Vol. 31, No. 1, 1969

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 307: 1  2
Vol. 306: 1  2
Vol. 305: 1  2
Vol. 304: 1  2
Vol. 303: 1  2
Vol. 302: 1  2
Vol. 301: 1  2
Vol. 300: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
On right alternative rings without proper right ideals

Erwin Kleinfeld

Vol. 31 (1969), No. 1, 87–102
Abstract

It is shown that a right alternative ring R without proper right ideals, of characteristic not two, containing idempotents e and 1, e1, such that ex = e(ex) for all x R must be alternative and hence a Cayley vector matrix algebra of dimension 8 over its center.

Mathematical Subject Classification
Primary: 17.50
Milestones
Received: 1 November 1968
Published: 1 October 1969
Authors
Erwin Kleinfeld