NOTE ON SOME SPECTRAL INEQUALITIES OF C. R. PUTNAM

STERLING K. BERBERIAN
NOTE ON SOME SPECTRAL INEQUALITIES
OF C. R. PUTNAM

S. K. BERBERIAN

It is shown that if A is any operator in Hilbert space and $\lambda = re^{i\theta}$ is in the approximate point spectrum of A, then

$$\min A^*A \leq (\max J_\theta)^2$$

and

$$|r - \max J_\theta| \leq [(\max J_\theta)^2 - \min A^*A]^{1/2},$$

where

$$J_\theta = (1/2) (A e^{-i\theta} + A^* e^{i\theta}).$$

Several corollaries are deduced for arbitrary operators, generalizing results of C. R. Putnam on semi-normal operators.

We employ the notations in Putnam's paper [3]. In particular if A is any operator (bounded linear, in a Hilbert space) and θ is a real number, $J_\theta = \text{Re} (A e^{-i\theta}) = (1/2) (A e^{-i\theta} + A^* e^{i\theta})$. We write $\sigma(A)$ and $\pi(A)$ for the spectrum and approximate point spectrum of A, and $(x|y)$ for the inner product of vectors.

The following result extracts the essentials of the proof of Theorem 1 in Putnam's paper:

Theorem. If A is any operator and $\lambda \in \pi(A)$, $\lambda = re^{i\theta}$ ($r \geq 0$), then

1. $\max J_\theta \geq r \geq (\min A^*A)^{1/2},$
2. $\max J_\theta - r \leq [(\max J_\theta)^2 - \min A^*A]^{1/2}.$

Proof. Let x_n be a sequence of unit vectors with $(A - \lambda I)x_n \to 0$. Clearly $(Ax_n | x_n) \to \lambda$, $(x_n | Ax_n) \to \overline{\lambda}$; it follows that $(J_\theta x_n | x_n) \to r$ and therefore $\max J_\theta \geq r$. Since $||Ax_n||$ is bounded,

$$0 = \lim ((A - \lambda I)x_n | Ax_n) = \lim \{(A^*Ax_n | x_n) - \lambda(x_n | Ax_n)\},$$

thus $(A^*Ax_n | x_n) \to \lambda\overline{\lambda} = r^2$ and therefore $\min A^*A \leq r^2$. Thus (1) is proved. Since $(A - \lambda I)^*(A - \lambda I) = A^*A - 2rJ_\theta + r^2I$, one has

$$||(A - \lambda I)x_n||^2 = (A^*Ax_n | x_n) - 2r(J_\theta x_n | x_n) + r^2,$$

hence

$$\min A^*A \leq (A^*Ax_n | x_n) = ||(A - \lambda I)x_n||^2 + 2r(J_\theta x_n | x_n) - r^2 \leq ||(A - \lambda I)x_n||^2 + 2r \max J_\theta - r^2;$$
letting \(n \to \infty \),
\[
\min A^*A \leq 2r \max J_\theta - r^2.
\]
Thus \(\min A^*A \leq (\max J_\theta)^2 - (\max J_\theta - r)^2 \), which proves (2).

Incidentally, if \(\lambda = 0 \in \pi(A) \) then obviously \(\min A^*A = 0 \) and the theorem yields no information other than \(\max J_\theta \geq 0 \) for all \(\theta \).

If the dependence of \(J_\theta \) on \(A \) is indicated by writing \(J_\theta = J_\theta(A) \), evidently \(J_{-\theta}(A^*) = J_\theta(A) \). One has \(\pi(A^*) \subset \sigma(A^*) = (\sigma(A))^* \), thus \((\pi(A^*))^* \subset \sigma(A) \); if \(\lambda = re^{i\theta} \in (\pi(A^*))^* \) then \(re^{-i\theta} \in \pi(A^*) \) and application of the theorem to \(A^* \) yields the following:

Corollary 1. If \(A \) is any operator and \(\lambda \in (\pi(A^*))^* \), \(\lambda = re^{i\theta} \), then

\[
\text{(3)} \quad \max J_\theta \geq r \geq (\min AA^*)^{1/2},
\]
\[
\text{(4)} \quad \max J_\theta - r \leq [(\max J_\theta)^2 - \min AA^*]^{1/2}.
\]

If \(A \) is hyponormal \((AA^* \leq A^*A) \) then \(\pi(A^*) = \sigma(A^*) = (\sigma(A))^* \) [cf. 1, p. 1175] and Corollary 1 yields:

Corollary 2. If \(A \) is hyponormal then (3) and (4) hold for every \(\lambda \in \sigma(A) \), \(\lambda = re^{i\theta} \).

Another way of fulfilling (3) and (4) is via the relation
\[
\partial \sigma(A) \subset \pi(A) \cap (\pi(A^*))^*.
\]
If \(\lambda = re^{i\theta} \in \partial \sigma(A) \), the boundary of \(\sigma(A) \), then \(\lambda \in \pi(A) \) [cf. 2, p. 39] hence (1) and (2) hold by the theorem. Moreover, \(\lambda \in (\partial \sigma(A))^* = \partial(\sigma(A))^* = \partial \sigma(A^*) \subset \pi(A^*) \), i.e., \(\lambda \in (\pi(A^*))^* \) and so (3) and (4) hold by Corollary 1. Thus:

Corollary 3. If \(A \) is any operator and \(\lambda = re^{i\theta} \) is a boundary point of \(\sigma(A) \), then (1), (2), (3), (4) hold.

Corollary 3 is stated in [3, Th. 1; 4, p. 44, Th. 3.3.1] assuming \(AA^* \geq A^*A \) (i.e., \(A^* \) hyponormal).

It follows readily from Corollary 3, as in [3], that the spectrum of a nonunitary isometry is the entire closed unit disc. The proof is similar to, and simpler than, the proof of the following corollary, which extends a result in [3, Corollary 2; 4, p. 44, Corollary 1] (the formulation there is inaccurate):
COROLLARY 4. If A is an operator such that $\min A^*A > 0$ and $0 \in \sigma(A)$, then, for each real θ, $\sigma(A)$ contains the segment

$$S_\theta = \{se^{i\theta}: 0 \leq s \leq R_\theta\},$$

where

$$R_\theta = \max J_\theta - [(\max J_\theta)^2 - \min A^*A]^{1/2} > 0.$$

Moreover, $\min_\theta R_\theta > 0$, thus $\sigma(A)$ contains the disc $\{\lambda: |\lambda| \leq \min_\theta R_\theta\}$.

Proof. The condition $\min A^*A > 0$ means that $0 \in \pi(A)$ and therefore $0 \in \partial\sigma(A)$, thus 0 is an interior point of $\sigma(A)$. (Incidentally, $\pi(A) \neq \sigma(A)$, so A is nonnormal; indeed, A^* cannot be hyponormal.)

Fix θ and let L be the ray from 0 at angle θ. If $\lambda = re^{i\theta}$ is a boundary point of $\sigma(A)$ on L, then (Corollary 3) by (1) one has $(\max J_\theta)^2 \leq \min A^*A > 0$; since $\max J_\theta$ is nonnegative (indeed $\geq r$) it follows that $R_\theta > 0$. Moreover, by (2) one has $|\lambda| = r \geq R_\theta$.

To show that $S_\theta \subset \sigma(A)$, suppose $\mu = se^{i\theta}, 0 < s \leq R_\theta$. For any $s_1, 0 \leq s_1 < s$, the segment $\{te^{i\theta}: s_1 \leq t \leq s\}$ must contain a point of $\sigma(A)$ since otherwise some internal point λ of S_θ would belong to $\partial\sigma(A)$, contrary to the preceding paragraph; thus μ is adherent to, and therefore in, $\sigma(A)$.

Finally, since J_θ and therefore R_θ is a continuous function of θ ($0 \leq \theta \leq 2\pi$, 0 and 2π identified) one has $\min_\theta R_\theta > 0$.

In view of the symmetry in Corollary 3, the proof of Corollary 4 also shows: If $\min AA^* > 0$ and $0 \in \sigma(A)$, then, for each real θ, $\sigma(A)$ contains the segment $\{se^{i\theta}: 0 \leq s \leq R'_\theta\}$, where

$$R'_\theta = \max J_\theta - [(\max J_\theta)^2 - \min AA^*]^{1/2} > 0;$$

if, in addition, A^* is hyponormal, then $R'_\theta \geq R_\theta$, which strengthens the conclusion of Corollary 4 [cf. 3, Corollary 2].

REFERENCES

Received November 26, 1968.

THE UNIVERSITY OF TEXAS AT AUSTIN
Willard Ellis Baxter, *Topological rings with property (Y)* 563
Sterling K. Berberian, *Note on some spectral inequalities of C. R. Putnam* ... 573
David Theodore Brown, *Galois theory for Banach algebras* 577
Dennis K. Burke and R. A. Stoltenberg, *A note on p-spaces and Moore spaces* 601
Rafael Van Severen Chacon and Stephen Allan McGrath, *Estimates of positive contractions* ... 609
Rene Felix Dennemeyer, *Conjugate surfaces for multiple integral problems in the calculus of variations* ... 621
John Moss Grover, *Covering groups of groups of Lie type* 645
Charles Lemuel Hagopian, *Concerning semi-local-connectedness and cutting in nonlocally connected continua* ... 657
Velmer B. Headley, *A monotonicity principle for eigenvalues* 663
John Joseph Hutchinson, *Intrinsic extensions of rings* 669
Harold H. Johnson, *Determination of hyperbolicity by partial prolongations* ... 679
Tilla Weinstein, *Holomorphic quadratic differentials on surfaces in \(E^3 \) 697
R. C. Lacher, *Cell-like mappings. I* .. 717
Roger McCann, *A classification of centers* ... 733
Curtis L. Outlaw, *Mean value iteration of nonexpansive mappings in a Banach space* ... 747
Allan C. Peterson, *Distribution of zeros of solutions of a fourth order differential equation* ... 751
Bhalchandra B. Phadke, *Polyhedron inequality and strict convexity* 765
Jack Wyndall Rogers Jr., *On universal tree-like continua* 771
Edgar Andrews Rutter, *Two characterizations of quasi-Frobenius rings* 777
G. Sankaranarayanan and C. Suyambulingom, *Some renewal theorems concerning a sequence of correlated random variables* 785
Joel E. Schneider, *A note on the theory of primes* 805
Richard Peter Stanley, *Zero square rings* ... 811
Edward D. Tymchatyn, *The 2-cell as a partially ordered space* 825
Craig A. Wood, *On general Z.P.I.-rings* .. 837