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In this paper a method is developed for determining best
constants in inequalities of the following form:

S" Ly 17 |y [w(@)de < K{S

b (p+a)/r
[y™ l’M(waw} ,

where y(a) = y'(a) = -+ = y»1(a) =0 and y* ! is absolutely
continuous,

It is first shown that for a certain class of m and w,
equality can be attained in the inequality. Applying variational
techniques reduces the determination of the best constant to
a nonlinear eigenvalue problem for an integral operator. If
m and w are sufficiently smooth this reduces further to a
boundary value problem for a differential equation. The method
is illustrated by determining the best constantis in case (a, b)
is a finite interval, m(x) = w(z) =1, and » = 1.

A number of special cases of the inequality have been studied but
usually without obtaining best constants. An exception to this is the
case n = 1,9 = 0, p = » which was studied very thoroughly by Beesack
[1], who gave a direct method for determining best constants. The
method of [1] was modified by Boyd and Wong [5] to apply to the
case n =1,9g =1, = p + 1. Recently Beesack and Das [2] obtained
constants for the case n = 1,7 = p + q but these were not in general
best possible.

We shall state our result only for » = 1 although it will be clear
that the analogous result for # > 1 is valid. In our closing remarks
we indicate a number of other inequalities to which the method of
this paper applies.

1. Preliminaries. Throughout we assume that p, q,r, a,b are
real numbers satisfying p > 0,r>1,0<¢<r and — o <a < b < co.
The functions m and w are measurable and positive almost everywhere.
We write du(z) = m(x)dz and

10 = {17 for 0<s< e

The space L: is the set of functions with || /||, < oo, with the usual
identification. We shall use the notation f, — fif || f, — f||,— 0, and if

s=1 so L:, is a Banach space, we write f, 2, f for weak convergence
in Li. We denote the dual of L: by L: so for s > 1,s = s/(s — 1).
We shall consider integral operators of the type
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b
(1) Tfz) = | ki, 000,
where k(x,t) = 0 a.e. A function f is in the domain of T if

T|fl(x) < oo a.e.

For Theorem 1, the operator 7 becomes
(2) T.fla) = wio)rm@) | ftyt

so that k(z, t) = w(®)"*m(x)"m(t) ¥ ,(t). A necessary and sufficient
condition for the domain of 7, to contain L7, is that

Sw m(t) " Vdt < o for aZx<b.

This follows from Holder’s inequality and its converse.
If T maps LI, — L&, where s = pr/(r — q), with norm || T'|| < oo,
then we can define the functional J on LI, by

(3) Iy = 1rpisran.

It then follows from Holder’s inequality that
(4) JUO) =TI

2. Main results.

THEOREM 1. Suppose that w, m e CYa,bd), that w(x) > 0 a.e. and
m(x) >0 for a<<x<<b, that p>0,r>1,0=Zq <r, and that the
operator T, defined by (2) is compact from LI, — L:i(s = pr/(r — q)).
Then the following eigenvalue problem (P) has solutions (y,\) with
y e C¥a, b) and y(x) > 0, y'(x) > 0 in (a,b).

(i) gd_ (VYT — qyty W) + pyP iy w = 0
7
(P) (ii) limy(z) = 0 and lim (rAy’""'m — qy*y'*~‘w) = 0
T—a x—b
i) [yl =1.

There 1s a largest value N such that (P) has a solution and 1f \*
denotes this value, then for any fe L,

o] 1w = 2] rrman” "

o f

Equality holds in (5) if and only if f = cy a.e. where y is a solution
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of (P) corresponding to M = N*, and ¢ s any constant.

The proof will require two lemmas which we state in reasonable
generality.

LemMMA 1. Suppose that p > 0,r >1,0<q < r, and that T, as
defined by (1) is a compact operator from L: — L3, (s = pr/(r — q)).
Let J be defined by (3), and

(6) K* = sup{J(/): [ fll. = 1} .
Then, there is an element f,€ L;, with || f,||, = 1 such that J(f,) = K*.

Proof. Since J(f) < J(|f|) unless f is of constant sign a.e., we
can restrict consideration in (6) to f=0. Let {f.} € L, be a sequence
with f, =0, f.|| =1 such that J(f,) — K*. We begin by assuming
g >0 so that 1 < r/g < . By the weak sequential compactness of
the unit balls of L7, and L:/* ([7], p. 68), and by the ecompactness of
T, we may assume that there are functions

feLy, heLy" geL;,

such that f, 2, I fe 2, h, Tf, — g in the appropriate spaces; clearly
Tf = ¢g. Furthermore, by the uniform convexity of L7, and L/ we
may assume that f, and f? are strongly (C, 1)-summable to their weak
limits ([7], p.462), so that
Fo=n S fi——f and k=03 fi——

=1 k=1

k

Now, we have
(1) I = [omdp = [ty - s+ [oi-m

Now, since f;L h in L7/ and since g?e L:* = L{'?", the second
integral in the right member of (7) tends to zero as n—c. To show
that the first integral tends to zero we consider separately 0 < p <1
and 1< p< . If 0=Zp<1, we use the inequality |4? — B?| <
|A— B|” for A=0,B =0 to obtain

Vo=V ore| = 1m0 — g

ST = glRlfullt = I Tfu — 9l -

The second step follows from Holder’s inequality with exponents s/p =
r/(r — q) and r/q. The final term in (8) tends to zero since Tf, —g
in Lg,.

In case 1 < p < =, we consider instead

(8)
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@) | el = Lo {178 - g pr}”

by Minkowski’s 1nequahty As in (8), the right member of (9) tends
to zero. Thus, if A, = S (Tf)*f? and B, = S ?f:. we have that

| AY» — BY?| — 0.

But {A4,} and {B,} are bounded sequences (4, = J(f.) < || T||” by (4),
B,=<llgllP =1l T|* by Holder’s inequality and Tf,-—g), and thus
|A, — B,| < p|AY* — BY?|.|| T|]>* shows that A, — B, — 0 as required.
Hence, we have

b
(10) K* = S g*hdp .
In case ¢ = 0, (10) also holds with %2 = 1, by a similar argument.
Now we show the existence of f, for which J(f,) = K*. The cases

0<qg<1l and 1< q<r are considered separately. If 0<¢qg <1,
define f, = f. Since () = ¢’ is concave, we have

(1) Fr=m" 3z 07 S =h
Now, since f, — f, in L7,, we have
b b ~ b A
[Lose = o7 = | o100 -7
b ~ -
= [ o1 =Fr S gl — Pl —0.

(12)

Similarly, Sbgpﬁn-—»Sbgph. Thus, combining (10), (11) and (12) we

a

obtain

I = | orpe =1im | o772
(13)
> lim Lgphn - Sag”h - K*.

However [|f,ll, =1 so J(f;) < K* and hence (13) implies J(f;) = K*
from which it is clear that || £, = 1.

In case 1 < g < r, let f, = 7. Now, instead of (11), we have
fi<h,. Since ||k, — h||,,,— 0, and since |hY? — k7| < |h, — b [ we
have

A T o

< (i =m0 = Rl



BEST CONSTANTS IN A CLASS OF INTEGRAL INEQUALITIES 371

Thus kY7 — ke = £, in L7, and since T is eontinuous, Th¥*— Tf, in
L;. However f, < h¥* and k(x,t) =0 a.e. so Tf, < ThY*, a.e. and

thus 7Tf =g < Tf, a.e. Thus (10) implies K* < J(f,), which again
means that J(f,) = K* and || f, ]|, = 1.

REMARK. A simple sufficient condition for T to be compact from
L;, — L:, is that k& have finite (+', s)-double norm. That is

b 1
a

(14 i ={. || k@ oraun | dpa)}™ <
(see [9], p. 319; the proof there applies even if 0 < s < 1).

Using (4), we see that K* < || T||* < ||| T|||* so (14) also supplies
an upper bound for K* (rarely the best).
For the operator T, given by (2) one may calculate that

(15) ”, Tl ]”s — Sbw(x)rl(r~q)m(x)_ql(T—’I)[Sxm(t)_ll('r—l)dt]SIde .

In the paper of Beesack and Das [2], the following inequality is proved:
If p¢ > 0,2+ g >1,y(a) =0 and y is absolutely continuous, then

(16) |LlyP 1y fw@ds < K, p, 0l |y Prm@ds,

where K,(b, p, q) is explicitly given. The constant K (b, p, q) equals
the best constant K* if and only if for some ¢ = 0

an  w@ = em@ye ([ meerd) e = p+ g

The constant K,(b, p, q¢) given there is in fact equal to (¢/r)*" ||| T\ |||?,
so, unless (17) holds we have

(18) K* < Kb, p, q) < ||| T, [I]” .

LEMMA 2. Suppose that T is given by (1), and that k(xz,t) > 0
for almost all (x,t) with a <t<x<b., Let p>0,r>1,0Zqg < 7,
and suppose T 1is a bounded operator from Lt — L:,. Let J be defined
by 8), K* by (6). Let f satisfy ||fll, =1 and J(f) = K*. Then f
1s of constant sign a.e. and

(a) f+#0 a.e.

(b) f satisfies a.e. the equation

@9)  rnfri ) — (T (@) (@) — pg:k(t, ) TH @) f()dp(t) = 0,

where N = \* = K*(p + q)/r. Furthermore \* is the largest value of
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N for which (19) has a solution f with || f||, = 1.

Proof. (a) We have seen that f is of constant sign a.e. so we
assume f =0 a.e. Let E = {x: f(x) = 0}; we must show that E is a
null set. First choose a function ke L; such that A(x) =0, and
h(z) > 0 if and only if e E. Such h exist: if p(E) < o, take h =
Yz, while if p(E) = oo, let

E,=EnN[—n,n]N{z:mx) < n},

so ((E,) < «, and define h = 3, v,xz, where {v,} is chosen so v, >0
and > v p(E,) < co.
For ¢ > 0, define f. = f + ¢h, and let F = Tf, F. = Tf., H= Th.
since J(f)/|| fl|**? is maximal, we have
0= J(f) — J() = ([ f A7 — DI(S)
20) {@ + €[ R|)ror — 1}(f)
= e[ |7 J(f), (where v = (p + ¢)/r, and 1 <& <1 +¢'|[h|l;
= 0(¢") as ¢ | 0.

First assume that ¢ > 0, so if CE = [a, D]\E, we may write
(21) HE) = af) = | Fenes | Fr— Fope
From (20) and (21) we immediately deduce that

0< SEFh < SFF;’h" — 0 —0 as €]0.

Thus, F(x) = 0 a.e. on E so k(x,t) = 0 a.e. on E x CE.

Next, we note that F(x) >0 a.e. on CE, since k(x,t) >0 a.e. for
a<t=<x=0>. Thus, for almost all x in CE, we have (d/de)F?f? =
pF?'Hf. Hence, if 0 < ¢ < ¢, we have.

(22) pF» ' Hf* < e(F? — F?)f?a.e. on CE,p=1
(23) pF? ' Hf* < e (F? — F?)f" a.e. on CE,0<p<1.

Thus, if p =1, (20), (21) and (22) imply that
24) 0 < S pFHf" < 8‘18 (F? — F")f" = 0(c—")—0 as €]0.
cr CE

Thus, since F(x) = 0, we have H(x) =0 a.e. on CE. A similar argument
using (20), (21) and (23) proves H(x) = 0 a.e. on CE, if 0 < p < 1. Thus
k(x,t) =0 a.e. on CE X E, and hence on (F x CE)U(CE x E). But,
since k(x,t) > 0 a.e. for a <t < x < b, the last sentence implies that
ExCE has plane measure zero and so either p(E) = 0 or ¢(CE) = 0.
However, p#(CE) = 0 implies that f = 0 a.e. contradicting J(f) = K* #0.



BEST CONSTANTS IN A CLASS OF INTEGRAL INEQUALITIES 313

Thus p#(E) = 0 as required.
In case ¢ = 0, (21) no longer holds. In this case, let

A = {o: F(x) = 0}

so k(x,t)=0 a.e. on A x CE. Clearly u(AnN CE) =0, since k(x, ) >0
a.e. for a <t < x <b. Instead of (21) we have

(25) JE) = a =) B+ | (- F).

Proceeding as in (24), we use the second integral in (25) together with
(20) to show that H(x) = 0 a.e. on CA, so k(x,t) = 0 a.e. on CA X K.
Now if B=CAN E has p(B) > 0, we would have k(z,t) = 0 a.e. on
B x B with contradicts k(xz,t) >0 a.e. for a £t < x < b and thus
MB) = (E\A) = 0. We already have shown that p#(A\E)=0. Thus
k(x,t)=0a.e.on (AXCE)U(CA X E) means k(x,t) =0a.e.on (ExCE)U
(CE x E), which leads to a contradiction as before. (We note that if
» < 7, a simpler argument is available using the first integral in (25).)

(b) Consider the functional

1) = M1l = I = [ I = (T

We shall show that if J(f) = K*, and if |h| < f, then for A = \* =
K*(p + q)/r, we have

(26) oI(f; h) = lirgrl e I(f+eh)—I(f) =0.

First, suppose that |2 | < f and that |¢| < 1/2. Now define A(e) =
J(f + ¢eh) and B(e) = || f + eh]|s. Then A and B are differentiable at
e =0, and

(7) 4 = | 0F=fH + qFf=hydp
(28) B(0) = gb rfthdpe .

To see this, note that (d/de)F?f? = pF?*Hf! + qF?f?"'h a.e. since
f>0a.e. by (a), and F' > 0 a.e. since k(x,t) >0 a.e. for a<t<x <b,
and thus f, >0 a.e., F. >0 a.e. for |[¢| < { and || £ f.

But, we have

e fremrs ey

by Holder’s general inequality with exponents s/(p — 1), s and 7/q.
Similarly, one shows F'?f7'h is integrable. And, for |e| < } one may
bound | (d/de)F?f?| in terms of F?*Hf* and F*f*'h. For example,
if p=1,¢=1, one has
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(30) |’dd€ Fefe

< (%)p”“l(pr~1qu 4 gF?fih) ae.

with similar bounds if 0 <p <1 or 0 <q <1. Thus, Lebesgue’s
dominated convergence theorem gives (27). A similar argument gives
(28).

By assumption J(f)/|| f||2t? = A(0)/B(0)**®!" is maximal and hence

i (A(E)B(e)—“’”’/r) =0.
de

Differentiating and using A(0) = K* and B(0) = 1, we obtain
(30) A'(0) — K*((» + @)/r)B'(0) = 0

or if we write A* = K*(p + q)/r, we obtain
(31) S"(m* frth — pFr U H — qF o f-hydp = 0
By Fubini’s theorem we have

|| Foipet = [ Fr@prea)([| v, oh@de )ipa)

a

(32) S
= { ([ ke, nF @) 7@ )du) .

Thus, if we write 7" for the operator with kernel k(¢, ) we have
from (31) and (32)

0 = [ h@r s = o Tpyfe = pTUTFY ) dpta)
(33)

- Sah(x)G(x)dp(ac) .

To obtain (19) set A(x) = f(x)sgn G(x) in (33) and use the fact
that f(x) == 0 a.e.

To see that \* is the largest value of A for which a solution to
(19) is possible with || f||, = 1, note that if (19) holds then (33) and
hence (31) hold for any || < f with X in place of \*. Thus, setting
h = f in (31) (with A for A\*), we obtain »\||filI — (p + Q)J(f) =0,
and thus v = (p + Q)J()/r £ (® + Q)K*/r = N*.

REMARK. Part (a) of Lemma 2 may be strengthened by allowing
k to vanish on more extensive sets. However, the precise condition
that is needed to insure f = 0 a.e. depends on the relationship of p, ¢
and r. For example, if ¢ >0 and p < », and if there are no sets
E with p¢(E) > 0 and #(CE) > 0 such that k vanishes on (EF x CE) U
(CE x E) then for f as in Lemma 2, one has f+# 0 a.e.
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Proof of Theorem 1. By Lemma 1, sup{J(f):||fll.£1}=K*< o,
and there is an f= 0 with || f||, =1 and J(f) = K*. Since m(z) >0
and w(x) > 0 a.e., Lemma 2 applies and we have f =+ 0 a.e. in [a, B],
and f satisfies

(34) A (@)ym(x) — qF(x)?f(x) ' w(x) — pSZF"“lf"w =0 a.e.

where F(x) = Y JF)de.

We claim that by modifying f on a set of measure zero, we will
have fe Ca,b), flx) # 0 in (a,d) and f will satisfy (34) everywhere.
To see this, rewrite (34) as

(35) St — A(x)f* = B(x) a.e.

where A(x) = 0, and B(x) > 0 for all z e (a, b).

Consider the equation (™' — &{* = 5. For 5 > 0,& =0 this has
a unique positive solution { = @(&, ) which can be extended to be C*
on an open region containing the set {(§,9):6=0,9=0,¢ + 7 > 0}.
To see this, consider the function () = {"* — &£ for fixed &, » and
qg. First suppose ¢ = 1, and & > 0, then +'({) has a single positive
zero C, = {y(§), and + decreases from ++(0) =0 to ({,) < 0 and is
strictly increasing on [{,, =) to + co. Thus () = » has a unique
solution for » > 0 which we denote @(¢,7). We define ¢(&,7n) for
£>0and 0 =7 > (L&) to be that solution of 7 = ({) with { > (.
If ¢ =1 and &£ <0, then + is strictly increasing from ++(0) = 0, hence
() = » has a unique solution for » = 0. Thus, for ¢ = 1, (&, ) is
defined on an open set containing @ = {(§,7):£=0,7=0,{ + n > 0},
and since +'(@(&, 7)) > 0, the implicit function theorem shows that
peC=. To show that ¢(&, n) — ¢(0,0) =0 as (¢, n)— (0,0) in Q, we
note that if 0 < £ <0,0<9n <0 and {, = ad" " with a = 22, then

P() = a0 — dartg T Zar et = 1)0 =0 (if 6= 1) .

Thus ¢(&, 7)) < ad’"" for 0 < & < 5,0 <7 < 0 proving the assertion.

If0<g<1landé >0, then + is strictly increasing from — c to
co on (0, ) so ¥(£) = » has a unique solution for alln. If0<¢<1
and &€ <0, then ¥({)—c as {—0 4 or {— o, and + has a minimum
at a point {, where ({,)) = v & V-0 gnd v >0, If €=0,4(&) =7
has a unique solution for 7 > 0. Again we have ¢ € C* on an open
set containing @ and that @(&,7) —0 as (§,%) — (0,0) in Q.

Now, from (35), by modifying f on a null set, we have

(36) fz) = p(A(x), B(z)) for all xe(a,d).

If w,meC" then A, B are absolutely continuous so (36) shows that f
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is absolutely continuous. But then FeC' so in fact, A4, BeC' and
(36) shows that feC'. That f(x) + 0 for = € (a, b) follows immediately
from (36).

Now, defining y = F' and differentiating (34) once gives (P) (i).
The conditions (ii) and (iii) are apparent from (34). The problem (P) thus
has solutions for » = K*(p + q)/r. To identify the largest eigenvalue
of (P) as K*(p + q)/r, we note that a solution of (P) gives a solution
of (34) and by Lemma 2 the largest eigenvalue of (34) is K*(p + q)/r.

The inequality (5) and the statement concerning equality are now

obvious.

REMARK. If m(x) > 0 and w(x) > 0 for all x€a, b], and if ¢ >0,
then A(x) > 0 unless « = a¢ and B(x) > 0 unless * = b. Hence equation
(86) shows that f(z) > 0 for all zea,d]; and fe(C'a,d]. We also
note that if lim,., A(x) is finite and lim,_, B(x) is finite then f(a) < «
and f(b) < . This will be used in § 3.

3. Some inequalities on a finite interval. As an application of
Theorem 1, we obtain the best constants in case (a,bd) is a finite
interval and m(z) = w(x) = 1. We immediately consider

0 1wl 1y ido = K, q,0{{ 1y raa} ™"

where y is absolutely continuous and y(0) = 0.

Some special cases of (37) are known. The case ¢ =0,p =7 =2k
(k a positive integer) is inequality 256 of [8], which was derived there
by classical variational methods using the Weierstrass sufficient condition.
This case was handled by elementary methods in [3]. Opial’s inequality
isthecase p=qg=1,r=2. If ¢=1,r=p + 1, the best constant
can be obtained by Holder’s inequality (see [5], for example). The
case v = p + q was considered in [6] but the best constant was found
only when ¢ =1 or r = 1.

Note that if g > », there is no inequality of the form (37), since
for y(x) =1 — 1 — )", ¢ <v < r, the left member of (37) is
infinite while || %’ ||, < 0. The case p = 0 is simply Holder’s inequality
with K(0,q,r) = 1.

THEOREM 2. For r=1,p>0,0< q < r, the inequality (37) is
valid with a finite constant K(p,q,r). The best such constant 1is
given by the following expressions

(a) if p>0,r>1,0=<q < r, then

(r—qp* - -
38 K(p,q,7) = Pt I(p, g, 1)
(38) (0,9, 7) (’r‘—l)(p—i—q)‘g (®,9,7)
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where

_[pr =1+ (r—g '
& { (r—1)»+ 9 }

and

I(p,q,7r) = SO {1 + I(f;ql) t}—(a+p+rp)/rp{1 +q— l)t}tl“’—'ldt .

(b) If r =1, then

q, —q
K(p’q,]_):{Q(p—f—(I) yQ>?)
yq@ =0,

(c) If q=wr, then

(39) K(p,r, ) = 2 ( " ) B( L ;1.;>—p :

If r=1,q = 0, there is strict inequality for all y = 0 while in all
other cases there is equality only for multiples of a single function
y(p, q, 7, x) which is in C=(0,1), and is concave if 0 < q <1, convex
if ¢ > 1, linear if q = 1.

For special cases of (a), (28) reduces to a simpler form. First,
if » = p + q, we have

(40) Kp,q,p+q) = q» + ¢)*{pL(p,q) + q¢}7*,q+# 0
where
_ [t ds _(+o@-—-1
L ’ - S ’ k -
» 9 o 1 — ks? (p+q— 1)g

In particular,

2q -
] 1ogq} ,q#0,1.

K(l,q,1+q):{1+

If ¢g =0, and » > 1, we have

K(p, 0,r) = A(p, 1)’
A(p, r) = ()P (p + )P B(1/p, /7)1,

where » = r/(r —1). Note that A(p, r) is the norm of the mapping
T: L7 — L» where here Tf(z) :S ft)dt. By (4), if || f]l, = 1 we have

J(f) Z|| T|?, where || T|| is the norm of T as a mapping from L; —
L:, (s = pr/(r — q)), and so we always have K(p, q,r) < A(s, r)’.
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We also note that in (38), if ¢ # 1, one may make the replacement
(41) (r — llp, q, r)™* = r**(q¢ — DI(p, ¢, )",

where
I(p,q,7)= £ (r —q) Sﬂt”"(l Frydt+r Sﬂt““’)“’(l F tydt,
0 [

where T, = 1— [(r — ¢)/g(r — 1)],¥ = (p + g — r)/rp, and the upper sign
is used with ¢ > 1, the lower sign with ¢ < 1.

Proof. In case (a), Theorem 1 applies since certainly ||| T.]||| < .
We seek solutions of the problem (P). We first observe that by the
remark at the end of §2, we have ye C*a, b] and 0 < %'(0) < «, 0 <
4'(1) < - except in case ¢ = 0 when we have (1) = 0. To see this
note that the functions A and B which appear in (35) are here just

Al) = g0 y(@)?, B@) = p0w) | yity-ty(tydt .

But (1) = S:y'u)dt < 1%l < =, so A() < o, and

1 . 1 . (r—q)/r
Soyp— Y q é {Soyr(p~ )l(r—q)} H yf qu

which shows that B(0) < co.
Notice that equation (i) of (P) has the integrating factor 3’ from
which we obtain

(42) (r — DAy” — (¢ — D)y*y'? = an,

where « is a constant which is evaluated by using ||%'||, =1 and
JW) = r\/(p + q). Thus we have

p+a D+q

Solving (42) for y = A*G(y’) and differentiating leads to a variables
separable equation for ¥, and if we write z = %’ we have, for ¢ # 1

(44) de = AP {(7' — 1)z — az™* }(1/p>—1
p q—1
qg—1

To obtain boundary conditions, we use (42) and (ii) and thus,
since z(0) == 0 and 2(1) == 0 for q = 0, we obtain
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(45) 20 = a/(r — 1) and 2Q1)" = aq/(r — q) .

We now integrate (44) from x = 0 to = 1 using (45) and make
the change of variables (for g == 1)

¢ = r—q (r=12" -«
ra q—1

which leads to equation (38).
For ¢ =1, we note that I(p,1,7) = p,8 =1, and so (38) gives
K(p,1,7) = (p + 1)7* which is the correct result by our earlier remarks.
In the equation y = \'*G(y’), G is increasing if ¢ > 1 and decreasing
if ¢ < 1. Thus, since ¥ is increasing, we must have ¥’ increasing if
g > 1 and decreasing if ¢ < 1. The solution to problem (P) with
A = \* can be seen to be unique in the following way. We know
that a solution of (P) must satisfy y = A/?G(y’) and thus also ¥’ =
APG'(y')y”, and hence ¥’ satisfies
y'(

(46) e

JY'(

G2 B~
0) V4

But, for q¢ + 1, G’(2) does not change sign on the interval from y’(0)
to ¥’(1) so (46) has a unique solution for ¥'(x), and hence (P) has a
unique solution when \ = \*.
To obtain the alternate expression for (r — q)I(p, q, r)~? given in
(41), we make the change of variable ¢t = 1 — a(r — 1)z~ in (44).
To obtain the formula (40), we make the following change of
variables in (38)

rg—1),_(;_ mMg—1) ,\"_ -t
14 M=, <1 —_—_q(r—l)s> R(s)~" .

Then t = (p/q(r — 1))s?R(s)™*, and ¢ = 0,1 correspond to s = 0,1 and
one has
(47) I(p’ q, 7,.) = const {glR(s)(q/rp)+(1/r)+1—(1/p)—1(pR(s)—1 + (I)dS}
0
= const {pL(p, q) + ¢}, sincer = p + q .

The formula (40) can be obtained in a more direct way by making
the substitution w = (¢/*\)"?(y/y’) in equation (i), where we assume
qg# 0 so y'(x) >0 for z€[a,b]. Then the conditions (ii) give %(0) = 0,
#(1) = 1, and equation (i) reduces to

(48) (r —1) {1 — —Z%i%—u”} = p(%)upu’ r=p+49q.

Separating variables and integrating gives (40).
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For case (b), let z(z) = Sx]y' |dt, and then if ¢ >0
0

[ lyP1y e < | @reyde

0
= {Sldx}w{glz”/qz’dx}q = ( q )qu“’ ,
0 0 P+ q

using Holder’s inequality with exponents 1/¢ > 1 and 1/(1 — q). Equality
holds only if 2792’ is constant, and y = z which means y(x) = cx?®+,
For ¢ = 0, we have

[ yirdo = f2pdo < 20y = | 17 do .

Equality holds only if ¥ = #, and z(x) = z(1) for all z, so y(x) = z(x) = 0.
For case (c), we let ¢ — r— in formula (38), using the equation

(41) to evaluate lim (» — ¢)I(p, q, r)*. This shows that the best

constant is given by (89), because if '€ L" and ¢ < r, then

NERE AN Iara

by dominated convergence. To handle the case of equality we cannot
apply Lemma 2 directly since the proof of Lemma 2(a) used r > q.
However, if there is an f with J(f) = K(p, r, r) = K* then we know
that f= 0 a.e. Now referring to the proof of Lemma 2(a), since
r>1 we do have (24) which proves that if E = {x: f(») = 0}, then
E(x,t) = 0 a.e. on CE x E. This means that

CEX E)YNn{x,t): 0=tz =1}

is a set of measure zero. This implies that E differs from an interval
¢, 1] by a set of measure zero. To see this, let

c=sup{z = 1:[0,2] N E is of measure zero} ,

and let d = inf{x = 0: [x,1] N CE is of measure zero}. Clearly d = c.
But, if d > ¢, and e = (d + ¢)/2, then [c,e] N E and [e,d] N CE have
positive measure; but then CE x E intersects {(#,?):0 <t <z <1} in
a set of positive measure which is absurd.

However if equality held for such an f, we would have (writing

f@) = (@),
(@9) [l o rde = x+{[ 1o paa} ™

Define 2(t) = y(ct) so 2'(f) = cy'(ct), and from (49) we obtain
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(50) g: 2|7 |2 [rde = K*e-rr—ir {5: v ]fdx}“’””' :

But, if ¢ < 1, then K*¢?*I* > K* contradicting the maximality of
K*. Thus ¢ =1, so f(&) = ¢'(x) > 0 a.e. on [0, 1].

Still proceeding on the assumption that there exists an f with
J(f) = K* we have shown f(x) >0 a.e. on [0,1], so the proof of
Lemma 2(b) is valid and f satisfies

(51) NFr ) — By f @) — pS;F“—lf’dt —0 ae.

where F(z) = y(a) = | A()d¢, and » = (p + K*/r.

If » is any point where f(z) > 0 and (51) holds then (561) shows that
M) > FP(x)f(x), so F'°(x) <\ a.e. But F is strictly increasing
so F(x)» < for 0 <z < 1. Now we can solve (51) for f and obtain

(52) f(x) = p(A(x), B(x)) for almost all xz¢[0,1).
where ¢(&, ) = (p/(L — &), A(x) = V'F(z)» <1 for 0 <2 <1, and

B(x) = p(rk)‘lglF”“lf rdt >0 for 0 <x<1. Now we proceed as in
the proof of Theorem 1. If we modify f on a null set so that it
satisfies (52) everywhere then we obtain fe C'[0, 1), and f(x) > 0 for
0 <2 <1. Thus we see that if J(f) = K* and ¢’ = f then y must
be a solution of the problem (P), with » =\* = (p + r)K*/r. But a
solution of (P) must be a solution of (42) (with ¢ = ») which is

(63) MY — yPy'T = pA(p + 7).

However if (53) has a solution then it must also satisfy
(54) [0 = wyredu = ovjeo + e
0

To see that (54) has a unique solution for 0 < ¢ < 1, we note that

1/p
6 | 0wy = pneB(L L ) = M )
0 r

using the formula for K(p,r,r) = K* and » = (p + r)K*/r. Since
A—u? >0 for 0 < u < \'?, (54) has a unique solution y = y(x) which
is strictly increasing and has »(0) = 0, y(1) = A?. To complete the
proof we must show that y in fact satisfies (i), (ii) and (iii) of (P).
By the implicit funection theorem ye C*a,d), and differentiating (54)
twice shows that y satisfies (i). Clearly »(0) = 0. For the other part
of (ii), we note that for 0 < x < 1, we have

A =y (@)Y @) = (oM + )T,
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and since y*(x) —\ as x —1 —, we have %'(x¥) >« as x—1—. But
this means that

(36) (v — ¥ @)Y (@) = (p/(p + MY (@) —0 as z—1.
To verify that ||¥']], = 1, let us first introduce the function g by

&7 9(8) = (M) (p + 1) S:O» — w)rdu

so g(y(z)) = x for x<[0,1] and hence y(g(t)) =t for ¢ [0, A\"?]. Now

1 1 da
58 S "oy ds = PN S
(59) Weyds = 2 [ dr
= ( p—? )Pu/ﬂgluz’()\, — gr)um=igy
P+ 0

where we use the change of variable ¢ = g(¢f). Now using the formula
for \, we obtain

! 11 1 1
59 S de =2 (L 1\p(L 1 1y_1,
( ) oy(x) v p—}-/r (q/-y p>/ <7"+ p)
REMARKS. (1) As was mentioned above, the method of this

paper applies to inequalities of the form (1) with » > 1. In this case
T becomes

w(@) P ()17 S @O e
« (m— 1)!
A discussion of the special case p = ¢ = 1,7 = 2 will be found in [4]
where, for m(x) = w(z) = 1, [a, b] = [0, 1], the best constant is shown
to be asymptotic to 1/4n!
(2) The method is equally applicable to inequalities in which the
function y is restricted by other boundary conditions. For example,
if [a, b] is a finite interval we may treat

b b (p+Q)/r
S Yy w(x)de < K{S y”’m(x)dx}
y(a) = yb) =0.

In this case, if f is a given function in L, the boundary value problem
Y’ = — f,y(a) = y(b) = 0 has a solution y(x) = gbG(m, t)f(t)dt, where
G(z,t) = 0 a.e. Hence our lemmas apply. ’

(3) When Theorem 1 is specialized to the situation studied by

Beesack in [1] (g = 0, »p = r), the results are not as general as his.
This is because we can effectively handle only those inequalities where
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we can insure in advance that equality is possible. There is some
compensation in the fact that the existence of solutions to the Euler-
Lagrange equations (P) is a conclusion of our theorem rather than a
hypothesis as in [1] and [5].
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