
Pacific Journal of
Mathematics

MEASURES ON COUNTABLE PRODUCT SPACES

EDWIN O. ELLIOTT

Vol. 30, No. 3 November 1969



PACIFIC JOURNAL OF MATHEMATICS
Vol. 30, No. 3, 1969

MEASURES ON COUNTABLE PRODUCT SPACES

E. 0 . ELLIOTT

A regular conditional measure v on a space Y relative
to an outer measure μ on a space X is defined as a function
on X x & such that (1) for each x e X, v(x, ) is an outer
measure on Y and & is the family of subsets of Y which
are (Caratheodory) measurable under each of the measures
v(x, -),xeX, and (2) for each βe& the function v( ,β) on
X is μ integrable) i.e., JV(α;, β)l* dx ^ oo).

Letting g be the function on the subsets of Z = X x Y
defined by

g(β) = 1 1 Iβ{x, y)v{x, )dy μ dx ,

defining a covering family 3 to consist of those rectangles
Ax B where A is μ measurable, B e έ% and g(A X B) < co or
those sets N such that g(N) = 0, we obtain the outer measure
^ = (i«ov) on Z generated by (the content) g and covering
family 3.

A system of regular conditional measures is a sequence
begun by a measure v0 on a space Xx and followed by regular
conditional measures v; (relative to /*») on spaces Xi+ί (i=l, 2, •)
where μι = v0 and μi+1 = (μι o vϊ) for ί = 1, 2, . Set X —
TliXif and for xeX write xι for the point (a?i, x2, , ccO which
is the projection of x onto the space Xί = Πy=i -Xy and similar-
ly write S{ = Πi=i Sj whenever the sets Sj are subsets of
Xj(j = l, ---,i).

For such a system of regular conditional measures a
generalization of Tulcea's extension theorem for regular con-
ditional probabilities holds, a Fubini-like theorem for integrable
functions is obtained and finally, for topological spaces, a
condition is given for the extension of inner regularity and
almost Lindelόfness properties.

We let ^ be the family of v0 measurable sets and let ^ be

the family of subsets of X{ which are measurable under each of the

measures v^x^1, -), x*-1 e X{~\ and let $ f be the family of subsets

7 of Xi such that μ^y) = 0or7 = axβ where a is ^ 4 - 1 measurable

and β e ^ and ^(7) < ©o. Thus & is the covering family which

generates μ{.

Now, writing X* = ΠΓ=i+i Xj we define

^ ? * = JS: S = Π & f or some β s.tί β{ e ^ i for each ί 1

^ * * = {β: for some i, β = a x X? where aaX1 and μi(a) = 0} ,

639
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g to be the function on & which is zero on ^?** and given by

g{β) = lim^OS*)

on ^ ? * .
For /3e,^?* and xeX, let

i—1

p.(χ9 β) = &><,(&) Π Vj(%3\ βj+i) J

and

p(x, β) — limiPiix, β) .

Let &*' = {/5 G ^ * : g(β) < oo, ̂ (a;, /3) is uniformly bounded on β, and
p(x, β) exists for all xeβ} and &' = ^ * ' U . ^ * * and use ^ ' and
# to generate a measure <p on X.

Our first objectives are to prove that φ and g agree on the
covering family &' and that members of & are φ measurable. To
do this we need and state a generalization of Tulcea's extension
theorem for regular conditional probabilities. The final objective is
to show that the product topology on X is inner regular and almost
Lindelόf [1] whenever the component spaces are provided the spaces
are of finite measure and the conditional measures are continuous [1],
The proof of this parallels that given for general product measures [2].

1* A generalization of Tulcea's extension theorem* Let a
regular conditional measure system y be given as above and assume
that v'XXj) = 1 and v\(x\ Xi+1) = 1 for each i and xι e X\ i.e., v\ is a
system of regular conditional probabilities. Define the measures μ\ as
above with μ[ — v[ and μ'i+1 = (μl o vΊ) and let SέΓ be the family of
subsets of X which are cylinders in X over sets which are μ\ measurable
for some i.

Now let Ψ be the measure on X generated by the covering family
J^~ and the content h defined by

h(β) = μ[{a)

where α c Γ and β = a x X? e ST.

The measure Ψ differs from the conventional Tulcea extension of

the conditional probabilities v\ in that in going from μ\ to μ'i+ί the

sets a c Xί+1 for which

ΛJ JI**j\ th , ILUtAy^-L^kΛ^KΛ/tλj \J

are assigned measure zero whereas, in the conventional extension they
may not even be measurable. The conventional method of proof [3]
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for Tulcea's extension theorem, however, may be carried through for
this new extension with essentially no changes. Therefore we give
without proof the following.

THEOREM 1.1. The members of ^Γ are Ψ measurable and Ψ{β) —
h(β) for each β e

2* Agreement and measurability• Consider a member S of
&*' and let vj( ) = vo( )M)(>Si) to get a normalized measure on Sx, and
let v'i(x\ •) = v{x\ -)/Vi(x\ Si+ί) to get a regular conditional probability
on Si+1. Extending this system of probabilities as in §1 yields a
(probability) measure Ψs on the space S. Let the measures μ\ on Sι

be associated with the v\ as in §1.

If β e &*' and β a S then μ^β1) is given by an i fold integral in

= J (i) J
= \

M-iix*-1, )dxt v[{x\

βiix^piix, S)μ'idxi

βi(^)pi(x9 S)Wsdx .

Thus, employing Lebesgue's theorem, we have

g(β) = lim, ̂ (̂ 8*)

ί βiix^piix, S)¥sdx

^piix, S)Ψsdx

= j Iβ(x)p(x, S)Ψsdx .

= f

Suppose now that & c ^ ' , ^ is countable, and S = U Ŝ , then the
members of gf are ?Γ5 measurable since the members of g^ = gf Π ^ * '
are countable intersections of members of J?t~ (i.e., cylinders over μ'
measurable sets for some i) and members of 2 2̂ = ^ Π ̂ * * have
^ measure zero. Hence,

^ Σ
3 ^

and

Σ î (») a.e.Σ
β
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Consequently,

(Is(x)ρ(x, S)Ψsdx ^ Σ (Iβ(x)P(x, S)Ψsdx + 0

and

9(S) £ Σ Q(β) + 0

and we conclude g(S) = φ(S) proving the

THEOREM 2.1. If Se^f then φ(S) = g(S). Let

^f = {A:A = X*-1 x βζ x X? for some i and & e

note that if A

- φ(S n A) + 9>(S - A) .

We consequently learn that members of ^ are φ measurable
since &' is the covering family for φ. Countable intersections of
members of ^ίf are hence measurable proving the next

THEOREM 2.2. If β e & then β is φ measurable.

For xί e X1 let £0( ) = v{{x\ •), write x{yj for the point fe, , xi9

y19 , 2/y) and let ί,.^, •) = v{(x{yj, .), i = 1, 2, . The regular
conditional measure system ξ3- then determines a measure λ^αf, •) on
Zί*. For β c X let us agree that βxi = {̂ /: (^, , xiy y19 y2, * )eβ}.
Then we may state the

THEOREM 2.3. If β is φ measurable then

φ(β) =

and Xi is a regular conditional measure associated with μiΦ

From [1, 1.6] we obtain the Fubini-like

THEOREM 2.4. If f is φ integrable1 then

— °° ^ J f(z)φdz ^ oo and {z:f(z) ±? 0} is σ-finite under φ.
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γ(z)φdz =

3* Topological measures* To review the topological notions in
[1] let us suppose that T is a topological space with J7~ being its
family of open sets, and let θ be a measure on T for which the open
sets are measurable. Then ^ is almost Lindelof (a.L.) provided each
covering of T by open sets contains a countable subfamily which
covers almost all of T, and J7~ is inner regular (i.r.) provided each
open set can be approximated in measure by closed subsets of finite
measure, i.e., for each β e j^7

θ(β) = Supr c β, 0(7) < oo .
l dclosed

Now let us assume that each of the spaces X{ is endowed with
a topology _^7 a n d that J/~* is the product of the topologies ^ 7 ,
1 ^ j ^ i. Then the sequence jτ\ will be called a.L. and i.r. provided
^ 7 is a.L. and i.r. relative to v0 and _ 7̂ is a.L. and i.r. relative to
Vi-iix*"1, •) for each a ̂ e Γ " 1 ' and the sequence v{ will be called
continuous provided that for each i — 1, 2, , the function u^ , /3) is
finite and άs~ι continuous for each set β which is measurable under
all measures Vi(x\ •) where x{eX\

From [1, 2.3] and mathematical induction we obtain the

THEOREM 3.1. If j ^ \ is a.L. and i.r., v{ is continuous and
< °° for each i, then J/~* is a.L. and i.r. relative to μ{ for

each i.

Let J7~ be the product topology on X obtained from the ^7\. Then
we have the

THEOREM 3.2. // ^ 7 is a.L. and i.r., Vι is continuous, fJ-iiX1) <
for each ί, and φ(X) < ^ then j ^ ~ is a.L. and i.r. relative to φ.

Proof. Suppose A e ^ 7 then for some countable family 5^ such
that each a e 57 is a cylinder a! x a" where a' e jΓ^a) and α" = X*[a)

we have A — U 2 .̂ Since α' above is μUa) measurable, a is φ measurable
and consequently A is φ measurable. Since φ(X) < c>o and each set
a! can be μi{a) approximated by a closed subset as closely as desired,
it follows that each a e 27 can be φ approximated as closely as desired
by the (closed) cylinders over those closed subsets. Since φ(A) < 00
a finite subfamily gf' of Z? can be chosen so that φ(\j 2Γ') is as close
to φ(A) as desired. Hence A may be φ approximated as closely as
desired by closed subsets (which are the union of the closed cylinders
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associated with 5f'). Thus J7~ is i.r. relative to φ.
To see that ^~ is a.L., let Sίf be an open covering of X and

let Sίfi be the family of open sets in X1 such that each cylinder in
X over one of these open sets is a subset of some member of
Thus, letting

<ĝ  = {β: β = a x X? for some a e £?$

we see that members of ^ belong to the base for the topology
and that X = \}Sίf = \Ji U ^ Using the fact that jT^ is both i.r.
and a.L. we can select a countable subfamily Sfff of St\ for which

= 0. Now, letting

γ = {β: β = a x X? for some a e

we have Φ(\J^i — \J^/) = 0 and taking ^ to be such a countable
subfamily of .^^ that each member of <gγ is a subset of some member
of . ^ , we obtain further that Φ(\J^i - U ^ ) = 0.

Finally, let & = U* - ^ a n ( i conclude,

X - u ^ = LI* U ^ - U
c L

and

Noting that . ^ is a countable subfamily of ^5^ completes the proof.
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