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MATRIX TRANSFORMATIONS

H. P. DiksHIT

Hille and Tamarkin have proved a result for the Norlund
summability of the Fourier series of f(t) at ¢t = z, under the
hypothesis (i) o) = {f{x + &) + fle —t) — 2f(@)}/2 = o(1), t — 0,
which includes as a special case the corresponding result for
the Cesaro summability. However, under the lighter condition

t
(it) S o(w)du = o(t), t — 0, Astrachan has proved a theorem for

the NO'(')rlund summability which does not cover the correspond-
ing Cesaro case, The object of the present paper is to prove
theorems for the Norlund summability and another triangular
matrix method of summability which are subtler than Astra-
chan’s theorem in the sense that they include as a special case
the corresponding result for the Cesaro summability.

1. Definitions and notations. Let >\ ,v, be a given infinite
series with the sequence of partial sums {s,}. We shall consider
sequence-to-sequence transformation of the type

Ms

(1.1) WUy = .18

k=0

in which the elements of the matrix D = ((d,;)) are real or complex
constants and d,, = 0 for k¥ > n. The sequence {u,} is said to be the
sequence of D-means of {s,}. If lim,_.u, exists and is equal to =
then we say that the series > >, v, or the sequence {s,} is summable
D to the sum u.

Let {p,} be a sequence of constants, real or complex and let us
write P, = p, + 0, + +++ + 9, # 0, P_, = p_, = 0. Then the matrix D
defines a Norlund matrix (N, p,) [7], if

(1'2) dnk - pn—k/Pn ’ (n 2 k Z O) .

The conditions for the regularity of the (N, p,) mean are

(1.3) limp,/P, =0 and 3|l = O(P.)), o

n—oo

In the special case in which

(nt+a—-1\  I'n+a)
9 p”‘( a«-1 )_F(n+1)F(04) =D

the (N, p,) mean reduces to the familiar (C, @) mean.
The product of the matrix (C,1) with the matrix (N, p,) defines
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the matrix (C,1)-(N, p,). Thus D defines the matrix (C, 1)-(N, p,) if

n

n+ gj y—-k/P»y (0§k§n).

(1.5) d,, =

Similarly, one defines the (X, p,)-(C,1) matrix as a product of
the (N, p,) matrix with the (C,1) matrix. In Astrachan’s notations
[1] the (N, p,)-(C, 1) summability is denoted by (N, p.)-C..

Let f(t) be a periodic function, with period 27 and integrable in
the sense of Lebesgue over (—m, 7). We assume without any loss of
generality that the constant term in the Fourier series of f(¢) is zero,

so that S” f)dt = 0 and

(1.6) f(t) ~ 2 (e, cos nt + b, sin nt) .
We write throughout:

P(t) = l{f(x + ) + fl — ) — 2f(@)} ;

1 a—
D.(t) = 7(—)—5( — Wy i) du, a > 0; Ot) = p(t) ;

Pu(t) = ' + DO ()t = 0 ;
R, = np,/P,; S, = > P, + 1)7/P, ;

4p,, or more precisely 4,1, = ft, — Mos: ;
T = [1/t]; Py = P(N); oy = p(V) 5

where [\] denotes the greatest integer not greater than A.
K, denotes a positive constant not necessarily the same at each

occurrence.

2. Introduction. Concerning the Cesaro summability of Fourier
series Bosanquet [2] has proved the following.

THEOREM A. If @,(t) = o(l) as t — 0, then the Fourier series of
f@), at t = z, 1s summable (C, a + ) for every 6 > 0 and a = 0.

Theorem A is known to be the best possible in the sense that it

breaks down if 6 = 0.
For the Norlund summability of Fourier series we have the follow-
ing result due to Hille and Tamarkin [5].

THEOREM B. A regular (N, p,) method is Fourier effective, if
the sequence {p,} satisfies the hypotheses:
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(2.1 R,=0Q),
(2.2) Sk 4pe] = O( P, ,
(2:3) S| Plfk = O( P,) ,

as n— oo,

Theorem B implies inter alia that if o(t) = o(1) as t — 0, and {p,}
satisfies the hypotheses (2.1)-(2.3), then the Fourier series of f(t) is
summable by a regular (N, p,) method.

Replacing the hypothesis: @(t) = o(1) as £t — 0 of Theorem B by
the lighter hypothesis: ¢,(f) = o(1) as ¢t — 0, Astrachan [1] proved the
following.

THEOREM C. A regular (N, p,) method ts K, effective (0 < a <1),
if the sequence {p,} satisfies the hypotheses (2.1), (2.2) and

(24) S k(n — ) | 4#p4] = O(P,))
(2.5) S|P/ = O( P, m)
as n — oo,

Hille and Tamarkin have also pointed out in [5] that the sequence
{p,} defined by (1.4) satisfies the hypotheses of Theorem B for 1 > a > 0
and therefore, (C, ) summability for such a «a is Fourier effective.
Thus Bosanquet’s Theorem A when a = 0 is an immediate consequence
of Theorem B. It is therefore natural to expect that the hypothesis:
@,(t) = o(1) as t — 0, may lead to (N, p,) summability of the Fourier
series of f(¢) and that such a result may include Theorem A when
a =1, as a special case. However, Astrachan’s Theorem C in this
direction only implies the summability (C,d) for ¢ = 2, whereas one
needs the summability (C,0),6 > 1, in order to cover Bosanquet’s
Theorem A when « = 1. Thus there is a gap of approximately 1 be-
tween the orders of (C) summability implied by Theorem C and the
corresponding case of Theorem A. This emerges from the following
reasoning.

The result of Lemma 8.1 in Astrachan [1], which is required for
the proof of his Theorem C states that

(2.6) 3 (n = 1) [ #pess] = O( Pylfm)

as n— co. Since the left hand side of (2.6) is greater than Kn we
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observe that Kn* < |P,|. It may be pointed out that for Astrachan’s
proof of Lemma 8.1 one has to assume p, = 0.

The object of our Theorem 1 is to show: that it is indeed, possible
to obtain a result for the (N, p,) summability of Fourier series which
has also the scope of covering Bosanquet’s Theorem A for a = 1.

Astrachan [1, Th. II] has also obtained the following result for the
(N, p,)-(C, 1) summability of the Fourier series.

THEOREM D. The (N, p,)-(C,1) method is K, effective (0 < o <1)
provided the sequence {p,} satisfies the hypotheses (2.1)-(2.3) and the
regularity condition (1.3).

Due to possible oversight, Astrachan has not shown that the regu-
larity conditions follow from his statement of Theorem D. Further, his
proof of Theorem D contains a deficiency, which has been pointed out
and supplied by the present author in [4].

Silverman has shown in [8, Th. 1] that a necessary and sufficient
condition for a (N, p,) matrix to be permutable with the (C, 1) matrix
is that it be a Cesaro matrix. This implies that

(C, D-(N, p,) # (N, p,)+(C, 1)

except when {p,} is defined by (1.4). In view of this Astrachan’s
technique of obtaining his Theorem D from Theorem B fails in the
case of the (C,1)-(N, p,) summability and one has to give a direct
proof to conclude the (C, 1)- (N, p,) summability of Fourier series of f(t)
under the hypothesis: ¢,(t) = o(1) as ¢ — 0. More precisely, we observe
that since the (C, 1) mean is a very special case of the (N, p,) mean
viz. the case in which p, = 1, the convenience of expressing the (C, 1)
mean of the Fourier series of f(¢), essentially as a difference of the
Fejér’s and Dirichlet’s kernels of ¢,(t) {1, p. 546], disappears totally
in the case of the (N, p,) mean.

Thus for the (C, 1)-(N, p,) summability of Fourier series, we obtain
Theorem 2 which also covers Theorem A when a = 1.

3. We prove the following results.

THEOREM 1. If @,(t) = o(1l) as t—0 and {p,} is nonnegative,
monotonic nondecreasing sequence such that p,— o as n—oo, {P,+,— 0.}
ts nonincreasing, R, = O(l) and (2.5) holds, then the Fourier series
of f(t), at t = x, is summable (N, p,).

THEOREM 2. If @,(t) = o(l) as t— 0 and {p,} is a nonnegative,
monotonic nonincreasing sequence such that S, = OQ1), then the
Fourier series of f(t), at t = %, is summable (C, 1)-(N, p,).
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REMARKS. It is easy to see that if {p,} is nonnegative and non-
decreasing then (n + 1)p, = P, and therefore S, = O(1). Further, in
this case
1

" n k n
glk Idpk—1| = "_Z E (p/l - p;t—l) + nﬂ% (p/, — p#—l) = O(Pn) y

k=1 p=1

if R, = O1). Thus the sequence {p,} used in Theorem 1 also satisfies
the hypotheses of Theorem B.

As demonstrated by the present author in [3] if {p,} is a non-
negative sequence then the hypotheses: R, = O(1) and S, = O(1) im-
ply that

< 1

P — = 0(1 k=1,2.3 -
kn:zlc“ﬂ (%—}—1)in1 O( )’ ( y Sy Oy ),

from which it is immediate that P,— « as n-— «. It may be ob-
served that with a slight modification in author’s analysis in [3] it is
possible to even drop the condition R, = O(1) to get the same conclusion.

4. We require the following lemmas for the proof of our results.

Lemma 1. If {q.} is monnegative and nonincreasing, then for
0<a=<b= o and 0t < T,

b
> q.exp ikt| = KQ. ,
L lk=a
where © = [1/t] and Q, = ¢ + Q. + +++ + .
This lemma may be proved by following the technique of proof
of Lemma 5.11 in McFadden [6].
LEMMA 2. If {p.} is a nonnegative and monotonic nondecreasing

sequence such that {p,., — p,} ts nonincreasing and R, = O(), then
as n— oo

3. puln — B) exp (ikt) = O(P.) + O(t7p,)
uniformly in 0 <t < 7.
Proof. We write by Abel’s transformation
é}opk(n — k) exp (tkt)

= g A dpi(n — k)} Ei‘,o exp (i)

fl

(1 — expit)”| S dpu(n — B} = 3, 4u{puln — )} exp i(k + L)t
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= (1 — exp '515)“1[71,10o — :Z—:,) (n — k)4p, exp 1(k+1) — :2::,) D+, €XP i(lc+1)t]
n—1 k n—1

= (1 — exp )| np, — kz: > 4p, exp (v + 1)t — kz, Dysr €XP (K + 1)t].
=0 v=0 =0

Thus

Zi piu(n — k) exp iktl

< |1—expit |“1[nzo0 + "i S 4dp, exp i(k+1)t’]
k=0]v=0
n—1
= Kt“[npo + K é 2210 (Porr — D) + Pa max, 2 exp 1kt ]

(by Lemma 1 and Abel’s Lemma, since {p,., — p.} is nonnegative,
nonincreasing and {p,} is nondecreasing)

< Kt~'[np, + Knp.., + Kp,t™']
< Knt~'p.,, + Kt~’p,
< KnP. + Kt—zpn ’

since {p,} is nondecreasing and R, =0(1) which also implies P,.,/P,=0().
This completes the proof of Lemma 2.

LemMmA 3. If {p,} is nonnegative and nonincreasing, then as n— co

35 30— kmeexpi(v—ht = 0 +0(+P, 3 5-) +0( 252>,

= P, P,
wniformly in 0 <t < 7.
Proof. Applying Abel’s transformation we get
é Y ;yk exp i(y — k)t
= éd,(”;»k)gkexpi(y — k)t + %Zexpz(/z — k)t

v —k

v

= (1 — exp it)‘l[é;c Ay< ){1 — expi(y — k + 1)t}

n—k—}-l{l

+
Pn-H.

—expi(n — k + 1)t}]

—(1— expz't)—[ Z‘ P;l (v — k) exp i(v — k + 1)t
- v+1

+§:P1 expi(v —k + 1)t — - k+1
v==k

v+1 n+1

expi(n — k + 1)t] .

Changing the order of summation of the inner sums, thus we have
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S =54 5 e - Dpeexp it — k|
v=0 Pu k=0
= épkﬁ“ v—k exp (v — k)t‘
k= =k P,
< Kt"l[ S0 S Pt (y— Eyexpi(v — k + 1)t|
k=0 v=Fk Pqu+1
+ 13 pe > L expiw — & + 1)tl
k=0~ v=k Py+1
+ S o — k + 1) exp i(n — k + l)tl]
Pn-H. k=0
=X +3+3,

say.
Again by a change of order of summation we have

S < Kt o 30— k) expi(y — k + l)tl
1 =0 [ sty =0

T—~1 v 7
< Kt 3 50 51 p, o+ Kt 3 et max

v=¢ v 0sP=y

kip,, expi(y — k + 1)t

(by Abel’s Lemma. If 7 =0 the first part is taken as’0.)

< Kt~ + Ki~'P. 3, % :

V=T v

by virtue of Lemma 1 and the fact that (» + 1)p, < P,.

Similarly,
ZéKt“Zn, 1 ipkexpi(v— k+ 1)t
P = P, k=0
1 T—1 1 v . n 1
v=0 Pu+1 k=0 v=t v+1
< Kt + Kt-'P. > L
y=1 Pu
by Lemma 1.

Finally, by Lemma 1 and Abel’s Lemma we have

S < Kt " p_.

21

This completes the proof of Lemma 3.

5. Proof of Theorem 1. For the Fourier series of f(¢), at ¢t = =
we have
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sin (k + 1/2)t dt
sin (¢/2)
Therefore, if ¢, denotes the (N, p,) mean of {s,(x)} then

_ 1 sin (k + 1/2)¢
b= ) = — |20{ = p. T bt

@) — fi@) = 2 @0

Integrating by parts, we get

o~ fa) = 28 5ip, (1

L Sﬂ () {an ,Jccos(k—i— 2>}dt

7P, Jo'sin (¢/2) s
27t1Pn S;sj ((tt/)Z){kZO Pe-i o8 (I + 2) }dt

1 (7 o, [ sin (k + 1/2)¢
2P, Sotan(t/2) kgop " sin (¢/2) }dt

=L + L, + L, + L.,
say.
Thus, in order to prove the theorem it is sufficient to show that
as n— oo,

(5.1) L, = o) ; (j=1,2,3 and 4) .

Since @(t) cot t/2 = o(1) as t — 0, it follows from Theorem B that
L, = 0o(1) as n— o, when one appeals to the remarks contained in
§ 3 of the present paper.

We write

1
p,

S P~ = KL = o1)

as n— oo, since {p,} is nonnegative and nondecreasing and R, = O(1).
Thus, we have L, = o(1) as n — co.

Also, L, = o(1) as n — oo, by virtue of Riemann-Lebesgue Theorem
and the regularity of the (XV, p,) mean which is implied by the hypo-
theses: {p,} is nonnegative and R, = O(1).

Finally, to show that L, = o(1) as » — oo, we observe that
DO o)
sin ¢/2

as t— 0 and that the kernel occuring in L, is the real part of the
complex valued function

=P {exp - z(n + > }Zf, vi(n — k) exp ikt = M, (1) ,

say.
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Therefore, in order to prove that L, = o(1) as # — <o, it is enough
to show that as n—

(5.2) I= j g M, (t)dt = o(1) ,
where g(f) = o(1) as ¢t — 0.
We write, for a fixed ¢ such that 0 < 6 < 7,
(5.3) I- (S_ + S L+ S:)g(t)Mn(t)dt =L+ 1 +1,

say.
Since

_ofl ¢ _
M0 = 0(5-3yptn —B)) = Om)
we have, as n — o

(5.4) ( S t)|dt> = o(1) .
<t

For the interval o < é < 7, we have from Lemma 2

M, (t) = o(

7o)+ o) = 0l5;) + o = o,

n n

as m— oo, by the hypotheses: R, = O(1) and that p, — « as n — .
Therefore, as n — oo,

(5.5) s =o(1) .

Since ¢(t) = o(1) as t — 0, to demonstrate the truth of I, = o(1)
as n— oo we prove that

Ir = Sa_]|Mn(t)|dt <K.

By Lemma 2, we have

I < K2
=7p

n n

? 2 -
Sn_lP(l/t)dt + KTS ede

n

_ Kk S PG)gs 1 kR,
P,Ji1 &
=K,
by virtue of the hypotheses: R, = O(1) and (2.5). Thus, as n — .

(5.6) IL=oQ).
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Combining (5.3)-(5.6), we get (5.2) and therefore L, = o(1) as n—co.
This completes the proof of Theorem 1.

6. Proof of Theorem 2. If t. denotes the (C,1)-(N, p,) mean
of the sequence {s,(x)} then

-3

k=

Pt () — flax)

M
I

t — fle) = —

o

k

v

H+
-

=3 = 3 psi@) — f(@)

_ 1 2 sin(k + 1/2)t
- (n+1)n§¢(){§‘ — 2 P sin (¢/2) }dt'

I
S
+
M-

H

Integrating by parts, we get

_ - _ %@ <
flw) = PP Z.

Z:Z D, (—1)*

B 7r(n1+ 1) Sosi ((22){20_7 %p,~kk €08 <k + ) }dt
B Zn(nl-l— 1) So sﬁ 222){ k€08 (k + ) }dt
1 S” Q.(t) {Z".‘ Z sm [k + (1/2)] t}dt

2r(n + 1) Jotan(t/2) sin (t/2)
:Cl+CZ+C3+C41

say.
Thus, in order to prove the theorem it is sufficient to show that

as m — co
(6.1) C, = o(l); (j=1,2,3 and 4) .

Since {p,} is nonnegative and nonincreasing, we have by Abel’s
Lemma

7| S P = KD = o),

as Y — oo, by virtue of the fact that P, — « as n— «, By virtue

of the regularity of the (C,1) mean we now get C, = o(1) as % — oo.
Further, since [@,(¢)/sin (¢/2)] cos t/2 = o(1) as t — 0 and the (C, 1)

mean is regular, Theorem B implies that C, = o(1) as n — <, when

one observes that the sequence {p,} used in our Theorem 2 satisfies

all the hypotheses of Theorem B.
That C, = o(1) as n— o, follows from the Riemann-Lebesgue

Theorem and the fact that the (C,1) and the (X, p.) mean are both
regular.
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Finally, we observe that [@,(t)/sin (£/2)] = o(1) as t— 0 and there-
fore, in order to prove that C, = o(1) as n— o, it is sufficient to
show that as n — o

(6.2) E= g:ga)Jn(t)dt = o(l)

where g(t) = o(1) as t— 0 and

_exp(itf2) & 1 & _ o
J.(t) = __—n(n ) 2‘3 P v — k)p,expi(v — k)t .

Let us write for a fixed ¢ such that 0 < é < 7,

21 ki Fa
(6.3) E = (S n S Lt S(s)g(t).f,,(t)dt -E +E+E,,
say. Since
1 &1 &
[Jn(t)l<m§?yé(” k)p, < Kn ,

we have as n— oo
(6.4) E = O(nS:_l(g(t))dt) — o(l) .

For the interval 0 < 0 £ ¢ < 7, we have by Lemma 3

nilgli,)JrO(Piﬂ):O(l)

Jo(t) = o(l) + 0(
as n—co, since P,—c as n— « and (C,1) mean is regular. Thus,
as n— co,

(6.5) E, = o).
Since ¢(t) = o(1) as t — 0, to prove that E, = o(l) as #n — oo, it
is enough to demonstrate that
Er — Sa_l (8| dt < K .
By Lemma 3 we get

.o K S dt K S P(l/t){ 3 1}
By < 2 dt
= T 1) g + nmA1Jar ¢t yz[zl/t] P,

n
K P g,

P,,L o1
K S” P& 1 } 1 S" P(s)
< K—\ (g
=K+ n+1Ji1 g {g[“s] P, ds + P,Jit s s
K S” Ps)fa 1
< d
_K+n+1 18 {,:z['s]P,}s
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since S, = O). That E; < K, now follows from the fact that

1 &P &1 _ © 1 & P,
1 S Z'kp,“nJrlgp &%
1 n
= S, K
m+1 2 -
since S, = O(1). Therefore, as % — o
(6.6) E, = o(l).
Combining (6.3)-(6.6), we get (6.2) and therefore, C, = o(1) as
n— oo,

This completes the proof of Theorem 2.
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