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R. DENNEMEYER

The Jacobi equation of the second variation for a multiple
integral problem in the calculus of variations is a linear second
order elliptic type partial differential equation provided cer-
tain hypotheses hold in the multiple integral problem. By
means of the theory of quadratic forms in Hilbert space
already present in the literature pertinent properties of solu-
tions of such partial differential equations can be established.
Here the pertinent property discussed is the vanishing of a
solution on the boundary of a region, i.e. the existence of a
conjugate surface of the differential equation, After develop-
ing the notion of focal point and stating the index theorems
of the associated quadratic form, the existence of one para-
meter families of conjugate surfaces is shown, and illustra-
tions of the theory are given,

1. Introduction. Fundamental theorems for quadratic forms in
Hilbert space which are pertinent to problems in the calculus of varia-
tions are established in [7], [9] by Hestenes. Included in [7] is a
theory of indices for an important class of quadratic forms arising in
variational theory, and a general theory of focal points applicable to
simple or multiple integral problems. Illustrations of the applications
of focal point theory to one independent variable variational problems
are given, as well as to boundary value problems for ordinary differen-
tial equations. The theory is, however, also applicable to multiple
integral problems, and to boundary value problems for elliptic partial
differential equations (indeed for integro-differential equations), and
the author had this in mind in the formulation of the theory. In [9]
there are general theorems on properties of quadratic forms applicable
to variational problems involving functionals defined on classes of
vector valued functions of m independent variables and with higher
order derivatives. These theorems have as consequences further theo-
rems on properties of systems of partial differential equations, and
existence and differentiability theorems are established.

The purpose here is to set down an extension of the highly de-
veloped theory of conjugate points for simple integral problems in the
calculus of variations to multiple integral problems. The extension
is afforded by the theory established in [7]. Here the multiple integral
problems in mind are those where the integrand involves at most first
order partial derivatives of a real valued function of m real variables.
The Jacobi equation of the second variation is then a linear second
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order partial differential equation, and it is relative to this equation
that the notion of conjugate surface is considered.

For consistency all definition, terminology, and notation conven-
tions used (apart from certain minor differences explicitly written down)
are carried over from [7] and [9]. For brevity this material is not
repeated, except where necessary for readability.

2. Hilbert space and subspaces. In the sequel m is a fixed
positive integer, and 2 denotes m dimensional real euclidean space.
Points of 2 are written ¢t = (¢, ++«,t,), s= (S, *++, Sn), ++- and |¢] is
the usual length in 2. If S is a subset of 2, then I(S), S*, S and
¢(S), mean, respectively, the interior of S, the boundary of S, the
closure of S, and the complement of S. An interval a, < ¢, < b, k=
1, .---,m, is abbreviated [a, d], and similarly for (a,b). A region is
a bounded open connected subset of 2. Letters such as z,y,z, u,v
are used for real valued functions defined on subsets of Q2. The sum-
mation convention for repeated indices in a product is adopted, and all
summations are from 1 to m. The subscripts %, j, ¥ always have the
range 1, ---,m, while the subscripts p, ¢ have the range 1,2, ---.
Subscripts %, p, ¢ are never used as summation indices. A partial
derivative ox/dt, is often written .

Let T be a fixed region of class B' (see [9], [10], [11]). Simple
examples are: the interior of a sphere or interval in £, the interior
of the union of a finite number of closed contiguous nonoverlapping
intervals. Also, the image of one of these regions under a continuous
one-to-one transformation, which is such that the transformation and
its inverse satisfy a uniform Lipschitz condition on every compact
subset of their respective domains, is also a region of class B' (hence-
forth the superscript 1 is omitted).

The basic Hilbert space 57 is the class of functions « of class
D" on T ([9], [10], [11]), which together with their first partial deriva-
tives are square integrable on 7. This is the space 54 of [9], except
that the functions are real scalar valued. A function xe 57 need
not be continuous on 7, and is characterized by the following pro-
perties:

(i) w is essentially absolutely continuous on 7T in the sense of
Calkin and Morrey ([3], [10], [11]);

(ii) 2 and the derivatives &,, k=1, ---,m, are square integrable

on T,
2 is normalized by taking x(t) = lim,_, 2"(t) for each te T for which
the limit exists, and x(t) = 0 elsewhere. Here x* denotes the h-average
of = ([9], p. 314). This normalization of members of 27 is convenient
in the sequel. The space 5% is also called a Sobolev space ([11], p.
19). The inner product on 57 is
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2.1) @, 9) = | #0uodt + | st
and the norm is
2.2 o]l = (&, 2.

An important subspace of 57 is the class of x ¢ &7 which “vanish”
on the boundary T*. More exactly, let C;° denote the subclass con-
sisting of all functions « having continuous partial derivatives of all
orders on T and whose support set (closure of the set of points ¢
such that «(t) # 0) is contained in 7. Then the subspace of interest
is .o = C7, the closure under the norm in Eq. (2-2). This subspace
is denoted by 57, in [9]. It can also be shown that .o = 5%, where
%, denotes the class of all Lipschitzian functions having support set
contained in 7. If S is any subset of 2 for which the function classes
are defined, then it will be convenient at times to write 22°(S), &7 (S),
C2(S), ete. For example, C2(S) denotes the class of all functions
whose derivatives of order <p are continuous on T and whose sup-
port set is contained in S.

In the sequel the following alternate characterization of .o is
useful. Consider the space 97 = S#°(T). Extend each xe 57 to 2
by setting x(f) = 0 for tee(T). A function x so extended need not
belong to the Hilbert space 977°(2). However the class of functions
which do belong to &7 (£2) when so extended constitute the subspace
7.

3. Divergence theorem. Use is made in the sequel of the fol-
lowing extension of the divergence theorem established by Hestenes.
See also Morrey [12], and Carson ([4]).

THEOREM 3.1. Let S be a monempty open set im 2, and let
M, N, ---, N, be given integrable functions on S. Consider the linear
Sunctional

Liz) = | [M@a(t) + N0 0]dt

on various linear manifolds. The following statements are equivalent.

(a) Lx) =0 on 27(S).

(b) L(x) =0 on C2S), p a given positive integer.

(e¢) L(x) =0 on C(S).

(d) Let € >0 be given. Then L(z) =0 on (S), the class of
all xe 27(S) whose support set has diameter less than e.

(e) If k is a given integer in the range 1, ---, m, and S, de-
notes the projection of S onto the t, axis, then there exists a set Z,
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of linear measure zero in S, such that for each interval [a,d] in S
having neither a, mor b, in Z, the relation

3.1 5 [V, ) — N, w1t = | o

holds (where primes denote the remaining m — 1 coordinates, e.g.,
(0, 85) = (s =+ vy ity by sy » o5 B
and
dty = dt, --- dt,_dt;,, -+ dt,).

In fact, for almost all intervals or spheres R such that R is contain-
ed in S,

(3.2) SR*Ni(a)lido - SRM(t)dt

holds, where 1,2 =1, +++, m, are the direction cosines of the outer
normal to R* and do donotes the surface element on R*.

If M is continuous and each N, has continuous first partial
derivatives on S, and one of the statements (a)—(e) holds, then Eq.
(3.2) holds for each sphere R such that R is contained in S, and
Eqgs. (3.1) and (3.2) are each equivalent to
™ 0N,

(3.3) 32::1 7y

J

= M(t)

holding wn S.
4. The quadratic form. Let P,Q,, -+, Q,, By, 1,5 =1,--+,m

be given integrable functions on 7. It is assumed that R;(t)=R;;(t),
teT, for all 7,7 =1, ---,m. Then

@ J@) = | (PO + [2003010@) + R, 0)dt

defines a quadratic form J on 52 The associated bilinear form is

@D J@y) = | (Pry+ Qs + d) + Rudddt .
Let
(4.3) W(t, z, &) = %(sz 1 2Quiw + Riiid,) .

Then
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Ja,y) = | @+ 0:g)dt
:S@ﬂ+wmmu:ﬂ%@
T

for each z¢ 57, ye 5~ The quadratic form J can be written

(4.4) J(x) = K(z) + R()
where

(4.5) K@ = | (PO + 200 Ol(®)at
(4.6) R@) = | Ry@a0s 0t

are quadratic forms on 5#

It is further assumed that P, Q,, ---, @, are bounded on T. Then
(Theorem 5.1, [7]), K is w-continuous on 5% Further, thefunctions
R,; are assumed continuous on T, with the strong Legendre condition

(47) Rij(t)fiéj >0 te T

holding for each m-tuple & = (0, ---,0). Accordingly R is positive
definite on .9 and hence (Theorem 8.1, [9]), the quadratic form J is
a Legendre form on .o/

Let <#Z be a linear manifold in 5# A function z ¢ 57 is said to
be J-orthogonal to <& if, for every ye <7, J(x, y) = 0. The set of all
such 2 is called the J-orthogonal complement of <%, denoted by <#Z"’.
There may exist one or more x € <% which are J-orthogonal to <7,
ie., re F NF’. A funetion x having this property is called a .J-
null vector of <# The set of J-null wvectors of <# is denoted by
#,. Observe J(x) =0 on <#,. The nullity of J on <# is the dimen-
sion of the submanifold <%, of <& The index of J on <Z is the
dimension of the maximal linear submanifold <& on which J(x) < 0.
The following basic theorem is proven in [7].

THEOREM 4.1. J is of finite index and nullity on o7 If <& is
a subspace of .7, L(x) a linear form (functional) on <& such that
L(x) = 0 on the submanifold of J-null vectors of <2, then there exists
a function ye€ B such that L(x) = J(x,y) on <& The fuction y can
be chosen orthogonal to the submanifold of J-null vectors of <z, and
if so chosen is unique.

5. Extremals of J. Let x be a function in 57 such that

Ja,w) = | @+ 0:4)dt = 0
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holds for every ye.w, i.e., x is J-orthogonal to the subspace .o
From the Divergence Theorem and the fact that C{(T) is dense in
57 it follows that

(5.1) |, @sldo = w.dt
R* R

holds for almost all intervals and spheres R whose closure lies in 7.
Eq. (6.1) is the Euler equation for the functional J on 2# A funec-
tion x€ 5~ such that Eq. (5.1) holds for almost all intervals and
spheres with the stated property is called an extremal of J.

Accordingly the linear manifold of extremals of J is just .o’, the
J-orthogonal complement of .o, The submanifold .27 of J-null vectors
of .o~ is the class of extremals of J which vanish on T*. In view
of Theorem 4.1 this submanifold is finite dimensional.

With additional hypotheses on the coefficients the usual differen-
tial equation characterization of extremals is obtained. First, if the
functions R,; and @, are of class CY(T) and Pe C(T), and if it is
known that the extremal x is of class C*¥T), then the Euler equation
(5.1) is equivalent to

0 0% ~0Q; \
(5.2) E(w) = a_ti(ltai.jﬁj_)aoc@_D - 55 ) ~0
holding in T. Eq. (5.2) is the Euler equation associated with J as
usually written. The differential operator E appearing in Eq. (5.2)
may be referred to as the Euler operator. Under the preceding hypo-
theses it is an elliptic operator.

In order to insure that the extremal x € 57 is of class C*T) still
further hypotheses are placed on the coefficients. The following is a
special case of Sobolev’s theorem as given by Friedrichs ([6]). Let »
be an integer, p > m/2 + 2. In addition to the previous requirements
assume the functions R;; and Q; are of class C*(T'), and let Pe C*(T).
Then if xe 27 is an extremal, x € C¥T). Henceforth it is assumed
that the coefficients satisfy these additional requirements. Thus z is
an extremal of J on T if, and only if, 2¢ 2 N C¥T) and Eq. (5.2)
holds on 7. From Theorem 4.1 it follows that there are at most a
finite number of linearly independent solutions of the Euler equation
(5.2) which vanish on the boundary. The dimension of the submanifold
of such solutions of (5.2) is the nullity of the form J on .oz

6. Focal points of J. Index theorems. In order to apply the
theory of indices given in [7] there is considered in subsequent sections
a one parameter family { & (M)} of subspaces of .o/, where the real
parameter A\ is restricted to an interval M <X\ =< )\’. The family
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{57 (\)} has the following properties:

(a) &7 (\') has as its sole member the function which is
zero everywhere in T, and &7 (\') = &7;
(b) if A, x; are such that M < N\, < N\, < )\, then
(M) T (N
(6.1) (c) if n, is a value such that ' < 3, <\, then

(N = II.7(\) N << ANEN
(d) if N, is a value such that M < X, < A", then
() =3 7)) NEN N,

For each A, M £ X <\, the symbols ¢(\), v(\) denote, respective-
ly, the index and the nullity of J on .27 (7). Observe that the index
¢ is an integer valued function, monotone nondecreasing with increas-
ing A on the interval. Moreover ¢(\') = 0, ¢((\") = ¢,, the index of J
on .27 In general ¢, = 0, so that there exist one or more values X\,
(though but a finite number of such values) in the interval at which
¢ is discontinuous, with jump

C(Xo) = 5(7\‘0+) - 50\10_) >0.

Such a value ), is called a focal point of J relative to the family
{7 (\)}. The value ¢(\,) is termed the order of A, as a focal point.
In virtue of property (d) in (6.1) the left hand limit c(n—) = ¢(\),
AN <N N (see [7], §16). The value ¢(\’-+) is defined to be ¢,.
The following theorem, a restatement of results established in [7], is
applied in the sequel.

THEOREM 6.1. Let {7 (\)} be a family of subspaces of &7 having
the properties (6.1). Then, for N =< N <\, the order c(\) of a focal
point of J relative to {7 (N)} is the dimension of the maximal sub-
manifold Z(\) of 7(N) having the property that no nontrivial
Junction in & (\) is J-orthogonal to a subspace .7 (M), N > A. In
the event the family {7 (\)} has the additional property that, when-
ever A\, N\, are values such that N <A, < X, <\, there exists no
nontivial function wn 7 which 1s J-orthogonal to both 7 (\) and
(N, then c(\) = ¢(N') = 0, and for N < X < \N’, the order c(\) =
v(\), the nullity of J on 7 (\).

7. Conjugate surfaces in 7. Assume that there has been con-
structed a one parameter family {T(\)} of subsets of T, defined for
A £ AN <\, having the following properties:
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(a) T(\) consists of a point of 2, or else has m — 1
dimensional measure zero, while T(\") = T ;
(b) T(\) is a region of class B, M <A <\ ;
(e) if A, N, are such that V' <\, < N\, <\, then
TO) © T(x,); and T*(\,) N T(\,) is not empty :
(7.1)  (d) if A, is value such that \' < »\, < A\, then

T = IITN) < M=\’
(e) if \, is a value such that A’ < ), < )\, then
TOw) = TN M =A< A, .

Examples of families of sets which have these properties are given
subsequently.

THEOREM 7.1. Let {T(\)} be a family of subsets of T having
properties (1.1). Define the family {7 (\)} of subsets of & as
Sfollows:

(i) &7 (\) s the set whose sole member is the function which
is identically zero on T, and 7 (\') = &7;

(i) If N s such that M < A <\, the 7 (\) is the set of all
e .7 having support set S, contained in T(\).

Then the family {7 (\)} is a family of subspaces of &7 for
which the properties (6.1) hold.

Proof. Let )\, be a fixed but otherwise arbitrary value, M’ <\, <\".
It is readily verifiable that .27 (\,) is a closed linear manifold in .o/
Let 22 (T(\)), o7 (T(\,)) refer to, respectively, the Hilbert space, and
the subspace of 2 (T(\,)) composed of functions vanishing on T*(\).
Recall .o (T(\,)) is characterized as being the subset of all x € 22 (T(\,))
which when extended to vanish identically on ¢(T(\,)), belong to £ (Q).
It follows that .97 ()\,) is just the subspace .27 (T(\,)). For, if x € &7 (\y),
then x restricted to T(A,) belongs to 57 (T(\,), while if x is extend-
ed to 2 by setting 2(t) = 0 on ¢(T(\,)), then e 57 (2) since xe .
Thus € .7 (T(x,)). On the other hand

S (T(w) = CF(T () © 7 (M)

To show that property (c) of (6.1) holds, let \, be fixed, NV =<\, <\".
If xe.7(\,), then the support set

S, c T(x) < T(V)
whenever A, < A < \'. Hence

cell o7(\) M <N=N.
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On the other hand, suppose 2 belongs to the intersection of the sub-
spaces .27 (\), for X, <A < ). Then whenever \, <\ <\, S, c T(\), so

and hence x e .27 (\,).
To establish property (d) of (6.1), let A, be a value such that
AN < N = MN'. Then it is clear from definitions that

Y7 (M) C 7 (N)

where the union is over all subspaces .7 (\) for which M <X\ <\,
On the other hand, as noted above,

L7 (No) = CF(T(\o)) -

Let x e Cs(T(\,)), so the support set S, = T(\,). Now there must exist
Aoy M < A, < N, such that

S, T(\,) < T(\) .

For, if not, a sequence {)\,} exists such that M <X, < X1 < Aoy P =
1,2, ---, and A, — ), and there exists a sequence {t,} of points such
that ¢,eS, Ne(T\,),p=1,2,---, and t,—t, € S,. The sequence {t,}
has the property that given a value )\, N < ) < \,, there exists an
integer ¢, such that ¢, € ¢(T(\)) whenever p>q;. Accordingly ¢, € c(T(\))
for M <\ < )\, and hence

toe e(T(\) = (X T(N) = o(T(\))

where the intersection and union are taken for \ such that M <X\ < \,.
This is a contradiction in view of ¢,eS,, and S,c T(\,). Thus a
value ), having the stated property must exist, and so xe .7 (\,).
Accordingly

Co(T(\)) € 2.7 (N)
for M <N < N\, and so
7 (N) C X (W) C 7 () .

The following are examples of families of sets {T(\)} which have
the properties (7.1).

ExaMPLE 1. Let t,€ 2 be fixed, and let T(\) denote the interior
of the sphere |t — t,| =\, for 0 < N < 7, r a fixed positive number.
Let T(0) = {t,}, T={t: |t — t,| < r}.

ExampLE 2. Let T be a given interval (a, b) having positive
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measure, and let A denote length measured along the diagonal joining
the points @ and b, where " = |b — a|. Let ¢, denote the k-th direc-
tion cosine of the line joining a to b. Let

T\ = (a, a + \e) 0 AN
while T'(0) = {a}.

ExAMPLE 3. Let T = (a, b), and let ¢, denote the center of T.
Define the family {T(\)} for 0 <X <1 by

T = (t =26 = a), t, + > 6 — o))
and let 7(0) = {¢,}.

ExAMPLE 4. Let S denote an interval (a, b) of positive measure,
and let ¢, be a point on the boundary S*. Let V denote a hypercube
(t, — h/2,t, + h/2), where h > 0 is fixed. Let T be the union of S
with V. Let {S(\)} be the family of expanding subsets constructed
for the interval S in the same manner as for the interval in Example
2, for 0 <X\ < )\’, where NV = |b — a|. Let {V(\)} be the family of
cubes

b/} 3
Vx:(m— Y oozt
o) > +2) <

centered about the point ¢, and let V(0) = {{,}. Define the family
{T(\)} of subsets of T by

TN = S(\) 0<r=\
=SUV—N) W =rsAN +1.

Instead of expanding to fill S and then T, one can have the family
of subsets {T(\)} expand to fill V first, then T. Alternatively one can
have the family {T'(\)} expand into both sets simultaneously if

TO) = {t} TO) =SSN UVHN) 0 <M=\

In any case the desired properties (7.1) hold.

The following theorem shows that there exists a wide class of
families {T(\)}, each of which have the properties (7.1). The proof
follows from the fact that closure and inclusion properties of sets is
preserved under the transformations considered.

THEOREM 7.2. Let T be a region of class B, and let (T(\)) be a
family of subsets of T having the properties (7.1). Let S be the
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wmage of T, S(\) the image of T(\), N £ N <\, under a continwous
one-to-one transformation which is such that the transformation and
its tnverse satisfy a uniform Lipschitz condition on every compact
subset of their respective domains. Then the family {S(\)} has the
properties in (7.1) relative to the set S, which is a region of class B.

With the foregoing in mind one can relate the index theory given
in [7] to the notion of conjugate surface for the Euler equation as
follows. Assume that Eq. (5.2) has the following weak unique con-
tinuation property: if T, is a region of class B, T,c T, and if « is a
solution of the differential equation in T which vanishes identically
on T — T,, then & vanishes identically on 7. Now let % be a non-
trivial solution of Eq. (5.2) on such a region T, and suppose % vanishes
on the boundary T*. Let y be the extension of w to T such that
Yy@) =0 on T — T,. Then ye.o/, but ye.o%4. For if y is a J-null
vector of .o/, then y is a solution of Eg. (5.2) on T. But then y
vanishes identically on 7. Hence u is identically zero on T, contrary
to the supposition. Thus y cannot be a J-null vector of .o/, However,
since y restricted to T, is an extremal on T,, it must be J-orthogonal
to the subspace .o (T,). Observe y is a J-null vector of .o (T),), but
not of any subspace .57 (S) where S> T..

The index ¢, of J on .7 is given by the dimension of a maximal
submanifold & of &~ on which J(x) < 0 and which contains no non-
trivial J-null veector of .o, In view of the preceding paragraph and
the fact that J(y) = 0 it is seen that y belongs to such a submanifold
%, Thus ¢, = 1. A conjugate surface (of the Euler equation) is the
boundary of a region of class B on which there vanishes a nontrivial
solution of the Euler equation. Accordingly T/ is a conjugate sur-
face. The existence of another conjugate surface T, distinct from
Tx, where T,D> T, leads to the conclusion that the index ¢, = 2.
These properties are analogous to those given for one dimensional
problems in the calculus of variations.

The results given by Cordes ([5]) together with the smoothness
assumptions stated in § 5 for the coefficients and the strong Legendre
condition imply that Eq. (5.2) has the weak unique continuation pro-
perty. Another result of this type is given by Aronszajn ([1]) and
Calderon ([2]).

THEOREM 7.3. Assume the coefficients in FEq. (5.2) have the pro-
perties stated heretofore. Let {T(\)} be a family of subsets of T
having properties (71.1), and let {7 (\)} be the corresponding family
of subspaces of & given by Theorem 7.1. Then

(@) a value N, N <\ <\, is a focal point of J relative to the



632 R. DENNEMEYER

family {7 (N} of, and only if, T*(\) is a conjugate surface; more-
over N and N’ are mot focal points;

(b) there are at most a finite number of conjugate surfaces in
the family {T*(\)};

() if N; is a focal point, then the order c(\;) is v(\;), the nul-
lity of J on the subspace &7 (\;), and this is just the number of
linearly independent solutions of Eq. (5.2) which wvanish on T*(\;),
wn the maximal set of such nontrivial solutions;

(d) there exists a least focal point X,>0 in the interval N <A<\,
so that for N =< N <\, the index ¢(\) = 0 and y(\) = 0;

(e) let A, +++, Ny be the focal points arranged in order of in-
creasing magnitude, with respective orders v(\;),v =1,+.-+, N, then
the index of J on .7 is

(7.2) la = !J()\,J) .

=

<
1l

Proof. Since Eq. (5.2) has the requisite properties an argument
exactly like that used above shows that whenever A, )\, are values
such that A < A, < A, £\, then there exists no nontrivial functions
in . which are J-orthogonal to both .o (\,)) and .o~ (\,). Hence by
Theorem 6.1 the order of a focal point \; is exactly the nullity v(\;)
of J on .7 (\;). Clearly \' is not a focal point. One sets ¢(\’+) =
¢(\"), so \'' is not a focal point. There are but a finite number of
focal points in the interval M < A < N’. If \, is the least, then
y(A) = 0 for M < N < A, so ¢(\) = 0 on that subinterval.

It is noted that the index ¢, given by Eq. (7.2) is the same for
every choice of a family {T(\)} of expanding subsets of 7T having
properties (7.1).

8. Oscillation and comparison theorem. The following theo-
rem is a corollary of Theorem 7.1, [9]. It is observed that the proof
does not depend on the weak unique continuation property assumed
above for Eq. (5.2).

THEOREM 8.1. There exists an € > 0 such that tf S is a region
of class B, Sc T, with the diameter of S at most ¢, then J(x) >0
holds for all montrivial xec .27 (S). Accordingly there are mo con-
Jugate surfaces contained in S.

Proof. If S is a region of class B, SC T, then each xe .27 (S)
is extended to vanish identically on ¢(S), and .97 (S) is a subspace of
7. Thus, in virtue of the theorem cited, there exists an ¢ > 0 and
an 2>0 such that if Sc 7T and the diameter of S is at most ¢, then



CONJUGATE SURFACES FOR MULTIPLE INTEGRAL PROBLEMS 633

J(@) = h ||« holds on .o (S). Suppose S¥ is a conjugate surface
contained in S. Let u be the corresponding nontrivial solution of the
Euler equation on S, which vanishes on Sf. Let y be the extension
of « which vanishes on ¢(S)). Then ye .%7(S), and moreover

) = @+ og9dt = | (@0 + w9t = 0.

Hence y is the trivial function on S, and so w is the trivial solution
on S,, contrary to the assumption. Thus there are no conjugate sur-
faces within S.

The following theorem is a consequence of Eq. (7.2) and the fact
that if J(x) = 0 holds on .o/ then the index ¢, = 0.

THEOREM 8.2. If J{(x) = 0 holds on .o7, then there are mo con-
jugate surfaces properly contained in T.

COROLLARY 8.3. In addition to the assumptions of the strong
Legendre condition and smoothness conditions made heretofore let
P#) >0 on T. Then no solution on T of the differential equation

%(R—jti) — P(t)e =0

oscillates am T in the sense that there exists no conjugate surface
properly contained in T.

Theorem 8.4 is a consequence of Theorem 16.3 [7], and the dis-
cussion in § 7.

THEOREM 8.4. Let
J*(x) = S {P*(t)a* + 2Q7 (t)xx; + RE@)E2;}dt
T
(t,7=1,2,---,m) be a quadratic form on 5% having suitable coeffi-

cients P*(t), Qi (t), R%(t) such that the properties of J hold also for
J*. Moreover, suppose that

J* (@) = J(x)

holds for all vectors xe .o/ Let

B e = g(Rign) (P - £ 50) =0

be the Euler equation corresponding to J*. Let {T(\)} be a family
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of subsets of T having the properties (7.1). Then the theorems on
focal points and conjugate surfaces hold for Eq. (8.1). Let TF,
Tk, ---, Ty, be the distinct conmjugate surfaces of Eq. (5.2) ordered
according to the increasing and distinct focal points of J in the in-
terval, and let Ty, T;*', -+-, T# be the distinct conjugate surfaces of
Eq. (8.1) ordered according to the increasing and distinct focal points
of J* in the same interval. Let T.,r =1,2,.--, N, be the member
of the family {T(\)} having as its boundary TF and let T, r =
1,2, ..., N*, be the member of the family {T(\)} having as tts bounda-
ry T¥. Then T,CT), r=1,2,---, N*. If J*(x) > J(x) holds for

all nontrivial functions xe€ .7, then T, Cc T, r=1,2,---, N*,

Order relations between the conjugate surfaces stated in the con-
clusion of Theorem 8.4 hold for the conjugate surfaces of the differen-
tial equations

N _ 0 ox \ _ .

8.2) B@) = 4 (RUF) P(t)s = 0
* _ 0 % 0% . D% —

(8.3) (@) = - (RHW> P*t)z = 0

provided the operator E is strongly elliptic and
(8.4) R:;(t)sﬂf; = Rij(t)fisj teT

holds for each £¢ @, and P*(t) = P(t) and for each te T. If strict
inequality holds for some te T in at least one of these inequalities,
then the proper inclusion of the conjugate surfaces T in T, hold,
forr=1,---, N*,

If, in Eq. (8.2), P = P(t, p1), ¢t a real parameter, and is monotone
strictly increasing with increasing g, for each te T (for example if
P(t; pt) = P,(t) + p), then the proper inclusion of conjugate surfaces
holds for the equations

2 (R 22) - Pt iy = 0

ot ot;

0 ( 6a3>

—(R;;——) — P(t; p*)x =0
5 (Rosy (t; %)

where p* > p.

9. Examples. In order to illustrate some of the results of the
preceding sections the special case

©.1) J@) = | (0 — o)t
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is considered, where £ denotes a constant. The corresponding Euler
equation is

(9.2) Ao+ px =0,

As a first case let T be the open interval (0,b) in 2. The class
of extremals is the class of solutions of Eq. (9.2). If z is an extre-
mal, then the J-orthogonality

b
J@,9) = | &g - poyldt = 0

holds for every yec.o; moreover (¢) is analytic on (0, b).
The class .97 of J-null vectors of .7 consists of all solutions x(¢)
of the problem
(9.3) dx-+ px =0 in (0,d)
=0, teT*.

There are at most a finite number of linearly independent solutions
of this problem. Separable solutions of Problem (9.3) are of the form

(9.4) ¢ = [ sin T
k=1 b

where the set (n,, ---,n,) of positive integers satisfy the equation

(9.5) ()= £

The set of functions of the form (9.4) spans the class .o of J-
null vectors of .o/, There is but a finite number v of linearly inde-
pendent functions of this type, and the number v is the nullity of J
on .o7. For if x is a function of the form (9.4) with positive integers
satisfying (9.4), then x€.9%. Since the nullity of J on .% must be
finite, there are at most a finite number of linearly independent func-
tions of this type. Suppose now that xe.%7, and let the Fourier
series for x(f) in T be

oo m R nt
x(ty = 3| apl...,,mkﬂ s1n—31’;)——" .

PLPm= =1 E

Since x must satisfy Eq. (9.2),
i ap ZJ( Zﬂ'( )+#>H51npk7[tk:0y
Doty Pyp=1 yim ] ba b

holds on every closed set in T. Hence whenever a,,.., =+ 0, then the
set {p;} of positive integers must satisfy
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é<pj)2: ﬁz .

b; T

There are but a finite number of distinct sets {p;} of positive integers
which satisfy this last relation. Thus x(f) must be a finite linear
combination of functions of the type (9.4). The number v of linearly
independent functions of this type in a maximal set is the nullity of
J on o In fact the nullity of J on &7 is given by M, where M
denotes the sum of the counts of all distinct sets (p,, ---, p,.) of posi-
tive integers which satisfy (9.5). A set (p, ---, p.) is counted m!/r!
times whenever it has r of its elements alike.

Let [ denote the length of the diagonal from 0 to the point b.
Define the family {T'(\)} of subintervals by T(\) = (0, Ab/1), 0 < N < I.
Let {7 (\)} be the corresponding family of subspaces of .oz A func-
tion « is a J-null vector of .o7(\) if and only if x is a linear com-
bination of functions of the form

b,

y(t):k];[lsin_p’;_ﬂ?’i_ ck:_l__.’k:]_,...’m
= k

with (p,, ++-, p.) & set of positive integers satisfying

(9.6) i (%)2 -

s mel?

There is a set \,, +-+, A, of values A in the interval 0 < x < I, such
that for each )\; there exists at least one set (p, :--, p.) of positive
integers satisfying (9.6). These values A; of length along the diagonal
are the distinct focal points of J relative to the family {_.o7(\)}. The
corresponding intervals (0, \,;b/l) have boundaries which are the dis-
tinct conjugate surfaces T*(\;) of J in T. Let M(\,) denote the sum
of the counts of sets (p,, +--, p.) of positive integers satisfying (9.6)
with » replaced by \;, the count being made as indicated previously,
for j=1,.-., N. Then the index of J on . is

N

la, = 2 M(A"J) .

=1

Consider now the equation
(9.7 dx + Pt)yx = 0

where Pc C*»Y(T), p > m/2 + 2, and also bounded and integrable on
(0, ). Let A\, ---, Ny be the distinct focal points of J relative to the
family {T(\)} of subintervals of T. Suppose P(t) = #¢,t€ T. Then there
are values N\, A\, -+, Ay of lengths along the diagonal in 0 <\ <,
such that for each \} there is at least one solution z of Eq. (9.7) in
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the subinterval (0, M;b/I) which vanishes on the boundary of the sub-
interval; moreover

[0, Mb/1] < [0, N;b/1] .
If P(t) > p,
[O! )";b/ll - (0’ ij/l)

j=1,2,.--, N. Let v(\}) denote the number of linearly independent
solutions of Eq. (9.7) which vanish on the boundary of (0, \b/l), j =
1,2, .--,N’. Then

N’ N
b= 3 005) > 3 M) = ¢

where the numbers M(\;) are those described in the preceding para-
graph.

For a different example, let T be the interior of the circle of radius
R about the origin, and let m = 2. Separable solutions of Eq. (9.2)
in polar coordinates which are single valued in T are of the form

x = J(ur)[c, cos pf + ¢, sin pd] ,

where ¢, ¢, are constants, p = 0,1, 2, --., and J, is the Bessel function
of the first kind of order p. The class .94 of J-null vectors contains
no nontrivial functions unless pR > t,, where ¢, is the first zero of
Jo(t), and in any case the nullity will be either zero or one. Let T(\)
be the interior of the circle of radius ) about the origin, for 0 <
A < R. Then T*(\) is a conjugate curve if and only if

Jp()uk‘) =0

for some p =10,1,2,.... Let J,J, ---,J, be the Bessel functions
of integral order which have at least one zero in the interval 0 <A< (R,
and let vy, be the number of zeros of J,(¢) in this interval, for ¢ =
0,1, -, p. Then the index

le = D Y, -

P
7=0

This value will be the same for any mode of expansion in sets {T'(\)}
having properties (7.1).
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