, J satisfying conditions (V).
Hence from the uniqueness of the representation of T in W, it follows
that R = R, and J = Jιm

Now lim T*x = lim (Ra — iJa)x = (Rγ — iJx)x — (R — iJx) = T*x for x

in X. This establishes the strong continuity of the involution *.

In the rest of this section we generalize the notion of positivity
of operators on a Hubert space to operators on a Banach space. We
recall that in a Hubert space H, an operator T is called positive if
(Tx, x) ^0 for x in H, where (,) is the inner-product of H. Also it
is known there that T is positive if and only if σ{T) is nonnegative.

DEFINITION 5. An operator T on a Banach space X is called
positive in the equivalent norm 11 11 on X (which we denote by T ^ O
in || ||) if [Tx, x] ^ 0 for x in X, with \\x\\ — 1, where [, ] is a semi-
inner-product consistent with the norm || || on X; i.e., if the numerical
range W(T) with respect to the semi-inner-product [, ] is nonnegative.

The above definition calls for several comments. Since there may
be an infinite number of semi-inner-products consistent with a given
norm, the definition looks ambiguous at first sight. But the ambiguity
disappears in the light of Theorem 14 of Lumer [12], according to
which the numerical range has the same convex hull relative to any
two semi-inner-products inducing the same norm. It may be noted
that this definition also coincides with the classical one in a Hubert
space.

LEMMA 2. If E is a projection operator on a Banach space X
and is hermitian in the equivalent norm || || on X then E is positive
in | | . | | .

Proof. The cases in which E = 0 or E = / are trivial. Hence sup-
pose EΦ 0,1. Then by Lemma 1 || E\\ = 1 and \\I— E]\ = 1, since E and
I — E are hermitian in 11 11. Now for x in X with \\x\\ ~ 1 and a
semi-inner- product [ , ] consistent with the norm 11 11, we have
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[Ex, x] = [{I -(I- E)}x, x]

= 1 - [(I - E)x, x]

^ 0

a s [ ( / - E ) x , x] i s r e a l a n d \[(I - E ) x , x]\ ^ \\I - E\\ = 1. H e n c e t h e
lemma.

The above lemma on projections enables us to link the positivity
of an operator in a TF*(|| ||)-algebra, with the nonnegativeness of its
spectrum.

THEOREM 2. // T is an operator belonging to a W*(\\ \\)-algebra
W then the following are equivalent.

( i ) σ(T) is nonnegative.
(ii) The Gelfand function T(m) in C(nι) is nonnegative where

m is the maximal ideal space of W.
(iii) T is positive in || ||.

Proof. The equivalence of (i) and (ii) is clear from the results
that the spectrum of T in W, viz. σw(T), is the range of T(m) and
that σw(T) = σ(T) (see Corollary 3.7.6 of Rickart [16]).

To prove the theorem, therefore it suffices to show that (i) and
(iii) are equivalent. Let (i) hold. Then, as T belongs to the ϊΓ*(|| ID-
algebra W it is scalar type and its spectral projections are in W.
Further they are hermitian in || || by Remark 5. Hence, if E(.) is
the resolution of the identity of T, then E(σ) are hermitian in || ||
for Borel sets σ of the complex plane, so that E(σ) are positive in
|| || by Lemma 2. Now let [, ] be a semi-inner-product on X consistent
with the norm || ||. Then for x in X, with | |g | | = 1, [E(.)x,x] is a
positive measure and hence

[Tx, x] = Γί XE(dX)x, x]
LMΓ) J

= ί \[E(dX)x,x]
Jσ(T)

^ o
as σ(T) is nonnegative. Hence T is positive in || ||; i.e., (iii) holds.

Conversely, let (iii) hold. Then as T is in W, T is scalar type.
Hence by Theorem 5, §4. of Foguel [10], σ(T) = π(T) where π(T) is
the approximate point spectrum of T. Since T is bounded, by Theorem
4 of Lumer [12], we have π(T) g W(T) where W(T) is the numerical
range of T with respect to some semi-inner-product consistent with
the norm || ||. But by hypothesis W(T) is nonnegative and hence
W(T) is nonnegative. Hence σ(T) = π(T) is nonnegative. Therefore
(i) holds.

This completes the proof of the theorem.
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DEFINITION 6. For two operators Γ, T" on a Banach space X we
say T is greater than T' in the equivalent norm || || on X (briefly
T ^ T in ||.| |) if (i) Γ, T are hermitian in || || and (ii) T - T' is
positive in 11 11.

DEFINITION 7. A net {Ta} is said to be monotonic increasing
(decreasing) in the equivalent norm || || on X if Ta ^ Tβ(Tβ^ Ta) in
|| || whenever a}>β. In symbols we write this as {Ta} m.i. (m.d.)
in || ||.

We recall that in a Hubert space, if {Ta} is a bounded monotonic
net of commuting hermitian operators, then {Ta} converges strongly
to a Hermitian operator. We generalize this result to Banach spaces
below.

LEMMA 3. Let Ta \ 0 be a monotonic decreasing net in a TF*(|| ||)-
algebra W. Then Ta —> 0 in the strong operator topology.

Proof.1 By Theorem 2, for elements S, and S2 in W, S, ^ S2 in
|| || if and only if Sx(m) ;> S2(m) in C(m). Since m is stonean, the
hermitian elements of C(m) and hence of W form a conditionally
complete lattice under this partial ordering.

For a ^ a0, Ta ^ Tαo in | | . | | . Hence Ta(m) ^ TaQ(m) so that || Γβ|| -
sup I Ta{m) I = sup Ta{m) S sup Tao(m) = \\ Tao \\. Hence

/ q \ I I T I I < l i 7 l l

for a >̂ α0.
Let x e l and ε > 0. If βα = {m: Γα(m) < ε} then \/aE(ea) = I so

that 2?(O —> / strongly where E{.) is a countably additive spectral
measure on the Borel sets of m with respect to which Ta have the
spectral representation

Ta = \ Ta(m)E(dm) .
Jm

Thus for xeX,

|| Tax || ^ || TaE(ea)x \\ + II Ta \\ \\ (I - E(ea))x | | < ε || x \\ + ε

for a ^ α0 in view of (3) and Lemma 1. Thus Ta —* 0 strongly.

THEOREM 3. Lei {Γα} δβ α weί in a W*(\\ \\)-algebra W of operators
on a Banach space X such that

( i ) {Ta) is monotonic in 11 11 and
(ii) for some R in W, Ta<,R in || || if {Ta} is m.i. in || || and

The present short proof is due to the referee to whom the author is thankful.
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Ta^R in || || if {Ta} is m.d. in || ||; i.e., the net {Ta} is bounded.
Then limα Tax exists for each x in X. Further limα Tax = VaTax
(KaTax) if {Ta} is m.i.(m.d.) in | | . | | .

Proof. Without loss of generality we may assume that {Ta} is
m.i. in || ||. Since Ta ^ R in || || and since the hermitian elements
in W form a conditionally complete lattice, it follows that Ta f \/aTa

in W. Hence (\/aTa - Ta) [ 0. Then it follows from Lemma 3 that
Tα£ = \/aTax for x in X. Hence the theorem.

3* Unbounded spectral operators of scalar type* In this section
we obtain some interesting results on unbounded spectral operators
of scalar type, which will be needed in the sequel. For definitions
and results on such operators which are used here, the reader may
refer to Bade [1].

Let m be a set and Σ be a σ-algebra of subsets of m. Let E(.)
be an X*-countably additive spectral measure on Σ. Suppose / is a
complex valued ^(^-essentially unbounded Immeasurable function on
m. Then we define a linear transformation f{E) as below.

DEFINITION 8. Let en = {m: mem, |/(m) | ^ n). Then define fn

as follows.

= f(m),meeu

= 0, m £ en .

We define

D(f) = \x: x e X and lim \ f(m)E(dm)x exists

and

f(E)x = lim \ f(m)E(dm)x, x e

It is easy to check that D(f) is a dense linear manifold in X and
is a linear transformation over D(f) with its range in X.

LEMMA 4. Let A(f) be the set of members in Σ on which f is
bounded. Then we have:

( i ) A(f) is closed under finite unions and contains any subset
of its members, if the subset belongs to Σ;

(ii) // eeA(f), then E(e)X S D(f) and f(E) is bounded in
E(e)X, where D(f) and f{E) are as in Definition 8;

(iii) E(e)f(E)E(e) = f(E)E(e), e e A(f);
(iv) A(f) contains an increasing sequence {δn} such that
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Proof. The statement (i) is obvious. The statement (iv) is clear,
if we take for {δn} the sequence {en} in Definition 8.

Since / is bounded on e e A(f) and since l inv^ E(en) x = x for x e X,
we have

f{E)E(e)x = lim f f(m)E(dm)E(e)x

( 4 ) = lim ( f(m)E(dm)E(en)x

= [ f(m)E(dm)x .

Now from (4) the assertions (ii) and (iii) follow.

LEMMA 5. Let {δn} be any other increasing sequence from A(f)
for which E( (J ~=i <U = I- Then:

( i ) lim^^ f(E)E(en)x exists if and only if x is in D(f);
(ii) If limn^cof(E)E(en)x exists, then

lim f(E)E(en)x = lim f(E)E(δn)x

and conversely;
(iii) // in the definition of f(E) the sequence {en} is replaced by

any other sequence {δn} in A(f) such that δn Ξ2 δn_t and E(\J^=1 δn) = /,
we obtain the same linear transformation f(E).

Proof. Let x be in X. Then by relation (4) in the above, we have

f(E)E(en)x = \ f(m)E(dm)x
Jen

from which the assertion (i) of the lemma follows.
The statement (ii) of the lemma can be proved by following an

argument similar to that of Lemma 2.1 of Bade [1].
Finally, to prove (iii) let x be in D(f). Then by relation (4) and

statement (ii) of the lemma we have

f(E)x = lim f f(m)E(dm)x

= lim f(E)E(en)x
n—*oa

= lim f(E)E(δn)x
n—>oo

= lim (lim ί f(m)E(dm))E(δn)x

= lim lim \ f(m)E(dm)x

= lim lim E(ek) [ f(m)E(dm)x
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so that

( 5 ) f(E)x = lim ( f(m)E(dm)x .
n~*oo J δn

Now the assertion (iii) is clearly a consequence of equation (5) and
statements (i) and (ii) of the lemma. Hence the lemma.

As a consequence of the above lemmas, we prove the following
main theorem of this section. We also remark that this theorem is
a generalization of Lemma 6 of Dunford [8], to the unbounded case.

THEOREM 4. Let f be a complex valued E( )-essentially unbounded
Σ-measurable function on the set m, where E(>) is an X*-countably
additive spectral measure on Σ, a o-algebra of subsets of m. Then:

( i ) The set D(f) = \x: linv,*, I f(m)E(dm)x existsi is a dense

linear manifold of X where

en = {m: m e m, | f(m) | ^ n}

(ii) The operator f(E) defined by

f(E)x = lim \ f(m)E(dm)x

is an unbounded spectral operator of scalar type with domain D(f)
whose resolution of the identity is given by Ef( ) where

Ef(σ) = E(f~\σ))

for Borel sets σ of the complex plane;
(iii) Any other increasing sequence {δn} in A(f) (see Lemma 4

for definition of A(f)) such that E(\Jζ=ι δn) — I would also define the
same linear transformation f(E).

Proof. The proof of (i) is trivial. The assertion (iii) follows from
Lemma 5.

To prove (ii), let Ef( ) = E(f-\-)) on the family 35 of Borel sets of
the complex plane. Ef( ) is also an X*-countably additive spectral
measure. Defining fn as in Definition 8, we have

(6) ( f(m)E(dm) - ( fn(m)E(dm) = \ XEfn(d\)

by Lemma 6 of Dunford [8], where Efn( ) = E(f-ι(-)).

Now by Lemma 1, §3, of Foguel [10], the operator \ XEf (dX)
J/n(nt) n

belongs to the uniformly closed algebra generated by Ef (a) for Borel
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sets a of the complex plane such that Oία. Let a be such a Borel
set of fjnή. Since a $ 0

( 7 ) f-\a) = {m; /(m) e α and m e en}

as fn = /on en. But, as fjya) S {λ: | λ | ^ n}, a £ /»(m) S {λ: | λ
Hence /-'(a) S eΛ. Thus

( 8 ) f~ι(&) — {m- /(w) 6 α and meen} .

Hence from (7) and (8) it follows that /"'(α) = f~\a) so that JS^α) =
Ef(a). Hence by the above lemma of Foguel [10] we have

\ f(m)E{dm) = ί XEf (dx)
Jen Jfn(m) n

= ί XEf (dX)
J/(βΛ) w

XEf(dX)

as / = / n on eΛ and /w(m) = 0 for m ί βw. Thus,

= lim \ f{m)E{dm)x

= f

( 9 ) f

= lim I XEf(dX)x .

Clearly the left hand side and the right hand side of (9) exist if and
only if x is in D{f). Hence the right hand side of (9) defines the
same operator f(E).

Now as f(en) £ {λ: | X \ ̂  n], the sequence {f(en)} is a sequence of
bounded closed sets in the complex plane. Clearly it is an increasing
sequence. Also it is easy to check that J57/(Un=i /(e»)) = I Hence by
Theorem 3.3. of Bade [1] and by the definition of scalar type operators
(see p. 379, Bade [1]) it follows that the operator f(E) defined by

f(E)x = lim [ XEf(dX)x1 x e D(f)

Jf(en)is an unbounded spectral operator of scalar type with the resolution
of the identity Ef( ).

This completes the proof of the theorem.

In Theorem 3.3 of Bade [1] the operator f(S) (see p. 379 of Bade
[1] for definition) is proved to be spectral and nothing has been said
whether f(S) is scalar type. But the above theorem asserts that f(S)
is scalar type and hence we state this result separately below.

COROLLARY. // / is an E(-)-essentially unbounded Borel measu-
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rable function over the complex plane where E(-) is an X*-countably
additive spectral measure over the Borel sets of the complex plane,
then the operator f(S) is an unbounded spectral operator of scalar type.

In [10] Foguel has proved that the residual spectrum of a (bounded)
spectral operator of finite type is empty. In the following theorem we
generalize this result to unbounded spectral operators of scalar type.

THEOREM 5. Let S be an unbounded spectral operator of scalar
type on a Banach space X, with its resolution of the identity E( ).
Then a point I in the complex plane belongs to (i) the point spectrum
<?p(S) if and only if E(l) Φ 0 and (ii) the continuous spectrum σc(S)
if and only if I e σ(S) and E(l) — 0. Consequently, the residual
spectrum of S is empty.

Proof.2 Suppose E(l) = 0. Then the function /(λ) = (λ - I)-1 is
analytic and single valued in the complement of the single point closed
set I for which E(l) = 0. Hence f(X) e 9ΐ (see p. 387 of Bade [1] for
definition of 31). Now taking

en = Iχ: I x I ^ n , dist. (λ, I) ^ —}
I n)

{en} is an increasing sequence of bounded closed sets for which

E(\J en) = I.

Therefore defining

(10) f(S)x = lim ( f(X)E(dX)x

on the set D(f(S)) of x for which the limit in (10) exists, we see
that f(S) is a closed operator with its domain D(f(S)) dense in X.

Now for x in D(f(S)) we have

(λ - l)E(dX)f(S)x

= \ (X- l)E(dX) lim \ f(X)E(dX)x
} e n k-oo Jek

= lim ί (λ - l)E(dX)\\ f(X)E(dX)x + ί f(X)E(dX)x]

(λ - l)f(X)E(dX)x = E(en)x .
2 The method we adopt here is an extension of that on p. 325 of Stone [17] for

maximal normal operators on Hubert spaces.
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Hence for x in D(f(S)) we have

(11) (S - U)f(S)x = lim E(en)x = x .
n

Similarly we have for x in D(S) = D(S - II), f(S)(S - ll)x = x. Thus
f(S) is the inverse (S - II)-1. From (11) and that D(f(S)) is dense
in X it follows that the range of S — II is dense in X. Hence I is not
in the residual spectrum of S. Also as (S — II)"1 exists, I is not in
the point spectrum σP(S). Thus if I belongs to σ(S) and E(l) = 0 then
I e σe(S). This proves the direct part of assertion (ii). The converse part
of (ii) clearly follows from the result (i), which we shall now prove.

Suppose I e σP(S). If E(l) = 0 then from the above, we must have
I in the continuous spectrum σc(S) which is a contradiction as

σP(S) Π σe(S) = φ .

Hence E(l) Φ 0.
Conversely, suppose E(l) Φ 0. Clearly leσ(S). Since E(l) Φ 0

there is a vector xoe X such that E(l)x0 Φ 0. Then

SE(l)x0 = lim ί XE(dX)E(l)x0
n—*oo Jon

where σn = {X: \ X | ^ n}. Therefore

SE(l)x0 = lim ( XE(dX)x0
n-><» }σnΓ\{l}

= XE(dX)x0 =

and since E(l)x0 Φ 0, I is in σP(S).
This completes the proof of the theorem.

The following theorem on W*(\\ ||)-algebras which plays a key
role in the spectral representation of semi-groups of scalar type
operators, is a consequence of the preceding results.

THEOREM β. Let W be a W*(\\ \\)-algebra. If m is the maximal
ideal space of W, then there exists an X*-countably additive spectral
measure P( ) on the Borel sets Σ of m such that each bounded Borel
measurable function f on va corresponds to a unique operator F in
W, the correspondence being given by

F = \ f(m)dmP(EY

3 \mf(m)P(dm) is denoted by [mf(m)dmP(E) hereafter following the notation of
Hille and Phillips [11].
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the above integral existing in the uniform operator topology.
Also if f is a P(*)-essentially unbounded Borel measurable

function on m and if {en} is an increasing sequence of Borel sets
of m on which f is bounded and if P(U~= iβ») = I then the set D{f)
of all x of X for which

(12) /(P)α = lim( f(m)dmP(E)x

exists, is dense in X and the transformation f(P) defined by (12) is
an unbounded spectral operator of scalar type with domain D(f).
Consequently, the residual spectrum of f(P) is empty.

REMARK 6. If the Borel measurable function / in the above
theorem is real valued, an equivalent representation for f(P) in (12)
is obtained as follows.

If Eλ — {m:f(m) g λ}, then denote the projection P{Eλ) by P(λ).
The family of projections [P(λ): — oo < x < oo] which generates the
resolution of the identity P/( ) of f(P) (see Theorem 4) has the
following properties

= P(λ) for λ ^ μ

(iii) P(λ) = A P(μ) .

Also the property (iii) is equivalent to

(iii)' P(X)x = lim^ -i- P(μ)x, x G X in view of Lemma 2.3 of Bade
[3].

Further, by Theorem 4 the equation (12) can be written as

f(P)x - lim ί XdPf(X)x, x e D(f)
n->oo J σ

where P/( ) = P(/~ ι( )) and {σn) is any increasing sequence of bounded
Borel sets of the real line such that P/(Un=i σn) = I-

Since the resolution of the identity P/( ) of f(P) is generated by
the family [P(λ): - oo < λ < ^ ] , (12) is written as

(12') f(P)x = £ _ XdP(X)x, x e D(f) .

4. Semi-groups of real scalar type operators* In this section
we obtain the spectral representation of a strongly measurable (and
hence strongly continuous) semi-groups of real scalar type operators.
We also obtain an ergodic theorem for such semi-groups of operators.
Henceforth we closely follow the notations of Hille and Phillips [11]
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and often omit details of analogous proofs.

DEFINITION 9. Let @ = [T(ξ): ζ > 0] be a semi-group of operators
on X. Then by Xo we denote the set \Jζ>0 T(ξ)X. (see p. 307 of [11]).

THEOREM 7. Let @ = [T(ζ)\ ξ > 0] be a strongly measurable semi-
group of real scalar type operators of class X* on X and let the
members of @ belong to a W*(\\ \\)-algebra W. Then @ is of finite
type ωQ (say) and \\ T(ξ)\\ = exp(ωof). Also,

(13) limT(ξ)x = Jx, xeX

where J is a projection with its range 3t(J) = Xo and

T(ζ)J = JT(ζ) = T(ζ)

for all ζ > 0.

Finally, T(ξ) has a holomorphic extension T(τ) having either the
whole plane or the right half-plane as its maximal domain of analytic
existence and there exists a unique representation of T(τ) of the form

S ω0

eλτdP(X)x, x e X .

Here [P(λ)] generates the resolution of the identity relative to Xo

for the infinitesimal operator Ao of @, viz.,

XdP(λ)x

— CO

where D(A0), the domain of Ao, coincides with the set of all xeX0

for which the integral in (14) exists. Also D(A0) is dense in Xo and
AQ is an unbounded spectral operator of real scalar type on Xo.

Proof. That the semi-group @ is of finite type ω0 follows from the
facts that (i) W is an abelian i?*-algebra in the norm || || (ii) || T(ζ) || is
lower-semi-continuous and (iii) @ is a nontrivial semi-group. Also it
follows that || T(ξ)\\ = e^ξ.

Since the maximal ideal space 9Ji of W is extremally disconnected
and || T(ζ) \\ = eω°f the argument on p. 589 of Hille and Phillips [11] can
be applied verbatim, taking W for 33 there. Defining SB, U and a(m)
in the same way as in [11] and putting P(λ) = P(Eλ) = P{m: a(m) ^ λ}
it is easy to see that [P(λ)] generates a resolution of the identity
relative to the subspace 3t[P(SB)]; i.e., P(λ) satisfies conditions (ψ) in
§ 3 except that V^( λ ) = ^(SS) = J. J may differ from I. Then arguing
as in [11] we have
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(15) T(ξ)x = j ^ T(ξ){m)dmP(E)x = j ^ eλζdP{X)x .

Consequently,

Γ°
J_oo

for each xeX and x * e l * . Since ^*P(λ)α; is continuous in the right
for fixed x* and x, by arguing in the same way as on p. 590 of [11]
it can be shown that [P(λ)] is uniquely determined by @. Now

Γ eλξdP(X)x = II ( eζaim)dmP(E)x

where SB̂  = {m: ra e 3K, a{m) g β).
Hence by Lemma 6 of Dunford [8] and Lemma 1 of § 2,

eλζdP(X)x

= 4 e ^ | | p ( a S ; J ) x | |

< 4max{l,eω»ί}||P(/S)x|i

< ε

for ξ in [0, t] if /3 < - N(ε), as 11 P(/3)x 11 —> 0 as /S-^ - Hence

S = 0 uniformly for ξ in [0, t] so that the double limit

lim [ω° e?ξdP(k)x

exists and hence the two iterated limits exist and are equal. Thus

S o>0

eλξdP(X)x
β

eλξdP(X)x = Jx
β

for xeX. Hence the equation (13).
The argument on p. 590 in [11] holds here to show that 9ΐ(J) = Xo

and JT(ξ) = T(ξ)J = T(ζ). Further, the part concerning the holomor-
phic extension can be proved arguing in the same way as in [11],
replacing (P(λ)x, y) there by x*P(λ)x, x e X and x* 6 X*.

Define the operator A as follows.
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( 1 6 ) Ax = lim ( a(m)dmP(E)Jx

where en = {m: m e SB, | a(m) | <; ri\, for all x in Xo for which the limit in
(16) exists. Since P(U£=ι en)J = P(3B)J = J", A is an unbounded spectral
operator of real scalar type on Xo and

(16') Ax = [W° XdP(X)x

and [P(λ)] generates the resolution of the identity of A with respect
to Xo (see Remark 6 of § 3). Further the set D(A) of all x in Xo for
which the limit in (16) exists is dense in Xo by Theorem 4 of § 3.

If Ao is the infinitesimal generator of @ with domain D(A0) then
arguing as in [11] it can be shown that D(AQ) = D(A) and Ao = A.
Hence from (16'), the equation (14) of the theorem follows.

This completes the proof of the theorem.

LEMMA 6. Let @ == [T(ζ): ζ > 0] be a semi-group of real scalar
type operators belonging to a W*(\\'\\)-algebra W on X. Let \\ T(ζ)\\
be bounded on every compact subset of (0, ©o). Then T(ζ) is continuous
in the strong operator topology for ζ > 0.

Proof. The argument on p. 591 of [11] in the proof of Lemma
22.3.2 holds here verbatim because of the representation theory in
Theorem 7. Also defining S(ξ) = e~ω°ζT(ζ) as on p. 591 of [11] we see
that S(ζ)(m) is continuous and nonincreasing in ξ for each meSK.
Thus, as the set of hermitian elements in SK is a conditionally complete
lattice,

lim S(ζ)(m) - A S(ξ)(m) = S(ζo)(m)

- V S(ξ)(m) = lim+ S(ξ)(m) .

Consequently by Theorem 3, § 2, it follows that l i m M - S(ζ)x =
Aξ<ξQS(ζ)x = S(ζo)x and \imξ_ξ+ S(ξ)x=Vζ>ζoS(ζ)x = S(ξo)x. Hence S(ζ) and
therefore T(ξ) is strongly continuous at ζ = ζ0 > 0. Hence the lemma.

The above lemma is applied to prove an ergodic theorem for
semi-groups of real scalar type operators.

THEOREM 8. Let @ = [T(ζ): ξ > 0] be a semi-group of real scalar
type operators of class X* on X and let the members of @ belong to
a W*(\\'\\)-algebra W. Let <S be of type ω0 and ω0 ^ 0.

Then

l i m T(ξn)x = [ P ( 0 ) - P ( 0 - ) ] α ? , x e X
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where [P(λ)] generates the resolution of the identity relative to Xo

for the infinitesimal operator Ao of @.

Proof. Since T(ξ) are in the TF*(||.||)-algebra W | |T"(£) | | =
T(ζ)\\n. Hence arguing as on p. 592 of [11] we have

| |Γ(f) | | = e^^l

for all ί in (0, oo) as ω0 <: 0. Thus || T(ζ)\\ is uniformly bounded in
(0, oo) and hence by Lemma 6 @ is continuous in the strong operator
topology, for ζ > 0. Now as @ satisfies the hypothesis of Theorem 7,
making use of the representation given in that theorem we have

T(ζ)x = Γ eλξdP(X)x,xeX .

Let P = P(0) - P(O-) = P{m: m e 2δ and a{m) = 0} in the terminology
of the proof of Theorem 7. Then we have

T(ξ)x - Px = L eζa{m)dmP(E)x - L dmP(E)x

J
= Γ eλ*dP(X)x

J

= lim [β eλζdP(X)x
β-+0— J - o o

where 355P = {m: m e SS and α(m) = 0}. Now if /n(λ) = eXζn where {ξn}
is an increasing sequence of positive numbers tending to oo and λ
ranges in (— °°,β), β <0, then /Λ(λ) —>0 as ζn —> oo for each λ. Further
/i(M > A(λ). Hence by the generalized Lebesgue bounded convergence
theorem on vector valued measures

(17) lim eλζ*dP(X)x = 0 .

Thus, in view of (17), Lemma 6 of Dunford [8] and Lemma 1 of § 2
we have

lim sup

^ lim sup

= lim sup

e!e»dP(X)x
oo

eλξ»dP(X)x

Γ eλξ*dP(X)x\

^ lim sup 4 sup

<
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if β is sufficiently near to zero from below. Hence the theorem.

5* Semigroups of scalar type operators* In this section we
study the spectral representation of semi-groups of scalar type operators
when the spectra of the members are not necessarily real.

DEFINITION 10. We shall donote by ίR* the set {#(λ, A): Xep(A)}
where A is the infinitesimal generator of a semi-group @ and p(A) is
the resolvent set of A.

LEMMA 7. If & is a semi-group of class A (see p. 321 of [11])
then the commutant of @ contains the set 9tL and @c = ΐϋl where ®c

-and Sftf are the commutants of © and 9tx respectively.

Proof. By Theorem 16.2.1 of [11], ®c = 3tJ. Since 9Ϊ: is abelian,
% S SRf = ®c. Hence the lemma.

LEMMA 8. Let Q( ) be an X*-countably additive spectral measure
over the Borel sets of the complex plane and let Q(J) = I where
A = {X: Reλ <; ωQ}. Suppose A is a closed operator having its spectrum
contained in A. If μ is a complex number such that Re μ > ύ)0 and if

R(μ, A) =

then

(18) Ax = ί XdλQ{E)x
J Δ

{the integral in (18) being understood as lim^oo I XdλQ(E)x where

{σn} is an increasing sequence of Borel sets of A such that Q(\Jn=ι &n) =
I). Further the integral in (18) exists if and only if x belongs to
the domain of A. Further A is a spectral operator of scalar type
with Q( ) as its resolution of the identity and is unbounded if σ(A)
is unbounded.

Proof. Since Re μ > ωQ, g(X) = (μ — λ)"1 is a bounded measurable
function defined on the set A and hence by Lemma 6 of Dunford [8]

R(μ, A) -

is a bounded scalar type operator of class X* with its resolution of
the identity given by

4 However, in [11] this is denoted by Sft.



510 T. V. PANCHAPAGESAN

(19) Q.( ) = Q(flr1( ) ) .

Define /(λ) = μ- 1/λ. Then let

f(R(μ, A))x = lim ( f(X)dλQg(E)x

where βn = {λ: | λ | ^ w, dist. (λ, 0) ^ (1/w)}. Then as

QM = Q{λ: tf(λ) = 0} = Q(9>) = 0

the increasing sequence {en} of bounded Borel sets of the complex plane
is such that Q,(U»=i e») = /• Hence by Corollary under Theorem 4 of
§ 3 it follows that f(R(μ, A)) is a spectral operator of scalar type.

Since /(λ) = (μ - 1/λ) it is clear that f(R(μ, A)) = f((μl - A)~ι) = A.
Thus

Ax - lim ( f(\)dλQg(E)a
n-^co }en

the limit existing if and only if X G D ( 4 ) , where D(A) denotes the
domain of A.

The resolution of the identity F( ) of A is given by

(20) F(-) = Q,(/-ι( ))

so that from (19) and (20) it follows that

(21) F(.) = Q(.) .

Thus from the relation (21) we have

Ax = lim \ f(X)dλQg(E)x

XdλQgf(E)x

= limί XdλQ(E)x
n-*oo Jf(en)

where Qgf( ) = Q^/^H')). Now replacing in the above /(en) by
/(ew) Π Δ = σn, it is easy to check that {σn} is an increasing sequence
of bounded Borel sets such that Q(U«=i σn) = I and hence

Ax = [ XdλQ(E)x .

Since σ(A) g zί, λ is Q( )-essentially unbounded if σ(A) is unbounded
and hence in this case A is an unbounded spectral operator of scalar
type.

This completes the proof of the lemma.
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LEMMA 9. Let @ = [S(ξ): ζ > 0] be a strongly measurable semi-
group of scalar type operators of class X* on X and let the members
o/@ belong to a W*{\\-\\)-algebra W. Then @ is of finite type ω0 and

( 2 2 ) l i m S ( 5 ) α ? = J x , x e X

where J is a projection such that JX = Xo and

(23) JS(ξ) = S(ξ)J = S(ξ)

for all ξ > 0. If Xo = X then @ is (cQ)-summable.

Proof. Since W is an abelian i?*-algebra, and @ is strongly
continuous, as it is strongly measurable, the argument on p. 594 of
[11] holds here to show that

\\S(ζ)\\ =er*

so that except in the trivial case @ = (0), ω0 is finite.
Now let S*(ξ) be the Vidav adjoint of S(ζ) in W. Since the

^-operation in W is strongly continuous by Theorem 1 of § 2, @* =
[S*(ς): ξ > 0] is also a strongly continuous semi-group of scalar type
operators of class X*.

Let T(ξ) = S*((f/2))S((£/2)). T(ζ) is scalar type of class X* as
T(ς) e W. Since 11 T(ξ) \ \ is uniformly bounded in any finite interval
in (0, oo), from Lemma 6 of § 4 it follows that T(ζ) is also strongly
continuous for ξ > 0. Since T(ξ) belongs to W, by Theorem 7 we
have a projection J on X such that

jχ= u

and

JT(ξ) = T(ζ)J = T(ζ)

for all ξ > 0. Further J is in W.
Now if 3JI is the maximal ideal space of W, then for m e 2K

I T(ς)(m) I - S*(^(m)s(^)(m) =

so that

(24) (T(ς)J)(m) = T{ξ)(m) =

From (24) it follows that S((ξ/2))(m) = 0 if J(m) - 0. If J(m) ^ 0
then J(m) = 1 so that
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Hence in all cases we have

(S($)J)(m) = S(ί)(m) - (JS(ζ))(m)

from which the relation (23) follows.
From (23) we have Xo S ^(J). Since

\JQT(ζ)X^US(ς)X= Xo

and hence we have

U T(ζ)X = 3t( J) S Xo .

Hence 3Ϊ(J) = XQ.
The part of the lemma concerning the relation (22) can be proved

by arguing as on pp. 317-18 of [11].
When Xo — X then J — I and hence @ is (co)-summable.
This concludes the proof of the lemma.

THEOREM 9. Let @ = [S(ζ): ξ > 0] be a strongly measurable semi-
group of scalar type operators of class X*. Let the members of &
belong to a W*(\\ \\)-algebra W. If Xo — X, then Θ is (co)-summable
and is of finite type ωQ (say).

Further suppose 3^ g W (see Definition 7 for 3^). Then there
exists a unique integral representation of @ in the form

S(ξ)x = \ eλξdλQ(E)x,xeX

where Q( ) is the resolution of the identity on the Borel sets of the
half plane Δ = {λ: Reλ ^ ωQ} for the infinitesimal generator A, where
A is given by

(25) Ax = \ XdλQ(E)x

and the domain D(A) of A is precisely the set of those x in X for
which the right hand side of (25) exists. (The integral in (25) is to
be understood in the sense given in Lemma 8). Also A is an
unbounded spectral operator of scalar type.

Proof. From Lemma 9 it follows that @ is (co)-summable. Since
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W is a W*(|| ||)-algebra, it is a i?*-algebra and it contains @U 9ϊi by
hypothesis. Also the spectrum of any element in W with respect to
33(X) is the same as that with respect to W. Hence by the remark
following Theorem 16.2.2 of [11] the algebra W can be substituted
for S3 throughout the Chapter XVI of [11]. Arguing in the same
way as on p. 595 of [11] and noting that | |S(£) | | = eω°ξ so that ω0 is
finite unless @ = (0) and replacing (Pψ(an)x, y) there by x*Pψ(an)x
for x in X and x* in X* so that the last line on p.595 of [11] becomes

0 = x*Pψ(an)x = P'x*f{an)x -> P'x*x

as n—> oo (where P' is the adjoint operator of P) and hence 0 = x*Px
for xe X and x* e X*, we see that the projection P defined on p. 595
of [11] becomes the zero operator. Also arguing exactly in the same
way as on p. 596 of [11] we obtain

S(ξ) =

the integral converging in the uniform operator topology and Δ =
{λ:Reλ <̂  ω0}.

Now since @ is (co)-summable, the resolvent of the infinitesimal
generator A, which is closed, at the point μ (Re μ > ω0) is given by

R(μ, A)x = \ e~μξS(ξ)d(ξ)x, x e X .

Therefore

x*R(μ, A)x —

and interchanging the order of integration we get

(26) x*R(μ, A)x = \ (μ - X)~1x':dλQ(E)x1 x e X and x* e X* .
J Δ

Since (μ — λ)"1 is a bounded Borel measurable function over Δ,

\ (μ — λ)"1d;.Q(£f) exists in the uniform operator topology and hence

from (26) we have

R(μ, A) =

Now all the conditions of Lemma 9 are satisfied by μ,Δ,Q( ) and
A and hence by Lemma 9 the relation (25) follows, with the domain
of A being precisely the set of those x in X for which the right
hand side of (25) exists.

Also σ(A) = a(3&) (see p. 596 of [11] for the definitions of a(m)
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and 2B) is unbounded if @ is strongly continuous and not uniformly
continuous. Hence, again by Lemma 9 we conclude that A is an
unbounded spectral operator of scalar type with Q( ) as its resolution
of the identity.

For the uniqueness of the resolution of the identity of A the
same argument in [11] holds here if we replace (N(ξ)x, N{η)y) there
by x*S*(η)S{ξ)x where S*(rj) is the Vidav adjoint of S(η) in W and
a i e l a n d x * e Γ .

This completes the proof of the theorem.

6* A generalization of Stone's theorem* In this section we give
a generalization of Stone's theorem on one parameter group of unitary
operators on Banach spaces, when the group is strongly measurable
and its operators belong to a l/F*(|| ||)-algebra. In [14] we gave the
generalized notion of a unitary operator on a Banach space and obtained
there an extension of Stone's theorem when the group was uniformly
continuous and the underlying Banach space was reflexive.

DEFINITION 11. A spectral operator U of class X* is said to be
unitary in the equivalent norm 11 11 of X if U is an onto isometry in
the norm || ||.

LEMMA 10. Let Θ Ξ [ί7(f):f > 0] be a strongly measurable semi-
group of scalar type operators of class X* and let the members of
@ belong to a W*(\\ \\)-algebra W. Let Σ be the B.A. of all projections
in W. Then U(ζ) are invariant on 3K(#) for each x e X where Wl(x)
is the closed subspace spanned by the set {Ex: E e Σ). If the restriction
of U(ξ) on M(x) be denoted by Ux(ζ) then <&x = [Ux(ξ):ζ> 0] is again
a semi-group of scalar type operators of class {9Qΐ(£)}* on fΰl(x) and
is strongly continuous on fΰt(x). If Ax is the infinitesimal generator
of &x and A is that of © then

A/m(x) = Ax .

Proof. If Eξ( ) is the resolution of the identity of U(ζ) then it
is easy to verify that U(ζ) is invariant on 2R(x) and Eξx( ) = Eξ( )/Tl(x)
is the resolution of the identity of the restriction Ux(ζ) on Wl(x). Also
Ux(ξ) is a scalar type operator on Wl(x) of class {9K(x)}* as the set
function Eζx(*)y, y e ϊΰl(x) is countably additive. The strong continuity
of &x is a consequence of that of @. It is easy to establish that Ax

is the restriction of A to ίΰl(x). Hence the lemma.

THEOREM 10. (A generalization of Stone's theorem on one-para-
meter group of unitary operators to Banach spaces). Let
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@ = [U(ξ): — oo < ξ < oo]

δβ α group of scalar type operators of class X* on X. Let U(ζ)
belong to a W*(\\ \\)-algebra W and let their spectrum lie on the
unit circle. Further let @ be strongly measurable.

Then @ is continuous in the strong operator topology and U(ξ) are
unitary in the norm 11 11. Further there exists a unique representation
for U(ζ) of the form

U(ξ)x=\~ eiλξdλQ'(E)x,xeX

with Qr(E) = Q{X: iλ e E) for Borel sets E of the complex plane where
Q( ) is the resolution of the identity for the infinitesimal generator
A given by

(27) Ax = iί~ XdλQ'(E)x
J-oo

and the domain D(A) of A is precisely the set of all x in X for
which the integral in (27) exists.

Proof. That U(ζ) is strongly continuous follows from the hypo-
thesis that U(ζ) is strongly measurable. Since U(ζ) belongs to the
TF*(|| ||)-algebra W and since the spectrum of U(ξ) lies on the unit
circle it is easy to show that U(ζ) = eiRξ for some operator Rξ in W,
which is hermitian in the norm || | |. Hence || Ϊ7(f)|| = \\eiBξ \\ = 1 for
— °̂ < ζ < °° by Lemma 1 of Vidav [18]. Also

\\U~ι(ζ)\\ = \\U(-ζ)\\ = l

and hence U(ξ) are onto isometry in || | |. But, as U(ς) are scalar
type U(ζ) are unitary in || | |.

All the conditions of Theorem 9 will be satisfied by @ if we show
that 9tx S W. In view of Theorems 4.3 and 4.5 of Bade [3] to prove
3ΐi £ W it suffices to show that the resolvent operator jβ(λ, A) of the
infinitesimal generator A leaves invariant each Wt(x) for xe X, where
2K(αO is the closed subspace spanned by {Ex: Ee Σ}, Σ being the B.A.
of all projections in W. Now to prove this, let Ux(ξ) be the restriction
of U(ζ) on Wl(x). Then as said in the proof of Lemma 10, Ux(ζ) are
scalar type operators on -HJl(x), with their resolutions of the identity
being given by Eξx( ) = Eξ(-)/Wl(x). Hence it will follow that Ux(ξ)
are onto isometries of Wl(x) in the norm || | |. Therefore, the set
Λ = {λ: Reλ Φ 0} is dense in the resolvent set ρ(Ax) of the infinitesimal
generator Ax of <&x = [Ux(ζ): - oo < ξ < oo]. Thus for a λ e Λ, (XI- A,)-1

is an everywhere defined operator on Tt(x)9 as Ax is closed. As @ is
a group of isometries on X, A is also dense in the resolvent set p(A)



516 T. V. PANCHAPAGESAN

and hence for Xe Λ, (XI — A)~~ι exists as an everywhere defined operator
on X and is an extension of (XI — Ax)~ι because of Lemma 10. Thus
(XI ~ A)-1 = (XI - Axy

ι on fΰl(x). But (XI - Ax)~ιm(x) S m(x) so that
(XI - A)~im(x) S Wl(x). Since A is dense in ρ(A), it follows that
R(X, A)Tt(x) s Wft(x) for all X e p(A).

Thus the semi-group & = [U(ξ): ξ > 0] satisfies the hypothesis of
Theorem 9 and hence the proof of Theorem 9 holds verbatim. As U(ζ)
are in W with their spectrum on the unit circle, it follows that the
range of U(ξ)(m) is the unit circle so that | U(ξ)(m) \ = 1 for m e 2JΪ,
where <3Jl is the maximal ideal space of W. Thus the function a(m)
defined in the proof of Theorem 9 is purely imaginary and α(2B) = σ(A)
reduces to a subset of the imaginary axis. Hence we have

U(ζ)x = \ eλξdλQ(E)x
(28) 1

eiλζdλQ'(E)x
J-oo

where Q'(E) = Q[X: ix e E] and

Ax = [ Xrdλ,Q(E)x

- ι\ XdλQ'(E)x .

Further the domain of A is precisely the set of those x m X for
which the integral in (27) exists. Also Q( ) is the resolution of the
identity of A.

For ξ < 0,

U(ξ) = U*(- ς) (Vidav adjoint of U(- ξ))

= Γ
J-o

e^dλQ'(E)

as the spectral projections Q'(E) are in W and hence are hermitian
in || || by Remark 5 of § 2. For ζ — 0 the representation clearly holds.

This completes the proof of the theorem.

REMARK 7. In all the above theorems on semi-groups of opera-
tors, the hypothesis that the members of the semi-group belong to a
ΫF*(|| ||)-algebra can be replaced by an equivalent hypothesis that the
B.A. Σ determined by the resolutions of the identity of the members
of the semi-group is σ-complete. When the Banach space X is weakly
complete, it suffices to assume that Σ is bounded. Here in Theorem
10 we have proved the extension of Stone's theorem to arbitrary Banach
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spaces. On the other hand in [6] Berkson has obtained the extension
but for weakly complete Banach spaces with a weaker hypothesis
that there is a uniform bound on the resolutions of the identity of
all operators to U(ξ). The fact that these different resolutions of the
identity generate a bounded B.A. is obtained as a corollary of his
method of proof.

The author wishes to express his deep sense of gratitude to
professor V. K. Balachandran, under whose guidance the thesis was
written. The author also wishes to express his heart-felt thanks to
Professor W.G. Bade and Professor Ralph S. Phillips for their helpful
comments and suggestions.
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CONCERNING THE INFINITE DIFFERENTIABILITY
OF SEMIGROUP MOTIONS

J. W. SPELLMANN

Let S be a real Banach space. Let C denote the infini-
tesimal generator of a strongly continuous semigroup T of
bounded linear transformations on S. This paper presents a
construction which proves that for each b > 1 there is a dense
subset D(Jb) of S so that if p is in D(b), then

(A) p is in the domain of O for all positive integers n and
(B) ϋmn-~ \\C*p\\ (nl)-b = 0.

Condition (B) will be used in § 3 to obtain series solutions to
the partial differential equations £7i2 = CU and Uu = CU.

Suppose G is a strongly continuous one-parameter group of bounded
linear transformations on S which has the property that there is a
positive number K so that | G(x) \ < K for all numbers x. Let A
denote the infinitesimal generator of G. In 1939, Gelfand [1] presented
a construction which showed there is a dense subset R of S so that if
p is in R, then

(C) p is in the domain of An for all positive integers n and
(D) limn_»\\A*p\\(nl)-l = 0.

Hille and Phillips, in their work on Semigroups [2], used Gelfand's
construction to prove there is a dense subset R of S which satisfies
condition (A) with respect to the operator C. Hille and Phillips, how-
ever, do not present estimates on the size of \\Cnp\\. Also, this author
has not been able to use their construction to obtain estimates on the
size of || Cnp\\.

2. Infinite differentiability of semigroup motions* Let b > 1.
Let a be a number so that 1 < a < b. Let M be a positive number
so that I T(X) I < M for all nonnegative numbers x less than or equal
Σw=i ^~α For each point p in the domain of C (denoted by Dc) and
each positive integer n, \etp(n + 1, n) = p. For each point p in Dc

and each pair (k, n) of positive integers so that k <̂  n, let

p(k, n) = ka\k duT(u)p(k + 1, n) .
Jo

THEOREM 1. Suppose p is in Dc and each of k and n is a positive
integer. Then

Proof. Let w = Πi=o(& + j)a. For each nonnegative integer j,

519
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let r(j) = (k

\\p(k,k-

= w

= w

fr(O)

! . *
1 fr(O)

i . *

: +

f n

Jo

3)-a

—

(1)

. Then

Oil

lo
Γr(ϊ

Γ
o + uλ+ + %*_!)

THEOREM 2. Suppose p is in Dc and k is a positive integer.
Then

\\p(k,k)-p\\ ^

Proof. Theorem 2 follows from the definition of p(k, k) and the

fact that T (x)p - p = [XduT(u)Cp for all x > 0.
Jo

THEOREM 3. Suppose p is in Dc and each of k and n is a positive
integer. Then

k + n) - p(k, k + n-l)\\^M2\\Cp || (k + n)~a .

Proof. Let w and r(i) be defined as in the proof of Theorem 1.
Then

|| p(k, k + n) - p(k, k + n - 1) ||
fr(0)

= (Λ + ^)αW

= (k

0

r(0)

dUn •Γ
M2\\Cp\\(k

COROLLARY. Suppose p is in Dc and k is a positive integer.
Then the sequence

S(p, k): p(ky k), p(k, k + 1), p(k, k + 2) ,

converges in S.

Proof. Theorem 3 and the fact that X~=o (k + n)~a converges
imply S(p, k) is a cauchy sequence in S. Since S is complete, S(p, k)
will converge.

For each point p in Dc and each positive integer k, let the
sequential limit point of S(p, k) be denoted by pk. Let

D(b): {pk I p is in Dc and A: is a positive integer} .

THEOREM 4. Suppose pk is in D(b). Then pk ^ M\\p\\.
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Proof. Theorem 4 follows from Theorem 1 and the fact that pk

is the sequential limit point of S(p, k).

THEOREM 5. D{b) is a dense subset of S.

Proof. Suppose q is in S and q is not in D(b). Let ε > 0. Since
Dc is a dense subset of S, there is a point p in Dc so that

(1) | | p _ g | | < ε / 3 .
Theorem 2 implies there is a positive integer k so that

(2) | |p(fc,fc)-3>||<e/3 and
(3) (M+iy\\Cp\\Σ:=o(k + n)-«<ε/3.

Theorem 2, Theorem 3 and statement (3) imply there is a pk m D(b)
so that

(4) \\pk-p(k,k)\\<φ.
Statements (1), (2) and (4) imply || pk — q\\ < ε. Thus, D(b) is a dense

subset of S.

THEOREM 6. Suppose pk is in D(b). Then

pk = ka\k duT(u)pk+1 .
J

Proof. Let ε > 0. Then there is a positive integer n so that
(1) || p(k, k + n) - pk\\ < ε/2 and
( 2 ) \\p(k + l,k + n)-pk+1\\<e/2M.

Statement (2) implies

( 3 ) p(k, k + n) - ka\ duT(u)pk+1 < ε/2 .

Theorem 6 now follows from statements (1) and (3).

THEOREM 7. The elements of D(b) satisfy conditions (A) and (B).

Proof. Suppose pk is an element of D(b). Theorem 6 implies pk

is in the domain of Cn for all positive integers n and that
(1) C*pk = ΠPo1 (k + j)a Πi=o [T(l/(k + JY) - I]Pk+n.

Thus, the elements of D(b) satisfy condition (A). Statement (1) and
Theorem 2 imply

( 2 ) || C*pk || ^ [ Π S (k + JY](M + i r + 1 1 | p | |.
Statement (2) implies pk satisfies condition (B). The proof of Theorem 7
is now complete.

3* Partial differential equations in a banach space* The
results of § 2 will be used in this section to obtain series solutions to
the partial differential equations U12 = CU and Un = CU. Solutions
to these equations may be easily obtained if C is a bounded linear
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transformation. The transformation C, however, may be unbounded;
that is, C may be discontinuous at each point where it is defined.

For each subset D of S, let P(D) denote the set of all functions
g for which there is a nonnegative integer n and a sequence po,p19 ,
pn each term of which is in D so that

g(χ) = Σ
i=0

if x >̂ 0. If D is a dense subset of S, it may be shown that P(D)
is a dense subset of the set of continuous functions from [0, d](d > 0)
to S.

THEOREM 8. Let d > 0. Let b be a number so that 1 < b < 2.
Suppose each of g and h is a function in P(D(b)) so that g(0) = h(0).
Then there is a function U from [0, d] x [0, d] to S so that

( i ) Ua(x, V) = CU(x, y) for all (x, y) in [0, d] x [0, d],
(ii) U(x, 0) = g(x) for all x in [0, d] and
(iii) [7(0, y) = h(y) for all y in [0, d).

Proof. Suppose n is a nonnegative integer and po,p19 , pn is a
sequence each term of which is in D(b) so that

Q(x) = Σ

if sc ̂  0. Suppose m is a nonnegative integer and q0, qιy , gw is a
sequence each term of which is in D(b) so that

= Σ v%
i=0

iί y^0. Let U be the function from [0, d] x [0, d] to S so that if
(x, y) is in [0, d] x [0, d], then

(1) U(χ, y) - Σi=i ^ + Σ £ o y%
+ Σ?= ι Σ"=i (xvΫx'&PiWXi + 1) (i + &)
+ Σ£oΣΓ=i (χy)kyiCkqi/(k\)(i + 1) (ΐ + fe).

Theorem 7 implies ί7 is well defined on [0, d] x [0, d]. Theorem 7 and
the fact that C is a closed transformation imply ί712(#, y) = CU(x, y)
for all (x, y) in [0, d] x [0, d]. Statement (1) implies U(x, 0) = g(x)
and [7(0,2/) = h(y) for all (a?, ?/) in [0, d] x [0, d].

THEOREM 9. Let d > 0. Lβί ί) 6e α number so that 1 < b < 2.
Suppose each of g and h is a function in P(D(b)). Then there is a
function U from [0, d] x [0, d] to S so that

( i ) Un(x, y) = CU(x, y) for all (x, y) in [0, d] x [0, d] ,
(ii) [7(0, #) = £(#) if y is in [0, d] and
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(iii) £^(0, y) = h(y) if y is in [0, d\.

Proof. Let each of g and h be defined as in the proof of Theorem
8. Then let U be the function from [0, d] x [0, d] to S so that for
each (x, y) in [0, d] x [0, d],

( l ) U(χ, y) = Σ?=o y% + x ΣΓ=o v%
+ Σ?=o ΣϊU tfWpMWMi + l) (i + fc)
+ ΣΓ=o Σ?=i ^+VC^/((2/b + l)!)(i + 1) . (i + k).

An argument analogous to that used in Theorem 8 may be used to
show U is well defined on [0, d] x [0, d] and that U satisfies conditions
(i), (ii) and (iii) in the hypothesis of this theorem.

REMARKS. (1) The solution U to the Theorem 8 has the proper-
ty that for each (x,y) in [0, d] x [0, d], is in the domain of Cn for
all positive integers n. The same remark is true for the solution to
the equation in Theorem 9.

(2 ) Theorem 5 implies there are solutions to Uί2 = CU and Un —
CU for a set of boundary functions which is dense in the set of
continuous functions from [0, d] to S.

(3) Theorem 9 and Theorem 5 imply there are solutions to the
ordinary differential equation y" = Cy for a dense set of initial values
for 2/(0) and y'(0).
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A NOTE ON CERTAIN DUAL SERIES EQUATIONS
INVOLVING LAGUERRE POLYNOMIALS

H. M. SRIVASTAVA

In this paper an exact solution is obtained for the dual
series equations

t=o Γ(a + n + 1)

( Li ) ^ Ti (/Y>'\ — π(Ύ^) 01 <^ /V* <f OO

w h e r e a + β - \ - l > β > l — m , σ - \ - l > a + β > 0 , m i s a p o s i -
tive integer,

) [-n; a + 1; x] ,
n J

is the Laguerre polynomial and fix) and g(x) are prescribed
functions.

The method used is a generalization of the multiplying factor
technique employed by Lowndes [4] to solve a special case of the above
equations when

σ = a, An = Γ(a + n + l)Γ(a + β + n)Cn9 α + /5>0 and l>/9>0 .

In another paper by the present author [5] equations (1) and (2) have
been solved by considering separately the equations when (i) g(x) = Q,
(ii) f(x) = 0, and reducing the problem in each case to that of solving
an Abel integral equation. Indeed it is easy to verify that the solu-
tion obtained earlier [5] is in complete agreement with the one given
in this paper.

2. The following results will be required in the analysis.
( i ) The orthogonality relation for Laguerre polynomials given

by [3, p. 292 (2)] and [3, p. 293 (3)]:

•< 3 ) \~e-*xaLy(x)L<«(x)dx = Γ ( a + n + 1 } dmn, a > - 1 ,
Jo nl

w h e r e δmn is t h e Kronecker de l ta .
( i i ) T h e formula (27), p . 190 of [2] in t h e form:

,( 4 )
dxm Γ(a + n + 1)

(iii) The following forms of the known integrals [2, p. 191 (30)]
and [3, p. 405 (20)]:

525



526 H. M. SRIVASTAVA

( 5 )

where a > — 1, /3 > 0, and

( 6 ) [°°e-χ(x - ξy~1L{

n

a)(x)dx =

where a + 1 > β > 0.

3. Solution of the equations* Multiplying equation (1) by
xa(ζ — x)β+m~2, where m is a positive integer, equation (2) by e~x(x — ξ)σ~a~β,
and integrating with respect to x over (0, ξ), (ζ, oo) respectively we
find, on using (5) and (6), that

άo Γ(a + β + m + n) n

where 0 < ζ < y,a> - 1 , /3 + m > 1, and

«-o Γ(a + β + n)
( 8 ) *

w h e r e y < ξ < o o ^ σ + l y a + β y O .
If we now multiply equation (7) by ζ«+β+™-ί

i differentiate both
sides m times with respect to ζ and use the formula (4) we see that
it becomes

-o Γ(a + β + n)

where 0 < ξ < y, a > — 1 , and β + m > 1.
The left-hand sides of equations (8) and (9) are now identical and

an application of the orthogonality relation (3) yields the solution of
equations (1) and (2) in the form

A =
Γ(β + m - 1)

Γ(σ-a-β + l)

n = 0 , 1 , 2 , 3 , •••
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where

(11) F(ξ) = - | ^ J * xa(ξ - xy+m~2f(x)dx

and

(12) G(£) = j V β ( a - ζ)-a-βg(x)dx ,

provided that a+β+l>l— m and σ + l>a + β>0, m being a
positive integer.

When σ = a, An = Γ(α + w + l)Γ(α + /3 + w)Cw, the above equa-
tions provide the solution to Lowndes' equations for

and when m = 1 the results are in complete agreement (see [4], p. 124).
Note also that the dual equations considered recently by Askey [1, p. 683,
Th. 3] are essentially the same as Lowndes' equations.

The author should like to express his thanks to the referee for
suggesting a number of improvements in the original version of the
paper.
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A NONIMBEDDING THEOREM OF
ASSOCIATIVE ALGEBRAS

ERNEST L. STITZINGER

Let A and B be associative algebras and define the Frattini
subalgebra of A, φ(A), to be the intersection of all maximal
subalgebras of A if maximal subalgebras of A exist and as
A otherwise. Conditions on B will be found such that B cannot
be an ideal of A contained in φ(A).

Hobby in [2] has shown that a nonabelian group G cannot be the
Frattini subgroup of any p-group if the center of G is cyclic. Chao
in [1] has shown that a nonabelian Lie algebra L can not be the
Frattini subalgebra of any nilpotent Lie algebra if the center of L is
one dimensional. In this note, we find a similiar result in the theory
of associative algebras. However, in this case, it is not necessary to
place any restrictions on the containing algebra.

Let A be an associative algebra over a field F and let B be an
ideal of A. If x e A, then x induces an endomorphism of the additive
group of B by Lx(b) = xb for all b e B. Let E(B, A) be the collection
of all endomorphisms of this type. Then E(B, A) is a subspace of
the vector space of all linear transformations from B into B and is
an associative algebra under the compositions Lx + Ly = Lx+y, aLx =
Lax and LxLy — Lxy for all x, y e A and all aeF. Clearly E(B, B) is
an ideal of E(B, A). If C is an ideal of A contained in B, then let
E(B, A, C) = {Ee E(B, A); E(c) = 0 for all ceC}. Then E(B, A, C) is
an ideal of E(B, A) and E(B, A)/E(B, A, C) is isomorphic to E(C, A).
Note that the mapping from A onto E(B, A) which assigns to each
a e A the element La is an algebra homomorphism. We define the
right annihilating series of B inductively. Let rJJB) = {c e B; be = 0
for all beB} and let rό{B) be the ideal of B such that r^BJ/r^^B)
r^B/r^B)) for j > 1. Since B is an ideal in A, r^B) is an ideal in
A for all i.

The following lemma is immediate.

LEMMA. If A and A' are associative algebras and π is a homo-
morphism from A onto A', then π(φ(A)) c: φ(π(A)). Furthermore, if
the kernel of π is contained in φ(A), then π(φ(A)) = φ(π(A)).

THEOREM. Let B be an associative algebra such that dim r^B) =
1 and dim r2(B) — k where 1 < k < oo. Then B cannot be an ideal
contained in the Frattini subalgebra of any associative algebra.

529
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Proof. Suppose that to the contrary B is an ideal contained in
the Frattini subalgebra of the associative algebra A. Then

E(B,B)ςzφ(E(B,A)).

For if T is the mapping from A onto E(B, A) defined by T(a) = La

for all ae A, then, by the lemma,

E(B, B)= T(B) c T(φ(A)) c φ(T(A)) = φ(E{B, A)) .

Let z19 , zk be a basis for r2(.B) such that 2fc is a basis r^JS).
For notational convenience, let rt = r^JS) for all i. Let TΓ be the
natural homomorphism from E(B, A) onto E(r2, A). Since

E(B, B) + E{B, A, r2)/E(B, A, r2) - E(B, B)/E(B, A, r2) n E(B, B)

= E(B, B)/E(B9 B, r2) ~ E(r2, B)

it follows that

E(r2, B) ~ π(E(B, B)) c τφ(#(£, A))) c ^(#(r2, A)) .

We now show t h a t E(r2, B) £ Φ(E(r2, A)) by showing t h a t E(r2, B)

is complemented in E(r2, A). For i = 1, ••-,& — 1, define linear trans-

formations βi from r 2 onto r x by

^^fc for j = 1, . . . , Λ - 1

0 for j = &

where δ^ is the Kronecker delta. Let S = ((β^ •• ,e*_i)). We claim

that S = E(r2,B). Since r, = ((zk)) and B-r2^rly E(r2, B) £ S. To
show that S = JK(r2, 5), we shall show that dim E(r2, B) = k — 1 =
dim S. For each xeB, Lx induces a linear transformation from r2

into n cr F, where F is the ground field. Therefore, we may consider
each Lx,xeB as a linear functional on r2. That is, E(r2, B) c (r2)*
where (r2)* is the dual space of r2. Consequently, dimE'^, B) = dim
r2 — dim r? where r2

β = {z e r2; Lx(z) = 0 for all α? G B}. Clearly rξ = r1#

Then, since dimr2 = fe and dimr,. = 1, dim E(r2, B) = k — 1 and S =
E(r2, B).

We now show that S is complemented in E(r2, A). Let

M ={EeE(r2, A); E(z,) - ΣJ=ί ^ Λ , λ<y e F, i = 1, , k - 1

and E(zk) = Xkzk, XkeF}. M is clearly a subalgebra of -E(r2, A) and
M Π S = 0. We claim that M + S = E(r2, A). Let Ee E(r2, A). Then
E(Zi) = ΣJl ίλ^ ̂  + λiJfczfc for ΐ = 1, , k — 1 and E(zk) = Xkzk. How-
ever E = E- Σiti1 λίΛ + Σ"==ί \k*t where J5 - Σ t ί ί̂*β< e ^ and
Σ'^i1 λ.<fcβi 6 S. Therefore M+ S = E(r2, A). We claim that M * 0.
If Jlf = 0, then E(r2, A) = E(r2, B) which contradicts
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E(rz, B) c φ(E(r2, A)) c E(r2 A) .

Consequently, S is complemented in E(r2, A), contradicting S c
φ(E(r2, A)). This contradiction establishes the result.

COROLLARY. Let B be a finite dimensional nontrivial nilpotent
associative algebra with dim rL(B) — 1. Then B cannot be an ideal
contained in the Frattini subalgebra of any associative algebra.
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MARTINGALES OF VECTOR VALUED
SET FUNCTIONS

J. J. UHL, JR.

This paper is concerned with the norm convergence of
Banach space valued martingales in Orlicz spaces whose under-
lying measure is (possibly) only finitely additive. Because of
the possible incompleteness of these Orlicz spaces of measurable
point functions, this subject will be treated in the setting of
Orlicz spaces of set functions Vφ rather than the corresponding
spaces Lφ of measurable point functions. First, a conditional
expectation PB, operating on finitely additive set functions, is
introduced and related to the usual conditional expectation EB

operating on L1 by the equality

( * ) PB(F)(E) = ( E\f)dμ Ee Σ

where (Ω9 Σ, μ) is a measure space, B is a sub <r-field of Σ and

F(E) = [ fdμ for EeΣ.
JE

Then, with the use of PB martingales of set functions are
defined and their convergence in appropriate Vφ spaces is
investigated. In addition, in the countably additive case, the
results obtained for martingales of set functions are related
to martingales of measurable point functions and extensions
of certain results of Scalora, Chatterji, and Helms are obtained.

The study of finitely additive set functions appears to have begun
during the close of the last century with such notions as Jordan
Content. Through the first half of this century, with the introduction
of the Lebesgue theory, most effort was concentrated on countably
additive set functions. Recently, however, certain work, such as
representations of linear functionals of the space of bounded functions
has demanded the employment of finitely additive set functions. More
important is the fact that finitely additive set functions provide
considerable flexibility in applications and are sometimes no more
untractable than their countably additive counterparts.

In their new approach to probability theory, Dubins and Savage
[6] have noted that countable additivity is sometimes unnecessarily
restrictive and have dropped it. In the study of the classical function
spaces Lp, Bochner [1] and Leader [12] find it "natural to consider"
the Lp spaces of finitely additive set functions. More recently in [16,
17] Bochner and Leader's groundwork was placed in the Orlicz space
setting. In various ways, each of these papers present the argument
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that certain classical results can be handled more easily with the set
function approach and perhaps more importantly, that new results
may be obtained by employing this approach.

The purpose of the present paper is to treat the theory of norm
convergence of martingales in Orlicz spaces, not in the classical
manner, but rather to treat this theory in the setting of finitely
additive set functions in the context of [16] and [17]. Here again,
the goal will be to reduce to a minimum the limiting processes needed
in the study of mean martingale convergence.

In the first section, preliminaries including relevant facts about
the VΦ(X)[16,17] spaces are given and collected for ready reference.
The second section introduces a generalized conditional expectation
operator which operates on vector valued finitely additive set functions.
Properties of this generalized conditional expectation are exploited in
the third section where martingales of finitely additive set functions
are defined and studied. Here extensions of certain known results of
Scalora [15], Chatterji [4], Helms [9], and Krickeberg and Pauc [11]
are obtained.

1* Preliminaries* Throughout this paper Ω is a point set: Σ is
a field of subsets of 42, and μ is a finitely additive (extended) real
valued nonnegative set function defined on ^ . Σo a Σ is the ring of
sets of finite /^-measure. X is a Banach space. Φ is a Young's
function [18] with complementary function Ψ.

By VΦ(Σ, X) is meant the linear space of all finitely additive, μ-
continuous1, X-valued set functions F defined on Σo which satisfy

(1.1) IΦ(F/k) = sup Σ Φ(\\ F(En) \\/kμ(En))μ(En) ^ 1

for some k > 0, where the supremum is taken over all partitions π
consisting of a finite collection {En} of disjoint members Σo and the
convention 0/0 = 0 is observed. Upon the introduction of the norm
NΦ defined for Fe VΦ(Σ, X) by

(1.2) NΦ(F) = inf {k > 0: IΦ(F/k) ^ 1} ,

VΦ(Σ, X) becomes a Banach space [16, 17].

A partition π is a finite collection {En} of disjoint members of ΣQ.
The partitions are partially ordered by defining πλ ^ π2 if each members
of π, can be written as a union of members of π2. Corresponding to
each to each Fe VΦ(Σ, X) and each partition π = {En} is the function

* F is μ-continuous if for each ε > 0, there exists a o > 0 such that μ(E) < δ
implies ||-FCE7)|| < ε.
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(1.3) F. =

where μ En is the set function defined for E e Σo by μ- En(E) = μ(E Π En).
A set function of the form Eπ will be termed a step function. The
introduction of F- allows us to single out a (possibly proper) closed
subspace of VΦ(Σ, X). By SΦ(Σ, X) is meant the collection of all
Fe VΦ(Σ, X) such that \xmπNΦ{Fπ - F) = 0 where the limit is taken
in the Moore-Smith sense through all partitions π.

THEOREM 1.1. If X is reflexive and Φ obeys the AΓcondition
(Φ(2x) g KΦ(x) for some K and all x), then SΦ(Σ, X) = VΦ(Σ, X).

The proof of this theorem may be found in [17, IV. 7], If, Φ(x) =
\x\, then the corresponding VΦ(Σ, X) and SΦ(Σ, X) will be denoted
by V\Σ, X) and Sι(Σ, X) respectively.

As usual, the Orlicz space LΦ(Σ, X) is the space of all totally μ-
measurable X-valued functions / which satisfy

(1.4) \ Φ(\\f\\lk)dμSl

for some k where the integral here and thoughout this paper is that
of [7, Chap. III]. With functions which differ only on a μ-null set
[7, Chap. Ill] identified, LΦ(Σ, X) becomes a normed linear space (com-
plete if μ is countably additive) under the norm Nφ defined for
feLφ(Σ,X) by

(1.5) NΦ(f) = inf {& > 0: ̂ Ω(\\f\\/k)dμ ^ l j .

The use of identical symbols for the VΦ(Σ, X) and the LΦ(Σ, X) norms
will be justified in the next result. No confusion should arise since
set functions will normally be denoted by upper case letters, while
point functions will be denoted by lower case letters.

A nonnegative set function G defined on Σ is said to have the
finite subset property if E e Σ, G(E) = oc implies the existence of
EoaE,EoeΣ such that 0 < G(E0) < oo.

THEOREM 1.2. Suppose μ has the finite subset property. The
mapping λ: LΦ(Σ, X) -* VΦ(Σ, X) defined for fe LΦ(Σ, X) by Xf(E) =

\ fdμ, E e Σo, is an isometric injection of LΦ(Σ,X) into VΦ(Σ, X).
JE

If μ is countably additive, Σ is a σ-field, X is reflexive, and Φ obeys
the Az-condition, then the range of λ is all of VΦ(Σ, X).

The proof of this theorem may be synthesized from [17,11.5],
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[17, IV. 8], and the fact that if μ is countably additive, LΦ{Σ, X) is
complete.

2* A generalized conditional expectation* The purpose of this
section is to define and explore the properties of a generalized con-
ditional expectation operator operating on finitely additive set functions.
An attempt will be made to relate this operator and its properties to
the usual conditional expectation [15] operating on point functions.

DEFINITION 2.1. A class of sets ΰ c i 1 is a subfield of Σ if and
only if B is a ring and Ω e B. A partition πB {En} is a jB-partition if

DEFINITION 2.2. Let B be a subfield of I7. A set function
Fe VΦ(Σ, X) is termed J3-measurable if for each EeΣ0,

(2.1) F(E) = lim Fπβ{E)

where the limit is taken in the Moore-Smith sense through all B-
partitions πB.

The following result establishes the existence of an operator
analogous to the usual conditional expectation [13,15].

THEOREM 2.3. Let Φ obey the A2-condition and B be a subfield of
Σ. Then for each Fe SΦ(Σ, X) there exists a B-measurable set
function FB e SΦ(Σ, X) such that

( i ) FB(E) = F(E) for all E e B Π Σo,
(ii) NΦ(FB) S NΦ(F),

and
(iii) lim^ NΦ(FB - (FB)πB) = 0,

where the limit is taken in the Moore-Smith sense through all B-
partitions πB.

Proof. Let Fe SΦ(Σ, X) be arbitrary and consider the mapping
Θ:S*(Σ, X ) - > VΦ(B, X) defined b y Θ(F) = F\B w h e r e FIB is t h e
restriction of F to B Π Σo. The linearity of θ is clear. Moreover for
any k > 0,

IΦ(ΘF/K) = sup Σ Φ(lI F(En) \\/kμ(EJ)μ(En)
(2.2)

^ sup Σ 0(11 F(En) \\/kμ(En))μ(En) ̂  I,(F/k) .
π π

From inequality (2.2) and the definition of the Nφ norm, it follows
immediately that NΦ(ΘF) ^ NΦ(F). Thus θ is a linear contraction.
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Next we shall show that the range of Φ is contained in SΦ(B, X)
(which is possibly strictly contained in VΦ(Σ, X)). Because ^ is a
contradiction, it suffices to show θ maps step functions (i.e., functions
of the form Fπ) into SΦ(B, X). From the linearity of θ, we can infer
that this reduces to showing that Θ(xμ-E) e SΦ(B, X) for each xeX
and all EeΣ0. Thus, let xeX,EeΣ0, and πB = {En} be a 5-partition.
A brief computation yields

(2.3) NΦ(θ(xμ E) - (θ(xμ E))XB) = || x || NΦ(μ-E \B-(μ E\ B)XB)

where the last norm is taken in VΦ(B,R)(R = reals). Since μ-E\B
is μ I l?-continuous and satisfies Iφ(μ E\B) < <>o, and Φ obeys the z/2-
condition, Theorem 1,1 implies μ-E \ B e SΦ(B, R). Thus

\\mNΦ(μ-E\B - (μ*E\B)XB) = 0 .
πB

In view of this, the definition of SΦ(B, X) and (2.3), we have Θ(xμ-E) e
SΦ(B, X). This proves Θ(SΦ(Σ, X)) c SΦ(B, X).

Leaving, for the time being, the problem of projecting SΦ(Σ, X)
into SΦ(B, X), we shall now consider the opposite problem: the extension
of members of SΦ(B, X) to members of S*(Σ,X). Let GeSφ(B,X)
and πB be a ^-partition. Then for EeBf]Σ0,

Clearly GπB has a "natural" extension to all of JtVnamely

Σ G(En) E

*B μ(En)

which is defined for all E e Σo. Denote this extension by p(GπB). Then
evidently p(G?B) e SΦ(Σ, X), and clearly p is linear. Moreover, as a
brief computation shows, NΦ(GπB) = NΦ(ρ{GπB)).

Now, for GeSΦ(B,X), we have

^lim NΦ(GJβ - GXB) = 0 .

Hence

limNΦ(p(G,B) - P(GJ) = 0 .

This and the completeness of SΦ(Σ, X) assures the existence of ρ(G) e
SΦ(Σ, X) such that

(2.4) UmNΦ(p(G)-p(GπB)) = 0.

Moreover,
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NΦ(G) = lim N.(GπJ = lim NΦ(p(GπB)) = N,(p(G)) .

Also note that if E e B Π 2Ό, then G(E) = lim^ ( ^ ( J E ) = lim^ ρ(GπB)(E),
by the definition of p(GπB) = p(G)(E), since norm convergence in Vφ

implies setwise convergence for sets in 2Ό. Therefore we have

(2.5)

(2.6)

and

(2.7) lim NΦ(ρ(G) -

P(G) | B =

PiG).,, =

- PiGhJ =

G,

P(G«B)

0 ,

Now, to prove the theorem, let FeSφ(Σ, X) and consider FB =
ρ(θ(F)). By the definition of θ and (2.5) (with Θ(F) - G),FB(E) -
F(E), EeB f] Σo, and (i) is satisfied. Since θ is a contraction and p
is norm preserving, NΦ(FB) ^ NΦ(F), and (ii) is satisfied, (iii) follows
immediately from (2.7).

A corollary of the proof of Theorem 2.3 is given below for use
later.

COROLLARY 2.4. Let Φ obey the A2-condition and B be a subfield
of Σ. Then there exists a "natural" isometric embedding p of
SΦ(B, X) into SΦ(Σ, X). The image of SΦ(B, X) under p consists of
all B-measurable members of SΦ(Σ, X).

Proof. The assertions of this corollary are all clear form the
proof of Theorem 2.3 with the possible exception of the linearity
of p. It is clear from p's definition that p is linear on the step
functions. Since step functions are dense in SΦ(B, X), p is linear on
all of SΦ(B, Σ).

The above corollary allows us to think of SΦ(B, X) as a sub-
space of SΦ(Σ, X) in very much the same way that the J5-measurable
members of LΦ(B, X) constitute a subspace of LΦ(Σ, X). With the aid
of theorem 2.3, an operator PB which will be called a generalized
conditional expectation and which is a genuine generalization of
Kolmogrorov's classical concept of probability theory (cf. Theorem 2.7)
can be defined.

DEFINITION 2.5. Let Φ obey the ^-condition and B be a subfield
of Σ. For FeSφ(Σ, X), the operator PB is defined by

(2.8) PB(F) = FB
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where F-+FB in the sense of Theorem 2.3.

The following theorem is an immediate consequence of Theorem 2.3.

THEOREM 2.6. If Φ obeys the A2-condition and B is a sub field of
Σ, then

( i ) PB on SΦ(Σ, X) is linear and contractive,
(ii) PB(F)\B = F\B,

and
(iii) limπBNΦ(PB(F)-FZB) = 0.

The relationship between the operator PB and the usual conditional
expectation operator £^[15, pp. 353-356] which operates on point
functions is clarified in the next result.

THEOREM 2.7. Suppose Σ is a σ-field, B is a sub-σ-field of Σ,
and μ is a countably additive finite measure on Σ. If EB is the
usual conditional expectation operator on 1/(42, Σ, μ, X) then XEB(f) —

for all f Lι(Ω, Σ, μ, X) or equivalently,

for all E e Σ where X is the isometric isomorphism of L1 into V1 of
Theorem 1.2.

Proof. Since simple functions are dense in L\Ω1 Σ, μ, X){U{Σ, X)),
it suffices to prove the statement for all simple functions /. The
linearity of EB, PB, and the integral allow us to reduce this problem
to the problem of showing EB(f) = PB(Xf) for all / of the form / =
xχE where xeX, EeΣ, and χE is the characteristic or indicator
function of E. The definition of EB on Lι(Σ, X) [15] and [7, IV. 8.17]
imply

f xEB(χE)dμ
EB(xχE) = xEB(χE) = li

strongly in Lι(B, X) and therefore in U(Σ, X). Hence by the conti-
nuity of λ,

xEB(χE)dμ
x(E«(xχE)) = l i m λ \ Σ J ^ , . , . X •B,

l imΣ ^E" *—/«•#•, since EneB,
*B *B μ(En)
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μ(En)

*B ti μ{En) '

strongly in V](Σ, X) by Theorem 2.6.

The crux of Theorem 2.7 is that the operator PB is a genuine
extension of the classical conditional expectation operator EB. Indeed,
the definition of PB does not depend directly on the Radon-Nikodym
theorem (which is not available in usable form), while the definition
of EB depends crucially on the Radon-Nikodym theorem. But, as
shown above, PB coincides with EB whenever the Radon-Nikodym
theorem is applicable. Another property common to Pβ and EB is
contained in the next result.

THEOREM 2.8. Let Φ obey the A2-condition. IfBι c B2 are sub fields
of Σ, then

PBl(PB2) = PB2(PBl) = PBl

on SΦ(Σ, X). Consequently PB is a contractive projection of SΦ(Σ, X)
into SΦ(Σ, X).

Proof. If G e SΦ(Σ, X) is arbitrary, then according to Theorem 2.6,

PBι{G) = lim GKBi strongly in V(Σ, X) .

Hence if Fe SΦ(Σ, X),

PBl(PB2(F)) = lim (PB2(F))πBi in NΦ norm .

Since PB2(F) agrees with F on B2-sets and BVCLB2, PB2(F) agrees with
F on ^-sets. Therefore

(PB2(F))πB = FπBi

for each ^-partition πBi, and

PBι{PB2(F)) = lim (PB2(F))πBi = l i m F ^ = PBl(F)

strongly in VΦ{Σ, X). Hence PBι{PB2) = PBχ.
To prove PBz(PBl) = PBl, the boundedness of PBl and PBz will be

used. If FeSφ(Σ,X), then Theorem 2.6 implies PB,(F) = lim_JPτ

ff_
1 1

strongly in UΦ(Σ, X). The boundedness of PB yields
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Έut each β rpartition πP>ι is a I?2-partition since BιaB2. Therefore
P,h{F^B) - FBϊ and

by Theorem 2.6.
That PB is a contractive projection follows from PI = PB and

Theorem 2.6.

According to [17, 1.13], VΦ(Σ, X) aVι(Σ, X) for all Young's
functions provided μ(Ω) < co, it is natural consider PB applied to
functions in VΦ(Σ, X) which belong to S\Σ, X). The (closed) subspace
of such functions will be denoted by RΦ(Σ, X). According to [17,1.13],
Nφ dominates Nlf the variation norm of V1, when μ(Ω) < oo; hence
SΦ(Σ, X) c RΦ(Σ, X) c VΦ(Σ, X) c Vι(Σ, X). In the case μ(Ω) = oo,
as the preceding definitions and theorems show, PB is directly defined
on Sφ only if Φ obeys the J2-condition. Because stronger hypotheses
on Φ are needed when μ{Ω) = co, some of the following theorems will
be stated in two parts- the first part dealing with the case μ(Ώ) < co
and the second part dealing with the case μ(Ω) = oo.

Some properties of PB on R*(Σ, X) are collected below:

THEOREM 2.9. Let μ(Ω) be finite and B be a subfield of Σ: then
( i ) PB: R

Φ(Σ, X) —+RΦ(Σ, X) is a contractive projection.
(ii) PR{F){E) = limZB FπB(E) in X for each F in RΦ(Σ, X) and

EeΣ.
(iii) PB{F) \B = F\B for all FzRφ{Σ, X).

Proof. Let FeR'p(Σ, X). (iii) is simply Theorem 2.6 applied to
Sι(Σ, X). (ii) follows directly from Theorem 2.6 (iii) applied to S^Σ, X).
To prove (i), note that PB m a p s S 1 ^ , ^ ) into S^,X). Therefore,
to show PB is a contractive projection on RΦ(Σ', X), it suffices to show
Nφ(Pβ(F)) ^ NΦ(F) for F e RΦ{Σ, X). (This has already been established
in the case Φ obeys the J2-condition. A separate proof is furnished
for the general Φ). From (ii) and the "lower semi-continuity" of
/Φ[17, I. 7], it follows that for each k > 0,

IΦ(PH(F)lk) S Urn inf IJJFJk) ^ h(F/k) .

Hence NΦ(PB(F) ^ NΦ(F)

3. Martingales of additive set functions* The study of martin-
gales of point functions in the finitely additive context appears to be
somewhat intractable because of the possible incompleteness of the
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LΦ(Σ, X) spaces when the underlying measure μ is only finitely additive.
However, even when μ is only finitely additive, the corresponding
VΦ(Σ, X) spaces are complete. Primarily for this reason we shall deal
with martingales from a set function standpoint. In addition, as will
be seen later, the assumption of only finite additivity will not present
any special difficulties. Using a definition equivalent to that of
Krickeberg and Pauc [11] we now define a martingale of additive set
functions. This is a generalization of the classical concept of Doob
[5] to the setting of finitely additive set functions (cf. Theorem 3.2).

DEFINITION 3.1. Let {Bt,τe T} be an increasing net of subfields
of Σ (i.e., B, c B2 if τγ ^ r2). A VΦ(Σ, X)(SΦ(Σ, X), RΦ(Σ, X))-martin-
gale is a net of finitely additive set functions {Fτi Bτj τ e T) such that
Fτ e VΦ(Σ, X)(SΦ(Σ, X) RΦ(Σ, X)) for each τ e T and PBτ (FT2) = FTi for
τγ ^ τ2.

In some important cases, martingales of set functions and martin-
gales of measurable point functions [15, p. 358] can be indentified under
the isometric isomorphism λ: L*(Σ, X) —• VΦ(Σ, X) of Theorem 1.2.
This is made precise in the following result.

THEOREM 3.2. Let Σ be a σ-field and {Bτ1 τ e T) be an increasing
net of sub-σ-fields of Σ. If μ is a countably additive finite measure
on Σ, then {Fτ, Bτ,τ e T} is an RΦ(Σ, X)-mar ting ale if and only if
{X~1(FT)y Bτi T e T} is a martingale (of point functions) in LΦ(Σ,X).
This means if fτ = X~ι(Fτ)

( i ) Each fτ is B^measurable,
and

(ii) \ fτdμ = I fτdμ for all τ2 ^ τι and E e Bτχ
JE JE

Proof. (Necessity). Because of the definition of RΦ(Σ', X), it may
and will be assumed that RΦ(Σ, X) = S\Σ, X). The hypothesis guaran-
tees X(L\Σ, X)) = S'iΣ, X); so that \-ι(Fτ) = fr e L*(Σ, X) for each
τ e T. From Theorem 2.6 and the definition of an RΦ(Σ, X)-martingale,
it follows that

lim N^F: - (FT)τJ = 0 .

Hence

lim N^X-^Fr) - X-ι({Fz)πB )) = 0
B

Since the χ-\Fτ)πB_ are BΓ-simple functions, it follows that fτ = \~\Fτ)
is ^.-measurable for each τ. This establishes (i). (ii) follows directly
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from Definition 3.1; if λ " 1 ^ ) = fτ, then for each BZχ and τ2^τlf we
have

f fTldμ = Fri(E) = FT2(E) = \ fτβμ ,
J E j E

for EeBτ.

(Sufficiency). If {/r, Bτ, τe T} is a martingale in U(Σ,X) and

Fτ( ) = λ/r( ) = ί /rdμ for each r e Γ , (i) implies Fτχ(E) = FT2(E) for

each EeBTχ and all τ2 ^ r1# Hence

F r i = λ/ri = \E»*i(frz) = P i i

by Theorem 2.7. Hence {FTJBTJτe T} is a martingale in S'iΣ, X).

We shall now begin a study of the norm or mean convergence of
martingales of set functions. The main result dealing with this problem
is contained in the following theorem.

THEOREM 3.3. ( i ) Let μ(Ω) < oo and {FT1 Bτ, τ e T) be an R*(Σ,

X) martingale. If Σx ~ (JΓ Bτ and the function Fx defined by
\ιmτ Fτ{E) = Fλ(E) for EeΣ, belongs to SΦ(Σ19X), then the net {FT,
Bτyτe T} converges in the VΦ(Σ,X) norm.

(ii) If μ(Ω) = co 9 and Φ obeys the A2-condition, the same con-
clusion holds if {Fτ, Bτ, τ e T} is a martingale in SΦ(Σ, X) and the
function F, defined by limΓ Fτ(E) = Fλ{E) for E e Σλ n Σo belongs to
SΦ(ΣX1 X) where Σo is the ring of sets in Σ of finite μ-measure.

Proof, (i) Since {BT, τ e T} is an increasing net of subfields of Σ,
it is clear that Σ1 — \JTBr is a subfield of Σ. From Definition 3.1, it
follows immediately that Fγ{E) = limΓ Fτ(E) exists for e&chEeΣ^
Now consider the net {FT \Σ19τe T} in VΦ(Σ, X). By hypothesis F,
belongs to Sφ(Σι, X). Therefore if ε > 0 is given, there exists a Σr

partition π such that Nφ{Fι — Flπ) < ε/2. By virtue of the facts that
Σι = \JTBT and {BTJτe T} is an increasing net of fields, there exists
a BT( such that π c Br for all r ^ r0. Moreover Corollary 2.4 guarantees
the existence of a immeasurable function F defined on all of Σ such
that NΦ(F — FS) < ε/2. In addition, from the definition of PBτ, we
have PBτ(F) = F r for all τ e T and PBτ(FΓ) = Fπ for all τ ^ r0. There-
fore for τ ^ r0, the triangle inequality yields

NΦ(F - Fτ) ^ NΦ(F - Fπ) + NΦ(Fπ - FBτ)

NΦ(F - Fπ) + NΦ(PBτ(F ~ Fx)) ^ 2NΦ(F - Fπ) < ε ,

since PBτ is a contraction. Consequently limΓ NΦ(F — Fτ) = 0.
The proof of (ii) is the same with a few obvious modifications.
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Because of its generality, the hypothesis of Theorem 3.3 may be
somewhat difficult to verify. The utilization of Theorem 1.1 permits
us to state some corollaries which are more easily applied.

COROLLARY 3.4. Let X be reflexive and Φ obey the Δ2-condition*
If {Fτ, Bτ,τe T} is a VΦ(Σ, X)-martingale which satisfies

( i ) NΦ(FZ) ^ M < co for some M and all τ e T and
(ii) v(Fτ, •) are uniformly μ-continuous (but not necessarily

finite) where v(Fτ, E) is the variation of Fτ on E for EeΣ0, then
(a) the net {Fz,τeT} converges in VΦ(Σ,X) norm,

and
(b) If Ψ, the complementary function to Φ, is also continuous

(ii) of the hypothesis may be dropped.

Proof. (a) Since Φ obeys the J2-condition and X is reflexive,
Theorem 1.1 implies SΦ(Σ, X) = VΦ(Σ, X); therefore Theorem 3.3 is
applicable. According* to this theorem, it need only be shown that
the set function Fι defined on Σι Π Σo, where 2\ — Ur Bτ, by F,(E) =
limΓ Fτ{E) belongs to SΦ(Σ, X)(= VΦ(Σ, X)). The "lower semi-continuity'?

of Iφ(') [17, I. 7] yields for each k > M

IΦ(FJk) - lim inf Iφ(Fτ \ ΣJk) ^ sup {IΦ(Fτ/k)} ^ 1 ,

since Nφ(Fr) ^ M for each τeT. In addition, from the "lower semi-
continuity" of the variation v, one has v(FuE) ^ lim inf v(F~, E) for
all EeΣλ. Since the v(F, •) are uniformly /^-continuous, it follows
that v(Flf •) is μ \ J^continuous and hence that F1 is μ \ 2\-continuous,
Therefore Fx e VΦ(Σ19 X) = S(Σly X). This proves (a).

(b) If Ψ is continuous, then the fact that Iφ(FJk) < co for some
k guarantees Fι is μ \ I'rcontinuous by [17, 1.17]. Hence (ii) may be
dropped.

A specialization of Corollary 3.4 to martingales of point functions
yields the following result.

COROLLARY 3.5. Let Σ be a σ-field and μ be countably additive
and finite on Σ. If X is reflexive, Φ satisfies the J2-condition and
{/Γ, J5r, r G T) is a martingale in LΦ(Σ, X) such that

( i ) Nφ(fT) ^ M < co for some M and all τeT,
and

(ii) the functions ||/Γ | |Λ- are uniformly integrable,
then

(a) the net {/ :,re T] converges in the Lφ norm.
(b) If Ψ, the complementary function to Φ, is continuous, then
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(ii) of the hypothesis may be dropped.

Proof, (a) Let Fτ = λ/Γ. According to Theorem 3.2, {Fτ1 Br,
Γ G Γ } is a martingale of set functions. Since λ is an isometry,

NΦ(Fτ) = NΦ(fr) ^ M for all τeT. From (ii) v(Fr, •) = [ | | / r \\x dμ
J(;)

are uniformly //-continuous because the | |/ r | | x are uniformly integrable.
An application of Corollary 3.4 shows {Fr, τeT} converges in VΦ(Σ, X)
norm. Since the current hypothesis guarantees that LΦ(Σ, X) is com-
plete, and λ is an isometry, it follows that {fτ,τ e T} converges in
LΦ(Σ, X).

(b) This follows directly from the above and Corollary 3.4.

Corollary 3.5 extends one of the main results of Chatterji [4, Th. 3]
in two ways: The index set T is possibly uncountable, and the
convergence is in LΦ(Σ, X) while in [4], the convergence is in LP(Σ, X),
1 <Ξ p < oo. Furthermore the methods of proof in [4] do not seem to
apply to the more general setting of Corollary 3.5.

A set function martingale version of a theorem of Krickeberg and
Pauc [11, Th. 6, p. 500] is contained in

THEOREM 3.6. (a) Suppose μ{Ω) < co and {FT, Bτ,τ e T} is a
martingale in RΦ(Σ, X). Then the following are equivalent:

( i ) {Fτ, τeT} converges in the strong topology of VΦ(Σ, X).
(ii) {Fτ,τe T} converges in the weak topology of VΦ(Σ, X).
(iii) limΓ x*(FT(E)) = x*(zE) for each E some xEeX, and all

α;*eX*, the conjugate space to X. The function F^E) = xE for
EeΣ, is a member of VΦ(Σ, X) and for each ε > 0, there exists a
parameter τεe T and a Bτ-measurable function Gτ eRφ(Σ, X) such
that NΦ(GTε - Fco) < ε.

(b) If μ(Ω) = oo, thetheorem remains true provided Φ obeys
the Δ2-condition, Rp is replaced by Sφ and the limit in (iii) is taken
only for E e Σo.

Proof, (ί) —> (Ii) is obvious. (ii)->(iii): Let x*eX* and EeΣ.
It is easily seen that the functional I defined for Fe VΦ(Σ, X) by
l(F) - x*(F(E)) is a bounded linear functional on VΦ(Σ, X). By (ii),
the net {Fτ9 τeT} converges in the weak topology to some He VΦ(Σ, X}.
Therefore x*(H(E)) = limr x*{Fτ{E)) for each Ee Σo and X * G Γ . This
is the first part of (iii) with H = F^. Now let M be the collection
of all VΦ(Σ, X) functions which are Immeasurable for some τeT.
From the fact that {BT, τeT} is an increasing net of subfields of Σ,
it follows that M is a linear submanifold of VΦ{Σ, X). But {FTy τeT}
converges weakly to F^ and each Fτ e M. Hence F^ belongs to the
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strong closure of M since the weak and strong closure of a linear
manifold are identical. Consequently for each ε > 0, there exists a
parameter τ e T and a Immeasurable function GTε such that Nφ(GTε —
î lo) < ε. This proves (ii) —> (iii).

(iii) —* (i). Let ε > 0 be given. From (iii), there exists a τ2 e Γand
a J5Γε-measurable function Gτε such that Nφ(GTε — JFU) < ε/2. Since ε
is arbitrary and GTε belongs to the closed subspace RΦ(Σ, X) of VΦ(Σ, X),
we have F^eR^Σ, X). Hence PBr(F«.) is defined for each τeT. In
addition, PBτ(FJ) and jPr are both jE?Γ-measurable and agree on I?r-sets.
It follows that PBr(FJ) = Fτ. Moreover since GTε is I?Γε-measurable
and belongs to R (Σ, X), PBτ(GTε) = Gu for all τ ^ ττ. Thus for τ ^ τe,

= NΦ(

,(F.

-Gτ

-Gτ

— ί

.H
ε)-

< s

A*. ~

since PBτ is a contraction. This proves (a).
(b) With a few evident modifications, the proof is the same.

As a corollary to Theorem 3.6, the following extension of [11,
Th. 6, p. 500] for vector-valued functions can be given.

COROLLARY 3.7. Let Σ be a σ-field and μ be a countably additive
finite measure on Σ. If {fτ,Bτ,τe T) is a martingale in LΦ(Σ,X),
the following conditions are equivalent:

( i ) {/Γ, r e T) converges in the strong topology of LΦ(Σ, X).
(ii) {/,, τe T} converges in the weak topology of LΦ(Σ, X).
(iii) There exists a function /«, e LΦ(Σ, X) such that

for each EeΣ and all x * e l * , and for each ε > 0 there exists a
parameter τεe T and a Bτ -measurable function gTε in LΦ(Σ, X) such
that Nφ(gTε —/«>)< ε.

Proof. If λ: LΦ(Σ, X) -> Fφ(i;, X) is the isometric isomorphism of
Theorem 1.2, since LΦ(Σ, X) c L\Σ, X), we have X(LΦ(Σ, X)) c ^ ( I 7 , X).
The proof now follows directly from Theorem 3.6 after an application
of Theorem 3.2 and the isometric isomorphism λ.

The next theorem and its corollary are the final results of this
section.

THEOREM 3.8. Let X be reflexive, Φ and its complementary
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function Ψ be continuous and Φ obey the A2-condition. If {Fτ, Bz,
τ e T) is a VΦ(Σ, X)-martingale, then the following statements are
equivalent.

( i ) {FT, Bτ, τeT} converges weakly in VΦ(Σ, X).
(ii) {Fτ, Bτ,τ e T} converges strongly in VΦ(Σ,X).
(iii) There exists F^ in VΦ{Σ, X) such that Fτ = PB^F^) for all

τeT.
(iv) The set {Fτ1τe T) is {strongly) bounded.

Proof, (i) —> (ii) is Theorem 3.6. (ii) -+ (iii): Let F» be the strong
limit of {Fτ, τ e T). Then F» e VΦ(Σ, X) and clearly Fτ = PBτ(F<») for
all τeT. (iii) —> (iv): Since PBτ is a contraction,

NΦ(Fτ) = NΦ(Pβτ(FJ) £ N,(FJ .

(iv) —• ( i ) follows from Corollary 3.4.

A formulation of Theorem 3.8 for martingales of point functions is

COROLLARY 3.9. Let X be reflexive, Φ and its complementary
function Ψ be continuous and Φ obey the A2-condition. If Σ is a a-
field and μ is a countably additive finite measure on Σ and {/r, Bτ1

τ e T) is a martingale in LΦ(Σ, X), then the following statements are
equivalent.

( i ) {/_, τeT} converges in the weak topology of LΦ(Σ, X).
(ii) {fT,τe T) converges in the strong topology of LΦ(Σ,X).
(iii) There exists /TO e LΦ(Σ, X) such that f7 = EB*{fJ) for all τeT.
(iv) The set {fr,τe T) is (strongly) bounded.

Proof. The proof follows from an application of the isometric iso-
morphism λ of LΦ(Σ, X) onto (in this case) V*(Σ, X) and theorems 2.7, 3.2
and 3.8.

It should be noted that Corollary 3.9 subsumes some of the main
results of [9]. In addition, it extends these results to the vector-
valued case and to the Orlicz space setting.

Furthermore, it should be noted that some of the preceding
results for finitely additive set functions can be deduced from known
results by use of the isomorphism theorems of [7, IV. 9]. On the other
hand, the method of approach of this paper seems more direct and
seems to yield more insight than the indirect method using known
results and the isomorphism theorems of [7, IV. 9],

Finally, we note that the above results do not, in general, admit
extensions to proving pointwise convergence theorems for martingales
of point function. Indeed, the properties of the integrals of the
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functions involved enables these methods to work by avoiding the
need for consideration of the (non-) measurability of the limits of nets
of (point) functions. Thus, little information about point wise con-
vergence can be deduced from this approach. However, it is too much
to expect to be able to deduce such results from the properties of
finitely additive set functions, and a different approach is needed in
such a study.
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CONDITIONS FOR A MAPPING TO HAVE
THE SLICING STRUCTURE PROPERTY

GERALD S. UNGAR

Let p: E-+B be a fibering in the sense of Serre. As is
well known the fibering need not be a fibering in any stronger
sense. However it is expected that if certain conditions are
placed on E, p or B then p might be a fibration in a stronger
sense. This paper gives such conditions.

The main result of this paper is:

THEOREM 1. Let p be an n-regular perfect map from a
complete metric space (E, d) onto a locally equiconnected space
B. If dim E x B Sn then p has the slicing structure property
(in particular p is a Hurewicz fibration).

The following definitions will be needed.

DEFINITION 1. A space X is locally equiconnected if for each
point x, there exists a neighborhood Ux of x and a map

N: Ux x Ux x I->X

satisfying N(a, 6, 0) = α, N(a, b, 1) = &, and N(a, a, t) = a.

DEFINITION 2. A map p from E to B is ^-regular if it is open
and satisfies the following property: given any x in E and any neigh-
borhood U of x there exists a neighborhood V of x such that if
/: Sm —> V Π V~\v) for some y e B (m ^ n) then there exists

F: Bm+1 ->UΠ v~l(y)

which is an extension of /.

DEFINITION 3. A family £f of sets of Y is equi-LCn if for every
y e S G Sf and every neighborhood U of y in F there exists a neigh-
borhood F of y such that for every S e ^ every continuous image
of an m-sphere (m ^ n) in S Π F is contractible in S Π U.

Note 1. lί p: E —> B is ^-regular then the collection {p"1^) \b e B}
is equi-LC\

DEFINITION 4. A family S^ of sets of a metric space (F, d) is
uniformly equi-LCn with respect to d if given ε > 0 there exists
δ > 0 such that if /: Sm -> S Π iV(x, 3) (m ^ w and S e y ) then there
exists F : BmΔrl —* S Π N ( E , ε) which is an extension of /.

DEFINITION 5. A map p:E—>B has the covering homotopy pro-

549
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perty for a class of spaces if given any space X in the class and
maps F: X x I-^B and g: X-+E such that F(x, 0) = pg(x) then there
exists a map: G: X x I—>E such that pG = F and G(x, 0) = g(x).

DEFINITION 6. A map p: E—>B is a Serve fibration if p has the
covering homotopy property for the class of polyhedra. It is a Hure-
wicz fibration if it has the covering homotopy property for all spaces.

DEFINITION 7. A map p:E—>B has the slicing structure pro-
perty (SSP) if for each point b e B there exists a neighborhood Ub of
b and a map ψb: p~\Uh) x Uh—*p~ι{Ub) such that (1) φb(e, p(e)) = e
and (2) pψ*6 = π2 (the projection onto J76).

DEFINITION 8. A function φ:X-+2r (Y metric) is continuous if
given ε > 0; every x0 e x has a neighborhood U such that for every
x G U, φ(x0) c Ne(φ(x)) and 9>(α) c Nε(φ(x0)).

DEFINITION 9. A selection for a function φ:X—>2Y is a map
g: X—> F such that f/(ίc) e

A mapping is a continuous function. All spaces will be Hausdorff.
The ^-dimensional sphere will be denoted by Sn and the ball which
it bounds Bn+1. If / is a mapping Gr(/) will denote the graph of /.

The following theorem of Michael will be needed:

THEOREM M. Let Z be paracompact, let X = Z x I and let Y
be a complete metric space with metric p. Let S^ c 2F be uniformly
eqni-LCn with respect to p and let φ\X—>S^ be continuous with
respect to p. Let dim Z <£ n and let A = (Z x 0) U (C x I) where C
is closed in Z. Then every selection for φ \ A can be extended to a
selection for φ.

2. Proof of Theorem 1 and its consequences*

Proof. Let boeB. Since B is locally equiconnected at b0 there
exists a neighborhood U of b0 and a map ΛΓ6: U x U x /—• B such
that Nv(x, y, 0) = x, Nv(x, y, 1) = y, and Nv(x, x9 t) = x. Let Pσ =
p\p~ι(U) and define g: Gr(pυ) —*p~\U) by g(e, p(e)) = e. Also define
F: p-\U) x £ — B by F(e, b) = b and

H:p~\U) x U x I-*p~ι{U) x B

by H(e, 6, ί) = (e, Nv(p{e), 6, t)). Note H(e, 6, 0) - (e, Nv(p(e), 6, 0)) =
(e, p(e)) and H(e, 6,1) = (β, NLr{p(e), 6,1)) = (e, 6). Further define
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g': ( j r W ) X U x 0) U (Gr(Pσ) x I) — #

by g'(e, b,t) = e and K: p~ι(U) x Ϊ7 x I-+B by

ΛΓ(β, 6, ί) = F(H(e, b, t))

and note that pg' = K\ (p~\U) x ?7 x 0) U Gr(PF) x I.
Therefore we have the following commutative diagram.

K

(p~ι(U) x U x 0) U Gτ(pσ) x I(z<p-\U) x U x I >B

Now Theorem M will be applied. Let Z= p-\U) x U, Y = E,
and ^ : ^ x / - > y c 2 F be defined by <̂ (s, ί) = p - 1 ^ , t) and let C =
Gr(pLτ). Note Z is paracompact and φ is continuous since p is per-
fect. Since p is ^-regular {^(δ)} in equi-LC™ and by Proposition
2.1 [3] there exists a metric σ on E agreeing with the topology such
that σ ^ d and {^(δ)} is uniformly equi-LCπ. Since σ ^ d, (E, σ) is
a complete metric space. It should also be noted that dim Z ^ n
and that g' is a selection for <p | (Z x 0) U (C x I). Hence by Theorem
M, gf could be extended to a selection G for φ (i.e.,

G:p-\U) x U x I-+E

in such a way that the above diagram will still be commutative with
the addition of G).

Define φσ: p~ι(U) x U-+p~\U) by φσ(e9b) = G(ey δ, 1). Note if
(β, b)ep^(U) x U then

G(β, 6, 1) e p-'mβ, 6, 1) = jr ' lΉίβ, 6, 1) - p - 1 ^ , iSΓ^pίβ), 6,1))

Hence the range of ψjj is as stated. It is now easy to see that ψjj
satisfies the conditions to be a slicing function. This completes the
proof.

Note 2. The hypothesis that p be perfect was used only to show
that {p^φ) I b G B) is a continuous collection and that B is paracom-
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pact. Hence if this could be shown some other way a stronger theorem
will be obtained.

COROLLARY 1. // p\E—*B is a Serre fibration and E and B
are finite dimensional compact ANR's then p has the SSP.

Proof. It is well known that ANR's are locally equiconnected.
It also follows from [2] that p is ^-regular for all n. Hence the

proof follows from Theorem 1.

Theorem 1 and Corollary 1 allow us to get the following gener-
alizations of Raymond's results in [5].

COROLLARY 2. Let p:E—>B be a Serre fibration of a connected
compact metric finite dimensional ANR onto a compact metric finite
dimensional ANR. Suppose that E is an n-gm over L (a field or the
integers). Then:

(a) each fiber Fb is a k-gm over L
(b) B is an (n-k) — gm over L.

COROLLARY 3. Let p:E—+B is a Serre fibration of a connected
compact metric finite dimensional ANR onto a compact metric finite
dimensional ANR base B. Suppose that E is a {generalized) manifold
{over a principal ideal domain) and some fiber has a component of
dimension ^ 2 . Then p is locally trivial.

Another theorem which follows from MichaeΓs Theorem 1.2 [3]
is the following:

THEOREM 2. Let p: E-+B be an n-regular map from a complete
metric space E onto a paracompact space B. Assume that

dim E x B <n + 1

and p~\b) is Cn for every beB. Then p has the SSP and the slic-
ing structure could be chosen with only one slicing function.

Proof. Define g:Gr{p)-*E by g{e, p{e)) = e and F: E x B -> B
by F{e, b) = e. The <p(e, b) = p~ιF{e, b) is a carrier and g is a selec-
tion for φ I Gr(p). Hence by Theorem 1.2 [3] g could be extended to
a selection G for φ. It is easily seen that G is the desired slicing
function.

Note 3. Theorem 2 has corollaries similar to those of Theorem
1 and the author leaves them to the reader to develop.
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ON CONTINUOUS MAPPINGS OF METACOMPACT
CECH COMPLETE SPACES

J. M. WORRELL, JR.

Under what may be thought of as a guise of a description
of pathology are indicated here certain ways in which Cech
completeness, ArhangeΓskii's p-space concept, and metacom-
pactness enlarge on the respective concepts of metric absolute
Gs's, metrizability, and paracompactness. This is done through
examination of certain aspects of the theory of multivalued
mappings. It is taken as a point of orientation that the topic
of Tychonoff locally bicompact spaces has a substantial ma-
thematical interest. It is assumed obvious that such spaces
are locally paracompact p-spaces. An underlying point of view
is that the class of regular locally paracompact ^-spaces extends
along natural lines the class of regular locally metrizable
spaces.

Let us observe these theorems: (1) A Hausdorff space is para-
compact if and only if it is fully normal [13]. (2) A space is meta-
compact if and only if for every collection G of open sets covering
it there exists a collection H of open sets covering it such that if
P is a point, the collection of all members of H containing P refines
a finite subcollection K of G [22]. (3) A TΊ space is metrizable if
and only if it is fully normal and has a base of countable order (cf.
definitions below) [3]. (4) A 7\ space has a uniform base (cf. defini-
tions below) if and only if it is metacompact and has a base of cou-
ntable order [27]. (5) Metacompactness is invariant under the action
on a topological space of a closed continuous mapping [23]. We may-
then see that whether or not a metacompact T± topological space S
has a perfect mapping onto a space with a uniform base depends
only on whether S has a perfect mapping onto a space having a base
of countable order. Similarly, since full normalcy of a topological
space is also an invariant under the action of a closed continuous
mapping [10], whether a fully normal 2\ space S has a perfect map-
ping onto a metrizable space depends only on whether S has a perfect
mapping onto a space having a base of countable order. These re-
ductions achieve heightened interest in view of the invariance of the
base of countable order property under the actions of peripherally
bicompact closed continuous mappings on 7\ spaces [21], the intimacy
of its relation to the topic of interior mappings [16,19], and certain
work of Frolίk and ArhangeFskiϊ which will now be described.

Frolίk showed that a paracompact Hausdorff space is Cech com-
plete (cf. definition below) if and only if it has a perfect mapping

555
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onto a complete metric space [7]. This fundamental contribution was
enlarged by ArhangePskiΐ, first of all by his exercise of an extraord-
inary ingenuity in isolating the concept of a p-space (cf. definition
below), and secondly by his equating for the Hausdorff paracompact
cases the property of being a p-space with the admitting of a perfect
mapping onto a metrizable space [4], Since Cech completeness is
preserved under the action of a perfect mapping between Tychonoff
spaces [8], we may now see that both Frolίk's theorem and Arh-
angeFskips theorem may be interpreted as having in common the
remarkable feature of pivoting on the existence of perfect mappings
of the respective (paracompact) spaces onto spaces having bases of
countable order.

We now observe that the first four theorems reviewed above put
one in a position to interpret that for spaces satisfying the first
Trennungsaxiom and having uniform bases, the distinction metrizable-
nonmetrizable corresponds precisely to the distinction unity-finitude of
order > 1 of certain refined collections K. Can it be the case, one
may ask with this preparation, that nevertheless there exists a met-
acompact Cech complete space admitting of no perfect mapping onto
an absolute Gδ space with a uniform base or, equivalently (in view
of the above theorems), onto a space having a base of countable order?
An answer in the negative might be suspected to have profound
structural implications.

Let us look at this in another way. H. H. Wicke and the author
proposed at the last meeting of the International Congress of Mathem-
aticians in Moscow the thesis that the base of countable order concept,
especially when enriched by an appropriate notion of completeability,
express substantially much of what is topologically fundamental in
the concept of metrizability [18]. If this be valid, then heuristically
one might conclude that either every Tychonoff p-space has a perfect
mapping onto a space having a base of countable order or else there
exists a metacompact Tychonoff p-space which cannot be so trans-
formed. If the reader but put himself in a frame of mind receptive
to this line of reasoning, he may sense a heuristic justification for
the either/or conclusion. For radical as it may seem in the contem-
porary milieu the thesis carries with it the corollary that paracom-
pactness-like properties are not naively a part of the essential content
of metrizability. (In this connection, see [14], [17], [20], [24], [25].)

Insofar as technique and exposition can be distinguished in a
work of this kind, the technical portion of this memoire will be de-
voted to the demonstration of the existence of a first countable, regulsίr
To locally bicompact, screenable, metacompact space S of power c
which admits of no Lindelofian continuous mapping whatsoever onto
a Hausdorff space having a base of countable order. It follows that
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<S has no perfect mapping onto a space having a base of countable
order.

Let us inquire now into the significance of the requirement of
first countability of the example. One may say that owing to the
definitional sacrifice by any such example of the uniform first count-
ability of the base of countable order property any further interest
in first countability is eclipsed to at best a peripheral position of
interest. Therefore the underlying issue likely has to do with whe-
ther first countability in itself must in certain situations go a long
way toward uniformity in this sense. This is in fact the point here.
There exist Cech complete spaces Σ of ordinal numbers with respect
to the order topology which have no perfect mappings onto spaces
with bases of countable order. But every first countable subspace of
such a Σ has a base of countable order since it contains no dense
subspace [20]. The significance of this is reinforced by the behavior of
the base of countable order property under the action of Cartesian
products [15] and its hereditary character [27].

One might pursue the significance of the existence of such ex-
amples in considerable additional detail. Why the emphasis on the
power of the space? Why the reference to cr-discrete refinements?
Why the specific mention of screenability? Certain of these questions
bear on the intimacy of the interplay between the topics of bases of
countable order and paracompactness-like properties [22]. Suffice it
here to say that it was felt virtually obligatory to resolve the above
question prior to stating the general thesis [28, cf. also 17].

2Φ Definitions and notation* Except that the null set conven-
tion is not employed, general terminology usually follows along the
lines of [9]. As a technical point it is noted that compactness is
taken in the Frechet sense, though in the present context one might
apply the theorem of [2] that 2\ compact metacompact spaces are
bicompact. For screenable space and development of a space, see
[5]; for metacompact space, see [2]. As in [11], if if is a collection
of sets, K* denotes the sum of the elements of K. If M is a point
set, M denotes the (contextually implicit) closure of M. By an arc
will be understood a bicompact connected Hausdorff point set having
exactly two noncut points. By an endpoint of an arc a is meant a
noncut point of a. A perfect mapping is a bicompact, closed con-
tinuous mapping. A uniform base for a space S is a base B for <S
such that if Br is an infinite subcollection of B and P belongs to all
members of B', then B' is a base for S at P [1]. Note that a de-
velopable space has a uniform base if and only if it is metacompact

[i].
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A space is Cech complete if and only if it is a Tychonoff space
S the set of all points of which is an inner limiting set in a Stone-
Cech bicompactiίication β(S) [6]. It follows that the set of all points
of S is an inner limiting set of any Hausdorff space in which S can
be densely embedded [6]. Note that all regular TQ locally bicompact
spaces are Cech complete. A Tγ space S is a p-space if and only if
it is covered by each term of a sequence G19G2, of collections of
open sets of a Wallman bicompactification coS such that for each
point P of S, all points common to the sets st(Gn)P belong to S [4].
For the Tychonoff cases, this requires such a sequence G19 G2, with
respect to S for any Hausdorff space in which S can be densely em-
bedded. Note the analogy with developability [cf. 26].

A base of countable order for a space S is a base B for S such
that if Dlf D2, is a sequence of distinct members of B each in-
cluding its successor and P is a point common to all the sets Dn, then
{D,} + {D2} + ••• is a base for S at P [3]. Particularly to be noted
are the role of bases of countable order in the characterization of
developability involving a paracompactness-like refinement condition
[27], the close bearing of the concept on the topic of interior trans-
formations [16, 19], and its tractability to appropriate completeness
formulations [18, 19, 20].

3* The construction* The technique of construction utilizes in
a rather straightforward manner classical theorems on transfinite
cardinalities of a sort such as are developed in [12]. The proof of
properties is designed to reduce the question of the existence of
certain Lindelδfian mappings in effect to that of the existence of a
perfect mapping onto a space having a base of countable order through
utilization of restrictions to certain bicompact domains.

THEOREM. There exists a metacompact screenable locally compact
Hausdorff space S of the power of the continuum satisfying these con-
ditions: (1) Any collection of open sets covering S is refined by a σ-
discrete collection of point sets covering S. (2) No Lindel'όfian
continuous mapping with S as its domain has a Hausdorff space with
a base of countable order as its range. (3) S is first countable.

Proof. There exists a sequence alf a21 of mutually exclusive
first countable arcs of cardinal number c such that for each n, there
exists a collection Qn of mutually exclusive subarcs of an satisfying
these conditions: (1) No element of Qn contains an endpoint of an.
(2) Qt is dense in an. (3) If q and q' are two elements of Qn then
(a) there exists a nonseparable subset Y of an — Qt such that q
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separates Y from one endpoint of an (in the sense of [11]) and qf

separates Y from the other and (b) there exist c members of Qn

similarly separated from the endpoints of an by q and qr.
Let Γ denote the set of all sequences Jlt J2, such that each

Jn is a subarc of an the endpoints of which belong to an — Q*. Let
M denote a set of power c not intersecting aγ + a2 + . There
exists a transformation θ of M onto a collection W of simple infinite
sequences such that (1) the nth term of each sequence in W belongs
to Qn, (2) no element of Qx + Q2 + is a term of two members of
W, and (3) if Jlf J2, belongs to Γ, there exist c sequences q19 q2,- •
in W such that each Jn includes qn. For each q in Qι + Q2 + ,
let Xg denote a cut point of #. For each n, let α£ denote the set of
all points P of an such that either (1) a — Q* contains P or (2) P is
a noncut point of some member of Qn or (3) P is Xg for some q in

Q..
Let r denote the collection to which an element belongs if and

only if it is the sum of some sets D satisfying one of these condi-
tions:

(1) For some n, D is an open set of a'n (in the relative topology).
(2) For some n and element μ of M, D is

{μ} + {XqJ + {XQnJ +

where q19 q2, ••• denotes θ(μ). Let S denote r*.
The first countable regular TQ space (S, τ) is screenable, locally

compact, and has the <r-discrete refinement property stated in the
theorem. All regular spaces with this σ-discrete refinement property
are countably metacompact. Moreover, every countably metacompact
screenable space is metacompact. Hence (S, τ) is metacompact. Since
(S, τ) is a regular To locally bicompact space, it is Cech complete.
Clearly, S = c.

Suppose there exists a Lindelofian continuous mapping / of (S, r)
onto a Hausdorff space having a base of countable order.

(I) Each f/a'n is closed and bicompact. Since having a base of
countable order is an hereditary property for a space [27], f(cc'n) has
such a base [21]. Thus the bicompact Hausdorff space f(a'n) is
metrizable [3].

For some n let G denote the decomposition of a'n induced by /.
There exists a meaning for the notation Ui)h, for positive integers i
and subsets h of G, such that for some development Hu H2, of
G (with respect to the quotient topology) the terms of which are
finite, these conditions are satisfied: (1) For each i and element h
of Hi, Uith is a finite collection of sets covering h* any nondegenerate
element of which is the common part of a'n and some connected open



560 J. M. WORRELL, JR.

subset of an. (2) For each i and element h of Hi+ί there exists some
h' in Hi including h such that the closure of each member of Ui+lth

is a subset of some member of Uith, and is covered by h'. For each
i, let Ki denote the sum of all collections UiΛ for elements h of H{.

With application of Konig's lemma it may be seen that if P
belongs to an — Ql and g is the member of G containing P there
exist sequences h19 h2, and D19 D2, of sets such that (1) each hi
belongs to Hif contains g, and includes hi+i, (2) each Di is a member
of Uk,hi containing P, and (3) each Di includes Di+1. With use of the
compactness of a'n it may be seen that if {P} is the common part of
the sets D{ then {A} + {A} + is a base for a'n at P. Since
Iζ. 4- K2 + is countable and an — Q* is nonseparable, there exist
some P in an — Q*, hly h2, and Dlf D2, as above such that the
common part L of the sets Di is nondegenerate. With use of con-
ditions (2) and (3) of the first paragraph of this proof it may be seen
that L contains two points of an — Q£. Since H19 H2, is a de-
velopment for G and each hi includes hi+1, it may be seen that
hιfhf, ••• converges to the member g of G containing P. This re-
quires that L be a subset of g.

(II) Let Δ denote the decomposition of S induced by /. Suppose
there exist a member δ of Δ and a sequence nlf n2, of increasing
positive integers such that for each i, δ includes the common part of
S and some subarc v{ of an. the endpoints of which belong to an. — Q*..
Then there exists a sequence J19 J2, belonging to Γ such that for
each i, Jn. is v{. With the use of condition (3) of the definition of θ
and the definition of τ it may be seen that there exists an uncountable
closed and isolated subset of M which is on the boundary of

and which therefore must be included by the closed point set δ. But
this involves a contradiction, for δ is Lindelofian. With application
of (I) above it follows that there exist a sequence δ19δ2, of distinct
members of Δ and a sequence n19 n2, of increasing positive integers
such that for each i, an. has a subarc v{ the endpoints of which be-
long to an. — Q^ such that δ{ includes v< αήt.. Since no δ{ contains
uncountably many elements of M, there exists a countable subset T
of M such that δt + δ2 + does not intersect M — T. Uncountably
many points of M belong to the boundary of S-(v1 + v2 + •). So there
exists an element δ of Δ intersecting M — T and an infinite subsequ-
ence σ of <?i, δ2J such that f(σ) converges uniquely to δ. But a
contradiction is involved, for T + δ M is countable, and uncountably
many points of M are limit points of the sum of the terms of σ.

It follows that there exists no Lindelofian continuous mapping of
(S, T) onto a Hausdorff space having a base of countable order.
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