CHARACTERIZATION OF CERTAIN INVARIANT SUBSPACES
OF $H^p$ AND $L^p$ SPACES DERIVED FROM LOGMODULAR
ALGEBRAS

SAMUEL MERRILL AND NAND LAL
Let \( A = A(X) \) be a logmodular algebra and \( m \) a representing measure on \( X \) associated with a nontrivial Gleason part. For \( 1 \leq p \leq \infty \), let \( H^p(dm) \) denote the closure of \( A \) in \( L^p(dm) \) \( (w^* \text{ closure for } p = \infty) \). A closed subspace \( M \) of \( H^p(dm) \) or \( L^p(dm) \) is called invariant if \( f \in M \) and \( g \in A \) imply that \( fg \in M \).

The main result of this paper is a characterization of the invariant subspaces which satisfy a weaker hypothesis than that required in the usual form of the generalized Beurling theorem, as given by Hoffman or Srinivasan.

For \( 1 \leq p \leq \infty \), let \( I^p \) be the subspace of functions in \( H^p(dm) \) vanishing on the Gleason part of \( m \) and let \( A_m = \{ f \in A : \int fdm = 0 \} \).

**Theorem.** Let \( M \) be a closed invariant subspace of \( L^2(dm) \) such that the linear span of \( A_m M \) is dense in \( M \) but the subspace \( R = \{ f \in M : f \perp I^p M \} \) is nontrivial and has the same support set \( E \) as \( M \). Then \( M \) has the form \( \chi_E \cdot F \cdot (I^p)^\perp \) for some unimodular function \( F \).

A modified form of the result holds for \( 1 \leq p \leq \infty \). This theorem is applied to give a complete characterization of the invariant subspaces of \( L^p(dm) \) when \( A \) is the standard algebra on the torus associated with a lexicographic ordering of the dual group and \( m \) is normalized Haar measure.

1. Invariant subspaces. In 1949 Beurling [1], using function analytic methods, showed that all the closed invariant subspaces of \( H^2 \) of the circle have the form \( M = FH^2 \), where \(| F | = 1 \) a.e. In 1958 Helson and Lowdenslager [3] and [4] extended the result to some but not all subspaces of the \( H^2 \) space of the torus, using Hilbert space methods. In the past 10 years the latter arguments have been extended by Hoffman [5, Th. 5.5, p. 293], Srinivasan [8], [9], and others to prove the following generalized Beurling theorem. If \( m \) is a representing measure for a logmodular algebra \( A \) and if \( M \) is an invariant subspace of \( L^2(dm) \) which is simply invariant, i.e., if

(1) the linear span of \( A_m M \) is not dense in \( M \),

then \( M = FH^2 \) for \(| F | = 1 \). In the general case (even the torus case) not all invariant subspaces satisfy this hypothesis. Our purpose is to extend the characterization by weakening hypothesis (1).
We assume throughout the paper that $A = A(X)$ is a logmodular algebra \cite{5} of continuous complex-valued functions on a compact Hausdorff space $X$ and that $m$ is the unique representing measure on $X$ for a complex homomorphism of $A$, i.e., $\int fgdm = \int fdm \int gdm$ for all $f, g \in A$. Furthermore we assume that this complex homomorphism lies in a Gleason part $P(m)$ containing more than one element. A function $f \in H^\omega(dm)$ is called inner if $|f| = 1$. For each $f \in H^2(dm)$ we write $\hat{f}(\varphi) = \int fd\varphi$ for $\varphi$ in $P(m)$, where $\varphi$ also denotes the representing measure for the homomorphism $\varphi$.

In \cite{10} Wermer showed (for $A$ a Dirichlet algebra) that there exists an inner function $Z$ such that $\hat{Z}$ maps $P(m)$ onto $\{\lambda: |\lambda| < 1\}$ and such that the equation
\begin{equation}
G(\hat{Z}(\varphi)) = \hat{f}(\varphi)
\end{equation}
associates with each $f$ in $H^2(dm)$ an analytic function $G(\lambda) = \sum_{n=0}^{\infty} a_n \lambda^n$ for $|\lambda| < 1$ where $a_n = \int \hat{Z}^n fdm$. (See \cite{5} for the extension to logmodular algebras.) Denote by $F$ the boundary value function of $G$ (i.e., the function in $L^\omega(d\theta)$ whose Fourier coefficients are $a_n$, where $d\theta$ is normalized Lebesgue measure on $\{|\lambda| = 1\}$).

Elementary arguments (including the Riesz-Fischer theorem) establish that the mapping $\Phi(f) = F$ can be extended to a bounded linear transformation of $L^2(dm)$ onto $L^2(d\theta)$, using the fact that $L^2(dm) = H^2(dm) \oplus \hat{H}_m(dm)$ \cite[Th. 5.4, p. 293]{5}.

Denote by $\mathcal{P}^p$ the closure (in $L^p(dm)$) of the polynomials in $Z$; denote by $\mathcal{P}_m^p$ the closure (in $L^p(dm)$) of the polynomials in $Z$ and $\hat{Z}$. (For $p = \infty$, the closure is taken in the $w^*$ topology.) Thus $\mathcal{P}_m^2 = \mathcal{P}_m^2 \oplus \mathcal{P}_m^2$ and $\Phi$, restricted to $\mathcal{P}_m^2$, is an isometric isomorphism onto $L^2(d\theta)$, induced by the correspondence $Z \rightarrow e^{i\theta}$.

Actually $\Phi$ can be extended to a continuous transformation of $L^p(dm)$ onto $L^p(d\theta)$ induced by formula (2) and for $1 \leq p \leq \infty$ carrying $\mathcal{P}_m^p$ isometrically onto $L^p(d\theta)$. (This map also carries $H^p(dm)$ onto $H^p(d\theta)$.) This follows from the following result of Lumer \cite[Th. 3, p. 285]{6} (and our Lemma 5 below): The correspondence $Z \rightarrow e^{i\theta}$ induces an isometric isomorphism of $\mathcal{P}_m^p$ onto $L^p(d\theta)$ for each $p, 1 \leq P \leq \infty$, which carries $\mathcal{P}_m^p$ onto $H^p(d\theta)$. See also Merrill \cite[Proof of Th. 1]{7}. For $f$ and $g \in L^2(dm)$, $\Phi(fg) = \Phi(f)\Phi(g)$ (see the proof of Lemma 10 in Wermer \cite{10}). We call $\Phi$ the natural homomorphism of $L^p(dm)$ onto $L^p(d\theta)$.

Define $I^p = \left\{ f \in H^p(dm): \int \hat{Z}^n fdm = 0, n = 0, 1, 2, \cdots \right\}$ for $1 \leq p \leq \infty$, so that $H^i(dm) = \mathcal{P}_m^i \oplus I^i$. Using (2) it is not hard to check that $P = \{ f \in H^p(dm): \hat{f}(\varphi) = 0, \varphi \in P(m) \}$. For any subset $S \subseteq L^2(dm)$, denote by $[S]$ the closed linear span of $S$.

**Definition.** Let $M$ be a closed invariant subspace of $L^p(dm)$. $M$
is called simply invariant if $A_m M$ is not dense in $M$ ($w^*$ dense for $p = \infty$) and doubly invariant if $\bar{A} M \subseteq M$. We call $M$ sesqui-invariant if $Z M \subseteq M$ but $M$ is not invariant under $\bar{A}$.

There exist closed invariant subspaces of $L^2(dm)$ which are sesqui-invariant, i.e., neither simply nor doubly invariant. For example, let $M = I^2$. If $I^2$ satisfied (1) so that it had the form $F H^2$, $F$ inner, then $F$ would be in $I^2$, so that $\bar{Z} F$ would be in $I^2$ by Lemma 1 below. But if $I^2 = F H^2$, then $\bar{Z} \in H^2$, which is not the case.

Our main purpose in § 2 is to relax hypothesis (1) and to obtain a characterization of certain invariant subspaces of $L^2(dm)$ not covered by the Beurling theorem, in terms of the support set of $M$, a unimodular function, and $I^2$. At the end we extend the result to $1 \leq p \leq \infty$. Examples in which $I^2$ is nontrivial are given in § 3 together with applications of the main theorem. First we give three lemmas of a preliminary nature which collect elementary and known facts.

**Lemma 1.** If $f \in I^2$, then $\bar{Z} f \in I^2$.

**Proof.** Clearly it suffices to show that $\bar{Z} f \in H^2$, for then $\bar{Z} f \bot \mathcal{X}^2$ and hence $\bar{Z} f \in I^2$. Let $h \in H^2_{\mathcal{X}}(dm)$ and write

$$a_n = \int \bar{Z} f \, dm, \quad b_n = \int \bar{Z} h \, dm.$$ 

Then $\int \bar{Z} f h \, dm = a_0 b_1 + a_1 b_0 = 0$ so $\bar{Z} f \in H^2$.

**Lemma 2.** Let $M \subseteq L^2(dm)$ be a closed subspace. Then the following are equivalent

(i) $A M \subseteq M$

(ii) $H^\infty M \subseteq M$

(iii) $H^\infty_m M = Z M = [A_m M]$.

**Proof.** That (i) implies (ii) follows from the $w^*$ density of $A$ in $H^\infty(dm)$. To see that (ii) implies (iii) observe that by definition of $Z$, $H^2_m = Z H^2$ and hence $H^1_m = Z H^1$, by taking closure in $L^1$. By considering conjugate spaces and applying Corollary to Theorem 6.1 in Hoffman [5, p. 298], we have $H^\infty_m = Z H^\infty$. Using (ii), $H^\infty_m M = Z H^\infty M \subseteq Z M \subseteq H^\infty_m M$. In any case $H^\infty_m M = [A_m M]$ by the $w^*$ density of $A_m$ in $H^\infty_m$. This establishes (iii).

To show that (iii) implies (i), it suffices to show (iii) implies (ii). We have seen that $H^\infty_m = Z H^\infty$ or $\bar{Z} H^\infty_m = H^\infty$. Using (iii) this yields $H^\infty_m M = \bar{Z} H^\infty_m M \subseteq \bar{Z} Z M = M$.

**Lemma 3.** Let $M \subseteq L^2(dm)$ be a closed invariant subspace. Then
the following are equivalent.
(a) \( M = FH^2 \) for some unimodular function \( F \).
(b) \( M \ominus [A_mM] \neq \{0\} \).
(c) \( M \ominus ZM \neq \{0\} \).
(d) \( M \) is not invariant under \( Z \).

Proof. The equivalence of (a) and (b) is the generalized Beurling theorem. Items (b) and (c) are equivalent by Lemma 2. If (a) holds then so does (d). For if \( M \) were invariant under \( Z \) then since \( FE \in M \), \( ZF \in M = FH^2 \), so that \( Z \in H^2 \) which is not the case. On the other hand, if (d) holds, \( ZM \) is a proper closed subspace of \( M \), i.e., (c) holds.

DEFINITION. If \( f \in L'(dm) \), we define the support set of \( f \) (denoted by \( E_f \)) as the complement of a set of maximal measure on which \( f \) is null. If \( M \) is a closed subspace of \( L'(dm) \), the support set of \( M \) (denoted by \( E_M \)) is defined as the complement of a set of maximal measure on which all \( f \in M \) are null. Clearly \( E_f \) and \( E_M \) are defined only up to sets of measure zero.

2. The invariant subspace theorem.

THEOREM 1. Let \( A \) be a logmodular algebra and \( m \) a fixed representing measure such that the part \( P(m) \) contains more than one element. Let \( M \) be a closed sesqui-invariant subspace of \( L'(dm) \) and let \( E \) be the support set of \( M \). Let \( R = M \ominus [I^\infty M] \) and \( L = M^\perp \ominus [I^\infty M^\perp] \) where \( M^\perp = \{ f \in \chi_\mathcal{E} L'(dm) : f \perp M \} \). Then

(3) \( L \) is nontrivial and the support set of \( L \) is \( E \) if and only if \( \chi_E \in \mathcal{E}^2 \) and \( M \) has the form \( M = \chi_E \cdot F \cdot I^\perp \) for some unimodular function \( F \), and

(4) \( R \) is nontrivial and the support set of \( R \) is \( E \) if and only if \( \chi_E \in \mathcal{E}^2 \) and \( M \) has the form \( M = \chi_E \cdot F \cdot (I^\perp + \mathcal{L}^2 \oplus I^\perp) \) for some unimodular function \( F \).

We need several lemmas, the key fact being Lemma 8.

LEMMA 4. Let \( Z \) be the Wermer embedding function. If \( \theta \) is Lebesgue measure on \( T \), then \( \theta(Z(x) : x \in X) = 1 \) and \( m(Z^{-1}(E)) = 0 \) if and only if \( \theta(E) = 0 \), for each measurable subset \( E \) of \( T \). Moreover, if \( F \) in \( L'(d\theta) \) corresponds to \( f \in \mathcal{L}^1 \) under the natural homomorphism \( \Phi \), then \( f(x) = F(Z(x)) \) a.e.

Proof. Suppose that \( \theta(Z(X)) < 1 \). Then there exists a closed set \( K \subseteq T \setminus Z(X) \) such that \( \theta(K) > 0 \). The functions \( f_n(t) = 1/(1 + n\rho(t, K)) \), where \( \rho \) denotes distance, are continuous for each \( n \) and converge to
$\chi_\kappa(t)$ pointwise everywhere and in $L^2(d\theta)$. Let $g_n$ and $g$ denote the images in $L^2$ of $f_n$ and $\chi_\kappa$, respectively, under the natural correspondence. Hence $g_n \rightarrow g$ in $L^2(dm)$ and by passing to a subsequence we may assume that $g_n(x) \rightarrow g(x)$ a.e. $(dm)$. Since the $f_n$ may be approximated by trigonometric polynomials, $g_n(x) = f_n(Z(x))$ a.e. $(dm)$, and the latter sequence converges to zero a.e. $(dm)$ by the definition of the $f_n$. Hence $g(x) = 0$ a.e. $(dm)$. But this contradicts the fact that $g$ corresponds to a nonzero function. Thus $\theta(Z(X)) = 1$.

This also proves that if $\theta(E) > 0$, then $m(Z^{-1}(E)) > 0$. Now suppose that $\theta(E) = 0$, i.e., that $\chi_\kappa(t) = 1$ a.e. $(d\theta)$, where $S = T\setminus E$. Choose closed sets $K_1 \subseteq K_2 \subseteq \cdots \subseteq S$, such that $\theta(K_n) \rightarrow \theta(S)$. Using the argument of the previous paragraph, we can show that the characteristic function of $K_n$ corresponds to that of $Z^{-1}(K_n)$. Thus the characteristic function of $Z^{-1}(K_n)$ converges in $L^2(dm)$ to the function 1. But the characteristic function of $Z^{-1}(K_n)$ also converges to that of $Z^{-1}(\bigcup K_n)$. Thus the latter function is 1 a.e. Thus $m(Z^{-1}(S)) = 1$ so that $m(Z^{-1}(E)) = 0$.

To obtain the last assertion of the lemma, let $F \in L^1(d\theta)$ and $f$ the corresponding function in the isomorphic image of $L^1(d\theta)$ in $L^1(dm)$. Choose a sequence $F_n$ of polynomials in $e^{i\theta}$ and $e^{-i\theta}$ which converge to $F$ in $L^1(d\theta)$ and a.e. Let $f_n$ correspond to $F_n$ so that $f_n \rightarrow f$ in $L^1(dm)$ and can be replaced by a subsequence which converges a.e.

Since $F_n$ are polynomials, $f_n(x) = F_n(Z(x))$ a.e. $(dm)$. Since $F_n(t) \rightarrow F(t)$ a.e. $(d\theta)$, the first part of the lemma implies that $F_n(Z(x)) \rightarrow F(Z(x))$ a.e. $(dm)$. Thus $f(x) = F(Z(x))$ a.e.

**Lemma 5.** If $1 \leq p \leq \infty$, then

$$H^p(dm) = \mathcal{X}^p \oplus I^p$$

where $\oplus$ denotes algebraic direct sum. Denote by $N^p$ the closure of $I^p \oplus I^p$ in $L^p(dm)$ (norm closure for $1 \leq p < \infty$; $w^*$ closure for $p = \infty$). Then

$$L^p(dm) = \mathcal{X}^p \oplus N^p.$$

**Proof.** First assume $1 < p \leq \infty$. If $f \in H^p(dm)$, then $f$ defines a bounded linear functional on $L^q(dm)$ which (via Lumer’s isometry) induces a bounded linear functional on $L^q(d\theta)$, which in turn is represented by some $F \in L^p(d\theta)$. It is easy to show that

$$\int Z^nf dm = \int e^{in\theta} F d\theta$$

for all integers $n$. Hence $F \in H^p(d\theta)$, and by Lumer’s isometry there exists $g \in \mathcal{X}^p$ with
so that $f - g \in I^p$. Hence $H^p(dm) = \mathcal{Z}^p \oplus I^p$, $1 < p \leq \infty$.

Now let $p = 1$ and $f \in H^1(dm)$. Since the lemma holds for $p = 2$ and $H^1$ is the closure of $\mathcal{Z}^2 \oplus I^2$, there exists $g_n \in \mathcal{Z}^2$ and $h_n \in I^2$ such that the functions $f_n = g_n + h_n$ converge in $L^1$ to $f$. We will have shown that $H^1(dm) = \mathcal{Z}^1 \oplus I^1$ if we can establish that $\{g_n\}$ forms a Cauchy sequence. For this it suffices to show that whenever $f = g + h$ for $g \in \mathcal{Z}^2$ and $h \in I^2$, then $\|g\|_1 \leq \|f\|_1$.

Applying Lumer's isometry for $p = 1$ for the second equality and for $p = \infty$ for the fourth, we have

$$
\|g\|_1 = \int_X |g|dm = \int_T |\Phi(g)|d\theta = \sup_{\|q\|_1 \leq 1} \left| \int_T \Phi(g)\Phi(q)d\theta \right| = \sup_{\|q\|_1 \leq 1} \left| \int_X gqdm \right| = \sup_{\|q\|_1 \leq 1} \left| \int_X fgdm \right| \leq \|f\|_1,
$$

where $q$ ranges over $\mathcal{L}$. Thus $H^p(dm) = \mathcal{Z}^p \oplus I^p$, $1 \leq p \leq \infty$.

For the second part of the lemma, denote

$$
M^p = \left\{ f \in L^p(dm) : \int Z^n f dm = 0 \text{ all integers } n \right\}.
$$

It can be shown that $L^p(dm) = \mathcal{L}^p \oplus M^p$ by the same arguments we used for the $H^p$ case. We can complete the proof of the lemma by showing that $M^p = N^p$, $1 \leq p \leq \infty$.

Clearly $N^p \subseteq M^p$. Let $f \in M^p$. Since $H^p(dm) \oplus H^p(dm)$ is dense in $L^p(dm)$ [5, Th. 6.7, p. 305] and $H^p(dm) = \mathcal{Z}^p \oplus I^p$ by the first part of the lemma, we can choose $g_n \in \mathcal{L}^p$ and $h_n \in N^p$ such that

$$
\int k(g_n + h_n)dm \longrightarrow \int kfdm
$$

for all $k \in L^s(dm)$. Write $k = k_1 + k_2$ where $k_1 \in \mathcal{L}^q$ and $k_2 \in M^q$. Thus

$$
\int k_1 g_n dm = \int k_1(g_n + h_n)dm \longrightarrow \int k_1 fdm = 0.
$$

Also $\int k_2 g_n dm = 0$. Thus $\int k g_n dm \to 0$. Since the subspace $N^p$ is norm closed for $1 \leq p \leq \infty$, it is also weakly closed, so $f \in N^p$. If $p = \infty$, clearly $f \in N^\infty$.

**Lemma 6.** Let $M$ be a closed sesqui-invariant subspace of $L^q(dm)$, and let $R = M \ominus [I^\infty M]$. If $f \in R$ and $E_f$ is the support set of $f$, write $\tilde{f}$ for the characteristic function of $E_f$. Then $\tilde{f} \perp I^2$.

**Proof.** Observe that for any $f, g \in R$ the function $fg$ is orthogonal
to both $I^\infty$ and $\tilde{I}^\infty$. For if $h \in I^\infty$, $gh \in I^\infty M$ so that $f \perp gh$, i.e., $fg \perp h$.

Similarly $fg \perp I^\infty$. In particular $|f|^2 = \tilde{f}^\alpha \perp I^\infty$ and $\tilde{I}^\infty$. It follows easily from Lemma 5 that $|f|^2$ lies in $\mathcal{L}^2$. If $F$ is the function in $L^1(d\theta)$ corresponding to $|f|^2$, we have $|f(x)|^2 = F(Z(x))$ by Lemma 4. In particular $f(x) = 0$ if and only if $F(Z(x)) = 0$ so that $\tilde{f} = \tilde{F}^\alpha Z$. Since $\tilde{F} \in L^2(d\theta)$, it follows that $\tilde{f} \in \mathcal{L}^2$, i.e., $\tilde{f} \perp I^2$.

**Lemma 7.** Suppose that $M$ is a closed sesqui-invariant subspace of $L^2(dm)$ and let $R = M \ominus [I^\infty M]$. Then there exists $f \in R$ with $E_f = E_R$.

**Proof.** If $f, g \in R$, note that there exists $h \in R$ with $E_h = E_f \cup E_g$. For let $F = E_g \setminus E_f$. Then $\chi_F \in \mathcal{L}^2$ by Lemma 6, $\chi_F g \in R$. Then $f + \chi_F g \in R$ and has support set $E_f \cup E_g$. Now let $\alpha = \sup \{m(E_f) : f \in R\}$. Choose $f_n \in R$ with $m(E_{f_n}) \to \alpha$ and $E_{f_1} \subseteq E_{f_2} \subseteq \cdots$. Alter the functions $f_n$ by the technique above so that their supports are disjoint. Then $f_0 = \sum_{n=1}^{\infty} 2^{-n} f_n \in R$ and has support $G$ with $m(G) = \alpha$. If $m(E_h) > \alpha$, then there would exist a set of positive measure in $E_h \setminus G$ and a function $g \in R$ such that $g$ would not vanish on that set. But then $E_{f_0} \cup E_g$ is the support set for some function in $R$, although $m(E_{f_0} \cup E_g) > \alpha$. This contradiction shows that $E_{f_0} = E_R$.

**Lemma 8.** Let $M$ be a closed sesqui-invariant subspace of $L^2(dm)$, $R = M \ominus [I^\infty M]$, and let $E$ be the support set of $R$. Then there exists a unimodular function $F \in L^2(dm)$ such that $\chi_F F \in R$. If $m(E) = 1$, then $F \in R$.

**Proof.** By Lemma 7, there exists $f \in R$ with $E_f = E$. Define

$$F(x) = \begin{cases} |f(x)| & x \in E \\ 1 & x \in E \end{cases}$$

Then $|F(x)| = 1$ a.e., and $f = F |f|$. As in the proof of Lemma 6, since $f \in R$, there exists a function $F \in L^1(d\theta)$ such that $|f(x)|^2 = F(Z(x))$ a.e. Thus $F \geq 0$ a.e. and $\sqrt{F} \in L^2(dm)$. Let $h$ be the function in the isomorphic image of $L^1(dm)$ corresponding to $\sqrt{F}$. By Lemma 4, $\sqrt{F}(Z(x)) = h(x)$ a.e., i.e., $|f| = h \in \mathcal{L}^2$. It follows that $f = F |f| \in F \mathcal{L}^2$. Clearly $[Z^nf] \subseteq F \mathcal{L}^2$ for all integers $n$. Writing $N = [Z^nf]$, we have $\tilde{F}N = [Z^n \tilde{F}f]$. But $Z^n \tilde{F}f = Z^n(|f| |f|)f = Z^n |f|$ on $E$, and is zero off $E$. Therefore $Z^n \tilde{F}f \in \mathcal{L}^2$, so that $\tilde{F}N \subseteq \mathcal{L}^2$. However, $\tilde{F}N$ is invariant under $Z$ and $\tilde{Z}$, so that its isomorphic image in $L^2(d\theta)$ is doubly invariant and must have the form $QL^2(d\theta)$ where $Q = Q^2 \in L^2(dm)$. Thus $\tilde{F}N = q \mathcal{L}^2$ where $q$ is the corresponding idempotent in $\mathcal{L}^2$. It is clear from the
definition of $N$ that $q = \chi_E$. Hence $N = F\chi_E L^2$, so that $F\chi_E \in N \subseteq R$.

**Remark.** If $M$ is a closed sesqui-invariant subspace of $L^2(dm)$, then $M^\perp$ (as defined earlier) is a closed subspace of $L^2(dm)$ invariant under $\tilde{H}^\infty(dm)$ and $Z$. Let $L = M^\perp \ominus [\tilde{I}^\infty M^\perp]$. Then dual forms of Lemma 6, 7, and 8 hold with $L$ in place of $R$.

**Proof of Theorem 1.** First we assume that $M = \chi_E FI^2$ for some unimodular function $F$ and that $\chi_E \in \mathcal{L}^2$ and show that $\chi_E F \in L$, so that $E_L = E$. To this end let $h \in I^2$. Then

$$\int \chi_E F^* \chi_E F h dm = \int \chi_E h dm = 0$$

by assumption, so that $\chi_E F \in M^\perp$. To see that $\chi_E F \perp \tilde{I}^\infty M^\perp$, let $h \in I^\infty$ and $k \in M^\perp$. It suffices to show that $\chi_E F \perp \tilde{h} k$, i.e., that $\chi_E F h \perp k$. But this follows since $k \perp M$. A dual argument shows that $M = \chi_E F(\tilde{I}^2)^\perp$ and $\chi_E \in \mathcal{L}^2$ imply that $\chi_E F \in R$ so that $E_R = E$.

Conversely, let us suppose that $E_L = E$. By Lemma 8, there exists a unimodular function $F \in L^2(dm)$ such that $\chi_E F \in L$. It follows that

$$\chi_E F h dm = \chi_E h dm = 0$$

To prove the first inclusion in (5) it suffices to show that $M^\perp \supseteq F\tilde{H}_m^\infty$ where this time $M^\perp$ denotes the orthogonal complement in all of $L^2(dm)$. Thus let $h \in A_m$, so that $h M \subseteq M$ and $\chi_E F \perp h M$. Since the functions in $M$ vanish off $E$ by assumption it follows that $F \perp h M$, i.e., $F\tilde{h} \perp M$, so that $F\tilde{H}_m^\infty \subseteq M^\perp$ as required.

To obtain the second inclusion, let $g \in I^\infty$ and suppose that $f \perp M$ in $\chi_E L^2(dm)$. It follows easily from Lemma 5 that $I^\infty$ is dense in $I^2$. Thus it suffices to show that $\chi_E F g \perp f$, i.e., that $\chi_E F \perp \tilde{g} f$. But this follows since $\chi_E F \perp \tilde{I}^\infty M^\perp$ by construction.

Multiplying (5) by $\tilde{F}$ we have

$$F H^2(dm) \supseteq M \supseteq \chi_E FI^2.$$  

We use the invariance of $M$ under $\tilde{Z}$ to show that $\tilde{F} M = \chi_E I^2$. For let $f \in \tilde{F} M$ and write $f = f_1 + f_2$ where $f_1 \in \mathcal{L}^2$, $f_2 \in I^2$. By Lemma 6, $\chi_E \in \mathcal{L}^2$ so that

$$f = \chi_E f = \chi_E f_1 + \chi_E f_2$$

is the unique orthogonal decomposition of $f$ into $\mathcal{L}^2$ and $I^2$. However, since $f$ and $\chi_E f_2$ are both in $H^2$ (Lemma 1), it follows that $\chi_E f_1 \in H^2$. Therefore $\chi_E f_1 \in \mathcal{L}^2$. But $\chi_E f_1$ vanishes on the complement of $E$ so that either (i) $m(E) = 1$, or (ii) $\chi_E f_1 = 0$.

If case (i) holds, $H^2 \supseteq \tilde{F} M \supseteq I^2$ so that either $\tilde{F} M = I^2$ or there
exists \( f \in \overline{FM} \) with \( \int \overline{Z}^* f dm \neq 0 \) for some nonnegative integer \( n \). By considering the least integer for which such an \( f \) exists, it is not hard to see that \( \overline{FM} \) would not be invariant under \( \overline{Z} \). Thus \( M = FI^2 \).

If case (ii) holds, \( f = \chi_{E} f \in I^2 \) and \( \chi_{E} f = f \in \chi_{E} I^2 \). Thus \( \overline{FM} \subseteq \chi_{E} I^2 \). Together with (6) this implies that \( \overline{FM} = \chi_{E} I^2 \). So that \( M = \chi_{E} \cdot F \cdot I^2 \).

We turn now to case (4) in which \( R \) is nontrivial and the support of \( (R) = E \). Let \( N = M^1 = \{ f \in L^q(dm) : E^c \subseteq E \} \) and \( f \perp M \). Then \( N \) is the complex conjugate of a sesqui-invariant subspace and

\[
N^\perp \ominus [I^\infty N^\perp] = M \ominus [I^\infty M] = R.
\]

We apply (a trivial modification of) the first part of the theorem to \( N \). For this we need to know that \( E^c = E \). If \( G = E \cap E^c \) is not the null set, then \( \chi_{G} \cdot L^q(dm) \subseteq M \) which is not possible. Thus \( E^c = E \) and \( N = \chi_{E} \cdot F \cdot I^2 \) for some unimodular function \( F \). Hence

\[
M = N^\perp = \chi_{E} F \cdot (I^2)^\perp = \chi_{E} F \cdot (\mathbb{C}^2 \ominus I^2).
\]

We now extend the main result to a more general class of subspaces of \( L^q(dm) \).

**Theorem 2.** Let \( M \) be a closed sesqui-invariant subspace of \( L^q(dm) \). Let \( M_1 = \{ f \in M : f \cdot L^\infty(dm) \subseteq M \} \) and \( M_2 = M \ominus M_1 \), and \( R = M_2 \ominus [I^\infty M] \). Assume that \( E_2 \), the support set of \( M_2 \) is the same as the support set of \( R \). Then

\[
M = \chi_{E_1} \cdot L^q(dm) \ominus \chi_{E_2} \cdot F \cdot I^2
\]

where \( F \) is unimodular, \( E_1 \) is the support set of \( M_1 \) and \( \chi_{E_2} \perp I^2 \).

**Proof.** Since \( M_1 \) is a closed doubly invariant subspace of \( L^q(dm) \), there exists a measurable set \( E_1 \subseteq X \) such that \( M_1 = \chi_{E_1} \cdot L^q(dm) \) (see Helson [2, Th. 2, p. 7]). It is easy to check that

\[
M_2 = \{ f \in M : f \equiv 0 \quad \text{on} \quad E_1 \}.
\]

Since \( M \) is sesqui-invariant, \( M_2 \neq \{0\} \), and is itself sesqui-invariant. By Theorem 1, \( M_2 = \chi_{E_2} \cdot F \cdot I^2 \) for some \( \chi_{E_2} \perp I^2 \) and \( F \) unimodular.

The final theorem of this section characterizes the invariant subspaces of \( L^p(dm) \) for \( 1 \leq p \leq \infty \).

**Theorem 3.** Fix \( p \) in the range \( 1 \leq p \leq \infty \). Let \( M \) be a closed sesqui-invariant subspace of \( L^p(dm) \) and let \( E \) be the support set of \( M \). Let \( R = \{ f \in M \cap L^q : f \perp I^\infty M \} \) and \( L = \{ f \in M^1 \cap L^q : f \perp I^\infty M^1 \} \) where \( q \) is the conjugate index to \( p \) and \( M^1 = \{ f \in \chi_{E} \cdot L^q(dm) : f \perp M \} \).
Then

(i) \( M = \chi_E \cdot F(\mathcal{L}^p + I^p) \) where \( \chi_E \in \mathcal{L}^2 \) and \( F \) is a unimodular function if and only if \( E \) is the support set for \( R \).

(ii) \( M = \chi_E \cdot F \cdot I^p \) where \( \chi_E \in \mathcal{L}^2 \) and \( F \) is a unimodular function if and only if \( E \) is the support set for \( L \).

**Proof.** It is easy to show that if \( M \) has form (i) or (ii) then \( E \) is the support set of \( R \) or \( L \), respectively. Let us prove the converse.

First we prove the theorem for \( p = 1 \). Suppose that \( E \) is the support set of \( R \). Let \( N = M \cap L^2(dm) \); \( N \) is a closed sesqui-invariant subspace of \( L^2(dm) \). Let \( R^* = \{ f \in N : f \perp I^N \} \). Since \( R \subset R^* \), we get \( E \) is the support set of \( R^* \) which in turn is the support set for \( N \). Applying the \( L^2 \) invariant subspace theorem to \( N \), we get \( N = \chi_E \cdot F(\mathcal{L}^2 + I^2) \). Since \( N \subseteq M \), we get \( \chi_E \cdot F(\mathcal{L}^2 + I^2) \subseteq M \). For \( f \in M \), define \( k = |f|^2 \) for \( |f| \geq 1 \) and \( 1 \) for \( |f| < 1 \). Take \( h \in H^1(dm) \) outer such that \( |h| = k \). It is easy to see that \( 1/h \in H^1(dm) \) and therefore \( f/h \in M \). Since \( f/h \in L^1(dm) \) also, we get \( f/h \in N = \chi_E \cdot F(\mathcal{L}^2 + I^2) \) and therefore \( f \in \chi_E \cdot F(\mathcal{L}^2 + I^2) \). Thus we get \( M = \chi_E \cdot F(\mathcal{L}^2 + I^2) \). When \( E \) is the support set for \( L \), we get \( M = \chi_E \cdot F \cdot I^1 \) by applying an argument similar to the above.

Now let us prove the theorem for \( p = \infty \). Suppose that \( E \) is the support set for \( R \). Let \( N = [M] \) (where \([ \] \) denotes closure in \( L^2(dm) \). Let \( R^* = \{ f \in N : f \perp I^N \} \). It is clear that \( E \) is the support set for \( N \) which in turn is the support set for \( R^* \). By the \( L^2 \) invariant subspace theorem we get \( N = \chi_E \cdot F(\mathcal{L}^2 + I^2) \). Since \( M \subseteq N \cap L^\infty(dm) \), we get \( M \subseteq \chi_E \cdot F(\mathcal{L}^\infty + I^\infty) \). By applying the \( L^1 \) invariant subspace theorem to \( M \), we get \( M^1 = \chi_E \cdot G \cdot I \), \( |G| = 1 \). It is easy to see that \( \chi_E \cdot G \perp \chi_E \cdot F(\mathcal{L}^\infty + I^\infty) \) and therefore \( M = \chi_E \cdot F(\mathcal{L}^\infty + I^\infty) \). When \( E \) is the support set for \( L \), we get \( M = \chi_E \cdot F \cdot I^\infty \) by applying an argument similar to the above. The proof for \( 1 < p < 2 \) is similar to the one for \( p = 1 \) and that for \( 2 < p < \infty \) is similar to the one for \( p = \infty \). Thus the theorem is true for \( 1 \leq p \leq \infty \).

3. Applications. We give an example of a logmodular algebra and a representing measure \( m \) for which \( I^2 \) is nontrivial and show that the above theorems, together with known results, completely characterize the invariant subspaces of \( L^2(dm) \).

**Example 1.** Let \( T = \{ \lambda \in \mathbb{C} : |\lambda| = 1 \} \) and let \( A = A(T^2) \) be the logmodular algebra of continuous functions on \( T^2 \) which are uniform limits of polynomials in \( e^{in\theta}e^{im\varphi} \) where

\[(n, m) \in S = \{(n, m) : n > 0\} \cup \{(0, m) : m \geq 0\} \text{.}

The maximal ideal space of \( A \) can be identified with
with normalized Haar measure $m$ identified with $\theta = \varphi = 0$. The part of $m$ is $\{0\} \times \{\varphi : |\varphi| < 1\}$. The Wermer embedding function is given by $Z = e^{i\varphi}$, $\mathbb{R}^2$ is the $L^2$ closure of the polynomials in $e^{im\varphi}, m = 0, 1, \ldots$, and $I^2$ is the $L^2$ closure of the polynomials in $e^{in\varphi}e^{im\varphi}$ for $n \geq 1$.

Let now $M$ be a closed invariant subspace of $L^2(dm)$. Observe that $M$ is doubly invariant if and only if $e^{i\theta}M = M$. In this case $M = \chi_{E_1} \cdot L^2(dm)$, for some measurable set $E \subseteq T^2$.

If $M \ominus e^{i\theta}M \neq \{0\}$ and $M = e^{i\varphi}M$ we show that $R \neq \{0\}$ and that $E_R = E_2$ (see Theorem 2). To see that $R = M \ominus e^{i\theta}M$, let $g \in M$, $g \perp e^{i\theta}M$. Since $M$ is sesqui-invariant $g \perp e^{-in\varphi}e^{i\theta}M$, for $m = 1, 2, \ldots$. Hence $g \perp [I^\infty M]$.

Define $M_1 = \{f \in M; e^{-in\varphi}f \in M, n = 1, 2, \ldots\}$ and $M_2 = M \ominus M_1$. Then $M_1 = \chi_{E_1} \cdot L^2(dm)$ for some measurable $E_1$. We show that Theorem 2 applies to $M_2$. Let $K$ be the complement of $E_R$ in $T^2$.

Since $\chi_K \in L^2$, we get $\chi_K M_2 \subseteq M_2$. Also $\chi_K \cdot M_2 \perp R$ so $\chi_K M_2 \perp e^{i\theta}M_2$ and therefore $\chi_K M_2 = \chi_K(e^{i\theta}M_2)$. But $M_2$ cannot contain a doubly invariant subspace, so $E_R = E_2$. Theorem 2 applies and

$$M_2 = \chi_{E_2} \cdot F'(I^2)$$

for some unimodular function $F'$. Writing $F = e^{-i\theta}F'$, we have $M_2 = \chi_{E_2} \cdot F' \cdot I^2$. Note that the proofs of Lemmas 4, 6, and 7 are much simpler for the torus case than for the general case.

If $M \ominus e^{i\varphi}M \neq \{0\}$, then $M = FH^2$ by the generalized Beurling theorem.

Suppose that we now replace $T \times T$ with $B \times T$, where $B$ is the Bohr compactification of the real line and consider $A = A(B \times T)$. Again Haar measure is associated with a nontrivial part. Denote by $\chi_x(x)$ the characters on $B$, where $x \in R$. $I^2$ is generated by the characters $\chi_\tau(x)e^{i\tau}$ for $\tau > 0$. Clearly (3) holds for $M = \chi_{I^2}$ and (4) holds for $M = \chi_{(I^2 \ominus L^2)}$, for any fixed $\tau$. However one can use the example in Helson and Lowdenslager [4] to construct a sesqui-invariant subspace of $H^2(dm)$ for which both $L$ and $R$ are trivial.

References


Received October 4, 1968. The first named author was partially supported by NSF grant GP 7548 at the University of Rochester.

THE UNIVERSITY OF ROCHESTER
ROCHESTER, NEW YORK
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN
Stanford University
Stanford, California

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. R. PHELPS
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF UTAH
UNIVERSITY OF CALIFORNIA
WASHINGTON STATE UNIVERSITY
MONTANA STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON
CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY
TRW SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsuisha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.
Gregory Frank Bachelis, *Homomorphisms of annihilator Banach algebras. II* .......................................................... 283
Leon Bernstein and Helmut Hasse, *An explicit formula for the units of an algebraic number field of degree \( n \geq 2 \) ................................................. 293
David W. Boyd, *Best constants in a class of integral inequalities* ............. 367
Paul F. Conrad and John Dauns, *An embedding theorem for lattice-ordered fields* ................................................................. 385
H. P. Dikshit, *Summability of Fourier series by triangular matrix transformations* .......................................................... 399
Dragomir Z. Djokovic, *Linear transformations of tensor products preserving a fixed rank* .................................................. 411
John J. F. Fournier, *Extensions of a Fourier multiplier theorem of Paley* ............ 415
Lawrence Louis Larmore, *Twisted cohomology and enumeration of vector bundles* .......................................................... 437
William Grenfell Leavitt and Yu-Lee Lee, *A radical coinciding with the lower radical in associative and alternative rings* ............... 459
Samuel Merrill and Nand Lal, *Characterization of certain invariant subspaces of \( H^p \) and \( L^p \) spaces derived from logmodular algebras* ................................................................. 463
Sam Bernard Nadler, Jr., *Multi-valued contraction mappings* .................. 475
T. V. Panchapagesan, *Semi-groups of scalar type operators in Banach spaces* ............................................................. 489
J. W. Spellmann, *Concerning the infinite differentiability of semigroup motions* ............................................................. 519
H. M. (Hari Mohan) Srivastava, *A note on certain dual series equations involving Laguerre polynomials* .................................. 525
Ernest Lester Stitzinger, *A nonimbedding theorem of associative algebras* ............................................................. 529
J. Jerry Uhl, Jr., *Martingales of vector valued set functions* ...................... 533
Gerald S. Ungar, *Conditions for a mapping to have the slicing structure property* ............................................................. 549
John Mays Worrell Jr., *On continuous mappings of metacompact Čech complete spaces* ............................................................. 555