LINEAR TRANSFORMATIONS OF TENSOR PRODUCTS
PRESERVING A FIXED RANK

Dragomir Z. Djokovic
LINEAR TRANSFORMATIONS OF TENSOR PRODUCTS
PRESERVING A FIXED RANK

D. Ž. DJOKOVIĆ

In this paper T is a linear transformation from a tensor product $X \otimes Y$ into $U \otimes V$, where X, Y, U, V are vector spaces over an infinite field F. The main result gives a characterization of surjective transformations T for which there is a positive integer k ($k < \dim U, k < \dim V$) such that whenever $z \in X \otimes Y$ has rank k then also $Tz \in U \otimes V$ has rank k. It is shown that $T = A \otimes B$ or $T = S \circ (C \otimes D)$ where A, B, C, D are appropriate linear isomorphisms and S is the canonical isomorphism of $V \otimes U$ onto $U \otimes V$.

Let F be an infinite field and X, Y, U, V vector spaces over F. We denote by T a linear transformation of the tensor product $X \otimes Y$ into $U \otimes V$. The rank of a tensor $z \in X \otimes Y$ is denoted by $\rho(z)$. By definition $\rho(o) = 0$. The subspace of X spaned by the vectors $x_1, \cdots, x_n \in X$ will be denoted by $\langle x_1, \cdots, x_n \rangle$.

Lemma 1. Let k be a positive integer such that $z \in X \otimes Y$ and $\rho(z) = k$ imply that $\rho(Tz) = k$. Then $\rho(z) \leq k$ implies that $\rho(Tz) \leq k$ for all z.

Proof. If this is not true then for some $z \in X \otimes Y, z \neq 0$, we have $\rho(z) < k$ and $\rho(Tz) > k$. There exists $t \in X \otimes Y$ such that $\rho(t) + \rho(z) = k$ and moreover $\rho(z + \lambda t) = k$ for all $\lambda \neq 0, \lambda \in F$. Let

$$Tz = \sum_{i=1}^{m} u_i \otimes v_i, \quad m = \rho(Tz).$$

Since $u_i \in U$ are linearly independent and also $v_i \in V$ we can consider them as contained in a basis of U and V, respectively. The matrix of coordinates of Tz has the form

$$\begin{pmatrix}
I_m & 0 \\
0 & 0
\end{pmatrix}$$

where I_m is the identity $m \times m$ matrix. Let

$$\begin{pmatrix}
A_m & B \\
C & D
\end{pmatrix}$$

be the matrix of coordinates of Tt. Then the minor $|I_m + \lambda A_m|$ of the matrix of $T(z + \lambda t)$ has the form
\[1 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \cdots . \]

Since \(F \) is infinite we can choose \(\lambda \neq 0 \) so that \(|I_m + \lambda A_m| \neq 0 \). For this value of \(\lambda \) we have

\[\rho(z + \lambda t) = k, \quad \rho(T(z + \lambda t)) \geq m > k \]

which contradicts our assumption. This proves the lemma.

Lemma 2. Let \(k \) be a positive integer such that \(z \in X \otimes Y \) and \(\rho(z) \leq k \) imply \(\rho(Tz) \leq k \). If \(T \) is surjective and \(k < \dim U, k < \dim V \) then \(\rho(z) \geq \rho(Tz) \) for all \(z \).

Proof. Assume that for some \(z \) we have \(\rho(z) < \rho(Tz) \). Clearly, we can assume in addition that \(\rho(z) = 1 \). Therefore \(k > 1 \). By assumption \(\rho(z) \leq k \) implies that \(\rho(Tz) \leq k \). Let \(s \leq k \) be the maximal integer such that there exists \(z \in X \otimes Y \) satisfying \(\rho(z) < s \) and \(\rho(Tz) = s \).

Let

\[Tz = \sum_{i=1}^s u_i \otimes v_i. \]

We can choose \(u_{s+1} \in U, v_{s+1} \in V \) such that \(u_{s+1} \in \langle u_1, \ldots, u_s \rangle \) and \(v_{s+1} \in \langle v_1, \ldots, v_s \rangle \). Since \(u_i \in U \) are linearly independent and \(v_i \in V \) also linearly independent we can assume that these vectors are contained in a basis of \(U \) and \(V \), respectively. Since \(T \) is surjective there exists \(t \in X \otimes Y \) such that \(\rho(t) = 1 \) and the \((s + 1, s + 1)\)-coordinate \(a_{s+1,s+1} \) of \(Tt \) is nonzero. The minor of order \(s + 1 \) in the upper left corner of the matrix of \(T(z + \lambda t) \) has the form

\[a_{s+1,s+1} \lambda + \alpha_2 \lambda^2 + \cdots. \]

Since \(a_{s+1,s+1} \neq 0 \) we can choose \(\lambda \neq 0 \) so that the minor is nonzero. For this value of \(\lambda \) we have

\[\rho(z + \lambda t) \leq \rho(z) + 1 \leq s \leq k, \]

\[\rho(T(z + \lambda t)) \geq s + 1. \]

If \(s = k \) this contradicts our assumption. If \(s < k \) this contradicts the maximality of \(s \). Hence, Lemma 2 is proved.

Lemma 3. Let \(k \) be a positive integer such that \(z \in X \otimes Y \) and \(\rho(z) = k \) imply that \(\rho(Tz) = k \). If \(T \) is surjective and \(k < \dim U, k < \dim V \) then \(\rho(z) = \rho(Tz) \) for each \(z \in X \otimes Y \) satisfying \(\rho(z) \leq k \).

Proof. The assertion is trivial if \(\rho(z) = 0 \) or \(k \). Let \(0 < \rho(z) < k \). Choose \(t \in X \otimes Y \) such that
\[\rho(z + t) = \rho(z) + \rho(t) = k. \]

Using this and Lemmas 1 and 2 we deduce
\[
\begin{align*}
\rho(T(z + t)) &= \rho(Tz + Tt) = k, \\
\rho(Tz) + \rho(Tt) &\geq k, \\
\rho(Tz) + \rho(t) &\geq k, \\
\rho(Tz) &\geq \rho(z).
\end{align*}
\]

Since by Lemma 2, \(\rho(Tz) \leq \rho(z) \) we are ready.

The following Theorem is an immediate consequence of Lemma 3 and Theorem 3.4 of [3]:

Theorem 1. Let \(k \) be a positive integer such that \(z \in X \otimes Y \) and \(\rho(z) = k \) imply that \(\rho(Tz) = k \). If \(T \) is surjective and \(k < \dim U \), \(k < \dim V \) then
\[
\begin{align*}
(1) & \quad T = A \otimes B, \\
(2) & \quad T = S \circ (C \otimes D),
\end{align*}
\]
where
\[
A : X \to U, \quad B : Y \to V, \\
C : X \to V, \quad D : Y \to U,
\]
are bijective linear transformations and \(S \) is the canonical isomorphism of \(V \otimes U \) onto \(U \otimes V \).

This theorem gives a partial answer to a conjecture of Marcus and Moyls [2].

From Lemma 2 and Theorem 3.4 of [3] we get the following variant:

Theorem 2. Let \(k \) be a positive integer such that \(z \in X \otimes Y \) and \(\rho(z) \leq k \) imply that \(\rho(Tz) \leq k \). If \(T \) is bijective and \(k < \dim U \), \(k < \dim V \) then (1) or (2) holds.

When \(X = Y = U = V \), \(\dim X = n \), \(k = n - 1 \) we get a result of Dieudonné [1].

References

Received August 21, 1968. This work was supported in part by N.R.C. Grant A-5285.

University of Waterloo
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN
Stanford University
Stanford, California

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. R. PHELPS
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA
UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON
CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY
TRW SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. 36, 1539–1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.
Gregory Frank Bachelis, *Homomorphisms of annihilator Banach algebras. II* .. 283
Leon Bernstein and Helmut Hasse, *An explicit formula for the units of an algebraic number field of degree n ≥ 2* 293
David W. Boyd, *Best constants in a class of integral inequalities* ... 367
Paul F. Conrad and John Dauns, *An embedding theorem for lattice-ordered fields* 385
H. P. Dikshit, *Summability of Fourier series by triangular matrix transformations* 399
Dragomir Z. Djokovic, *Linear transformations of tensor products preserving a fixed rank* 411
John J. F. Fournier, *Extensions of a Fourier multiplier theorem of Paley* ... 415
Lawrence Louis Larmore, *Twisted cohomology and enumeration of vector bundles* 437
William Grenfell Leavitt and Yu-Lee Lee, *A radical coinciding with the lower radical in associative and alternative rings* .. 459
Samuel Merrill and Nand Lal, *Characterization of certain invariant subspaces of H^p and L^p spaces derived from logmodular algebras* ... 463
Sam Bernard Nadler, Jr., *Multi-valued contraction mappings* .. 475
T. V. Panchapagesan, *Semi-groups of scalar type operators in Banach spaces* 489
J. W. Spellmann, *Concerning the infinite differentiability of semigroup motions* 519
H. M. (Hari Mohan) Srivastava, *A note on certain dual series equations involving Laguerre polynomials* ... 525
Ernest Lester Stitzinger, *A nonimbedding theorem of associative algebras* .. 529
J. Jerry Uhl, Jr., *Martingales of vector valued set functions* .. 533
Gerald S. Ungar, *Conditions for a mapping to have the slicing structure property* 549
John Mays Worrell Jr., *On continuous mappings of metacompact Čech complete spaces* 555