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R. M. Schori has conjectured that if T is a tree, but not
an arc, then there is no universal T-like continuum. We show
that if G is a finite collection of trees and there is a universal
G-like continuum, then each element of G is an arc. It then
follows that if G is a finite collection of one-dimensional
(connected) polyhedra, and there is a universal G-like con-
tinuum, then each element of G is an arc.

1* Definitions. By a continuum here we mean a compact con-
nected metric space; by a polyhedron, a nondegenerate (finitely)
triangulable continuum. In a metric space, the distance between two
points, A and B, is denoted by d(A, B), and a similar notation is used
for distances between points and point sets. The closure of a point
set K is denoted by K.

The point P of the continuum M is a junction point of M if
and only if M — P has at least three components.

A tree is a polyhedron that contains no simple closed curve. The
point P of the tree T is an endpoint of T if and only if P is a
noncutpoint of T.

The continuum M is an n-od if and only if n is a positive integer
greater than 2 and there is a point P such that M is the sum of n
arcs, each two intersecting only at P, which is an endpoint of both
of them. If PQ is one of the n arcs, then PQ — P is called a ray
of M.

If ε > 0, a transformation / from a metric space X onto a space
Y is called an ε-map if and only if / is continuous and if P is a
point of Y, then f~\P) has diameter < ε. The space X is Y-like if
and only if there is an ε-map from X onto Y for each ε > 0. If G
is a collection of spaces, the metric space X is G-like if and only if
for each ε > 0, there is an ε-map from X onto some element of G [1].

2* Lemmas •

LEMMA 1. If P is a junction point of the subcontinuum M of
the continuum U, then there is an open set R in U containing P
such that if R' is an open subset of R containing P, then there is
a positive number ε such that every ε-map f from U onto a tree, Tf

throws some point of R' onto a junction point of T.

Proof. Since M. — P has at least three components, M — P is
the sum of three mutually separated point sets, Ku K2, and iΓ3. For
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each i ^ 3, let P4 denote a point of K{. Let R denote an open set
in U that contains P but not P19 P2, or P3, and suppose R' is any
open subset of R that contains P. Let ε denote a positive number
less than the distance between any two of the sets K{ — K^R! (i ^ 3),
and also less than d(Piy Kj), for i ^ 3, j ^ 3, i Φ j .

Now, suppose / is an ε-map from U onto a tree T. Since, if
i ^ 3, Ki is a continuum, /(ίQ contains an arc α̂  from /(P<) to /(P).
If no two of these arcs intersect except at /(P), then /(P) is a
junction point of T. If the arc α̂  intersects the arc a2 in a point
distinct from /(P), let Q denote the first point of a2 on ax from f(Pλ)
to /(P). Clearly, Q must also be the first point of αx on a2 from
/(P2) to /(P). Hence the three arcs, [f(P),Q] and [Q,f(P1)] on α ,̂
and [Q, f(P2)\ on <x>, intersect only in the point Q, and Q is a junction
point of T. Moreover, Q is a point of /(i2')> since /"L(Q) intersects
both iΓ: and K2, but cannot intersect both Kx — K^R' and K2 — K2-Rr.

A similar argument suffices in case some other pair of the arcs
a19 a2, and a3 intersect in a point distinct from f(P).

LEMMA 2. If N is an n-od with junction point P, lying in a
continuum U, there is a positive number ε such that if f is an ε-map
from U onto a tree T with at most one junction point then (1) T is
a j-od with junction point Q, and j ^ n, (2) each endpoint of N is
thrown by f into some ray of T, but no two into the same ray, and
(3) if E is an endpoint of N and f(P) lies in the ray of T that
contains f(E), then f(P) lies in the arc in T from Q to f{E).

Proof. By Lemma 1 there is an open set R in U containing P
and a positive number ε' such that (1) R contains no endpoint of N
and (2) if / is an ε'-map from U onto a tree To, then f(R) contains
a junction point of To. Let Px, * ,Pn denote the endpoints of N
and, for each i ^ n, let Zζ denote the ray of N that contains P{.
Let ε denote a positive number less than each of the numbers ε',
d(Pi, R), and d(Piy N — Zt), for i <̂  n, and suppose that / is an ε-map
from U onto a tree T with at most one junction point.

Since / is also an ε'-map from U onto T, f(R) contains a junction
point Q of T. Hence T is, for some positive integer j , a j-oά. Now,
if i ^ n, d(P19 R) > ε and Q is in f(R), so /(P^) φ Q, and /(PJ lies in
a ray of T.

Suppose i and k are two integers such that /(P<) and f(Pk) lie in
the same ray of T. The arc in T from /(P;) to f(Pk) must contain
/(P), for otherwise either /(#<) contains f(Pk) or f(Zk) contains /(P,),
neither of which is possible, since d(P{, N— Zi)> ε and d(Pk, N— Zk) >ε.
But then if m ^ n and i Φ m Φ k, either (1) f(Pm) lies in f(Z{ + Zk)
or (2) f(P% + Pjb) intersects f{Zm), neither of which is possible. So the
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images of different endpoints of N lie in different rays of T, and
3 ^ n.

Finally, suppose i<Ln and f(P) lies in the ray W of T that
contains /(P<), but f(P) is not on the arc in T from Q to /(P<). Then
f(Pi) is on the arc in T from Q to f(P). So, if k ^ n, and A; ̂  i,
then since f(Pk) is not in Tf, f(Zk) contains /(P<). But d(P,, N- Z{) > ε.

LEMMA 3. Suppose (1) 1^ I2; and I3 are the intervals in the plane
with endpoints ( -1 , 1), ( -1 , -1); ( - 1 , 0), (1, 0); and (1, 1), (1, -1), re-
spectively, and (2) H = Ix + I2 + /3. 27&e% if T is any tree with at
least two junction points, and ε > 0, there is an ε-map from H onto T.

Proof. Let A and B denote the points ( — 1,0) and (1,0), re-
spectively. Since T has two junction points, T contains an arc a
whose endpoints, X and Y, are junction points of T, but no other
point of a is a junction point of T. Let E denote the sum of all the
components of T — X that do not contain a — X. Then E contains
two mutually exclusive arcs j3ι and β2 such that if i S 2, then β{

contains no junction point of T, and one endpoint of β{ is an endpoint
of T. If i ^ 2, let Qi denote the endpoint of βt that is not an end-
point of T. Then [E - (ft + ft)] + X + Q, + Q2 is a tree.

Now, suppose ε > 0. Let CΊ; D; and C2 denote the subintervals
of I, with endpoints ( -1 , 1), ( -1 , ε/2); ( - 1 , ε/2), ( -1 , -ε/2); and (-1 ,
— ε/2), ( — 1, —1), respectively. There is a continuous transformation
#! from Ix onto E + X such that (1) if i ^ 2, gx 1 C4 is a homeomorphism
from C, onto ft, (2) /(A) = X, and (3) /(Z?) = [E - (ft + ft)] + X + Q, + Q2.
Clearly, g1 is an ε-map. Similarly, there is an ε-map from J3 onto
[T — (E + a)\ + B which may be combined with a homeomorphism
from I2 onto a to obtain an ε-map from H onto 2\

3. Theorems*

THEOREM 1. If k is a positive integer and G is a collection each
element of which is a tree with not more than k junction points,
but some element of G has two junction points, then there is no
universal G-like continuum.

Proof. Suppose U is a universal G-like continuum. Then by
Lemma 3, the continuum H defined in Lemma 3 is G-like, and so U
contains a continuum Ή! homeomorphic to H. Let T denote an element
of G such that no element of G has more junction points than T, and
let j denote the number of junction points of T. Let To denote the
continuum obtained from T by replacing, with a pseudo-arc, each arc
in T which is maximal with respect to the property that each interior
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point of it is of order 2, in such a way that To is T-like, and hence
G-like. Again, U contains a continuum T homeomorphic to To.

Suppose that one of the junction points of if' is not also a
junction point of T'. Then U contains at least j + 1 points
P19 P2, Pj+1 each of which is a junction point of a subcontinuum
of U. By successive applications of Lemma 1, there is a positive
number ε and a sequence Rί9 R2, Rj+1 of open sets in U such that
(1) d(Ri9 Rn) > ε, for i ^ j + 1, n < j + 1, and i Φ n, and (2) if / is
an ε-map from U onto a tree, T, then if ί <L j + 1, f(Ri) contains a
junction point, Ji9 of T. Note that the points Jlf J2, , Jd+1 must
all be distinct; hence T must have at least j + 1 junction points. But
since U is G-like, £7 can be ε-mapped onto some tree in G, and no
tree in G has j + 1 junction points. Thus we have a contradiction,
and both junction points, A and 5, of Hf are also junction points of T"-

So Ϊ7 contains both an arc from i to ΰ, and a continuum (Γ'>
that contains A and B, but no arc from A to i?. Since U is treeliker

and so hereditarily unicoherent, this is impossible.
Thus, there is no universal G-like continuum.

THEOREM 2. If G is a finite collection each element of which is-
a tree, and there is a universal G-like continuum, then each element
of G is an arc.

Proof. Suppose some element of G is not an arc, but U is a.
universal G-like continuum. If some element of G has two junction
points, then Theorem 1 is contradicted. Thus each element of G is
an arc or, for some n, an w-od. Let n denote the greatest positive
integer j such that G contains a j-od. Then U contains (1) an n-od
N, and (2) a continum H which is the sum of n pseudo-arcs, all
joined at only one point. By arguments used in the proof of Theorem
1, the junction point, P, of N is also the junction point of H.

Let (1) e1 denote a positive integer for the subcontinuum N of
U as in Lemma 2, (2) ε2 and R denote a positive number and an open
set in U, respectively, such that R contains P, and if E is an endpoint
of N, then d(E, R) > ε, and (3) C denote the component of U R that
contains P.

C is a subset of N, for suppose A is a point of C not in N. Let
ε denote a positive number less than ε1? ε2, and d(A, N). Since U is
G-like, there is an ε-map / from U onto an element T of G. Since
ε < βj we have, using Lemma 2, that (1) T is an n-od with junction
point Q, (2) each ray of T contains the image of one, and only one,
endpoint of N, and (3) there is an endpoint E of N such that f(P)
lies in the arc in T from Q to f(E). Since d(A, N) > ε, f(A) doe&
not intersect f(N), so there is an endpoint Ef of N such that
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lies in the arc in T from Q to f(A). Since C is a continuum that
contains A and a point of f~ι{Q),f{C) contains f(A) and Q, and so
/(C) contains /(£")• But since d(£", C) > ε, this is impossible.

Thus C is a subset of N. Since the component C of i ί J? that
contains P is a subset of C, C' contains an arc. But H itself contains
no arc, and we have a contradiction.

THEOREM 3. If G is a finite collection each element of which is
a one-dimensional polyhedron, and there is a universal G-like con-
tinuum, then each element of G is an arc.

Proof. If some element of G contains a simple closed curve, then
foy a theorem of M.C. McCord [2, Th. 4, p. 72], there is no universal
<?-like continuum. So each element of G is a tree, and by Theorem
2, each element of G is an arc.

We note that if each element of G is an arc, there is a universal
<ϊ-like continuum [3].
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