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ZERO SQUARE RINGS

RICHARD P. STANLEY

A ring R for which 2> =0 for all xc R is called a zero-
square ring. Zero-square rings are easily seen to be locally
nilpotent, This leads to two problems; (1) constructing finitely
generated zero-square rings with large index of nilpotence,
and (2) investigating the structure of finitely generated zero-
square rings with given index of nilpotence. For the first
problem we construct a class of zero-square rings, called free
zero-square rings, whose index of nilpotence can be arbitrarily
large. We show that every zero-square ring whose generators
have (additive) orders dividing the orders of the generators
of some free zero-square ring is a homomorphic image of the
free ring. For the second problem, we assume R" -+ 0 and
obtain conditions on the additive group E. of R (and thus
also on the order of R). When n = 2, we completely charac-
terize R.. When n > 3 we obtain the smallest possible number
of generators of R., and the smallest number of generators
of order 2 in a minimal set of generators, We also determine
the possible orders of R.

Trivially every null ring (that is, R* = 0) is a zero-square ring.
From every nonnull commutative ring S we can make S x S x S into
a nonnull zero square ring R by defining addition componentwise and
multiplication by

(xly Yy, zl) X (ny Y2, zz) = (07 Oy Y. — xzyl) .

In this example we always have R*=0. If S is a field, then R is
an algebra over S. Zero-square algebras over a field have been in-
vestigated in [1].

2. Preliminaries. Every zero-square ring is anti-commutative,
for 0 =(z +y)?=a*+ 2y +yx + ¥ = 2y + yx. From anti-commutativity
we get 2R® = 0, for yzx = y(—ar) = — (yx)z = xyz and (yr)z = — x(yz),
so 2xyz = O for all z,y,zc R. It follows that a zero-square ring R
is commutative if and only if 2R* = 0.

If R is a zero-square ring with n generators, then any product
of n + 1 generators must contain two factors the same. By applying
anti-commutativity we get a square factor in the product; hence
R** = 0. In particular, every zero-square ring is locally nilpotent.

If G is a finitely generated abelian group, then by the fundamental
theorem on abelian groups we have

(1) G=C, D - BC, a5l for 1<i=k—-1,

.:anzoo

gy = °° y

811



812 RICHARD P. STANLEY

where C,, is a cyclic group of order a,. If X = {x,, :--, x,} generates
G and if there is some decomposition (1) for which «; generates C,,,
1 <4< n, then we call X a standard set of (group) generators for
G. Now let R be any finitely generated ring with a minimal set of
ring generators X’ = {x,, -.-, 2,}. Let {(X’> denote the additive group
generated by X'’ (whose elements are considered now as group, not
ring, generators), and let X be a standard set of generators for {(X’>.
Then X generates R as a ring since it generates {(X’)> as a group.
Such a set X will be called a standard set of ring generators for R,
and it follows that every finitely generated ring has a standard set
of ring generators.

3. Free zero-square rings. For every positive integer » and
every n-tuple (a, ---,a,), where a;|a,, for ¢ =1,.--,k—1, and
Qpsy = +++ = @, = oo, we define the free zero-square ring R.(a,, ---, a,)
and derive its basic properties. Free zero-square ring are constructed
from combinations of indeterminates called special monomials.

DeFINITION 3.1. Let a,, ---, a, be integers = 2 or o, such that
for some k < n, a;|a;, fori=1,.-- k — 1, whilea;,, = +-- = a,= oo
and let w, ---, o, be indeterminates. We say that x,x; --- ;, is a
special monomial if 1 <14, <1, < -+ <14, <m, and if a; is even or
o whenever g > 2.

Thus the special monomials consist of

x; 115 n
x5 1<i<j<n
T Bay vt By ¢ = 3 and q;, even or oo .
Now let 4, ¥,, *++, 9, denote the » distinct special monomials (in
some order) corresponding to a,, @, ++-, @, If y; =@, ---; isa

special monomial, we define

b — b *{ail,ifq:lor2
i =by;) = 2, ifqg=3.
Let Ry(a,, -+, a,) denote the set of formal sums
RF(aU ""a’n) = {iczyz’0§01< bJ' if bJ;é R

—oo<cj<ooifbj:oo}.

We define addition and multiplication on R, as follows:
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Addition. Define
; CY; + ; dy; = ;_1 eY: ,

where ¢, = ¢; + d,; (mod b,),0 < ¢, < b, if b, # o, e, = ¢; + d; if b, = oo,
We are adding the 7' components mod b,.

Multiplication. We first define multiplication of special monomials.
If y; and y, have a factor z, in common, define y,y; = y;4; = 0. In
particular, 2 = 0. If y, =z, y; = ¢, with s < ¢, define (ay,)(by,) =
ab x,x,; where if b; # -, then ab is defined by ab = ab (mod b,), 0 < ab < b;,
while if b, = o, then ab = ab. If we think of a and b as representatives
of the congruence classes mod b, and b;, then since b,|b; the product
ab always represents the same element mod b; regardless of the choice
of a and b. Similarly define (by,)(ay;) = — ab(x,»,). If y; and y,; do
not have a factor x, in common, and if at least one of y,, y; contains
at least two distinct factors =, and w,, then define (ay,)(by;) = cy,,
where y, is obtained by rearranging the faectors z, of y;, and y; in
ascending subscript order and defining

0, if a, is odd
¢ =40, if a, is even or c and ab is even
1, if a, is even or « and ab is odd,

where @, is the order of the indeterminate x, with least subscript
appearing in v,.

We now define in general
(Zew)(Sdw) = S candu) ,

where this sum is to be rearranged according to the previously defined
rules of special monomial multiplication and of addition.

We call this set Ry(a, ---, a,), together with the operations of
addition and multiplication just defined, the free zero square ring
Ri(a,, -+ -, a,).

THEOREM 3.2. R (a,, ---,a,) 1S & zero-square ring.

Proof. All the desired properties follow from the definitions
except associativity of multiplication and the zero-square property.

It follows from the definition of multiplication that we need only
to verify associativity for monomials c¢,y,, where ¢, is a constant
between 0 and b, — 1 for b, # oo, while — c < ¢, < o for b, = co,
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and y, is a special monomial. But if either of v,, v;, ¥; contain an
indeterminate x, of odd order, then (c,¥.)(¢c:¥;)(¢c;¥;) = 0 upon any as-
sociation, while if all orders are even or o, then

0, if two of w,, ¥, ¥, contain
a common factor x,
(ryn)(eyi)(e;y;) = . .
0, if any of ¢, ¢;, ¢; 1S even
Y:Y:Y;, otherwise

upon any association.
It remains only to show (3] ¢;%,)> = 0. Now

(X ey = <EJ ciei(Yiy; + YY) + XL 0.
The latter sum is 0 by definition of special monomial multiplication.
If y,y,; is the product of more than two indeterminates, then

ciei(yy; + Yiy:) = 2e,c;y; = 0,

since either y,y; = 0 or 2¢,c; is taken mod 2. This completes the proof.

THEOREM 3.3. If a, # o and 1 is the least integer for which a;
1s even (except that if a, 1s odd, put © = n), then Ry(a, ---,a,) has
order

arar™ - .- @L2 TSI (n—it (it 2|

Proof. In general there are (Z:{) distinct special monomials

with %k factors such that j is the least subscript appearing among
the factors. Such a monomial has order a; if k <2, while if £ > 2
the monomial has order 2 when «; is even and vanishes when «, is
odd. Thus the order of R, is given by

(s + - a)(ar'ar .- an_l)[g("?) +(ET) A+ (i)].
I2 AT A (3)] - [2(223)]

— 2N —t—1_1¢)—(n—q L i
— aiza/;p 1 "'aizz 12 (n—1+1)(n—1+2)/2 ,

as asserted.
The next theorem elucidates the ‘‘free’’ nature of R;.

THEOREM 3.4. If R is a zero-square ring with a standard set
of ring generators i, ---,x, of orders al, -+-,a,, and if Rp(a,, -+,a,)
18 @ free zero-square ring with a}|a; for 1 < 1 < n (with the convention
that every integer and oo are divisors of <), then R is a homomorphic
image of Rp(a,, «-+,a,).
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Proof. Let z,, ---,2, be the indeterminates (generators) of R;.
Let y,, -+-, ¥y, be the special monomials of R, and ¥, ---, . the cor-
responding monomials of R, so that if y; = «; ---; , then ¥ = i --- @i .
(Of course for some ¢ we may have y; = 0.) We then claim that the
mapping @: 3 ¢;y; — >, ¢,y; is the desired homomorphism.

Since a}|a;, the ring of integers mod a is a homomorphic image
of the ring of integers mod a,. It follows from its definition that ¢
preserves sums and products. It remains only to verify that ¢ is onto
R, i.e., that every element of R occurs among >, cy., 0 < ¢; < b; if
b, # oo, — 00 < ¢; < o if b, = . This, however, is an immediate con-
sequence of the fact that R is anti-commutative and satisfies R"*' = 0
and 2R® = 0, and that the order of an anti-commutative product cannot
exceed the g.c.d. of the orders of its factors. This completes the
proof.

In general, a subring (or ideal) of R.(a,, ---, @,) need not be free.
For instance, if » > 2 and each a; is even, then RY*?*1 ig a null
ideal with more than one generator.

If R, = R;(a,, -+--,a,) is a free zero-square ring such that 7 is
the least integer for which a; is even or <, and if n — 4 = 1, then
it is easily verified that R, has index of nilpotence n — ¢ + 2. Thus
free zero-square rings provide examples of zero-square rings with
arbitrarily large index of nilpotence.

4. Nonnull finite zero-square rings. In this section we charac-
terize the additive groups of nonnull finite zero-square rings and as
a corollary characterize the orders of such rings. For this purpose
we introduce a function f(G) of a finitely generated abelian group G.

DEFINITION 4.1. If G is a finitely generated abelian group, define
f(G) = max {n: R is a zero-square ring, R == 0, G is isomorphic to
the additive group R, of R}.

It follows from the local nilpotence of zero-square rings that f(G)
is finite. In this section and the next we assume G is finite to avoid
looking at a large number of cases. The results can easily be extended
to arbitrary finitely generated G.

THEOREM 4.2. Let G be a finite abelian group. Then f(G) = 2
if and only if either of the following hold:

(1) The dimension of G is greater than two; or

(ii) G =C, D C,,, where a,|a, and either (a./a,, a,) # 1 or a, is
divistble by a square > 1. (This condition on a, and a, is equivalent
to a,|a, and the existence of an integer b,0 <b<a,, such that
;| b(a,, b).)



816 RICHARD P. STANLEY

Proof. We first prove sufficiency of (i) and of (ii). Assume that
G=C,PC,PH---DC,,, with a;|a;;, andn = 3. Let Z be the null
ring with additive group C,, @ C,, D --- D C.,. Letx, x, be generators
for the free ring R.(a,, a;), and let J be the ideal of R, generated
by a.x.x,. Then it is easily seen that the ring (R;/J) @ Z is a nonnull
zero-square ring with additive group isomorphic to G. This proves the
sufficiency of (i).

The equivalency of the two conditions in (ii) can be verified
straightforwardly. To prove the sufficiency of (ii), assume that G =
C., @ C,, where a, and a, satisfy the conditions of (ii). In view of
Theorem 3.4 we need to prove that if R, (a,, a,) is generated by =z, «.,
then the ideal J generated by x,x, — bx, does not contain x,x,, where
b is defined in (ii). Assume to the contrary that xz,x,eJ. Then for
some y € R, and some integer ¢,

X%y = C(xle - bxz) + y(wx, — bavz) .

Since y(x,x, — bx,) contains no term in x,, we must have cbx, = 0. This
means «,|bec. The remaining way an %, term can appear is for
y = dx,. Thus we get

2,2, = (¢ — bd)x,x, .

We therefore have (a,, ¢ — bd) = 1, since the order of 2,2, in R, (a,, a,)
is a,. This implies (a,b, bc — b*d) = b. We have just proved a,|bc, and
from a, | b(a,, b) we get a,| a,b and a,|b*. Thus a,]|(a,b, bc — b’d), or a,|b,
contradicting 0 < b < a,. This proves the sufficiency of (ii).

If G has one generator, then R is clearly null. Hence to prove
necessity, we need to show that if R is generated by =z, , of orders
a,, @, with aa, and R* = 0, then «, and «, satisfy the conditions in
(ii). Let

xx, = b, + by,

in R. Without loss of generality it may be assumed that 0 < b, < a,,
00, < a,.

Assume first that b, = 0. Then 2,2, = b, so 0 = x,22 = b2, =
bix,; hence a,|b?. If a, is divisible by a square > 1, we have satisfied
one of the conditions. Otherwise b, = 0 since b, < a,. In this case R
is null, a contradiction.

Now consider the remaining case w,x, = bx, + bx;, b, # 0. Let ¢
be the order of x,x,., Then from 0 = cxx, = cbx, + cbx,, we get
0 = ¢bx, = ¢cby,, SO @, | ¢b,. Moreover, 0 =a%x, = bx,®, gives ¢|b,. Thus
a,|b;. But axw, = abx, gives a,|ab,. Then from a,|b} and a,]|a.b,
we deduce a,]| b.,(a,, b,). Since b, # 0, we can take b = b,. This com-
pletes the proof,
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COROLLARY 4.3. There exists a nonnull finite zero-square ring
of order r if and only if r is divisible by a cube.

COROLLARY 4.4. The smallest nonnull zero-square ring has
order 8.

A simple direct proof of Corollary 4.4 is given in [2], (see also
Th. 5.7.) It can be shown that there are exactly two nonisomorphic
nonnull zero-square rings of order 8. One of these is Rz(2, 2).

5. Additive group structure of finite zero-square rings. In this
section we extend Theorem 4.2 by considering conditions on G which
make f(G) = n for n > 2. Theorem 5.5 gives some necessary conditions,
while Theorem 5.6 provides a converse.

R will denote a finite zero-square ring and R, its additive group,
while G denotes a finite abelian group and G, its Sylow 2-subgroup.
Let x,, x,, ---, x, be a fixed standard set of ring generators of R. Let
2 denote the element z,2, - - - x, and Z; the element x,2, +++ 2, Z;1, *+* &0
More generally, if y = 2,2, -+ @; ,% <1, < «++ < i,, then § denotes
the element «;x;, -+ x;  ,5, <J. < +++ < J,_n, such that the i’s and
7’s include all the integers 1,2, --.,n. When n > 2 note that yy = «.
If & = 0, we call m the length of y, denoted by |y|. Note|y| + |y | = n.
If ze R, then c(z) denotes the additive order of z.

LeMMA 5.1. Every symmetric matric of odd order over GF(2)
with 0’s on the main diagonal is singular.

The proof is a straightforward application of the definition of the
determinant and will be omitted.

LEMMA 5.2. If a matria E has the form

E, 0

® E,

where the E, are square matrices and some E; is singular, then E
18 singular.

Proof. This is a special case of the well-known result det E =
(det E)) --- (det E,).
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The next theorem reduces the problem of evaluating f(G) to the
case where G is a 2-group.

THEOREM 5.3. If G s a fintte abelian group and f(G) = 3,
then f(G) = f(G,).

Proof. Let R be a finite zero-square ring with R* == 0, n = 3. By
anti-commutativity the elements R’ of R whose additive order is
a power of two form a subring. If z,eR,1 <¢<mn, such that
2,2, -+ 2, = 0, where ¢(z;) = a,2%, a; odd, then a,2;€ R’ and

(alzl)(Q/ZzZ) e (a’nzn) #0

since 22,2, +++ 2, = 0. Hence (R')" # 0, so f(&,) = f(G).

Conversely, assume R” = 0 and R, is a 2-group. If G is a finite
abelian group with G, = R., write G = G, H, and let S be the null
ring with S, = H. Then (R S), =G and (RP S)" + 0, so that
f(G,) £ f(G). Thus f(G) = f(G,) and the theorem is proved.

We can now assume in what follows that the additive group R.
of R is a 2-group.

LEMMA 5.4. Let R be a finite zero-square ring (with R, a 2-group)
with n = 3 elements x,, -++,x, satisfying x = x, +-+ x, #* 0.

(i) There exists a standard set of group generators for R.
containing every special monomial y; in the x; of length 3 < |y;| <n — 2.

(ii) The group generated by those y; satisfying 1 < |y;| < n — 2
1s generated irredundantly by them (though not necessarily standardly).

(iii) If we assume x,, «--, %, is a standard set of ring generators
for the ring R’ they gemerate, them there exists a standard set of
group gemerators for R containing every special monomial y; in the
x; satisfying |y;| =1 or 3= ]y;| = n — 2.

Proof. (i) If G is a finite abelian p-group and ¢, .--,t, €@,
then ¢, ---, t, extend to a standard set of group generators for G if

and only if the following two condition are satisfied:
(1) For any integers a, ---, a,,

> ot = pz:pibiti = pz,
7=1 =1

for some integers b,, ---, b,.
(2) For any integers a,, ---, a,,

iaiti:o*—"aiti:o, all ?;.
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To prove (1) in our case, assume

(3) > wy; =22,

3=lyslsn—2
Since 2y, = 0 when |y;| = 3, we can take a; = 0 or 1. Let y; be a
special monomial of minimal length satisfying a; = 1. Then from (3)
we get

r=vy; > ay; = 2(y;2) =0,
3=lysls=n—2
since ¥,z € R® when |y,;| < n — 2. This contradicts « - 0 and proves (1).
To prove (2), assume
(4) > ey, =0,
3<|y;lsn—2
where at least one a,y; # 0. As in (1), let y; be of minimal length
such that a,y; = 0. Multiplying (4) by ¥; gives the contradiction
2 = 0, and completes the proof of (i).
(ii) We need to prove that
(5) >, ay;=0=a,=2b, all ¢.
1= |y;lsn—2
Letting y; be of minimal length such that a; = 2b; for any integer
b;, an argument similar to those used in (i) leads to a contradiction.
(iii) We must show (1) and (2) hold, where the ¢/’s are the y,’s
satisfying |y;| =1 or 3 < |y;| <n—2, and p=2. The proof of (1) is
similar to the proof of (5). To prove (2), assume that

Sa + D by; =0.
=1 3=slyjisn—2

By (1), each b,y; = 0. It follows that each aux; = 0 since z, ---,x,

is a standard set of ring generators. This completes the proof of the

lemma,

We can now give necessary conditions for f(G) = n = 4.

THEOREM 5.5. Let G be a finite abelian 2-group.

(1) If f(G)=n=4, then the dimension of G s at least
2" —2[(n+2)/2], i.e., every generating set of G has at least 2" —2[(n+2)/2]
elements. (Brackets denote the integer part.)

(i) If f(G) =n =4, then at least 2" — n(n + 1)/2 — 2[(n + 2)/2]
generators in a standard set of generators for G have order 2.

Proof. (i) Suppose R is a zero-square ring with R" = 0 and
R, =@, and that %, ---2, # 0 in R(n = 4). Let R’ be the subring
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of R generated by =z, 2, ---,2,. Since dim R, < dim R,, it suffices
to show dim R/, = 2" — 2[(n + 2)/2]. By Lemma 5.4 (ii), dim R, is equal
to at least the number of special monomials y, in the indeterminates
X, ++-, x, satisfying 1 < |y,| < n — 2. The number of such special

monomials is (?) + <g) +oeeet <n1—7/— 2) =2"—mn — 2. Hence to com-
plete the proof of (i) we need only to prove that when = is odd, we
cannot have dim R, = 2" — n — 2.

Assume that » is odd and R, has 2" — n — 2 generators, R'™ == 0.
By Lemma 5.4 there is a standard set of group generators for R
containing (1) x,, ---, 2, (2) all special monomials ¥; in the x; satisfying
3<|y;| £n—2,and (3) a standard set of generators yi, - - -, y;n<m = ( g))
for the group generated by all y; of length 2. Since this accounts
for 2* — n — 2 generators, these in fact generate all of R.. In particular
the special monomials %, ---, 7, of length » — 1 can be written as
(6) m_.7': 2 bijyiy jzl,"',’l’b,

1Zly;ls=n—2
where b;; is an integer. (This representation may not be unique since
the y,’s of length 2 need not be standard generators.)

We show that b,; is even. Let y, be a term appearing on the
right side of (6) whose coefficient by, is odd, such that no y; of smaller
length has an odd coefficient. Then we get 0 = Z;j, = b, y.¥: = %, a
contradiction, so every b;; is even. In particular, the terms b;y;
with |y;| = 3 vanish since 2R = 0. If we re-express Z; as a linear
combination of the standard generators given above, then the terms
b,;y; with |y;| = 1 remain the same. Since 2x; = 0 when n > 3, we
have b;; = 1/2 ¢(y;) or b;; = 0 whenever |y,;| = 1. (This is where the
argument fails for » = 3.) Hence we can rewrite (6) as

(7) 7 = 26+ 3 hoy (5 el Yo

where

2z; = b;Yi ,
lygl=2
and where %;; = 0 or 1,
We claim that the matrix H = (h;;) over GF(2) is nonsingular.
If H were singular, then if we regard 1/2c¢(x;)x; as indeterminates
over GF(2), we can eliminate them from (7) and get a relation of the
form

> @+ 2) = 0,
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where some r; = 1. But then
r=x; >, (% + 2z) = x;2.0=0,
i=1

a contradiction. Hence H is nonsingular.
Therefore we can solve (7) for the n unknowns 1/2 ¢(x;)x; over

GF(2) to get
(8)  o@)m=2Fem+ e,  J=L-m,

where each ¢;; = 0 or 1. If E denotes the matrix (e¢;;) over GF(2),
then E = H™, so E is nonsingular.

We will now reach a contradiction by showing that E is singular.
We first show e¢;; = 0. We have

1 “ n_
0 = E C(x])xi = 2 z‘{ eijzif)(;j + 21 eijxixj - ijx .
i= i=

Since « # 0, ¢;; = 0.
Define s,,s,, -+, s, by

o(®) = o(@;) = -+ = ()
< C(xsl—i-l) = c(xsl+2) = = C(xsz)
oo <el@,_pn) = 00 = e(®,,)

where s, = n. Let FE, be the square submatrix of FE defined by
E,=(e), sy, +1=1,7<s, for k=1,2,..-,¢t. (Here s, is taken
to be 0.) We show that each E, is symmetric. Assume ¢; =1 for
some s,_, +1=<1,5 <s,. Then from (8) we get 1/2 ¢(x,)x;x; = ®, SO
1/2 e(x;)xx; = 0. But 1/2¢(x;) = 1/2¢(x), a8 s,, + 1 £ 4,5 < s,. Hence
1/2 ¢(x)we; = 0. From (8) we again get 0 3£ 1/2¢(x)xx; = €;%, SO
e;; = 1. This proves that E, is symmetric. Moreover, E, has 0’s on
the main diagonal since each e;; = 0.
We now show that if for some k& we have 7 < s,,7 > s, then
e;; = 0. As in the previous paragraph we have
1
(9) = (@), = €% .
2
Since 7 < 84,7 > s, we have co(x;) < ¢(x;). Therefore 1/2 ¢(x;)z;z; # 0.
But from (4), 1/2 c(z))xx; = e;x, so e(x;)zx; = 2e;,2 = 0 (since 22 = 0).
But e(x;) < e(z;) implies c(x;) < 1/2 c(x;), so 1/2 e(x;)x;2; = 0. Comparing
with (9) shows e¢;; = 0, as asserted.
This shows that E has the form given in Lemma 5.2. Since the
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sum of the orders of the E; must be the order of E, some FE, has
odd order. Then by Lemma 5.1 E, is singular, so by Lemma 5.2 F
is singular, a contradiction. This completes the proof of (i).

(ii) Using the notation of part (i), it follows from 2R” = 0 that
every special monomial y; satisfying 3 < |y;| £ n — 2 has order 2.

There are <g’> + <Z> 4 oo + (nﬁ2> =2" —nn + 1)/2 — (n + 2)
such %;, and by Lemma 5.4 they extend to a standard set of group
generators for R,. Moreover, we have just shown that when #n is
odd, there is at least one y; with |y,;| = n — 1 which cannot be ex-
pressed in the form y; = 3.0, s 5¥:;. Exactly as in the proof of
Lemma 5.4 it follows that the set of all y, satisfying 3 < |y, | £ n — 2,
along with y,, extend to a standard set of group generators for R,.
Thus we have found 2" — n(n + 1)/2 — 2[(n + 2)/2] generators of

order 2, proving (ii) and completing the proof of the theorem.

The following theorem shows that the results of the previous
theorem are best possible.

THEOREM 5.6. Let m = 4 be an integer.

(1) Given any integer N = 2" — 2[(n -+ 2)/2], there exists a finite
abelian 2-group G of dimension N, such that f(G) = n.

(ii) Given any integer M = 2" — n(n + 1)/2 — 2[(n + 2)/2], there
exists a finite abelian 2-group G with precisely M generators of order
2 (in a standard set of generators), such that f(G) = n.

Proof. Clearly to prove both (i) and (ii) it suffices to construct
a finite zero-square ring R with R” + 0(n = 4), such that R, has
precisely N = 2" — 2[(n + 2)/2] standard group generators, with precisely
M=2"— n(n + 1)/2 — 2[(n + 2)/2], of these generators of order 2. Let
m = [n/2] and let Ry(a, = 8,a,=8, --+,a, = 8) be a free ring with
generators x,, -+, 2, (as defined in §3). If » is even let J be the ideal
generated by {Z, —4x,, T,—4x,, B, — 42, T, — 42,5, + -+, T, —4x,, T, — 42,_.},
while if n is odd let J be generated by (% — 4x,, %, — 4z, ---,
Ty —4%,_,,%,_, — 42,_,}. Let R=R;/J. Then R is generated by the
images of all y; satisfying 1 < |y,| £ n — 2 when % is even; with the
additional generator Z, when % is odd. This gives a total of
2* — 2[(n + 2)/2] generators, as desired. Moreover, when #» is even,
a standard set of group generators for R, has # + 1 elements of
order 8,2m* — m — 1 elements of order 4, and exactly M elements of
order 2. When % is odd, there are # -+ 1 elements of order 8, 2m?> +m — 1
elements of order 4, and exactly M elements of order 2. Hence it
remains to prove that the image of 2 in R,/J is not 0, i.e., that
xedJ. We treat only the case when » is even; the case » odd is
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almost exactly the same.
Assume zeJ. Then

T = zl(a_cl — 45‘72) + Zz(fz - 49/1) + oo+ zn(jn - 490%—1)
+ 0%, — 4x,) + b(F, — 4x) + --+ + b,(T, — 4w,) ,

where z;,€e Ry, b; = 0 or 1. Hence we need at least one z; = x;, say
2, = x,. We then also get the term — 4x,2,, which can only be cancelled
by 2, = x,, giving another — 4x,2,. But this also gives another x, and
2+ 2 =0. Hence x¢J, and the theorem is proved.

REMARK. The proofs of Theorems 5.5 and 5.6 are not valid for
n = 3, basically because from |y;| = # — 1 we cannot deduce 2y; = 0.
If Theorem 5.5 (i) were false for n = 3, then there would be a 2-group
G with three generators such that f(G) = 3. Although this seems
highly unlikely, the question remains open. Clearly G cannot have
less than three generators. Note that Theorem 5.5 (ii) is trivially
satisfied for » = 3. Finally, Theorem 5.6 is easy to verify for n = 3
(though in part (ii) we of course must have M = 0).

It is considerably simpler to get results on the order of zero-square
rings satisfying R" 0.

THEOREM 5.7. Assume m > 2. Then there exists a zero-square
ring of order r satisfying R" # 0 if and only if 2| r.

Proof. Assume R" + 0. We know from the proof of Theorem
5.3 that there are elements z,, ---, %, in the Sylow 2-subgroup R, of
R, such that @, --- »,+#0. Let y, v, ---, ¥,._, be the special monomials
in the x;,. Claim that the 2**~' elements of the form >*'by., b, =0

or 1, are all distinct, otherwise we would have a relation of the form
> by, =0,

with at least one b, = 1. Let y, be a special monomial of shortest
length such that b; = 1. Then multiplying (6) by %; gives © =0, a
contradiction. Hence R, has order at least 2*"~!| so that 2| R,|.
Hence 2" 7.

Conversely, if 2°"~'.s = r, then we take R, to be C" P C,. If
we impose the free ring R;(2,2, ---,2) on C?"! and the null ring on
C,, then R" = 0.

Finally we have the result of [3].

COROLLARY 5.8. The smallest zero-square ring R satisfying R*+0,
n > 1, has order 2°"1,
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