MEAN VALUE ITERATION OF NONEXPANSIVE MAPPINGS IN A BANACH SPACE

CURTIS L. OUTLAW
MEAN VALUE ITERATION OF NONEXPANSIVE MAPPINGS IN A BANACH SPACE

CURTIS L. OUTLAW

This paper applies a certain method of iteration, of the mean value type introduced by W. R. Mann, to obtain two theorems on the approximation of a fixed point of a mapping of a Banach space into itself which is nonexpansive (i.e., a mapping which satisfies $||Tx - Ty|| \leq ||x - y||$ for each x and y).

The first theorem obtains convergence of the iterates to a fixed point of a nonexpansive mapping which maps a compact convex subset of a rotund Banach space into itself.

The second theorem obtains convergence to a fixed point provided that the Banach space is uniformly convex and the iterating transformation is nonexpansive, maps a closed bounded convex subset of the space into itself, and satisfies a certain restriction on the distance between any point and its image.

We note that a rotation T about zero of the closed unit disc in the complex plane satisfies the conditions of Theorems 1 and 2, but the usual sequence $\{T^n x\}$ of iterates of x does not converge unless x is zero.

DEFINITIONS. If Y is a Banach space, T is a mapping from Y into itself, and $x \in Y$, then $M(x, T)$ is the sequence $\{v_n\}$ defined by $v_1 = x$ and $v_{n+1} = (1/2)(v_n + Tv_n)$.

Following Wilansky [3, pp. 107–111], we say that a Banach space Y is rotund provided that if $w \in Y$, $y \in Y$, $w \neq y$, and $||w|| = ||y|| \leq 1$, then $(1/2)||w + y|| < 1$.

THEOREM 1. Let Y be a rotund Banach space, E be a compact convex subset of Y, and T be a nonexpansive mapping which maps E into itself. If $x \in E$ then $M(x, T)$ converges to a fixed point of T.

Proof. If, for some n, $v_n = Tv_n$, then clearly $M(x, T)$ converges to v_n.

Hence suppose that $v_n \neq Tv_n$, for each n. Let z be a fixed point of T. Then $||v_n - z||$ is decreasing, for since Y is rotund and

$$||Tv_n - z|| = ||Tv_n - Tz|| \leq ||v_n - z||,$$

we have that

$$||v_{n+1} - z|| = \left|\left| \frac{1}{2}(v_n + Tv_n) - z \right|\right| < ||v_n - z||.$$
Suppose that \(\lim_n |v_n - z| = b > 0 \). Let \(y \) be a cluster value of \(\{v_n\} \). Then clearly \(b = |y - z| \).

Suppose first that \(y = Ty \). Then for each \(n \),
\[
|Tv_n - y| = |Tv_n - Ty| \leq |v_n - y|.
\]
Since we have assumed that \(v_n \neq Tv_n \) for each \(n \), we have by the rotundity of \(Y \) that
\[
|v_{n+1} - y| = \left| \frac{1}{2} (v_n + Tv_n) - y \right| < |v_n - y|.
\]
Thus \(\{ |v_n - y| \} \) is decreasing, and since \(y \) is a cluster value of \(\{v_n\} \), \(M(x, T) \) converges to \(y \).

Now suppose that \(y \neq Ty \). Let \(d \) denote \(b - |(1/2)(y + Ty) - z| \). Then \(d > 0 \), since \(Y \) is rotund, for
\[
|Ty - z| = |Ty - Tz| \leq |y - z| = b.
\]
Let \(n \) be such that \(|y - v_n| < d \). Then since \(T \) is nonexpansive,
\[
\left| \frac{1}{2} (y + Ty) - v_{n+1} \right| = \left| \frac{1}{2} (y + Ty) - \frac{1}{2} (v_n + Tv_n) \right|
\leq \frac{1}{2} |y - v_n| + \frac{1}{2} |Ty - Tv_n|
\leq |y - v_n| < d.
\]
Hence
\[
|v_{n+1} - z| \leq \left| v_{n+1} - \frac{1}{2} (y + Ty) \right| + \left| \frac{1}{2} (y + Ty) - z \right|
< d + (b - d) = b,
\]
a contradiction. Therefore \(b = \lim_n |v_n - z| = 0 \), so that \(M(x, T) \) converges to \(z \).

F.E. Browder [1] has shown that each nonexpansive mapping which maps a closed bounded convex subset \(E \) of a uniformly convex Banach space into itself has a fixed point in \(E \).

If such a mapping satisfies one additional requirement, we may approximate one of its fixed points using \(M(x, T) \):

Theorem 2. Let \(Y \) be a uniformly convex Banach space, \(E \) be a closed bounded convex subset of \(Y \), and let \(T \) be a nonexpansive mapping which maps \(E \) into itself. Let \(F \) denote the set of fixed point of \(T \) in \(E \), and suppose that there is a number \(c \) in \((0, 1) \) such that if \(x \in E \), then
MEAN VALUE ITERATION OF NONEXPANSIVE

\[\| x - Tx \| \geq cd(x, F) , \]

where \(d(x, F) \) denotes \(\sup_{x \in F} \| x - z \| \).

If \(x \in E \) then \(M(x, T) \) converges to a fixed point of \(T \).

Proof. The theorem is trivial if \(x \in F \). Suppose that \(x \in E - F \) and that \(M(x, T) \) does not converge to a member of \(F \). Then \(v_n \notin F \) for each \(n \). Since \(Y \) is uniformly convex, we have as in the proof of Theorem 1 that if \(z \in F \) then \(\| v_n - z \| \) is decreasing.

Suppose that \(b = \lim_n d(v_n, F) > 0 \). Since \(Y \) is uniformly convex, there is an \(r \) in \((0, 2b) \) such that, for \(w, y, \) and \(z \) in \(Y \), the relations

\[\| w - z \| \leq \| y - z \| \leq 2b \quad \text{and} \quad \| w - y \| \geq cb \]

imply that

\[\| \frac{1}{2} (w + y) - z \| \leq \| y - z \| - r . \]

There is a positive integer \(n \) and a member \(z \) of \(F \) such that

\[\| v_n - z \| < b + \frac{r}{2} , \]

so that since

\[\| T v_n - z \| = \| T v_n - T z \| \leq \| v_n - z \| < 2b \]

and

\[\| T v_n - v_n \| \geq cd(v_n, F) \geq cb , \]

we have that

\[\| v_{n+1} - z \| = \| \frac{1}{2} (v_n + T v_n) - z \| \leq \| v_n - z \| - r < b + \frac{r}{2} - r < b , \]

an contradiction. Hence \(\lim_n d(v_n, F) = 0 \).

We now need the following:

Lemma. If \(s > 0, z \in F, \) and \(r > 0 \) such that for some \(n, v_n \) is in the open sphere \(S(z, r) \) with center \(z \) and radius \(r \), then there exist \(t \) in \((0, s) \), \(w \) in \(F \), and an \(m \) such that the closed sphere \(\bar{S}(w, t) \) lies in \(S(z, r) \), and for each \(p, v_{m+p} \in S(w, t) \).

Proof. Recall that \(\{ \| v_p - z \| \} \) is decreasing and that we are supposing that \(\{ v_p \} \) does not converge to \(z \). Let \(a = \lim_p \| v_p - z \| . \)
Then $0 < a < r$. Let $t = (1/3) \min \{r - a, s\}$.

Since $\lim_p \|v_p - z\| = a$, $\lim_p d(v_p, F) = 0$, and $v_p \in F$ for each p, there exist w in F and an m such that $\|v_m - z\| < a + t$ and $\|v_m - w\| < t$.

Since $w \in F$, $\|v_{m+p} - w\|$ decreases as p increases, so that $v_{m+p} \in S(w, t)$ for each p. Also, if $y \in \bar{S}(w, t)$, then $y \in S(z, r)$, for

$$
\|y - z\| \leq \|y - w\| + \|w - v_m\| + \|v_m - z\|
< t + t + (a + t)
\leq 3 \left(\frac{r - a}{3} \right) + a = r .
$$

The lemma guarantees the existence of a sequence $\{z_i\}$ in F, a sequence $\{t_i\}$ of positive numbers with limit 0, and a subsequence $\{v_{n_i}\}$ of $\{v_n\}$ such that for each i and each p,

$$S(z_{i+1}, t_{i+1}) \text{ lies in } S(z_i, t_i)$$
and

$$v_{n_i+p} \in S(z_{i}, t_i) .$$

By the Cantor Intersection Theorem, $\bigcap_{i=1}^{\infty} S(z_i, t_i)$ contains exactly one point, say w. Clearly $\{z_i\}$ converges to w and $w \in F$. Further, $\{\|v_n - w\|\}$ is decreasing and $\{v_{n_i}\}$ converges to w, so that $\{v_n\}$ converges to w. Thus we have contradicted our assumption that $M(x, T)$ does not converge to a member of F.

REFERENCES

Received March 12, 1968.

LOUISIANA STATE UNIVERSITY IN NEW ORLEANS
NEW ORLEANS, LOUISIANA 70122