SOME RENEWAL THEOREMS CONCERNING A SEQUENCE OF CORRELATED RANDOM VARIABLES

G. SANKARANARAYANAN AND C. SUYAMBULINGOM
SOME RENEWAL THEOREMS CONCERNING
A SEQUENCE OF CORRELATED
RANDOM VARIABLES

G. SANKARANARAYANAN AND C. SUYAMBULINGOM

Consider a sequence \(\{x_n\}, n = 1, 2, \ldots \) of random variables. Let \(F_n(x) \) be the distribution function of \(S_n = \sum_{k=1}^{n} x_k \) and \(H_n(x) \), the distribution function of \(M_n = \max_{1 \leq k \leq n} S_k \). Here we study the asymptotic behaviour of

\[
1.1 \quad \sum_{n=1}^{\infty} a_n G_n(x),
\]

where \(G_n(x) \) is to mean either \(F_n(x) \) or \(H_n(x) \) (so that if a property holds for both \(F_n(x) \) and \(H_n(x) \) it holds for \(G_n(x) \) and conversely) and \(\{a_n\} \) a suitable positive term sequence, when \(\{x_n\} \) form

(i) a sequence of dependent random variables such that the correlation between \(x_i \) and \(x_j \) is \(\rho, i \neq j, i, j = 1, 2, \ldots, 0 < \rho < 1, \) \(E(x_i) = \mu_i, i = 1, 2, \ldots \) and

\[
1.2 \quad \lim_{n \to \infty} \frac{\mu_1 + \mu_2 + \cdots + \mu_n}{n^\alpha} = \mu, \alpha > 1, 0 < \mu < \infty
\]

and

(ii) a sequence of identically distributed random variables with \(E(x_i) = \mu, i = 1, 2, \ldots \) such that the correlation between \(x_i \) and \(x_j \) is \(\rho_{ij} = \rho^{i-j}, i, j = 1, 2, \ldots, 0 < \rho < 1. \)

Suitable examples are worked out to illustrate the general theory.

Let \(N(x) \) be the first value of \(n \) such that \(S_n \geq x, x > 0. \) \(N(x) \) is a random variable and let

\[
1.3 \quad H(x) = E[N(x)].
\]

\(H(x) \) is called the renewal function and much research work has been done with reference to the study of the asymptotic behaviour of \(H(x) \) as \(x \to \infty. \) Feller has shown that

\[
1.4 \quad \lim_{x \to \infty} H(x)/x = 1/\mu,
\]

when \(\{x_n\} \) form a sequence of independent and identically distributed random variables with \(\mu = E(x_n), 0 < \mu < \infty, \) the limit being interpreted as zero when \(\mu = \infty. \) Blackwell has generalised the above, by considering the renewal process \(N(x, h) \) which denotes the number of renewals occurring in the interval \((x, x + h). \) He has shown that, for any fixed \(h, (h > 0), \) if
1.5 \[H(x, h) = E\{N(x, h)\} , \]
then
\[1.6 \lim_{x \to \infty} H(x, h) = h/\mu . \]
This has been proved earlier by Doob for the discrete case. Tatsuo Kawata has extended this further. He has proved that
\[1.7 \lim_{x \to \infty} \sum_{n=1}^{\infty} a_n P(x < S_n \leq x + h) = ha/\mu , \]
where
\[1.8 \frac{1}{n} \sum_{k=1}^{n} a_k = a + o(1/\sqrt{n}) . \]
He has also shown that if 1.8 is replaced by
\[1.9 \frac{1}{n} \sum_{k=1}^{n} a_k = a + o(1/n^\alpha) , \quad \alpha < 1/2 , \]
then 1.7 does not hold.

Herbert Robbins and Y.S. Chow have relaxed the restriction of independence and obtained a renewal theorem for the dependent case. They have shown that if
\[1.10 E(x_n | x_1, x_2, \ldots, x_{n-1}) = E(x_n) = \mu_n \text{(constant)} , \]
\[1.11 \lim_{n \to \infty} \frac{\mu_1 + \mu_2 + \cdots + \mu_n}{n} = \mu , \quad 0 < \mu < \infty , \]
and for some \(\alpha > 1 \)
\[1.12 E(\{x_n - \mu_n\}^{\alpha} | x_1, x_2, \ldots, x_{n-1}) \leq k < \infty , \]
then
\[1.13 \lim_{x \to \infty} H(x)/x = 1/\mu . \]

C.C. Heyde has proved that if \(\{x_n\} \) is a sequence of independent and identically distributed random variables with mean \(\mu , 0 < \mu < \infty , \) then
\[1.14 \sum_{n=1}^{\infty} a_n G_n(x) \sim \frac{\alpha L(x)}{\Gamma(1 + r)}(x/\mu)^r , \quad x \to \infty , \]
where \(a_n \)'s are positive term coefficient sequences such that
\[1.15 \sum_{n=1}^{\infty} a_n x^n \sim \frac{\alpha L[(1 - x)^{-1}]}{(1 - x)^r} , \quad x \to 1^- , \]
\(\alpha, r \) are real numbers greater than zero and \(L(x) \) is some nonnegative function of slow growth.

Here we extend the above theorem to the two cases (i) and (ii) given in the beginning. Subject to suitable restrictions we have shown that in the first case

\[
\sum_{n=1}^{\infty} a_n G_n(x) \sim \frac{(x/\mu)^{\lambda+1/s} L(x^n)}{(\lambda + 1)} , \quad x \to \infty
\]

and in the second case

\[
\sum_{n=1}^{\infty} a_n G_n(x) \sim \frac{(x/\mu)^{\lambda+1} L(x)}{(\lambda + 1)} , \quad x \to \infty
\]

where

\[
a_n \sim n^\lambda L(n) , \quad n \to \infty
\]

\(\lambda \) being chosen such that \(\sum_{n=1}^{\infty} a_n \) is divergent.

We illustrate 1.16 for the particular case when \(\{x_i\} \) follow the normal law with mean \(\mu_i \) and variance one and 1.17 for the cases when they follow (i) the normal law with mean \(\mu \) and variance one and (ii) the type III distribution with density function

\[
f(x) = \left[\Gamma(r) \right]^{-1} \theta^{-r} e^{-x^r / \theta} x^{r-1} , \quad x \geq 0 ,
\]

\[
= 0 , \quad x < 0 .
\]

For the type III distribution we also prove that

\[
\sum_{n=1}^{\infty} a_n P(x < S_n \leq x + h) \sim (h/r\theta)(x/r\theta)^{\lambda} L(x) , \quad x \to \infty .
\]

2. A lemma. We use the following lemma extensively.

Lemma 2.1. Let \(L(x) \) be such that \(L(cx) \sim L(x) \) for every positive \(c \) as \(x \) tends to infinity. If

\[
a_n \sim n^\lambda L(n) , \quad n \to \infty ,
\]

\(\lambda \) being chosen such that \(\sum_{n=1}^{\infty} a_n \) is divergent, then

\[
\sum_{n=1}^{\infty} a_n e^{-n^\theta s} \sim (1/\theta) \Gamma[(\lambda + 1)/\theta] s^{-(\lambda+1)/\theta} L(1/s^\theta) , \quad s \to 0 , \theta > 0 ,
\]

\[
\sum_{n=1}^{\infty} a_n n^\theta e^{-n^\theta s} \sim (1/\theta) \Gamma[(\lambda + \theta + 1)/\theta] s^{-(\lambda+\theta+1)/\theta} L(1/s^\theta) ,
\]

\[
\quad s \to 0 , \theta > 0 ,
\]

\[
\sum_{n=1}^{\infty} a_n e^{-n s m} \sim \Gamma(\lambda + 1)(sm)^{-(\lambda+1)} L(1/s) , \quad s \to 0 ,
\]
These can be got from Corollary 1(a) of [8, p. 182] by proper substitutions.

3. Renewal theorems.

Theorem 3.1. Let \(\{x_i\}, i = 1, 2, \ldots \) be a sequence of dependent random variables such that the correlation between any two variables \(x_i \) and \(x_j \) is \(\rho \), \(i \neq j \), \(i, j = 1, 2, \ldots \) and \(0 < \rho < 1 \). Let \(E(x_i) = \mu_i \), \(i = 1, 2, \ldots \) If

\[
\lim_{n \to \infty} \frac{\mu_1 + \mu_2 + \cdots + \mu_n}{n^\alpha} = \mu, \quad \alpha > 1, 0 < \mu < \infty ,
\]

\[
1 - H_n(n^\alpha x) \leq p(n, x),
\]

where \(p(n, x) \) satisfies

\[
\delta_n = \int_{\mathbb{R}} p(n, x)dx \to 0 , \quad n \to \infty ,
\]

the nonnegative constants \(a_n \) satisfy \(2.11 \) and the condition

\[
\sum_{n=1}^{\infty} a_n F_n(n^\beta) < \infty , \quad 0 < \beta < \mu ,
\]

then

\[
\sum_{n=1}^{\infty} a_n G_n(x) \sim \frac{(x/\mu)^{(\lambda+1)/\alpha}L(x^\alpha)}{\lambda + 1} , \quad x \to \infty .
\]

Proof of Theorem 3.1. Let

\[
\phi(x) = \sum_{n=1}^{\infty} a_n G_n(x) U(x - n^\beta).
\]

\[
= \sum_{n=1}^{\infty} a_n U(x - n^\alpha \mu) - \sum_{n=1}^{\infty} a_n [U(x - n^\alpha \mu) - G_n(x)] U(x - n^\beta),
\]

where

\[
U(x) = 1 , \quad x \geq 0 ,
\]

\[
= 0 , \quad x < 0 .
\]

Let

\[
\phi(s) = \int_{0}^{\infty} e^{-sx} \phi(x)dx .
\]
Then we have

\[\phi(s) = s^{-1} \sum_{n=1}^{\infty} a_n e^{-\alpha n^p s} - \sum_{n=1}^{\infty} a_n (L_n - K_n), \]

where

\[L_n = \int_{\pi a_n}^{\infty} e^{-ix} [1 - G_n(x)] dx, \quad K_n = \int_{\beta n^p}^{\mu n^p} e^{-ix} G_n(x) dx, \]

the term by term integration is justified by the monotone convergence. Now using 2.12, we have

\[s^{-1} \sum_{n=1}^{\infty} a_n e^{-\alpha n^p s} \sim \frac{I[(\lambda + 1)/\alpha] s^{-E[1/(1+1/E+1)]} L(1/s^p)}{\alpha L^{(1+1)E}\beta}. \]

Also

\[L_n = \int_{\pi a_n}^{\infty} e^{-ix} [1 - G_n(x)] dx \]

\[= n^\mu \int_{\mu}^{\infty} e^{-\alpha n^p x} [1 - G_n(n^\mu x)] dx \]

\[\leq n^\mu e^{-\alpha n^p \beta x} \int_{\beta}^{\infty} [1 - G_n(n^\mu x)] dx. \]

Using 3.1.3 and the fact that \(G_n(x) \leq F_n(x) \), we get

\[\int_{\mu}^{\infty} [1 - G_n(n^\mu x)] dx \to 0, \quad n \to \infty. \]

Hence we may write

\[L_n = n^\mu e^{-\alpha n^p \beta n}, \]

where \(\beta_n \to 0 \) as \(n \to \infty \) uniformly in \(s > 0 \).

\[K_n = \int_{\beta n^p}^{\mu n^p} e^{-ix} G_n(x) dx \]

\[= n^\mu \int_{\beta}^{\mu} e^{-\alpha n^p x} G_n(n^\mu x) dx \]

\[\leq n^\mu e^{-\alpha n^p \beta x} \int_{\beta}^{\mu} G_n(n^\mu x) dx. \]

But

\[P\left\{ \left| \frac{S_n}{n^\mu} - \mu \right| > \varepsilon \right\} \leq \frac{E(S_n - n^\mu \mu)^2}{n^{2p} \varepsilon^2} \]

\[\leq \frac{n[1 + (n - 1)\rho]}{n^{2p} \varepsilon^2}. \]
The right hand side of 3.1.16 tends to zero as \(n \to \infty \). Thus \(F_n(n^\alpha x) \to 0 \) as \(n \to \infty \) for all \(x < \mu \). Hence using the mean value theorem we may write

\[
K_n = n^\alpha e^{-n^{\alpha} \beta} \delta_n',
\]
where \(\delta_n' \to 0 \) as \(n \to \infty \) uniformly in \(s > 0 \). Combining 3.1.14 and 3.1.17 and putting \(\delta''_n = \delta_n - \delta'_n \), we have

\[
\sum_{n=1}^{\infty} a_n (L_n - K_n) = \sum_{n=1}^{\infty} a_n n^\alpha e^{-n^\alpha \beta} \delta''_n,
\]
where \(\delta''_n \to 0 \) as \(n \to \infty \).

In view of 3.1.11 and 2.13

\[
\sum_{n=1}^{\infty} a_n (L_n - K_n) \to 0, \quad s \to 0^+.
\]

Hence

\[
\phi(s) \sim \frac{I[(\lambda + 1)/\alpha]s^{\alpha+1+1}{\lambda}^\alpha}{\alpha^\mu^{\lambda+1+1/\alpha}}, \quad s \to 0^+.
\]

Using Karamata’s Tauberian theorem, we have

\[
\frac{1}{L(x^\alpha)} \int_0^x \phi(t) dt \to \frac{I[(\lambda + 1)/\alpha]}{\alpha^\mu^{\lambda+1+1/\alpha}}, \quad x \to \infty.
\]

Using the same reasoning as Heyde, we have if \(x > 0, 0 < \theta < 1 \)

\[
\phi(\theta x)(x - \theta x) \leq \int_{\theta x}^{x} \phi(t) dt \leq \phi(x)(x - \theta x).
\]

So

\[
\frac{1}{x^{(\lambda+1)/\alpha} L(x^\alpha)} \phi(\theta x) \leq \left[\frac{1}{(1 - \theta)L(x^\alpha)x^{(\lambda+1)/\alpha+1}} \right]
\]

\[
\times \left[\int_{0}^{\theta x} \phi(t) dt - \int_{0}^{\theta x} \phi(t) dt \right]
\]

\[
\leq \frac{1}{x^{(\lambda+1)/\alpha} L(x^\alpha)} \phi(x).
\]

Using 3.1.21 in the above inequality we have

\[
\limsup_{x \to \infty} \frac{\phi(\theta x)}{x^{(\lambda+1)/\alpha} L(x^\alpha)} \leq \frac{I[(\lambda + 1)/\alpha][1 - \theta^{\lambda+1+1/\alpha+1}]}{(1 - \theta) \alpha I[(\lambda + 1)/\alpha] + 2\mu^{\lambda+1+1/\alpha}}
\]

\[
\leq \liminf_{x \to \infty} \frac{\phi(x)}{x^{(\lambda+1)/\alpha} L(x^\alpha)}.
\]
Taking limit as \(\theta \to 1 \) in the right hand side and left hand side of 3.1.24

3.1.25 \[\lim_{x \to \infty} \frac{\phi(x)}{x^{(1+1)/\alpha} L(x^\alpha)} \geq \frac{1}{(\lambda + 1)t^{(2+1)/\alpha}} , \]

and

3.1.23 \[\lim_{x \to \infty} \frac{\phi(x)}{x^{(1+1)/\alpha} L(x^\alpha)} \leq \frac{1}{(\lambda + 1)t^{(2+1)/\alpha}} . \]

Combining the two we get

3.1.27 \[\lim_{x \to \infty} \frac{\phi(x)}{x^{(1+1)/\alpha} L(x^\alpha)} = \frac{1}{(\lambda + 1)t^{(2+1)/\alpha}} . \]

So

3.1.28 \[\phi(x) \sim \frac{(x/\mu)^{1+1/\alpha} L(x^\alpha)}{(\lambda + 1)} , \quad x \to \infty \]

Now put

3.1.29 \[\psi(x) = \sum_{n=1}^{\infty} a_n G_n(x)[1 - U(x - \beta n^\alpha)] \]

so that

3.1.30 \[\sum_{n=1}^{\infty} a_n G_n(x) = \phi(x) + \psi(x) . \]

From 3.1.4 and 3.1.29, we have

3.1.31 \[\psi(x) \leq \sum_{n=1}^{\infty} a_n G_n(n^\alpha \beta) \leq \sum_{n=1}^{\infty} a_n F_n(n^\alpha \beta) < \infty . \]

Hence

3.1.32 \[\frac{\psi(x)}{(x/\mu)^{1+1/\alpha} L(x^\alpha)} \to 0 , \quad x \to \infty . \]

Thus

3.1.33 \[\sum_{n=1}^{\infty} a_n G_n(x) \sim \frac{(x/\mu)^{1+1/\alpha} L(x^\alpha)}{(\lambda + 1)} . \]

This proves Theorem 3.1.

In the next theorem we discuss the case when \(x_n \) is a sequence of identically distributed random variables having an exponential autocorrelation.
THEOREM 3.2. Let \(\{x_i, i = 1, 2, \ldots\}\) be a sequence of identically distributed random variables with \(E(x_i) = \mu, i = 1, 2, \ldots\). Let this sequence be such that the correlation between \(x_i\) and \(x_j\) is \(\rho_{ij} = \rho^{(i-j)}\), \(i, j = 1, 2, \ldots\) and \(0 < \rho < 1\). If

\[
1 - H_n(nx) \leq p(n, x) ,
\]

where

\[
\delta_n = \int_{\rho}^{\infty} p(n, x) dx \to 0, \quad n \to \infty ,
\]

the nonnegative constants \(\{a_n\}\) satisfy 2.11 and

\[
\sum_{n=1}^{\infty} a_n F_n(n\beta) < \infty , \quad 0 < \beta < \mu ,
\]

then

\[
\sum_{n=1}^{\infty} a_n G_n(x) \sim \frac{(x/\mu)^{(i+1)} L(x)}{(\lambda + 1)} .
\]

Proof of Theorem 3.2. Let

\[
\phi(x) = \sum_{n=1}^{\infty} a_n G_n(x) U(x - n\beta) .
\]

Using the same technique as in Theorem 3.1, we have

\[
\phi(s) = s^{-1} \sum_{n=1}^{\infty} a_n e^{-nrs} - \sum_{n=1}^{\infty} a_n (L_n - K_n) ,
\]

where

\[
L_n = \int_{\beta n}^{\infty} e^{-sx}[1 - G_n(x)] dx , \quad K_n = \int_{\beta n}^{\infty} e^{-sx} G_n(x) dx .
\]

Using 2.14

\[
s^{-1} \sum_{n=1}^{\infty} a_n e^{-nrs} \sim \frac{\Gamma(\lambda + 1)s^{-1/2}}{\mu^{(i+1)}} L(1/s) . \quad s \to 0^+ .
\]

Also

\[
L_n \leq ne^{-n^2/2} \int_{\rho}^{\infty} (1 - G_n(nx)) dx .
\]

Using 3.2.1 and the fact that \(G_n(x) \leq F_n(x)\), we get

\[
\int_{\rho}^{\infty} (1 - G_n(nx)) dx \to 0 , \quad n \to \infty .
\]
Hence we may write

\[L_n = n e^{-n^2 s} \delta_n , \]

where \(\delta_n \to 0, n \to \infty \) uniformly in \(s > 0 \).

Also

\[K_n = n e^{-n^2 s} \int_0^{\beta} G_n(nx) dx. \]

Using the fact that \(G_n(nx) \leq F_n(nx) \), the law of large numbers by virtue of which \(F_n(nx) \to 0 \) as \(n \to \infty \) for all \(x < \mu \), and the mean value theorem, we may write

\[K_n = n e^{-n^2 s} \delta' \]

where \(\delta' \to 0 \) as \(n \to \infty \).

Combining 3.2.11 and 3.2.13 and putting \(\delta'' = \delta_n - \delta' \),

\[\sum_{n=1}^{\infty} a_n(L_n - K_n) = \sum_{n=1}^{\infty} na_n e^{-n^2 s} \delta'' , \]

where \(\delta'' \to 0 \) as \(n \to \infty \).

Using 2.15 and 3.2.8,

\[s^{-1} \sum_{n=1}^{\infty} a_n e^{-n^2 s} \to 0 \quad \text{as} \quad s \to 0^+ . \]

Now put

\[\psi(x) = \sum_{n=1}^{\infty} a_n G_n(x) [1 - U(x - \beta n)] , \]

so that

\[\sum_{n=1}^{\infty} a_n G_n(x) = \phi(x) + \psi(x) . \]

Using 3.2.3

\[\psi(x) \leq \sum_{n=1}^{\infty} a_n F_n(n \beta) < \infty . \]

So

\[\frac{\psi(x)}{(x/\mu)^{d+1} L(x)} \to 0 , \quad x \to \infty . \]

Using the same reasoning as in Theorem 3.1, we have 3.2.4.
4. Examples. We now give a few examples to illustrate the theorems. In view of their independent interest they are given in the form of theorems.

Example 1. We now illustrate Theorem 3.1 when the sequence \(\{x_i\} \) follow normal law. The result is given in Theorem 4.1.

Theorem 4.1. Let \(\{x_i\}, i = 1, 2, \cdots \) be a sequence of normal variables with \(E(x_i) = \mu_i \) and \(E(x_i - \mu_i)^2 = 1, i = 1, 2, \cdots \). Let this sequence be such that the correlation between \(x_i \) and \(x_j \) is \(\rho, 0 < \rho < 1, i, j = 1, 2, \cdots, i \neq j \).

If \(\mu_i \)'s satisfy 3.1.1, then 3.1.5 is true.

Proof of theorem 4.1. We first prove the case when \(G_n(x) = H_n(x) \).

Let

\[
\phi(x) = \sum_{n=1}^{\infty} a_n H_n(x) U(x - \beta n^\alpha), \quad 0 < \beta < \mu,
\]

where \(U(x) \) is defined by 3.1.7.

\[
\phi(x) = \sum_{n=1}^{\infty} a_n U(x - \mu n^\alpha) - \sum_{n=1}^{\infty} [U(x - \mu n^\alpha) - H_n(x)] U(x - \beta n^\alpha).
\]

\[
\phi(s) = s^{-1} \sum_{n=1}^{\infty} a_n e^{-n^{\alpha + \epsilon}} - \sum_{n=1}^{\infty} a_n (L_n - K_n).
\]

Term by term integration is justified by monotone convergence.

Here

\[
L_n = \int_{\beta n^\alpha}^{\mu n^\alpha} e^{-xs} [1 - H_n(x)] dx, \quad K_n = \int_{\beta n^\alpha}^{\mu n^\alpha} e^{-xs} H_n(x) dx.
\]

Now

\[
L_n = \int_{n^\beta \mu}^{n^\gamma \mu} e^{-xs} [1 - H_n(x)] dx + \int_{n^\beta \mu + k n^r}^{n^\gamma \mu} e^{-xs} [1 - H_n(x)] dx,
\]

\(k > 0, \quad 1 < r < \alpha \).

But

\[
\int_{n^\beta \mu}^{n^\gamma \mu} e^{-xs} [1 - H_n(x)] dx \leq n^{\gamma - \beta} e^{-s n^\alpha},
\]

and

\[
\int_{n^\beta \mu + k n^r}^{n^\gamma \mu} e^{-xs} [1 - H_n(x)] dx \leq n^{\gamma - \beta} e^{-s n^\alpha} \int_{n^\beta \mu + k n^r}^{n^\gamma \mu} [1 - H_n(n^\alpha x)] dx.
\]
Now
\[1 - H_n(n^a x) \leq [1 - F_1(n^a x)] + [1 - F_2(n^a x)] + \cdots + [1 - F_n(n^a x)] \]
4.1.8
\[\leq \{1 - \Phi(n^a x - \mu_1)\} + \left\{1 - \Phi\left(\frac{n^a x - (\mu_1 + \mu_2)}{\sqrt{2(1 + \rho)}}\right)\right\} + \cdots + \left\{1 - \Phi\left(\frac{n^a x - (\mu_1 + \mu_2 + \cdots + \mu_n)}{\sqrt{n[1 + (n - 1)\rho]}}\right)\right\}, \]
where
\[\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du. \]

Hence
\[1 - H_n(n^a x) \leq n\left\{1 - \Phi\left(\frac{n^a x - (\mu_1 + \mu_2 + \cdots + \mu_n)}{\sqrt{n[1 + (n - 1)\rho]}}\right)\right\}. \]

Lemma 2 in [5, p. 166] gives
\[1 - \Phi(x) \leq \frac{1}{\sqrt{2\pi}} x^{-1} e^{-x^2/2}, \quad x > 0. \]

Using 4.1.11 in 4.1.10, for sufficiently large \(n \), we have
\[1 - H_n(n^a x) \leq \frac{n^{3/2}}{\sqrt{2\pi}} \left(1 + (n - 1)\rho\right) e^{-\frac{(n^a x - n^a \mu)^2}{2(n[1 + (n - 1)\rho])}} \]
4.1.12
\[\leq \frac{n^{3 - a}}{\sqrt{2\pi}(x - \mu)} e^{\frac{n^a x^2 - n^a \mu^2}{2a^2}}, \quad n^a \mu + kn^r \leq x < \infty. \]

Now
\[\int_{n^a \mu + kn^r}^{n^a \mu + k a^r} [1 - H_n(n^a x)] dx \leq \frac{n^{2 - a}}{\sqrt{2\pi}} \int_{n^a \mu + k a^r}^{\infty} \frac{e^{-n^2 (\mu - x)^2/2}}{(x - \mu)} dx \]
4.1.13
\[\leq \frac{n^{3 - a - r}}{k^r \sqrt{2\pi}} \int_{kn^r}^{\infty} e^{-u^2/(r - 1)^2} du. \]

Using 4.1.11 to the right hand side integral in 4.1.13, we finally get
\[\int_{n^a \mu + kn^r}^{n^a \mu + k a^r} [1 - H_n(n^a x)] dx \leq \frac{n^{4 - a - 2r}}{k^r \sqrt{2\pi}} e^{-k^2 (r - 1)^2/2}. \]

The right hand side in 4.1.14 tends to zero as \(n \to \infty \), since \(r > 1 \). Thus we can write
4.1.15 \[L_n \leq kn^r e^{-\beta n^s} + n^s e^{-\beta n^s} \theta_n, \]
where \(\theta_n \to 0 \) as \(n \to \infty \). Hence we can write

4.1.16 \[L_n = n^s e^{-\beta n^s} \delta_n, \]
where \(\delta_n \to 0 \) as \(n \to \infty \), uniformly in \(s > 0 \).

Also

\[K_n \leq n^s e^{-\beta n^s} \int_{\beta}^{s} H_n(n^s x) dx \]

4.1.17 \[\leq n^s e^{-\beta n^s} \int_{\beta}^{s} F'_n(n^s x) dx. \]

But using 3.1.16 and the arguments leading to 3.1.17, we get

4.1.18 \[K_n = n^s e^{-\beta n^s} \delta'_n, \]
where \(\delta'_n \to 0 \) as \(n \to \infty \), uniformly in \(s > 0 \).

Thus

4.1.19 \(\phi(s) \sim \frac{\Gamma((\lambda + 1)/\alpha)s^{\alpha}}{\alpha \Gamma^{(\lambda+1)/\alpha}} L(1/s^\alpha), \quad s \to 0^+. \)

Take

4.1.20 \[\Psi(x) = \sum_{n=1}^{\infty} a_n H_n(x)[1 - U(x - \beta n^\alpha)], \]
so that

4.1.21 \[\sum_{n=1}^{\infty} a_n H_n(x) = \phi(x) + \Psi(x). \]

Now

4.1.22 \[\Psi(x) \leq \sum_{n=1}^{\infty} a_n H_n(n^\alpha \beta) \leq \sum_{n=1}^{\infty} a_n F'_n(n^\alpha \beta), \]

where

\[F'_n(n^\alpha \beta) = \frac{1}{\sqrt{2\pi n[1 + (n-1)\rho]}} \int_{-\infty}^{\beta^\alpha n - \sum \rho_i} e^{-\frac{u^2}{2(n[1+(n-1)\rho])}} du \]

4.1.23 \[= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\beta^\alpha n - \sum \rho_i} e^{-v^2/2} dv. \]
Since the upper limit in the integral in 4.1.23 is negative for large values of n,

$$F_n(n^a x) = \frac{1}{\sqrt{2\pi}} \int_{\frac{n}{\sqrt{2\pi}(\sum_{i=1}^{n} \mu_i - n^a \beta)}}^{\infty} e^{-v^2/2} dv.$$

4.1.24

Using 4.1.11 to the right hand side of 4.1.24,

$$F_n(n^a x) \leq \frac{\sqrt{n[1+(n-1)\rho]}}{\sqrt{2\pi}(\sum_{i=1}^{n} \mu_i - n^a \beta)} \cdot \frac{(\sum_{i=1}^{n} \mu_i - n^a \beta)^2}{4n[1+(n-1)\rho]}.$$

4.1.25

Hence

$$\sum_{n=1}^{\infty} a_n F_n(n^a x) < \infty.$$

4.1.26

So

$$\frac{\Psi(x)}{(x/\mu)^{\lambda+1/a} L(x^a)} \to 0, \quad x \to \infty.$$

4.1.27

Thus

$$\sum_{n=1}^{\infty} a_n H_n(x) \sim \frac{(x/\mu)^{\lambda+1/a} L(x^a)}{(\lambda + 1)}, \quad x \to \infty.$$

4.1.28

If we consider $\sum_{n=1}^{\infty} a_n F_n(x)$ instead of $\sum_{n=1}^{\infty} a_n H_n(x)$, the entire analysis holds. Here in 4.1.4 L_n is given by

$$L_n = \int_{0}^{\infty} e^{-tx}[1 - F_n(x)] dx ,$$

and

$$\int_{0}^{\infty} e^{-tx}[1 - F_n(x)] dx \leq \int_{0}^{\infty} e^{-tx}[1 - H_n(x)] dx .$$

4.1.29

This reduces the problem to the case of $H_n(x)$. Thus the theorem is proved.

Example 2. We now illustrate Theorem 3.2 when the sequence $\{x_i\}$ follow the normal law. The result is given in Theorem 4.2.

Theorem 4.2. Let $\{x_i\}, i = 1, 2, \cdots$ be a sequence of identically distributed normal variables with $E(x_i) = \mu$ and $E(x_i - \mu)^2 = 1$, $i = 1, 2, \cdots$. If this sequence be such that the correlation between
\[x_i \text{ and } x_j \text{ is given by } \rho_{ij} = \rho^{i-j}, \ i, j = 1, 2, \ldots \text{ and } 0 < \rho < 1, \text{ then } 3.2.4 \text{ is true.} \]

Proof of Theorem 4.2. Using the same notation as in Theorem 4.1, we have

4.2.1 \[\phi(x) = \sum_{n=1}^{\infty} a_n U(x - n\mu) - \sum_{n=1}^{\infty} a_n [U(x - n\mu) - H_n(x)] U(x - n\beta) . \]

Thus

\[\phi(s) = s^{-1} \sum_{n=1}^{\infty} a_n e^{-n\gamma s} - \sum_{n=1}^{\infty} a_n (L_n - K_n) , \]

where

4.2.2 \[L_n = \int_{-\infty}^{\infty} e^{-sx} [1 - H_n(x)] dx , \quad K_n = \int_{-\infty}^{\infty} e^{-sx} H_n(x) dx . \]

4.2.3 \[L_n = \int_{-\infty}^{\infty} e^{-sx} [1 - H_n(x)] dx + \int_{-\infty}^{\infty} e^{-sx} [1 - H_n(x)] dx . \]

Now

4.2.4 \[\int_{-\infty}^{\infty} e^{-sx} [1 - H_n(x)] dx \leq kn e^{-n\gamma s} . \]

and

4.2.5 \[\int_{-\infty}^{\infty} e^{-sx} [1 - H_n(x)] dx \leq ne^{-n\gamma s} \int_{-\infty}^{\infty} [1 - H_n(n\mu)] dx . \]

But

4.2.6 \[1 - H_n(n\mu) \leq n\left[1 - \phi\left(\frac{n(x - \mu)}{n(1 + \rho) - 2\rho(1 - \rho^n)} \right) \right] . \]

Using 4.1.11 to the right side of 4.2.6

4.2.7 \[1 - H_n(n\mu) \leq \frac{n\sqrt{n(1 + \rho)} - 2\rho(1 - \rho^n)}{(1 - \rho)(1 - \rho^2)} e^{-\frac{n^2(x - \mu)^2}{2\pi n^2}} , \]

\[x > \mu . \]

Hence

\[\int_{-\infty}^{\infty} [1 - H_n(n\mu)] dx \leq \int_{-\infty}^{\infty} e^{-\frac{n^2(x - \mu)^2}{2\pi n^2}} \frac{n\sqrt{n(1 + \rho)} - 2\rho(1 - \rho^n)}{(1 - \rho)(1 - \rho^2)} dx \times \int_{-\infty}^{\infty} e^{-\frac{n^2(x - \mu)^2}{2\pi n^2}} \frac{n\sqrt{n(1 + \rho)} - 2\rho(1 - \rho^n)}{(1 - \rho)(1 - \rho^2)} dx . \]
A SEQUENCE OF CORRELATED RANDOM VARIABLES 799

4.2.8
\[\frac{n(1 + \rho) - 2\rho(1 - \rho^2)}{(1 - \rho)^2} \leq \frac{k}{\sqrt{2\pi n}} \int_{-\infty}^{\infty} e^{-u^2/2} du. \]

Using 4.1.11 to the right hand side of 4.2.8

4.2.9
\[\int_{\frac{1}{n} + \frac{1}{n^r}}^{\infty} 1 - H_n(nx)dx \leq \frac{n(1 + \rho) - 2\rho(1 - \rho^2)^{1/2}}{(1 - \rho)^2} \cdot \frac{k^2}{2\sqrt{\pi n^r}} e^{\frac{n^r}{(1 - \rho)^2}}. \]

The expression on the right hand side of 4.2.9 \(\to 0 \) as \(n \to \infty \), since \(1/2 < r < 1 \). The rest of the arguments are as in the previous example and the theorem is proved.

Example 3. We now give another example to illustrate Theorem 3.2, when the sequence \(\{x_n\} \) follow the type III distribution. The result is given in Theorem 4.3.

Theorem 4.3. Let \(\{x_i, i = 1, 2, \cdots \} \) be a sequence of identically distributed Gamma variables correlated according to an exponential auto-correlation law and that the correlation between \(x_i \) and \(x_j \) is given by \(\rho_{ij} = \rho^{i-j}, i, j = 1, 2, \cdots \) and \(0 < \rho < 1 \). Let

\[P(x_i \leq x) = \theta^{-r}[\Gamma(r)]^{-1}e^{-x/r^{(r)}}, \quad x \geq 0, \]
\[= 0, \quad x < 0, \]
\[i = 1, 2, \cdots . \]

Then

4.3.1 \[\sum_{n=1}^{\infty} a_n F_n(x) \sim \frac{(x/r\theta)^{i+1}L(x)}{(\lambda + 1)}, \quad x \to \infty \]

and

4.3.2 \[\sum_{n=1}^{\infty} a_n P(x < S_n \leq x + h) \sim \frac{hL(x)}{r\theta} (x/r\theta)^i, \quad h > 0, x \to \infty , \]

where the \(a_n \)'s satisfy 2.11.

Proof of Theorem 4.3. Using the results of Samuel Kotz and John W. Adams, \(\phi_n(t) \), the characteristic function of the distribution of the sum \(S_n \) is

4.3.3 \[\phi_n(t) = \prod_{j=1}^{n} (1 - it\theta\mu_j)^{-r} , \]
where

\[\mu_j = (1 - 2\sqrt{\rho} \cos \theta_j + \rho)^{-1}(1 - \rho), \quad j = 1, 2, \ldots. \]

Here \(\theta_j \)s are the values of \(\theta \) which satisfy one or other of the equations

\[\sin [(n + 1)\theta/2] = \sqrt{\rho} \sin [(n - 1)\theta/2], \]
\[\cos [(n + 1)\theta/2] = \sqrt{\rho} \cos [(n - 1)\theta/2]. \]

Let

\[H(x) = \sum_{n=1}^{\infty} a_n F_n(x) \]

and

\[H(s) = \sum_{n=1}^{\infty} a_n \int_{0}^{\infty} e^{-\pi s} dF_n(x). \]

Using 4.3.3

\[H(s) = \sum_{n=1}^{\infty} a_n \prod_{j=1}^{n} (1 + s\theta \mu_j)^{-r} \]
\[= \sum_{n=1}^{\infty} a_n e^{-r \sum_{j=1}^{n} \log(1 + s\theta \mu_j)}. \]

Using the fact that \(\log (1 + z) = z + \lambda z^2, \quad |\lambda| < 1, \quad |z| < 1/2 \), we write

\[\log (1 + s\theta \mu_j) = s\theta \mu_j + \lambda_j s^2 \theta^2 \mu_j^2, \quad |\lambda_j| < 1, \quad j = 1, 2, \ldots. \]

Also \([(1 + \sqrt{\rho})/(1 - \sqrt{\rho})] \) is the maximum value of \(\mu_j \) and \(\sum_{j=1}^{n} \mu_j = n \).

Using these we get

\[\sum_{j=1}^{\infty} \log(1 + s\theta \mu_j) = s\theta n + [s^2 \theta^2 \mu n(1 + \sqrt{\rho})^2/(1 - \sqrt{\rho})^2], \quad |\mu| < 1. \]

Using this in 4.3.6, we get

\[H(s) = \sum_{n=1}^{\infty} a_n e^{-r \theta n s} e^{-r \mu n \theta s^2 \theta^2 [(1 + \sqrt{\rho})^2/(1 - \sqrt{\rho})^2].} \]
\[= \sum_{n=1}^{\infty} a_n e^{-r \theta n s} [e^{-r \mu n \theta s^2 \theta^2 [(1 + \sqrt{\rho})^2/(1 - \sqrt{\rho})^2]} - 1 + 1]. \]
\[= I_1 + I_2(s) \text{say}. \]

\[I_1 = \sum_{n=1}^{\infty} a_n e^{-r \theta n s}. \]

Using 2.14

\[I_1 \sim \Gamma(\lambda + 1) (s r \theta)^{-[(l+1)]} L(1/s), \quad s \to 0^+. \]
Now

4.3.12 \[I_2 = \sum_{n=1}^{\infty} a_n e^{-r\phi s_n} \left[e^{-r_n \theta s_n^2 (1 + \sqrt{\rho})^2 (1 - \sqrt{\rho})^2} - 1 \right]. \]

Since \(e^x - 1 < |x| e^{|x|} \), we get

\[|I_2| < \sum_{n=1}^{\infty} a_n e^{-r\phi s_n} \mu |n^2 \theta^2 [(1 + \sqrt{\rho})^2 (1 - \sqrt{\rho})^2] e^{r_n |n^2 \theta^2 (1 + \sqrt{\rho})^2 (1 - \sqrt{\rho})^2|}. \]

4.3.13 \[\leq r |\mu| s^2 \theta^2 [(1 + \sqrt{\rho})^2 (1 - \sqrt{\rho})^2] \sum_{n=1}^{\infty} a_n n e^{-r\phi s_n [1 - p(s)]}, \]

where \(p(s) \) can be made as small as we like since \(s \to 0^+ \). Thus using 2.15,

4.3.14 \[|I_2| \leq r |\mu| s^2 \theta^2 [(1 + \sqrt{\rho})^2 (1 - \sqrt{\rho})^2] \Gamma (\lambda + 2)(r \theta s)^{-(2+\lambda)} L(1/s), \]

\[s \to 0^+. \]

Hence

4.3.15 \[|I_2|/|I_1| \to 0 \text{ as } s \to 0^+. \]

Using this we get

\[H(s) \sim \Gamma (\lambda + 1)(sr \theta)^{-(2+\lambda)} L(1/s). \]

By Karamata's Tauberian theorem, we get 4.3.1. This proves the first part of the theorem.

To prove the second part of the theorem, take

4.3.16 \[Q(x) = \sum_{n=1}^{\infty} a_n P(x < S_n \leq x + h) \]

\[= \sum_{n=1}^{\infty} a_n [F_n(x + h) - F_n(x)]. \]

Let

4.3.17 \[Q(s) = \int_{0}^{\infty} e^{-sx} dQ(x). \]

Then

4.3.18 \[Q(s) = \sum_{n=1}^{\infty} a_n \int_{0}^{\infty} e^{-sx} d[F_n(x + h) - F_n(x)]. \]

\[= \sum_{n=1}^{\infty} a_n (e^{sh} - 1) \int_{0}^{\infty} e^{-sx} dF_n(x) - \sum_{n=1}^{\infty} a_n \int_{0}^{h} e^{-sx} dF_n(x). \]

Now

4.3.19 \[\sum_{n=1}^{\infty} a_n (e^{sh} - 1) \int_{0}^{\infty} e^{-sx} dF_n(x) \sim (h/r \theta) \Gamma (\lambda + 1)(sr \theta)^{-2} L(1/s), \]

\[s \to 0^+. \]
Also

\[\int_0^h e^{-tx} \, dF_n(x) \leq F_n(h) . \]

So

\[\sum_{n=1}^{\infty} a_n \int_0^h e^{-tx} \, dF_n(x) \leq \sum_{n=1}^{\infty} a_n F_n(h) . \]

But we can show that

\[\sum_{n=1}^{\infty} n^k P(|S_n - n r \theta| > n \varepsilon) < \infty , \quad k > 0 . \]

Hence

\[\sum_{n=1}^{\infty} n^k F_n(x) \leq \sum_{n=1}^{\infty} n^k P(S_n \leq n(r \theta - \varepsilon)) < \infty . \]

Using this in 4.3.21, we have

\[\sum_{n=1}^{\infty} a_n \int_0^h e^{-tx} \, dF_n(x) < \infty . \]

Hence

\[\frac{\sum_{n=1}^{\infty} a_n \int_0^h e^{-tx} \, dF_n(x)}{sh \Gamma(\lambda + 1)(sr \theta)^{-(i+1)} L(1/s)} \rightarrow 0 \text{ as } s \rightarrow 0^+ . \]

Using 4.3.19 and 4.3.25, we have

\[Q(s) \sim (h/r \theta) \Gamma(\lambda + 1)(sr \theta)^{-i} L(1/s) . \]

Using Karamata's Tauberian theorem we get 4.3.2. This proves the second part of the theorem.

In particular if \(a_n = 1 \), then

\[Q(x) = \sum_{n=1}^{\infty} P(x < S_n \leq x + h) \sim h/r \theta = h/E(x_i) . \]

This is in agreement with the classical renewal theorem. We remark that in the case of exponentially auto-correlated Gamma variables, the asymptotic behaviour of \(Q(x) \) is independent of the correlation coefficient and hence is same as if \(\rho = 0 \) and the variables are independent.

The authors wish to express their gratitude to Prof. V. Ganapathy Iyer for his encouragement.
BIBLIOGRAPHY

Received November 15, 1968.

ANAMALAI UNIVERSITY
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN
Stanford University
Stanford, California

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD PIERCE
University of Washington
Seattle, Washington 98105

BASIL GORDON
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY
K
* *
OREGON STATE UNIVERSITY
AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON
CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY
TRW SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17. Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.
Willard Ellis Baxter, *Topological rings with property (Y)* 563
Sterling K. Berberian, *Note on some spectral inequalities of C. R. Putnam* ... 573
David Theodore Brown, *Galois theory for Banach algebras* 577
Dennis K. Burke and R. A. Stoltenberg, *A note on p-spaces and Moore spaces* ... 601
Rafael Van Severen Chacon and Stephen Allan McGrath, *Estimates of positive contractions* ... 609
Rene Felix Dennemeyer, *Conjugate surfaces for multiple integral problems in the calculus of variations* ... 621
Edwin O. Elliott, *Measures on countable product spaces* 639
John Moss Grover, *Covering groups of groups of Lie type* 645
Charles Lemuel Hagopian, *Concerning semi-local-connectedness and cutting in nonlocally connected continua* 657
Velmer B. Headley, *A monotonicity principle for eigenvalues* 663
John Joseph Hutchinson, *Intrinsic extensions of rings* 669
Harold H. Johnson, *Determination of hyperbolicity by partial prolongations* ... 679
Tilla Weinstein, *Holomorphic quadratic differentials on surfaces in E^3* 697
R. C. Lacher, *Cell-like mappings. I* ... 717
Roger McCann, *A classification of centers* .. 733
Curtis L. Outlaw, *Mean value iteration of nonexpansive mappings in a Banach space* .. 747
Allan C. Peterson, *Distribution of zeros of solutions of a fourth order differential equation* ... 751
Bhalchandra B. Phadke, *Polyhedron inequality and strict convexity* 765
Jack Wyndall Rogers Jr., *On universal tree-like continua* 771
Edgar Andrews Rutter, *Two characterizations of quasi-Frobenius rings* 777
G. Sankaranarayanan and C. Suyambulingom, *Some renewal theorems concerning a sequence of correlated random variables* 785
Joel E. Schneider, *A note on the theory of primes* 805
Richard Peter Stanley, *Zero square rings* ... 811
Edward D. Tymchatyn, *The 2-cell as a partially ordered space* 825
Craig A. Wood, *On general Z.P.I.-rings* ... 837