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The purpose of this paper is to obtain an Lp estimate for
the supremum of the Cesaro averages of a certain class of
positive contractions of Lp. Let (X, J^7 μ) be a measure space,
and let T be a linear operator mapping LP(X, J?7 μ) into itself
for p fixed, 1 < p < +oo. If there is a constant c > 0 such
that for each feLp(X,

I sup | / , ( / -

then we say that T admits of a dominated estimate with con-
stant c. In an effort to unify certain results due to A. Ionescu-
Tulcea and to E. Stein, a somewhat more general form of
the following theorem was obtained earlier: If T is a positive
contraction, and if there exists an h > 0 a.e., heLp(X, ^ μ)
and Th = h, then T admits of a dominated estimate with
constant pip — 1. In the present paper, we have extended the
theorem, obtaining a slightly more general form of the fol-
lowing: If T is a positive contraction and if for each positive
integer n there exists an hn > 0 a.e., hne LP(X, ^Γ, μ) and
|| hn || = || Tnhn ||, then T admits of a dominated estimate with
constant pip — 1.

This result is more widely applicable more directly than the pre-
vious theorem, but is not the most general result one might conjec-
ture, that positive contractions admit of a dominated estimate with
no further assumptions. In this direction, we have obtained several
equivalent formulations of the problem which may help to lead to an
answer. In any case, it remains an open problem whether or not
positive contractions of LP{X, J^ μ), 1 < p < + °°, admit of a dominat-
ed estimate without the assumption of additional conditions.

2* Main results* Let (X19 ̂ β\, μλ) and (X2, ̂ Γ, μ2) be two meas-
ure spaces and let T be a linear operator mapping LP(X19 J*\, μd into
LP(X2, ^2*, μ2), p fixed, 1 ̂  p ^ + oo. We say that T is a contraction
if its norm is less than or equal to one. We say that T is positive
if it maps nonnegative functions to nonnegative functions. We shall
omit the phrase almost everywhere, it being understood where ap-
plicable.

DEFINITION 2.1. The range set of T,R(T), is the support of Tf,

609



610 R. V. CHACON AND S. A. McGRATH

where fe LP(X19 J^, μx) and / > 0 (it is clear that R(T) e <βζand that
it is independent of the particular / > 0 chosen).

LEMMA 2.1. Let T be a linear operator of LP{X19 ^Γ, μL) into
LP(X2, ^ζ, μ2), p fixed, 1 < p < + oo, and let

hx e LP(X19 J ^ μt), h2 e LP(X2, J^, μ2)

be nonnegative functions, hx> 0 on R(T*) and h2 > 0 on R(T). Let P
be the linear operator of Lp(Xly ^\, m j into LP(X2, ^ , m2) defined by

P ( / ) = - w . ^ - » ^ i 2 ( Γ ) ,
0 otherwise ,

where the measures mι and m2 are obtained by setting

m^Aj) = 1 h?dμ19 A1 e ̂  and m2(A2) = I hξdμ29 A2

JA1 JA2

We have then that
( i ) | | P | | ̂  || Γ | |

αraϊ that
[^(ghξ-^/hf-1 on R(T*) ,

(ii) P*g =
(0 otherwise .

Furthermore, if T is a positive contraction, \\hj_\\ = ||fe2 | |, αwd Γ^i = ̂ 2

oπ -K(T), ί/^β^ we λαve
(iii) P*l = 1 (or equivalently by (ii), T*^-1 = hΓι) on R(T*).

Proof. We adapt the proof of Lemma 3.1 of [1]. To see that
(i) holds,

Γ Γ
I I "P flP dnw 1 I Tί -fh \lh \P h^rl ft

J J
= \\T(fhι)\>dμt£\\T\\>\\fh1\'dμι

so that | | P | | ̂  || Γ||. To see that (ii) holds,

Finally, to see that (iii) holds, define a(x) by setting P*l = 1 + a(x).
Then, with q = p/p — 1, we have

ldm2 = ίl gdm 2 ^ ί(P*l) gdm 1 = f(l + a)qdmι
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since || P* || ^ 1 by (i). Also

1(1 + a)qdmι ^ i ldm1 + q \admι

with strict inequality if a Φ 0 on a set of positive measure, since
(1 + a(x))q > 1 + qa(x) for each x such that a(x) Φ 0. Further, if
Th, = h2 on R(T), P(l) - 1 on Λ(Γ) - JR(P) and

1 = [lP(l)dm2 = [ldm2 =

If, in addition, we have that \\h\\ = | | ^ 2 | | , then \dm2 = \dmly and

this equation then implies \adm1 — 0. This is incompatible with the

previous inequalities (if, as we have, ||fei|| = || h21|) unless a(x) = 0 on
R{T*) and P*l = 1 on

REMARK 2.1. Lemma 2.1 includes Lemma 3.1 of [1] as we can
see by taking (X, j ^ » = (Xn Ĵ f, μ,) = (X2, ^ , ^ 2 ) . That Th, = λ2,
11̂ 11 = 11̂ 11 is certainly satisfied if there exists h > 0 such that
Th = h by taking ^ = h2 = h. Further, the slight generalization of
Lemma 3.1 of [1] which is the one-dimensional version of this result
implies the two-dimensional (by taking

(X, J*Γ/£) = (Xu jς, μx) © (X2, J^Γ, μ2) ,

T = Ti 0 0). We have stated in this form primarily because of the
application we make of it.

LEMMA 2.2. Let T be a positive contraction of Lp(Xl9

into LP(X2, ^l, μ2), p fixed, 1 < p < + oo, and let h, e Lp(Xlf J*\, μj,
h2 e LP(X2, ^ , μ2) be nonnegative functions, hγ > 0 on R(T*), h2 > 0
on R(T) and such that Th, ^ h2 on R(T) and T*hΓι ^ h{~1 on JR(Γ*).

Let P be the positive linear operator of LP(X19 ά?\, m^ into LP(X2, Jβ^, m2)
defined by

[TifhdlK on R(T),
(O otherwise ,

where the measures m1 and m2 are obtained by setting

m^Aj) = \ hfdμ,, A, e ^\ and m2(A2) = \ h\dμ2,
JA1 JA2

A2e^ (as in Lemma 2.1). Then P is a positive contraction of
Lι(Xly J?\, mx) into LL(X2, ^ " , m2) and also of LCX>(X11 ̂ f, m j into

Γ, m 2).
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Proof. It follows by part (i) of Lemma 2.1 that P is a positive
contraction of LP(XU <β\, mx) into LP(X2, ^ζ, m2). It is clear from the
definition that P I ^ 1, implying that P is a positive contraction of

We have that P* is a positive contraction of Lq(X21 J?l, m2) into
Lq(X19 ^Γ, mx) (q = p/p - 1) and by part (ii) of Lemma 2.1 that P*l ^ 1
and therefore that P* is a positive contraction of LJ^X^ J?l, m2) into
Loo(Xi, _̂ Γ, mj. An application of the Riesz convexity theorem then
implies that P is a contraction of Lγ{Xl9 J?\, mx) into L^X^ *βζ, m2).

We next state the dominated ergodic theorem (see [1] for an out-
line of its proof with the constant given here).

LEMMA 2.3. (Dominated ergodic theorem.) Let T be a contrac-
tion of Li(X, J?~, Aθ into itself and of L^X, ^ 7 £θ into itself. Then
T admits of a dominated estimate with constant p/p — 1.

THEOREM 2.1. Let (Xi9 ^, μ{), i = 1,2, , n be measure spaces,
and let T{ be a positive contraction of

Γ, μ{) into Lp(Xi+1, J^+1, μi+1)

for i = 1, 2, , w — 1. Let h{ e Lp(Xiy _̂ Γ, μ{) be nonnegative functions,
i = 1, 2, , n such that

( i ) hi > 0 on R(Ti*), i = 1, , n - 1, h, > 0 <m 12(7^), i =
2, . . . , Λ ,

(ii) Γ Λ ^ hi+u on
(iii) Γ^ -̂Γi1 ^ ^Γ"1,

/or i = 1, 2, , n — 1. T%e% we

ΣΪsup !/*,(/*+ T^f^/2,

(Λ + ^-i/.-i + +

/< e Lp(-Yi, Γ, /«)

Proof. Let (X, ^ΓJM) = ©Γ=i (X. , ̂ Γ, /«*). A function / on X can
be written as an π-tuple of functions, / = (f19 •••,/«) where /< is a
function on JSΓ<, i = 1, 2, , n. The norm of / is given by || / || =

We define a positive contraction T of LP(X, ^ μ) into LP(X,
by setting

T(fu •••,/•) = (0, T,/,, , T^f^) .
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That T is a contraction follows from

H Γ ( / l f . . . , Λ ) | | ' = Σ Ί l r * Λ i r ^ Σ l l / i \ \ p ^ 1 1 / I I * -

We next calculate T*g. Let

/ e LP{X, JT, μ) and let T*(g) = (gϊ, ~, gt) .

613

Then

j T*{g)fdμ = j (fiff, , !/:)(/„ , / .

= Σ J {TJdg

Since / is arbitrary, it follows t h a t T*(g) = (Γ*flr2, •••, Γ * . ^ , 0).

We may apply Lemma 2.2 to each pair

Lp(Xi, J^, fa), Lp(Xi+11 J ^ - i , / î+i)

{or to (X, J^~, μ) and (hlf h2y , hn) each taken twice) to obtain t h a t

t h e operator

of

LP(X, jrm) = 0 (X, , ^Γ, mt )

into itself is a contraction of Lλ(X, ^ m) into L^X, ^ m) and also
of Loo(X,^m) into L ĴSΓ, ^7m), where

p.r. = )J-i\'i'H)l"i

lθ otherwise ,
on

and

m, (

An application of Lemma 2.3 then yields

ίsup I r, r + Pr/2, , (r +

N o w
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(r + Pr + . . . Pk-ιr)/k

f or k < n - 1 ,

(rjk, (r, + Pj dlk,

(rn + ?»-/,_! +
JLU1 #V ̂ . /t' _L ,

+

and, therefore, Lemma 2.3 implies that

Σ(sup I rif (n + Pi-M-Jβ, ,

(r4 + P^r,.! + + P^ •

The theorem follows from this on setting

n - filK dm, = hϊ

and

LEMMA 2.4. Let (Xί9 ^\, μj and (X2, J>ζ, μ2) be measure spacest

and let T be a positive contraction of LP(XU J?l, μx) into LP(X2, J?l, μ2).
Let fe LP(X19 ^\, μj and g e Lp(Xly ^\, μj be nonnegative functions
such that f vanishes outside the support of g. Then Tf vanishes
outside the support of Tg.

Proof. Follows at once by contradiction.

LEMMA 2.5. Let (X19 S?l, μλ) and (X2, ^ 9 μ2) be measure spaces, and
let T be a positive contraction of Lp(Xly ^ y μx) into LP(X2, <βζ, μ2).
Let f,ge LP(XU Jβ\, μ^ be nonnegative and g such that \\g\\ = || Tg\\.
If f vanishes on the support of g, then Tf vanishes on the support
of Tg.

Proof. Let E denote the support of g and F the support of Tg.
Suppose Tf does not vanish of F. Then we can find a subset A of
Ff]{%: Tf> 0} having positive measure and a positive number a such
that aTg < Tf on A. We have for any β > 0

βp\\g\\9 + II f\\p = \\βg
(βTg + aTg)ψA

β + ay II TgfA |

Tf\\*
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T h u s , s i n c e \\Tg\\ = \\g\\,

βp II (Tg)ψA ||* + || / ||* >{a + βγ \\ (Tg)ψA \\p .

For β sufficiently large,

(a + βγ = β*(l + -ψj > £

implying

for β sufficiently large, which is impossible since | | / | | p < +°°

LEMMA 2.6. Let (X, J^~, μ) be a measure space, and let T be a
positive contraction of LP(X, Jβ^, μ). Suppose that for some n, there
exist n positive functions hln, — ,hnn in LP(X, ^μ) such that

Thkn ^ hk+ln on R(T)

T*hft\n ^ Hnl on R(T*)

for k = 1, , n — 1. Then, for fe LP(X, ^ μ), we have

— Σ ( S U P | / , ( / + Tf)/2, . . . , ( / + . . . + T^ft/il'dμ
n ί = i J

^ (P/P - I)9 J I / \pdμ .

Proof. The lemma follows at once from Theorem 2.1 if we let

i) = (X,J?rμ), T, = Γ, and /, = /, i = 1, . . . ,w.

LEMMA 2.7. Let (X, ^ , μ) be a measure space, and let T be a
positive contraction of LP(X, J^~, μ). Suppose that for some n^l,
there exists a positive function hneLp(X, ^~, μ) such that \\ Tnhn\\ —
\\hn\\. Then there exist n-{-1 positive functions hln, , hn+ln in
LP(X, ^ 7 μ) such that

Thkn = hk+ln on R(T) ,

T*hiz\n = hf-1 on R(T*) ,

for k = 1, , n.

Proof. We let hίn = hn, and hk+ln = Thkn + ψcR{τ)hkn, k = 1, , n.
It is clear from the definition that the functions hln, * -,hn+ln are
positive and that Thkn = hk+]n on R(T), k = 1, , n. It also follows
easily from the definition of T* that
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If we show that \\hkn\\ = \\ Thkn\\, k = 1, •••, w, then we would have

also shown that T*hp

k+[n = hl~ι on i2(T*), k = 1, , n, by part (iii) of

Lemma 2.1, since T*hi+\n = T*(Thkn)
p-\ fe = l , , % o n i2(T*). To

see that || fefcΛ || = || Tfetw ||, fe = 1, , n, we'll prove a little more, that

\\hkn\\ = || T % J | , i = 1, . . . , w - k + 1, jfc = 1, •••, w. We proceed by

induction. That | | fe l n | | = || T % J | , i = 1, « ,w holds by hypothesis*

Next, we suppose || hk{0)n || = || Tιhm)n ||, i = 1, , w - Λ(0) + 1 for

k(0) < n. We write hkw+ln = Γfe^cn + Ψcmτ)hk{0)n, and since the sup-

ports of Thk{0)n and of ψCR(τ)hk(o)n are disjoint, and since by the induc-

tion hypothesis || Thk{0)n || = || T%(0)W II, i — 1, , n — k(0) + 1 it follows

by Lemma 2.5 that TlThk[Q)n and TψcR{τ)hkWn have disjoint support,

and hence that TiψRiτ)hk{ϋ)n and TiIiiτ)hk{0)n have disjoint support, i =

1, « ,ti — fc(0) (since the supports of Thk{0)n and of ψR{T)hk{Q)n are the

same). That T V * ^ ^ * and T^cR{T)hk{0)n have disjoint support, i —

1, •••, w — fc(0) and the induction hypothesis imply that

II ΓVCΛ<Γ>Λ*(O>*II = ll̂ eΛ(Γ)Λifc(o)nll> i = 1, •••, ^ — k(0) .

That TThkWn and TlfcmT)hk{())n have disjoint support, i = l, , w - λ (O),

implies that

i = 1, , π — fc(O), since

II Γ V c Λ t n ^ f c ί o ) * ! ! = \ \ ψ c R i τ ) h k i o ) n \ \ , ί = l, -- , n - k ( 0 ) .

This equation implies by the induction hypothesis, that

II •* Ĵfe(0) + lw II = II J "Ίc{0)n\\ + II ΨcR{T)"Ίc(0)n li

— II "Ά;(0) + lw II >

i = 1, , n — &(0), from which the lemma follows, since π — ifc(O) =

n - (MO) + 1) + 1.

LEMMA 2.8. Let (X, ^~, μ) be a measure space, and let T be a

positive contraction of LV{X, J^Γ, μ). Suppose that for some n there

exists a positive function hn such that \\ Tnhn\\ — \\hn\\. Then, for

fe Lp(Xy ^ 7 μ) we have

n +
^ - r Σ (sup | / , ( / + T/)/2, . . . , ( / + . . . + T^f)β r dμ
+ 1 i=i J

^ (P/P - l)p\ I / \p dμ .
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THEOREM 2.2. Let (X, ̂  μ) be a measure space, and let T be a
positive contraction of LP(X, J^] μ). Suppose that for each n there
exists a positive function hn such that \\Tnhn\\ = \\hn\\. Then T
admits of a dominated estimate with constant p/p — 1.

Proof. Follows at once from Lemma 2.8.

3* Equivalent formulations* In this section, we obtain various
sets of necessary and sufficient conditions for a positive contraction
of LL to admit of a dominated estimate, and same related results.

DEFINITION 3.1. Let (X, ̂  μ) be a measure space. For

we define the class of positive contractions J*f(ply p2) setting Sf(pu p2) =
{T: T is a positive contraction of LP(X, ̂  μ), p(l) ̂  p ^ p(2)}.

THEOREM 3.1. If 1 < p(0) < +<*>, then the following are equi-
valent:

( i ) // Γej/(l,ί)(0)), then T (regarded as a contraction of
Lp{0)(X, J^, μ)) admits of a dominate estimate with constant c(p(0)).

(ii) If Te J^(p(0), p(0)), then T admits of a dominated estimate
with constant c(p(0)).

(iii) If Te Jϊf(p(0), +°°), then T (regarded as a contraction of
LP(O)(X, J^~, μ)) admits of a dominated estimate with constant c(p(0)).

Proof. Part (a), (i) implies (ii). Let Te Jϊ?(p(0), p(0)), and sup-
pose \\T\\ = δ <1. Then || T* || = δ < 1 and there exists a positive
function h e LqW(X, ^ μ), with q(0) = p(0)/p(0) - 1, such that T*K ̂  h
(to see this, let feLq{0)(X,^μ) be an arbitrary positive function,
and let h = ΣΓ=0 T*f). If h = (h)11^-1 then

h e Lp{ΰ)(X, ^ 7 μ) and T

We may then define a transformation P of LpW(X, ^ m ) by setting,
for feLp{0)(X, ^~,m)

P(f) = T(f h)/h

where m is the measure given by m(A) = \ hp{0)dμ.
J A

It follows by part (i) of Lemma 2.1 (with hλ = h2 = h, and

(Xlf JK, μ.) = (X*,

t h a t | | P | | P ( O , ^ || Γ | | p ( 0 ) . P a r t (ii) of Lemma 2.1 implies t h a t P * l ^ 1,
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and since P is positive, it follows by the Riesz convexity theorem
that Pe j y ( l , p(0)) (with respect to the measure space (X, j^7m)).
Since there is a set isomorphism of (X, ^ 7 m) into (X, ^ 7 μ) (it may
be necessary to choose h with a sufficiently small norm), we have by
assumption that P admits of a dominated estimate with constant c(p(0)).
Since we have that Pnf = Tn(fh)/h, and since g e Lp{0)(X, J^7 μ) im-
plies g/he Lp{0)(X, ^ m ) , we have that T admits of a dominated esti-
mate with constant c(p(0)) if P does, and this finishes the proof of
part (a) under the assumption that \\T\\ = δ <1.

Next, suppose || Γ | | = 1. Define Ta = aT for 0 < a ^ 1. For
g e Lp{0)(X, jη μ), let g* denote supTC \(g+ ... + T;g)/n + 11. If g ^ 0,
then || g* \\p{0) converges monotonically to || g? \\P,Q), and the general case
then follows from the special case, || T | | < 1, by the Lebesgue mono-
tone convergence theorem.

Part (b), (iii) ==> (ii). Let Te J^(p(0), p(0)) and assume || Γ | | =
δ < 1. Let h be a positive function in LpiQ)(X, J^, μ) such that Th <; h.
Define

Pf - Γ(/λ)/Λ

for feLp{0)(X, ^m) where m(A) = I hp{0)dμ. Then P is a contraction

of L , ( 0 , ( Z , ^ ; m ) since | | P | | P ( O , ^ || rf|p{0, by part (i) of Lemma 2.1.
We also have P(l) ^ 1, and hence Pe j/( ί?(0) , +oo) (with respect to
(X, ^ 7 m)) again by the isomorphism result used in part (a) of the
proof, we have that P admits of a dominated estimate with constant
c(p(0)), by assumption. In a similar way to that of part (a), we have
that T admits of a dominated estimate with constant c(p(0)) if P does,
and the general case (|| Γ | | g 1) follows from the special case by taking
limits of Γα = α T as in part (a).

Part (c), (ii) implies (i) and (iii). This case is trivial since

and since J^(p(0), + °o) c J^(p(0), p(0)).

THEOREM 3.2. // for each

admits of a dominated estimate with constant c(p(0),/, T, (X, J^~, μ)),
then there exists a constant c(p(0)), independent of T and of f (and
of (X, ^ 7 μ)) such that each T e J^(p(0), p(0)) will admit of a dominat-
ed estimate with constant c(p(0)).

Proof. Note that we have used an obvious extension of a domi-
nated estimate with constant dependent on the particular function
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used. Suppose to the contrary. Then there exists a sequence of spaces
(Xn, JK,, Aθ a n d a sequence {fn} of positive functions with fn in
Lp{0)(Xn, ^l, μn) such that \\fn ||

p(0) = 1/2*, n = 1, 2, ., and a sequence
{Tn} of positive contractions in J^(p(0), p(0)) such that | | Γ n | | ^ l ,
and such that

sup

Let (F, ,^, m) = φ : = 1 (X., ^ , /O, and let T = φ j = 1 Γn. We have
then, with / = Σ?=iΛ, that

sup | / , ( / + Γ/)/2, . . . , ( / + . . . + T'-1/)^' r(0) dm = + -

contradicting the hypothesis (a simple modification of the proof shows
that we may restrict attention to a single measure space if it is non-
atomic, by taking (Xn, jTn, μj = (X,jημ/2n), since 0Γ= 1 (X., J^Γ, μn)
is then isomorphic (X

THEOREM 3.3. Let T be a positive contraction of Lp{0)(X, ^ μ),
I < p(0) < +00, and let f be a function in Lp{Q)(X, ^ 7 μ) such that
| | / | | = 1 and such that

(sup | / , ( / + Γ/)/2, . . . , ( / + . . . + W i + l Γ = +00 .
J 3

Then for each k > 0, there exists a positive contraction T(k) of
LP(X, ^ 7 μ) such that

sup I gk, (gk + T(k)gk/2, ...,(gk+ ... T*(k)gk)/j + 11* ( 0 ) ^ k

for a function gk with \\gk\\ = 1.

Proof. Let M(f, T) = sup,- |/, - , ( / + + Tjf)/j + l \'™. Since
II M(f, T)\\ = + c o , for each k > 0 t h e r e ex is t s a posit ive i sometry P
of Lp{Q)(X,^; μ) such t h a t P ( M ( / , T)) ̂  A. T h e lemma t h e n follows
if we define T(k) = PTP~ι and gk = Pf, on n o t i n g t h a t

P(M(f, T)) = sup I Pf, (Pf + PTf)/2, ...,(Pf+...+ PT'f)/j + 11 °̂> .

This may be seen in the case that (X, ^ 7 μ) is the denumerable union
of Lebesgue spaces, since isometries of L35(O)(X, J^", μ), in this case,
admit of the following representation:

Pf = f(τx).r(x)
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where τ is an invertible measurable transformation, and where r(x) is
the nonnegative measurable function given by r(x) = [d(τμ)/dμ]llP{0)

(see, e.g., [1], p. 5). In the general case, we may see the equality on
noting that each σ-finite subspace is set isomorphic to a denumberable
union of Lebesgue spaces.

THEOREM 3.4. // there exists a constant c(p(0)) such that

Γej/(p(0), p(0)), 1 < p(0) < + oo

admits of a dominated estimate with constant c(p(0)) then the limit

exists for each fe Lp{0)(X, J^, μ).

Proof. The mean ergodic theorem for reflexive spaces gives us
that

{f:f=g- Tg}@{f:f= TF] .

The dominated estimate then shows that the limit exists provided that
it exists for fixed functions, which is trivial, and provided it exists
for functions of the form g — Tg. In order to establish this fact, we
need to show that lim^^ Tng/n = 0. This may be seen on noting
that

as has been pointed out by M. A. Akcoglu.
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