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Let A be a semi-simple annihilator Banach algebra, and
let v be a homomorphism of A into a Banach algebra. In this
paper it is shown that there exists a constant KX and dense
two-sided ideals containing the socle, I; and [r, such that
[lvxy)|| = K1l|| - |ly|| whenever xcI; or ycIz. If A has
a bounded left or right approximate identity, then v is continu-
ous on the socle. Thus if A = L,(G), where G is a compact
topological group, then any homomorphism of A into a Banach
algebra is continuous on the trigonometric polynomials,

In [1] we considered the problem of deducing continuity pro-
perties of a homomorphism v from a semi-simple annihilator Banach
algebra A into an arbitrary Banach algebra. The main theorem
there (Theorem 5.1) had a conclusion more restrictive than the one
stated above and required the additional hypothesis that I @ R({) = A,
for all closed two-sided ideals I, where R(I) = {x|Ix = (0)}. The
main theorem of this paper applies when A = L,(G), 1 < p < « or
C(G), where G is a compact topological group and multiplication is
convolution, and when A is topologically-simple, whereas the earlier
theorem did not.

Any terms not defined in this paper are those of Rickart’s book
[10]. For facts about annihilator algebras, the reader is referred to
[4] or [10].

Given the left-right symmetry in the definition of annihilator
algebras, it follows that, given any theorem about left (right) ideals,
the corresponding theorem for right (left) ideals also holds. Specific-
ally, this is the case for the theorems in [4, §4] and [1, §4]. We
will make tacit use of this fact throughout this paper.

2. Structural lemmas. In this section several lemmas are
established which will be used later in proving the main result.
Throughout this section, we assume that 4 is a semi-simple annihilator
Banach algebra.

Lemma 2.1, If {x, +--,2,} ts contained in the socle of A, then
there exist idempotents e and f such that x; € eAf, 1 <1 < n.

Proof. By [1, Corollary 4.9], for each i there exist idempotents
e; and f; such that x,ce,AN Af;, Ce,Af;. By [1, Th. 4.8], there
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284 GREGORY F. BACHELIS

exist idempotents e¢ and f such that ¢4 + -.- +¢,A =¢A and
Af, + «+- + Af, = Af. Thus z;ce,Af;, = ee,Af,fCeAf, 1 <1< n.

LEMMA 2.2. Suppose A s topologically-simple, and e s a
minimal idempotent in A. Then there exists a constant L such
that:

Given f= fPe A and xced, there exists g = g°€ A such that:

1)y 21— flg=al — f) =uag

2) fog=9f=0

3 gl =@+ fIDL.

The corresponding statement holds for x e Ae.

Proof. Let F, denote the bounded operators on Ae of finite
rank., Then via the left regular representation, we may regard A
algebraically as a subalgebra of the uniform closure of F, which
contains F), (see [4], Ths. 9 and 10).

If aced, uc Ae, then au = eaue = ne = ¢,(u)e, and a — ¢, defines
an isomorphism and homeomorphism between eA and the bounded
linear functionals on Ae [4, Th. 13]. Hence there exists a constant
L such that |[a]|| < (L/2)]]| ¢, || for all aceA.

Let xced and f= f?e A. Then 2(1 — f)eceA, and ¢ is minimal,
so range(x(l — f)) is one-dimensional. Let M = (z(1 — f))~(0). Then
M is a closed subspace of co-dimension one in Ae, so there
exists a bounded linear functional 8 on Ae such that ||B|| =1 and
B0y = M. Let we Ae such that |jw|[ <2 and Bw) =8Il =1.
Now w =1 — fHw + fw, and fwe (@ — f)~%0) < M, so Bl — fHrw) =
B(w) = 1.

Let G(u) = B(uw)(L — f)w, uc Ae. Then G is a bounded operator
on Ae with one-dimensional range and G = G?, so there exists an
idempotent ge A such that gu = Bw)(1 — fHw, uecde. If uec Ae,
then u — Bu)(1 — flweB(0) = M = (21 — f)™0), so z(1 — flu =
(1 — HBWA — fHw = zBu)L — f)w = xgu. Therefore z(l — f) =
2g. Thus (1 — f)g = 29> = zg = (1 — f). This establishes (1).

To prove (2), we see that (1 — fHHrwef0), so fy =10, and
range(f) = (1 — /)™ (0)c M = ¢7*(0), so gf = 0.

To establish (3), let hced such that ¢, = 8. If uec Ae, then

(1 = Hrwhu = 1 — fHlrwBu)e = )1 — fHlwe = Bu)(l — fHHw = gu.
Therefore (1 — f)wh = g, so
Holl = AN+ 1IN w]] < (L/2)A + {1 FID2 = LA + [ £]]) -

3. The ideals I; and I;. In this section we discuss the ideals
which enter into the main theorem. Throughout this section, we
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assume that A is a Banach algebra and that vy is a homomorphism
of A into a Banach algebra.

DEFINITION 3.1. Let I, = {xc A|y—v(xy) is continuous on A}
and let I, = {x€ A|y — v(yx) is continuous on A}.

These sets were introduced by Stein, who shows they are two-
sided ideals in A [11]. Another useful concept is that of the separat-
ing ideal, S, which is defined to be the set of seccl (¥(4)) such that
inf,. {/lz]| + ||s — v(x) ||} = 0. The separating ideal was introduced
in the form above by Yood [13]. It is a closed two-sided ideal in
cl (v(4)).

In [12], Stein notes that I, c{re A|v()S = (0)} and similarly
for I,. One actually has equality: For suppose v(z)S = (0). If
z,—0 in A, then by [8, Lemma 2.1}, v(z,) + S— S in cl (v(4))/S.
Hence there exists {s,} © S such that v(z,) + s,— 0. Thus v(zz,) =
v@(x,) = v(@)(x,) + s,)—0, so zel,.

4. Homomorphisms of annihilator algebras. In this section
we establish the main results of this paper. We will make frequent
use of the “Main Boundedness Theorem” of Badé and Curtis.

THEOREM 4.1. Suppose that A is a Banach algebra, and that y
is a homomorphism of A into a Banach algebra. Let {x,} and {y,}
be sequences in A such that z,y, = 0, n = m. Then

Ip@u) |l
Pla ) <7

Proof. This is Theorem 3.1 of [5]. The statement there in-
cludes the unnecessary hypothesis that vy, = 0, n = m.

Throughout the remainder of this section, A will denote a semi-
simple annihilator Banach algebra with socle F, and v will denote
a homomorphism of A into a Banach algebra. We first prove:

LemMma 4.2. If A is topologically-simple, and e is a minimal
idempotent in A, then v|eA and | Ae are continuous.

Proof. (For v|eA). Let L be as in Lemma 2.2. Suppose the
conclusion fails. Choose x,€ed such that ||y()| > L| . By
Lemma 2.2, with f = 0, there exists ¢, = g’c¢ A such that ||g,|| < L

and z,9, = @,. Thus [[v(@)[| > [[2.(]l9.]].
Assume that elements x;ced, g,c€ A have been chosen such that

LG = Ty
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gigj:07 T1#7,

and || v(x) || > il @] |l g;ll, 1 <4, 5 < m.

Let f=g9,+4 -+ + g.. Then f=f* g.f=g:= fg:; and z;€eAf,
1 <4 <mn. Since f can be expressed as the sum of minimal idempotents
[1, Th. 4.5], eAf is finite-dimensional, so let K be the norm of v | eAf.
Now choose u € e4 such that [[v(w) || >Q+ | fFI)VLn+1)||w||+K|| £ ||w]].

Then
lv(w) || < [[vf) || + [[p@ — )
= Kl[ulllfI] + [p@ = NI,
80

Y@ = NI > A + [ FILn + D w||
= @+ [IFIDL(n + Difu@ = £ .

Let ©,., = uw(l — f)eeA. By Lemma 2.2, there exists ¢,,, = ¢2..€ A4

such that ©,..0,.. = .4, oS = fGurs = 0, and || g, || = LA + [| fI]).
Thus

9ne19i = 0 = §i0us1 1<7i=mn

and

Y@a) [| > 0+ DI @i [ 1] Gl -

Thus by induction there exist sequences {x,}, {g,} such that x,9, =

2,99, =0, n=m and ||v(x,9,) ! >n{x,]!lg.], which contradicts
Theorem 4.1.

We now show that I, and I, are dense in A:
LEemMA 4.3. FcI, NnlI,.

Proof. If ¢ is a minimal idempotent, then ¢ is contained in a
minimal-closed two-sided ideal M, M is a topologically-simple semi-
simple annihilator Banach algebra, and eM = ¢A. The preceding
lemma gives that v|eAd is continuous. Thus x — v(ex) is continuous
on A, so ecI,. Hence I, contains all the minimal idempotents of A.
Since I, is an ideal, this implies that I, D F. Similarly, I, D F.

LemmA 4.4. If ||vey) ]| > rllzlllyll, and of xel, or yel,,
then there exist x,, y, € F' such that ||v(zy)| > vl ]| y.]l.

Proof. Suppose xeI,. Since w— v(xw) is continuous on A and
F is dense in A, there exists y, ¢ F such that || v(xy) || > 7|z || || v.].
Now u, e I, so there exists x, € F such that [|[v(@y) |l > 7|l [ ||y ]l
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We can now prove the main theorem:

THEOREM 4.5. Let A be a semi-simple annthilator Banach
algebra, and let v be a homomorphism of A into a Banach algebra.
Then there exists a constant K such that

@y |l = K]yl

for all © and y in A such that xe€ I, or ye Iy

Proof. In view of the preceding lemma (or by symmetry con-
siderations), it is enough to show that there exists a K such that
lvey) || < K||z]||||y|| whenever ze I,. Suppose this is not the case.
By the preceding lemma, there exist x, and y, in F such that

Iv@w) | > @ [yl
Assume that elements x;, ;€ F' have been chosen such that

xy; =0, T# ]
and

@) || > o l[@ [ [yl l=u,ji=n.

By Lemma 2.1, there exist idempotents ¢ and f such that
{2, ~+ %0, Yy, =+, Yu} TeAf. By [1, Th. 4.5], e and f are in F, and
by Lemma 4.2, Fc I, N I,. Now an idempotent is in I, (I;) if and
only if the restriction of v to the right (left) ideal it generates is
continuous, so let L be the maximum of the norms of the continuous
mappings v | Ae, v|eA, v|Af, v|fA, and let

K' = Lell* + || FIF+ el £ -
If 2,y A, then

|v((@ — we)(y — fy) || = ||v(xy) — v(zeey) — v(@ffy) + v(zefy) ||
= [|v(@y) || — [[v(xe) || [| v(ey) ||
= [lv@A) [ () | — [[v@e) ([ [[v(fy) |
= vy || — K'|lz][lly]l -

By the preceding lemma, there exist u, v € F' such that
[[p(uv) [| > {(n + D)X + [[e[D@ + [|FI) + K} Hull [[v]] .

Let ¢,., = 4 — ue, Y, = v — fv. By the above, we have that

| Y(@0Yns) [| > (0 + DA+ [TeDITul[@ + [FIDIv]]
=@+ Dzl 1 Ynll



288 GREGORY F. BACHELIS

Also, Y, = 2 f(v — f0) =0, 2,9, = (u — ue)ey; = 0,1 <7 < n, and
Tuiry Yuia €F.

Thus by induction there exist sequences {x,}, {y.} such that
2 Yn =0, n=m, and ||v(x,v,) ]| > nl|l2.|l||¥.]l, which contradicts
Theorem 4.1.

REMARK 4.6. If zel,, let K(x) be the norm of the mapping
y—v(@y). Then [[v@y)| = (K@)/|lz)|«|l|ly|l, yeA. The above
theorem shows that {(K(x)/||«]|)) |« I,} is bounded.

The following corollary is an analog for annihilator algebras of
a theorem by Badé and Curtis on homomorphisms of commutative,
regular semi-simple Banach algebras [2, Th. 3.7]; it gives Theorem
5.1 of [1] as a special case.

COROLLARY 4.7. Let A be a semi-simple annihilator Bamnach
algebra, and let v be a homomorphism of A into a Banach algebra.
Then there exists a constant K such that.

lv@) |l = Kllz|[[[y]]

for all x and y im A such that yx = x or xy = x.

Proof. If yx =22 or xzy=2x, then by [1, Corollary 4.12],
xeFclI, NI

DEFINITION 4.8. A Banach algebra A is said to have a bounded
left (right) approximate identity if there exists a norm-bounded net
{e.} © A such that e, x — x (ve,— ) for all ze A.

COROLLARY 4.9. Let A be a semi-simple annihilator Banach
algebra with a bounded left or right approximate tdentity, and let
y be a homomorphism of A into a Banach algebra. Then v s
continuous on the socle of A.

Proof. Suppose that A has a bounded left approximate identity.
Let ze F. By Cohen’s factorization theorem [6], there exists a
constant L (independent of z) and elements x and y such that
z=uay, [lz—yl|| =]z, ||| =< L, and y is in the closed left ideal
generated by z. By [1, Corollary 4.9], there exists an idempotent-
generated left ideal, J, containing z. Since J is closed, we have
yeJc Fcl, Thus if K is as in the above theorem, then

@[ = llv@y || = Kll«||ly]| = KL(|z|| + ||z — yI}) < 2KL||z|| .
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We conclude this paper with several remarks:

REMARK 4.10. Let G be a compact topological group and let A =
L,(G), 1 £ p < o, or C(G@), with convolution for multiplication. Then
Theorem 4.5 applies to A and the above corollary applies to L,(G).
Here F is the set of trigonometric polynomials, that is, the set of
linear combinations of component functions of strongly continuous
irreducible unitary representations of G (see [10, p. 330]).

REMARK 4.11. If X is a reflexive Banach space, if F' denotes
the bounded operators on X of finite rank, and if AcB(X) is a
Banach algebra containing F' as a dense subset, then Theorem 4.5
applies to A [10, pp. 102-104]. Here the socle of A is F.

If A is the uniform closure of F' in B(X), if A has a bounded left
or right approximate identity, and if X has a continued bisection, then
Johnson has shown that every homomorphism of A into a Banach
algebra is actually continuous [8, Th. 3.5]. His theorem is stated
for the algebra of compact operators on X (which may indeed always
coincide with A), but his method of proof works equally well for A.'

REMARK 4.12. Although examples do exist of discontinuous
homomorphisms of annihilator algebras (see [2, p. 597, p. 606] [3,
p. 853], and [9]), it is still the case for these examples that I, = A.
One might conjecture that this is always true. As a small move in
this direction, we show below that, in two special cases, I, properly
contains F' the socle of A.

(1) Let M = {M,|rec 4} denote the minimal-closed two-sided
ideals of A and suppose that I% forms an unconditional decomposition
for A. Then x¢ A implies © = Y,x,, where «, ¢ M,, and an equivalent
Banach algebra norm for A is given by |x| = sup{|| 2., 211 4, is
a finite subset of 4}. [1, pp. 231-232]. Thus |x|=sUpycq| Dires 2.
For MM, let A(N) denote those xz in A whose summands are all in
N. If N, and N, are disjoint subsets of M, then AR) - AR, = (0).
If te A and x¢I,, then given K there exists yec A such that
lv(ey)y|| > Klz|]ly|. Since removing the summands of y that are
not in members of I does not increase its norm and does not affect
xy, we may assume that ye AM) as well. Thus if {RN,}7, is any
sequence of disjoint subsets of IR, then Theorem 4.1 implies that
AR, < I, for all but finitely many #.

If A is strongly semi-simple, we can say a bit more. In this
case, each M e M is finite-dimensional [1, Proposition 4.7]. Let .Z2(I)
denote the set of subsets of M, let # denote the set of finite sub-
sets of I, and let [N] denote an element of the Boolean algebra

1 See “Added in proof.”
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My Z. If AR)C I, and N, € [N], then N, NN e 7, so ANR) C I,.
Thus >im e AR C I;. (Here “3” denotes the algebraic sum. Note
that F = Y. AMN).) Let 7 ={N]ezM)/F | AR)cI,}. Then
_# is an ideal in &”(M)/.&#. If [N] = &4, then there exists & +
[9%] < [R] such that [R]e._#: Otherwise, we could find a pairwise
disjoint family {R,}, with A,) ¢ I, for any n, which would contradict
Theorem 4.1. But this says that the annihilator of _# is &/, and
thus _# corresponds to a dense open set in the dual space of
M) 7, BM) — M, where M has the discrete topology® (see [7],
pp. 76, 84, and 88). Since dividing by .# in effect “mods out the
socle”, we see in this case that I, is significantly larger than F.

(2) Suppose that A has proper involution 2 —2x* and that
ISP RUI)* = A for all closed left ideals I. Let {e;| » € 4} be a maximal
family of orthogonal hermitian idempotents. Then xe A implies
= e = Yywe;,, and we may assume ||X|| = SUDscq || Dies, €]
[1, pp. 231-233]. For A, A, let A(4) ={vecAlwe,=0,ved}. If
ve A(4,) and ||v(xy) || > K| z]|[||lyll, let y, = 3cs ey. Then oy, =
2y, v ]l < Jlyll, and a'y, =0 if 2'¢ A(4,) and 4, N4, = @. Thus,
given any sequence {/4,} of disjoint subsets of 4, Theorem 4.1
implies that A(4,) c I; for all but finitely many n. (Of course there
may exist 2 ¢ F such that xe, = 0 for infinitely many )\, but clearly
A(4) ¢ F if A, is infinite.) Since v | Ae;, is continuous, remarks
similar to those in the above paragraph can be made in this situa-
tion, with 9N replaced by {d4e, |\ e 4}.

Added in Proof. (continuation of Remark 4.11) If X is a Hilbert
space and A = §,, the algebra of trace class operators, or $,, the
algebra of Hilbert-Schmidt operators, then the methods of [8, Th. 3.3]
can be adapted to show that A*cC I,. The statement in [8] that these
methods imply continuity is in error. The following example (com-
municated to the author by Professor Johnson) illustrates this: If v
is a discontinuous linear functional on &, which vanishes on % (=%,
then by defining zero multiplication in the complex numbers, one ob-
tains a discontinuous homomorphism of ..
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