Pacific Journal of Mathematics

CONCERNING THE INFINITE DIFFERENTIABILITY OF SEMIGROUP MOTIONS

J. W. SPELLMANN

Vol. 30, No. 2

October 1969

CONCERNING THE INFINITE DIFFERENTIABILITY OF SEMIGROUP MOTIONS

J. W. SPELLMANN

Let S be a real Banach space. Let C denote the infinitesimal generator of a strongly continuous semigroup T of bounded linear transformations on S. This paper presents a construction which proves that for each b > 1 there is a dense subset D(b) of S so that if p is in D(b), then

(A) p is in the domain of C^n for all positive integers n and (B) $\lim_{n\to\infty} ||C^np|| (n!)^{-b} = 0.$

Condition (B) will be used in §3 to obtain series solutions to the partial differential equations $U_{12} = CU$ and $U_{11} = CU$.

Suppose G is a strongly continuous one-parameter group of bounded linear transformations on S which has the property that there is a positive number K so that |G(x)| < K for all numbers x. Let A denote the infinitesimal generator of G. In 1939, Gelfand [1] presented a construction which showed there is a dense subset R of S so that if p is in R, then

(C) p is in the domain of A^n for all positive integers n and

(D) $\lim_{n\to\infty} ||A^np|| (n!)^{-1} = 0.$

Hille and Phillips, in their work on Semigroups [2], used Gelfand's construction to prove there is a dense subset R of S which satisfies condition (A) with respect to the operator C. Hille and Phillips, however, do not present estimates on the size of $||C^np||$. Also, this author has not been able to use their construction to obtain estimates on the size of $||C^np||$.

2. Infinite differentiability of semigroup motions. Let b > 1. Let a be a number so that 1 < a < b. Let M be a positive number so that |T(X)| < M for all nonnegative numbers x less than or equal $\sum_{n=1}^{\infty} n^{-a}$. For each point p in the domain of C (denoted by D_c) and each positive integer n, let p(n + 1, n) = p. For each point p in D_c and each pair (k, n) of positive integers so that $k \leq n$, let

$$p(k, n) = k^a \int_0^{k^{-a}} du T(u) p(k+1, n)$$
.

THEOREM 1. Suppose p is in D_c and each of k and n is a positive integer. Then

$$|| p(k, k + n - 1) || \leq M || p ||$$
.

Proof. Let $w = \prod_{j=0}^{n-1} (k+j)^a$. For each nonnegative integer j,

let $r(j) = (k + j)^{-a}$. Then

$$egin{aligned} &\|p(k,\,k\,+\,n\,-\,1)\,\|\ &=w\left\|\int_{_{0}^{r(0)}}^{^{r(0)}}\!du_{_{0}}T(u_{_{0}})\!\int_{_{0}^{^{r(1)}}}^{^{r(1)}}\!du_{_{1}}T(u_{_{1}})\,\cdots\,\int_{_{0}^{^{r(n-1)}}}^{^{r(n-1)}}\!du_{_{n-1}}T(u_{_{n-1}})p\,
ight\|\ &=w\left\|\int_{_{0}^{^{r(0)}}}^{^{r(0)}}\!du_{_{0}}\!\int_{_{0}^{^{r(1)}}}^{^{r(1)}}\!du_{_{1}}\,\cdots\,\int_{_{0}^{^{r(n-1)}}}^{^{r(n-1)}}\!du_{_{n-1}}T(u_{_{0}}\,+\,u_{_{1}}\,+\,\cdots\,+\,u_{_{n-1}})p\,
ight\|< M\,\|\,p\,\|\ . \end{aligned}$$

THEOREM 2. Suppose p is in D_c and k is a positive integer. Then

$$|| \ p(k, \, k) - \, p \, || \leq M \, || \, Cp \, || \, k^{_-a}$$
 .

Proof. Theorem 2 follows from the definition of p(k, k) and the fact that $T(x)p - p = \int_{0}^{x} du T(u)Cp$ for all x > 0.

THEOREM 3. Suppose p is in D_c and each of k and n is a positive integer. Then

 $||\, p(k,\,k\,+\,n)\,-\,p(k,\,k\,+\,n\,-\,1)\,||\,\leq\,M^{st}\,||\,Cp\,||\,(k\,+\,n)^{-a}$.

Proof. Let w and r(j) be defined as in the proof of Theorem 1. Then

$$egin{aligned} &\| p(k,\,k\,+\,n)\,-\,p(k,\,k\,+\,n\,-\,1)\,\| \ &=(k\,+\,n)^a w\, \Big\| \int_0^{r(0)}\!du_0\,T(u_0)\cdots\int_0^{r(n-1)}\!du_{n-1}\,T(u_{n-1})\!\!\left[\int_0^{r(n)}\!du_n(\,T(u_n)\,p\,-\,p)
ight] \Big\| \ &=(k\,+\,n)^a w\, \Big\| \int_0^{r(0)}\!du_0\,\cdots\int_0^{r(n-1)}\!du_{n-1}\,T(u_0\,+\,\cdots\,+\,u_{n-1}) \ & \left[\int_0^{r(n)}\!du_n(\,T(u_n)\,p\,-\,p)
ight] \Big\| < M^2\,\|\,Cp\,\|\,(k\,+\,n)^{-a}\,. \end{aligned}$$

COROLLARY. Suppose p is in D_c and k is a positive integer. Then the sequence

$$S(p, k)$$
: $p(k, k), p(k, k + 1), p(k, k + 2)$,

converges in S.

Proof. Theorem 3 and the fact that $\sum_{n=0}^{\infty} (k+n)^{-a}$ converges imply S(p, k) is a cauchy sequence in S. Since S is complete, S(p, k) will converge.

For each point p in D_c and each positive integer k, let the sequential limit point of S(p, k) be denoted by p_k . Let

D(b): $\{p_k \mid p \text{ is in } D_c \text{ and } k \text{ is a positive integer}\}$.

THEOREM 4. Suppose p_k is in D(b). Then $p_k \leq M \parallel p \parallel$.

520

Proof. Theorem 4 follows from Theorem 1 and the fact that p_k is the sequential limit point of S(p, k).

THEOREM 5. D(b) is a dense subset of S.

Proof. Suppose q is in S and q is not in D(b). Let $\varepsilon > 0$. Since D_c is a dense subset of S, there is a point p in D_c so that

 $(1) \quad || \, p - q \, || < arepsilon/3.$

Theorem 2 implies there is a positive integer k so that

 $(2) || p(k, k) - p || < \varepsilon/3 \, \, {
m and} \,$

 $(\ 3\) \quad (M+1)^2 \,||\, Cp\,||\sum_{n=0}^\infty {(k\,+\,n)^{-a}} < arepsilon/3.$

Theorem 2, Theorem 3 and statement (3) imply there is a p_k in D(b) so that

 $(4) \quad || p_k - p(k,k) || < \varepsilon/3.$

Statements (1), (2) and (4) imply $|| p_k - q || < \varepsilon$. Thus, D(b) is a dense subset of S.

THEOREM 6. Suppose p_k is in D(b). Then

$$p_{k} = k^{a}\!\!\int_{_{0}}^{_{k}-a}\!\!du\,T(u)p_{_{k+1}}$$
 .

Proof. Let $\varepsilon > 0$. Then there is a positive integer n so that (1) $|| p(k, k + n) - p_k || < \varepsilon/2$ and

 $(\ 2\) \quad ||\ p(k+1,\,k+n) - p_{_{k+1}}|| < arepsilon/2M.$

Statement (2) implies

 $(3) \quad \left\| p(k,\,k+n) - k^a \int_0^{k^{-a}} du \, T(u) p_{k+1}
ight\| < arepsilon/2 \; .$

Theorem 6 now follows from statements (1) and (3).

THEOREM 7. The elements of D(b) satisfy conditions (A) and (B).

Proof. Suppose p_k is an element of D(b). Theorem 6 implies p_k is in the domain of C^n for all positive integers n and that

(1) $C^n p_k = \prod_{j=0}^{n-1} (k+j)^a \prod_{j=0}^{n-1} [T(1/(k+j)^a) - I] p_{k+n}$. Thus, the elements of D(b) satisfy condition (A). Statement (1) and Theorem 2 imply

(2) $||C^{n}p_{k}|| \leq [\prod_{j=0}^{n-1} (k+j)^{a}](M+1)^{n+1} ||p||$. Statement (2) implies p_{k} satisfies condition (B). The proof of Theorem 7 is now complete.

3. Partial differential equations in a banach space. The results of §2 will be used in this section to obtain series solutions to the partial differential equations $U_{12} = CU$ and $U_{11} = CU$. Solutions to these equations may be easily obtained if C is a bounded linear

521

transformation. The transformation C, however, may be unbounded; that is, C may be discontinuous at each point where it is defined.

For each subset D of S, let P(D) denote the set of all functions g for which there is a nonnegative integer n and a sequence p_0, p_1, \dots, p_n each term of which is in D so that

$$g(x) = \sum_{i=0}^{n} x^{i} p_{i}$$

if $x \ge 0$. If D is a dense subset of S, it may be shown that P(D) is a dense subset of the set of continuous functions from [0, d](d > 0) to S.

THEOREM 8. Let d > 0. Let b be a number so that 1 < b < 2. Suppose each of g and h is a function in P(D(b)) so that g(0) = h(0). Then there is a function U from $[0, d] \times [0, d]$ to S so that

(i) $U_{12}(x, y) = CU(x, y)$ for all (x, y) in $[0, d] \times [0, d]$,

(ii) U(x, 0) = g(x) for all x in [0, d] and

(iii) U(0, y) = h(y) for all y in [0, d].

Proof. Suppose n is a nonnegative integer and p_0, p_1, \dots, p_n is a sequence each term of which is in D(b) so that

$$g(x) = \sum_{i=0}^n x^i p_i$$

if $x \ge 0$. Suppose *m* is a nonnegative integer and q_0, q_1, \dots, q_m is a sequence each term of which is in D(b) so that

$$h(y) = \sum_{i=0}^n y^i q_i$$

if $y \ge 0$. Let U be the function from $[0, d] \times [0, d]$ to S so that if (x, y) is in $[0, d] \times [0, d]$, then

$$egin{aligned} (1) \quad U(x,y) &= \sum_{i=1}^n x^i p_i + \sum_{i=0}^m y^i q_i \ &+ \sum_{i=1}^n \sum_{k=1}^\infty (xy)^k x^i C^k p_i / (k!) (i+1) \cdots (i+k) \ &+ \sum_{i=0}^m \sum_{k=1}^\infty (xy)^k y^i C^k q_i / (k!) (i+1) \cdots (i+k). \end{aligned}$$

Theorem 7 implies U is well defined on $[0, d] \times [0, d]$. Theorem 7 and the fact that C is a closed transformation imply $U_{12}(x, y) = CU(x, y)$ for all (x, y) in $[0, d] \times [0, d]$. Statement (1) implies U(x, 0) = g(x)and U(0, y) = h(y) for all (x, y) in $[0, d] \times [0, d]$.

THEOREM 9. Let d > 0. Let b be a number so that 1 < b < 2. Suppose each of g and h is a function in P(D(b)). Then there is a function U from $[0, d] \times [0, d]$ to S so that

$$(i) \quad U_{_{11}}(x, y) = CU(x, y) \,\, for \,\, all \,\, (x, y) \,\, in \,\, [0, d] imes [0, d] \,,$$

(ii) U(0, y) = g(y) if y is in [0, d] and

(iii) $U_1(0, y) = h(y)$ if y is in [0, d].

Proof. Let each of g and h be defined as in the proof of Theorem 8. Then let U be the function from $[0, d] \times [0, d]$ to S so that for each (x, y) in $[0, d] \times [0, d]$,

$$egin{aligned} (1) \quad U(x,y) &= \sum_{i=0}^n y^i p_i + x \sum_{i=0}^m y^i q_i \ &+ \sum_{i=0}^n \sum_{k=1}^\infty x^{2k} y^i C^k p_i / ((2k)!)(i+1) \cdots (i+k) \ &+ \sum_{i=0}^m \sum_{k=1}^\infty x^{2k+1} y^i C^k q_i / ((2k+1)!)(i+1) \cdots (i+k). \end{aligned}$$

An argument analogous to that used in Theorem 8 may be used to show U is well defined on $[0, d] \times [0, d]$ and that U satisfies conditions (i), (ii) and (iii) in the hypothesis of this theorem.

REMARKS. (1) The solution U to the Theorem 8 has the property that for each (x, y) in $[0, d] \times [0, d]$, is in the domain of C^n for all positive integers n. The same remark is true for the solution to the equation in Theorem 9.

(2) Theorem 5 implies there are solutions to $U_{12} = CU$ and $U_{11} = CU$ for a set of boundary functions which is dense in the set of continuous functions from [0, d] to S.

(3) Theorem 9 and Theorem 5 imply there are solutions to the ordinary differential equation y'' = Cy for a dense set of initial values for y(0) and y'(0).

References

1. I. Gelfand, On one-parametrical groups of operators in a normed space, Comptes Rendus (Doklady) de l'Academie des Sciences de l'URSS 25 (1939), 713-718.

2. E. Hille and R. S. Phillips, *Functional analysis and semigroups*, rev. ed., Amer. Math. Soc. Colloq. Pub. 31, 1957.

Received August 1, 1968. This paper is part of the author's doctoral dissertation which was directed by Professor John W. Neuberger.

EMORY UNIVERSITY AND UNIVERSITY OF FLORIDA

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN Stanford University Stanford, California

R. R. PHELPS University of Washington Seattle, Washington 98105 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH	B. H. NEUMANN	F. WOLF	K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA	STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY	UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA	UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY	* * *
OREGON STATE UNIVERSITY	AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON	CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY	TRW SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA	NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. **36**, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

Pacific Journal of Mathematics Vol. 30, No. 2 October, 1969

Gregory Frank Bachelis, <i>Homomorphisms of annihilator Banach algebras</i> .	283
Leon Bernstein and Helmut Hasse, An explicit formula for the units of an algebraic number field of degree $n \ge 2$	293
David W. Boyd, Best constants in a class of integral inequalities	367
Paul F. Conrad and John Dauns, <i>An embedding theorem for lattice-ordered fields</i>	385
H. P. Dikshit, Summability of Fourier series by triangular matrix transformations	399
Dragomir Z. Djokovic, <i>Linear transformations of tensor products</i> preserving a fixed rank	411
John J. F. Fournier, <i>Extensions of a Fourier multiplier theorem of Paley</i>	415
Robert Paul Kopp, A subcollection of algebras in a collection of Banach spaces	433
Lawrence Louis Larmore, <i>Twisted cohomology and enumeration of vector</i> <i>bundles</i>	437
William Grenfell Leavitt and Yu-Lee Lee, A radical coinciding with the lower radical in associative and alternative rings	459
Samuel Merrill and Nand Lal, Characterization of certain invariant subspaces of H^p and L^p spaces derived from logmodular	
algebras	463
Sam Bernard Nadler, Jr., <i>Multi-valued contraction mappings</i>	475
T. V. Panchapagesan, Semi-groups of scalar type operators in Banach	
spaces	489
J. W. Spellmann, <i>Concerning the infinite differentiability of semigroup</i>	
motions	519
H. M. (Hari Mohan) Srivastava, A note on certain dual series equations	505
involving Laguerre polynomials	525
Ernest Lester Stitzinger, A nonimbedding theorem of associative algebras	529
J. Jerry Uhl, Jr., Martingales of vector valued set functions	533
Gerald S. Ungar, <i>Conditions for a mapping to have the slicing structure</i>	555
property	549
John Mays Worrell Jr., On continuous mappings of metacompact Čech	
complete spaces	555