Pacific Journal of

Mathematics

THE ASYMPTOTIC BEHAVIOR OF THE KLEIN-GORDON
EQUATION WITH EXTERNAL POTENTIAL. II

JOHN MARTIN CHADAM




PACIFIC JOURNAL OF MATHEMATICS
Vol. 31, No. 1, 1969

THE ASYMPTOTIC BEHAVIOR OF THE
KLEIN-GORDON EQUATION WITH
EXTERNAL POTENTIAL, II

JoHN M. CHADAM

Let U,(t) and U(t) be the one-parameter groups governing
the time development of solutions of the Klein-Gordon equation,
e = m?, and the perturbed equation, [J¢ = m?e + V(Z)p,
respectively. In a previous work the author obtained sufficient
conditions on the potential V (¥) which guaranteed the existence
of the wave operators, W.: = s — lim U(—#)U,(t) as t — oo,
Here it is shown that if, in addition, the associated (Schriodinger)
wave operators, W3: = s — lim gim*+V—di—itm’ -4t gg { — co
are complete and the Invariance Theorem is valid then the
W.. are also complete and are isometries. Finally, these results
are used to show that the scattering operator, WI'W_, is
unitarily implemented in Fock space,

The similarity between the wave operators W. and W observed
in [1] as far as their existence theories are concerned, is clearly
reaffirmed in their completeness theories. Indeed, the proof of the
above results is based on the development of an explicit relationship
between these wave operators. Connections of this sort were observed
by Birman [3, p. 114, § 5] for abstract differential equations of the
form ¢,, + Ap = 0. Sufficient conditions for such a relationship in
this more general framework were obtained by Kato [4, §§9, 10] and
used to study both potential and obstacle scattering for the wave
equation [4, §11].

In this investigation of the Klein-Gordon equation the argument
will be directed so as to take best advantage of the above general
results of Kato. However some generalizations will be necessary in
order to establish the cited results on the Lorentz-invariant as well
as the finite-energy solution spaces of the Klein-Gordon equation.
Because a specific equation is being considered some simplification of
Kato’s arguments will also be possible.

1. Preliminaries. In this section the concepts discussed above
are given precise definitions. Some related results which are directly
used in the proofs of the main theorems are also included in summa-
rized form.

Suppose 4 is the Laplacian in three dimensions and A? is the self-
adjoint realization of m’I — 4 on L*E?®). Throughout this paper V is
taken to be a real-valued function of three (space) variables and in
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L?(E?) for some 2 < p < .! With these hypotheses on V it is a
fairly standard result that the perturbed operator, A% + V, is self-
adjoint with D(A* + V) = D(4? = D(4). This self-adjoint realization
of A* + V will be denoted by B:.

So that fractional powers of the above operators can be compared
we ask that the perturbation satisfy a restriction on the size of its
negative part:

(i) 1 V_ll, < M(q) for any ¢q = 8/2 (including <) where M(q) is
a constant depending only on ¢ and m.

REMARK. More specifically M(q) = constant. m“2?/* where the
constant is that appearing in the Sobolev inequalities [6, p. 125]. The
precise value of M(q) is inessential in what follows. All that is needed
is that the ¢g-norm of V_ is sufficiently small for at least one ¢ = 3/2.

ProposiTION 1.1. For perturbations V, as above, satisfying con-
dition (i), the self-adjoint operators A?, B’ satisfy

(1) m’||p|| < [|A’p|| = C||B'p|| = CY || A'p||
for all pe D(B’) = D(A?) and all 0 <0 < 1. In addition
(2) Co' | A% || S CTP || B2l = [ A2l = m™ [l |

for all pe LXE®) and all 0 =<0 <1. C, and C, are constants de-
pending on V,m, p and q.

Proof. [1, Lemma 2.4, Th. 2.5].
In order to discuss the solution spaces of the K — G equation we
shall first write it in its equivalent vector-valued form

.d [P\ _ [ 0 id\[e
< ails) = (e o))

which has as its formal solution

P\ (@0 [ cosAt  A-sin At\[p(0)
(4) (qb(t))"U°“)(¢<0))“(—AsinAt cos At ><¢(0)>

where @(0), ©(0) are the Cauchy data at ¢ = 0. Indeed, it is a fairly
well known fact that equation (4) rigorously defines the solution of
the K — G equation on H(A, «) (defined below) in the sense that ¢ —
Ui(t) is a one-parameter group of unitary transformations on H(A4, @)
with infinitesmal generator (_g A %({ > The solution spaces H(A4, &)

|| ||p will denote the usual norm in L?(E3). However, for notational convenience
I} |lz will be replaced by || || and the associated inner product will be written as (,).
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are described in the following.

DEFINITION. For each ac R, the complex Hilbert space H(A4, a)
is the completion of D(A%) @ D(A**) with respect to the inner product

P Py
Q), v dya = ’
( ) ((@2) (’I/f2>)d,a

= (Aa931, Aa“;kl) + (Aa_lazy Aa—l’ﬂ[f‘z) .
As a direct sum H(A, @) will be written as D[A*] @ D[A*].

REMARK. Our primary interest is in the finite energy (H(A, 1))
and the Lorentz-invariant (H(A, 3)) solution spaces of the K — G
equation. We shall handle both simultaneously by proving the main
results on H(A4,0) for all 0 < # < 1. For @ in this range it can be
checked that the above completion is only required in the second
summand of H(A4,#d). In fact, except for the norm, D[A’] is iso-
morphic to the Sobolev space W’ ** E°) and hence contains non-L*(E")
elements.

Condition (i) insures that B?, like A% is a nonnegative (self-adjoint)
operator. For this reason the above discussion can be repeated with
A replaced by B to obtain the dynamical propagators U(f) on the
solution spaces, H(B,0), of the perturbed K — G equation. The
following observation, which is a direct consequence of Proposition 1.1,
will be convenient in the next section.

ProprosITION 1.2. With the hypothesis of Proposition 1.1 H(A, §)
and H(B, 0) are isomorphic as linear spaces for each 0 < 6 <1 and
the norms satisfy

(5) Kl”'”/l,ﬂg ||'||B,0§K2H'HA,0

where K, and K, are constants depending on C, and C,. It follows
that U,(t): H(B, ) — H(B, 0) and U(t): H(A, 6) — H(A, 6) are uniformly
bounded.

The above result allows us to form products of the finite-time
propagators even though they were defined on a priori different spaces
and hence define the wave operators.

DEFINITION. The (free-to-physical) wave operators W, are given by

W, = s — lim U(—t)Ut)

t—too
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whenever this strong limit exists on all of H(A, 0).

REMARK. The existence of the strong limit is Qemanded on all

of H(A, 6) because the generator of Uo(t),(_g 4 z({>, is spectrally

absolutely continuous (c.f. Lemma 2.2 to follow). For notational
convenience the 6#-dependence of W, is deleted since the conditiong
obtained are valid for all 0 < 6 < 1.

If one further restriction is made on V,

(ii) VeL?(E® for any 2 < p < 3,
then the following existence theorem can be proved [1, Th.4.1].

THEOREM 1.3. If V is real-valued and satisfies conditions (i)
and (i1) then W. exist on H(A, 6) for each 0 < 6 < 1.

2. Main results. In this section the isometric nature and the
completeness of W.: H(A, 6) — H(B, 6) will be established for pertur-
bations which satisfy the additional conditions

(ili) W3 = s — lim,_.., " e~4" are complete;

(iv) W5 = s — lim,_,., e*®e"" 4 for ¢ as in Invariance Theorem.?

The method of proof will be to establish a relationship between W,
and W3S by using the ideas concerning identification operators proved
by Kato [4, §§9, 10]. Indeed the proof will be directed so as to take
best advantage of these general results of Kato.

We begin by considering the transformation I'(A4, 0): H(A, 6) —
L¥E®) ¢ LXE?®) formally defined by the equation

1 (A A
(4, 0) = 1—/—7— A? —gA

This transformation, which is the analog of one considered by Birman
[3, p.114, §5] and Kato [4, p. 335, 8.9], will provide us with a unitary
operator which “diagonalizes” U,(t) in an operationally convenient way.

LEMMA 2.1. For each 0 <0 <1,
I'(A, 6): D(A") @ D(A")(C H(4, 0)) — L(E") @ L&)
defined above has a unique unitary extension
['(A, 0): H(A, 6) — LXE") @ LY(E") .
In addition

2 The strongest version of condition (iv) required is with ¢(1) =28/2,0 =6 = 1.
This is not an operationally weaker condition, however, since the full Invariance
Theorem [5, p.544-7] must be used to determine conditions on V for it to occur.
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(6) f(A, 0) Ug(t)f(A’ 0)”‘1 = e—'iAt @ gidt .

Proof. For © = (3) e D(A?) @ D(A?™), a straight-forward compu-

tation using the defining equation gives || I'(4,0)0 || = || @ ||4,0." Further-
more

I'(A, 0)(D(A’) @ D(A’™)) = R(A") D R(4') = LXE*) § L(E") .

Thus the isometry I'(4, #) has a unique extension to one with domain
the H(A, ¢)-closure of D(A’) @ D(A’™) (i.e., all of H(A, 6)) and range
LXE? @ L*E*. This unitary extension is

', =

1 (A" AP
V2 \4r A

) where A D[A’] — LXE?)

is the unitary transformation defined by A/m@ = A%'¢ for all
pe LK% c D[A’']. A simple algebraic computation shows that

F(A, 0)Ut) = {e=4* @ e (4, 6)

on a suitable dense set from which the relation (6) follows by con-
tinuity.

Before applying the above to the problem at hand we shall obtain
a more precise description of the absolutely continuous part of the

generator of Uyt) <i.e., of <_2 A zOI > on H(A, 0)) since it is at the

basis of the completeness problem for W,.. In particular we shall
relate the subspace of absolute continuity of (_O% A Z({ ) to that of A

by means of an adaption to the present situation of a result of Kato
[4, p. 355, Lemma 8.1].

LemMmA 2.2. Let P,, and Q, denote (the projections in H(A, 6)
and L*(E®) onto) the subspaces of absolute continwity of (_g A %OI >
and A respectively then the following conditions are equivalent:

(a) QeP,y

(b) I'(A4,00cQ,D Qs

(e) Alp,eQ, and ﬁ\ﬁil%eQA.

Proof. Since @, is a closed linear subspace of L*E°) [5, p. 516,

3 The norm ({|-]{2+ {|-]|®¥/2 in L%(&3) P LAE?3) is also denoted by ||-|| since there
is no possibility of confusion.
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Th. 1.5] (b) and (c) are clearly equivalent. Suppose E(\) and e(\) are
the spectral projections for A4 and (_2 e %({> respectively. Then
equation (6) is equivalent to (4, #)e(S)I'(A, 0)™ = {E(S)P —E(S)}
for all Borel sets S > R. Thus

16(S)® |40 = [ {E(S) @ —E(SHI(4, )0 ||

from which the equivalence of (a) and (b) is immediate.

REMARK 1. Because m’I — 4 is spectrally absolutely continuous,
A and hence (_g A2 @({ ), is likewise. This motivates the definition

of W, in the previous section.

REMARK 2, Clearly if condition (i) is satisfied (so that B’ is a
nonnegative self-adjoint operator for each 0 < 6 < 1), the above two
results can be proved with A replaced by B. In general, however, B
will not be spectrally absolutely continuous so that Py, = I.

Returning to the main problems we now indicate how the above
may be used to provide a connection between the quasi-relativistic
wave operators W, and the nonrelativistic wave operators W3i. This
will be accomplished by comparing each to the wave operator

Wi:=s — lim U(—t)['(B, 6)"'T'(A, O)Ujt) .
t—koo
The requirement that the identification operator [4, p.343,1.2 and
p. 346, Definition 3.1] (B, 6)~'I'(A, 6) ¢ B(H (A, 6), H(B, 0)) is satisfied,
since I'(A, §) and I'(B, §) are unitary.

THEOREM 2.3. If the perturbation V satisfies conditions (i) and
(iv), then

(a) WL exist if and only if W3 exist;

(b) WL are complete if and only 1f WS are complete.

Proof. Relation (6) for A, and the corresponding one for B can
be used to obtain

(B, 0)U(—t)[(B, 0)"'I'(A, O)U(t)I'(4, 6)™
— {eiBte-—’ZAt @ e—iBteiAt} .
Because the I"-operators are bounded with bounded inverse, standard

results on strong limits can be used on the above equation to give

(B, ) WLI(A, 0)= = s — lim {e'5e= 14 ) e~ B¢t}
(7) e
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The last equality follows from the invariance condition (iv). This
establishes part (a). Similarly, part (b) follows from (7) and the
equivalence of the first two statements in Lemma 2.2,

REMARK. The existence and completeness of W3 are equivalent

to the same questions for the more familiar wave operators,
s — 1im ei(V——A)te—i(—J)t ,
t—rd-oc0

since the associated prewave operators are identical. In particular,
the existence of the latter is assured for potentials which satisfy
condition (ii) [5, p. 534-5]; the completeness follows if Ve L'(E? N L*(E®)
[5, p. 546, Example 4.10]. The proof of the completeness shows that
condition (iii) and (iv) are closely related. It is interesting to dis-
tinguish them, however, since the latter is used for other purposes
(e.g., in equation (7) and in a more essential manner in Lemma 2.5
to follow).

All that remains then is to show that W, = W.. This will
require condition (i), (iv) and the existence of W (e.g., condition (ii))
in an explicit way. We now state this as a theorem, the proof of
which is rather lengthy, and as a result, will proceed as a sequence
of lemmas.

THEOREM 2.4. If V satisfies conditions (i), (ii) and (iv) then
W. = WL in the sense that the existence of one implies the existence
of the other and their equality.

Proof. A straightforward application of Theorem 4.2 of [4] shows
that sufficient conditions for the equality of W. and W. are

(a) [(B,0)"'I'(A,0) and I B(H(4, 0), H(B, 0)), and

(b) s — lim_.. (I'(B, 0)~I'(4, 8) — I)U,t) = 0 on H(A4, 0).
The first part of (a) has already been noticed to be true if condition
(i) is satisfied. The second part follows from Proposition 1.2 which
likewise requires condition (i). In addition U (t): H(A, 6) — H(B, 8)
is uniformly bounded by K, (c.f. Proposition 1.2). Thus it suffices to
establish (b) on a dense subset of H(A, §); say D(A) @ L¥(KE®. For

(P YR AL
0 = () e D(A) @ LB,
(F(B, 0 T'(4, ) — D)Ut)0

f1/ B% B9\/A" {A* I 0
_ |1 - @
(8) L2<——iB1~” iBl—&>(A" ——iAﬁ“l) (o I)JUO()

_ (BAY T 0 Po(t)
B ( 0 B-A — I) (qao(t))
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where g,(t) is the solution of the K — G equation with Cauchy data
@, @, at t = 0, and @, (t) is its time derivative. Thus

(B, 0) (A, 0) — UL |3
= || BAB~A’ — Do) ||! + || B (B A" — I)y(t) |I*
= || (4s — B)o(®) [I* + |[ (A" — B (¢) |* .

The last equation follows from Proposition 1.1 (i.e., D(4) =
D(B) © D(A%) = D(B’)) and the fact that D(A) @ L*(E®) is invariant
under Uy t). Thus (b) is implied by |{ (A’ — B%)p,(t)|| and || (A’ —
B )@y(t) || — 0 as t— Foo.

We now reduce the conditions, step-by-step, to one which is much
more amenable [4, p. 361, Condition 10.2 and Th. 10.5]. Let

o __;_( (W5 + W5, «(W§-— W§)>¢
T2\ (W - W), (WS4 W)

and (gig) - U@)o,.

LEMMA 2.5. Under the hypothesis of Theorem 2.4, || A’py(t) —
Blop. (t) || and || AP7'py(t) — B'9.(t) || tend to zero as t— oo,

Proof. As previously observed the hypothesis implies the existence
of W$ which, by the invariance condition equals s — lim, ... ei®’t¢~i4"t
for each 6 = 0 (in particular for 0 < 4 < 1). Now

Alpy(t) = A’(cos Atp, + A" sin Aip,)

%W“‘(A”% + 1A p,) + —;— e (Alp, — 1A 'p,) .

But the existence of W3 implies that s — lim,,.., (7" — ¢" "2 W) =
0 and Wi A’ = B’W$ (using the invariance condition and the fact that
Q.= 1I). It is clear then that

Ao t) = {36 (B Wip, + B Wip)

|

tends to zero as t— 4+ oo. A straightforward algebraic computation
shows that the term in braces is B’p.(t). This establishes the first
part of the lemma and the second part can be proved similarly.

By writing

+ %eth(B” Wip, — B Wip)}
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1 (A" — B)po(t) || = [| A’py(t) — B'p.(t) + B'p.(t) — B'p(?) ||
= [ A%p(t) — B'p.(t) || + [| B'(@ot) — @) ] ,

it is clear that || (4" — B")p(t) || — 0 as t — oo if || BY(@y(t) — @(0))]] —
0 as t-— +oo. Similarly [[(4%~ — B")@ut) || —0 as t— +co if

| B (@t) — @) [[—0 as t— oo,

LEMMA 2.6. Under the hypothesis of Theorem 2.4,
| B (@y(t) — @) || and || B’ (py(t) — @+(t)) || — 0
as t — o if [ B(@t) — pu(t)) || — 0 as t — oo,
Proof. Since @ ¢ D(A) D LHE?), pt) and ¢.(t) € D(A) = D(B) [8,
p. 614, Th. 2.1]. But {|B’%y|| = || BBy || = (mC)~'|| By || for all
+y € D(B) by Proposition 1.1, which establishes the first part. The

second part follows directly from the existence of W32 and (iv). To
see this write

@o(t) = — A sin Atp, + cos Algp,

(10) = —% e~ (Ap, + o) + %6“”(%1% — p3)
and
D) Pult) = —Z e WiAp, + i) + 5 Wi(Ap, — ip) -

Thus || §4(t) — @(t)]|] —0 as t— oo if s — lim(e™* — e B W) =0
as t — —+oco which follows from conditions (ii) and (iv). The proof is
completed by again observing that

| B4 (u(t) — #u(0) | = (mCTY~ | (t) — P2(®) ] -

LEMMA 2.7. || B(pyt) — @=(t) || >0 ast— £ oo if || Ver# Wiy ||—
0 as t — oo for all e D(A%.

Proof. This is essentially condition (¢) of Theorem 10.5 of [4].
A careful examination of the proof shows that it suffices to have
s — lim, ;.. Ve =0 on {WSy;+r € D(A?)} rather than on all of
D(B*) N Qz. Condition (iv) is used in the present formulation but in
a rather inessential way.

LEMMA 2.8. Under the hypotheses of Theorem 2.4,
| V(e7# Wi — e=)p || -0
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as t— +co for all e D(A%).

Proof. Since e D(AY, e p and e Wiy e D(A%) = D(B)
{8, p. 614, Th.2.1]. Now

N Ve W — ey f| = [T VI (e WE — e )y |,

where ¢ = 2p(p — 2)~'. The last term is estimated using inequalities
of the Sobolev type [6, p.125] to obtain

azy €I g S constant | (— e W — ¢y )
e W — ey |

where v = 3(2p)~'. The result will now follow if it can be shown
that the first term on the right in (12) is uniformly bounded in ¢ and
the second tends to zero as ¢ — 4+ <. The second requirement follows
from the existence of W and the invariance condition provided v < 1
or p > 3/2 which is guaranteed by the hypothesis. Turning to the
second requirement,

(=D W2 — ey || = [| Ae™ " WE — e

HAZQW““W;“%H + HAEW‘:YPB' .

P
=
<
—

To show that the first term on the right of the above inequality is
bounded recall {1, Th. 2.1] that if Ve L?(#*%) for any p = 2, there
exist constants @ <1 and b, such that for y e D(4?),

1By — Ayl =1 Vyll=an Ayl +biyil.
Hence
(13) HAY I =@ =) (I Byl -+ bl -
Applying (13) to the above and using well-known properties of W)
one obtains
A" Wiyl = (1 — o) (|| B¢ " Wiy || + b|le " Wiy })
=@ =a) (A% 1]+ b i)
which proves the lemma.

Clearly, the above result reduces the proof of Theorem 2.4 to
showing that || Ve~ "'+ || — 0 as t— =+ == for all - ¢ D(A4%.

LEMMA 2.9. If Ve L'(E® for any 2 < p < =, then ;| Ve= 'y || —
0 as t— 4 for all e D(AY.

Proof. We first show that it suffices to prove the result on a core
of A® (i.e., a set ~"C D(A% such that for each + € D(A?), there exists
a sequence {v,} C 7 such that || Ay — )i + |4 — 4, —0 as
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n— co). If 4 and +, are as above then the observation follows from

| Ve iy || = || Ver (¢ — w4 ¥) ||
S | Ve (g — ) || + || Ve, ||
= [ A%y — ) || + [ Ve oy, |
S AW =y Il + 1l Ve iy, || .

Of course, the above computation requires Ve L?(E?® for any p = 2
so that || Vx|l < || A% || for all ye D(A4Y).

In particular take & = FCr(E®) (i.e., the image under Fourier
transformation of C*(K?). & is a core for A* if and only if C7(E?)
is a core for M,2,,> [5, p.300]. The latter condition is true since
M. maps C>(E® onto CI(E®) [5, p.166,5.19]. All that remains
then is to show that || Ve—**'+ || — 0 as t — o forall ye%. Now

| Vel = 1l Vil ey [l

where ¢ = 2p(p — 2)7. But [[e ™'y ||, = 0(| ¢ |0 ag [¢] - oo
for each 2 < r < « and each €« by a variant of Proposition 4.2
of [1] which is a direct consequence of a result of Segal [7, p. 95,
Lemma 8]. Thus the decay is established if ¢ > 2 or 2 < p < .

The above results can be used in a fairly obvious manner to prove
the result indicated at the beginning of this section; namely,

THEOREM 2.10. If conditions (1)-(iv) are satisfied then the W,
are complete.

ReEMARK. A careful examination of the above proofs shows that
condition (ii) is used only to show that W: exist. Thus the above
theorem is valid if condition (ii) is replaced by the weaker condition

(iiy Wi exist.

Indeed the same change gives an alternate formulation of the existence
Theorem 1.3. This result is more appealing from the viewpoint of
the similarly of W3 and W. but the proof requires the very restrictive
condition (iv). It is interesting however, that condition (i) is present
in both versions.

One further result which follows from the above is the isometric
nature of the W,.. More specifically,

THEOREM 2.11. If conditions (i), (ii)’ and (iv) are satisfied then
Jor each 0 =0 <1, W.: H(A, 0) — H(B, §) are isometries.

Proof. Theorems 2.3 and 2.4 give
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(14) W. = ['(B, 6)~{W5 WI'(4, ),

from which the result immediately follows since the 7I'-operators are
unitary and the W are isometries.

3. Application. In this section the preceding results will be
used to show that the scattering operator, S = W' W_, is unitarily
implementable in the free representation of the quantized Klein-Gordon
field with mass m. We shall introduce only the most basic concepts
here and direct the reader to [2] and the references therein for a
more detailed and systematic discussion.

The unique, relativistically invariant, classical dynamical system
associated with the K — G field in three space consists of the real
Hilbert space H,.(A4, %) (the real part of H(A, 3)) and the nondegenerate,

skew-symmetric bilinear form Re(J-, +),,, where J = C)l _Stl). A

transformation on H,(A4, }) which preserves the above form is called
symplectic. It is well-known that the symplectic transformations form
a group. By means of a straightforward algebraic computation [e.g.,
2, p. 391, Lemma 3.4], it can be shown that both Uy(¢) and U(t), and
hence the prewave operators W(t), are symplectic. In addition, it is
not difficult to show that strong limits of symplectic operators are
likewise symplectic. Thus W. and S are symplectic in the above sense.

A quantization of the above classical K — G field is basically a
map @ — @Q(®) from H,(A, }) into unitary operators on a complex
Hilbert space 5# which satisfy the Weyl (exponentiated) form of the
commutation relations. The most familiar of these, and the one with
which we shall deal, is called the Fock-Cook quantization. It will be
denoted by @, on 5#,. If T:H,A,}) — H.(A4, 1) is symplectic then
® — Q,(T®) is another quantization. If it is unitarily equivalent to
the Fock-Cook quantization, 7 is said to be unitarily implementable
(in the free representation of the K — G field with mass m). This
situation occurs if and ond only if T, as an operator on H,(4, %), is
bounded with bounded (everywhere defined) inverse such that 7*7T — I
is Hilbert-Schmidt [2, p. 388, Corollary 2.3].

THEOREM 3.1. S is unitarily implementable in the free represen-
tation of the K — G field with mass m if conditions (i)-(iv) are
satisfied.

Proof. Since W, are complete, D(W7') = R(W.) = R(W_) = Py s,
and hence S is well defined on H(A, ). In addition, since R(W3) =
D(W,) = H(A, 3}), the image of H(A, %) under S is all of H(A, }).
Furthermore, the isometric nature of W.: H(A, }) — H(B, }) implies
that S: H(A, 3) — H(A, %) is an isometry, and hence unitary. Thus
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S: H.(A, %) — H,(A, %) is orthogonal and the required conditions for
unitary implementability are satisfied trivially.

REFERENCES

1. J. M. Chadam, The asympototic behavior of the Klein-Gordon equation with external
potential (submitted for publication)

2. ——————, The wunitarity of dymamical propagators of perturbed Klein-Gordon
equations, J. Math. Phys. 9 (1968), 386-396.

3. M. Sh. Birman, Existence conditions for wave operators, Izv. Akad. Nauk S.S.S.R.,
Ser. Mat. 27, (1963), 833-906. Amer. Math. Soc. Trans. (2) 54 (1966), 91-117.

4. T. Kato, Scattering theory with two Hilbert spaces, J. Functl. Anal. 1 (1967), 342-369.
5. —————, Perturbation theory of linear operators, Springer, New York, 1966.

6. L. Nirenberg, On elliptic partial differential equations, Ann. Scoula Norm. Sup.
Pisa 13, (1959), 115-162.

7. I. E. Segal, Quantization and dispersion for mon-linear relativistic equations, Proc.
Conf. on Math. Theory of Elem. Particles, M.I.T., Cambridge, 1966, 79-108.

8. C. H. Wilcox, Uniform asymptotic estimates for wave packets in the quantum theory
of scattering, J. Math. Phys. 6 (1965), 611-620.

Received August 19, 1968. This work was done while the author held an Indiana
University Summer Faculty Fellowship.

INDIANA UNIVERSITY
BLOOMINGTON, INDIANA






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. ROYDEN J. DUGUNDJI
Stanford University Department of Mathematics
Stanford, California University of Southern California

Los Angeles, California 90007

RICHARD PIERCE BASIL GORDON
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLr K. YOsHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY  UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY TRW SYSTEMS

UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 31, No. 1 November, 1969

James Burton Ax, Injective endomorphisms of varieties and schemes. . ... ... 1
Richard Hindman Bouldin, A generalization of the Weinstein-Aronszajn

Jormula . ... 9
John Martin Chadam, The asymptotic behavior of the Klein-Gordon equation

with external potential. Il . ......... ... . . .. .. 19
Rina Hadass, On the zeros of the solutions of the differential equation

Y (Z) A P2 = 0ot 33
John Sollion Hsia, Integral equivalence of vectors over local modular

lattices. Il . ..o 47
Robert Hughes, Boundary behavior of random valued heat polynomial

CXPANMSIONLS . . o o o e et et et e et e e et e et et e e e 61
Surender Kumar Jain, Saad H. Mohamed and Surjeet Singh, Rings in which

every right ideal is quasi-injective . ..............c.ccouuiiiiiiiiinn... 73
T. Kawata, On the inversion formula for the characteristic function . .. ...... 81
Erwin Kleinfeld, On right alternative rings without proper right ideals . . . . .. 87

Robert Leroy Kruse and David Thomas Price, On the subring structure of
finite NIIPOTENTt FINGS .. ..ot 103
Marvin David Marcus and Stephen J. Pierce, Symmetric positive definite
multilinear functionals with a given automorphism. . .

William Schumacher Massey, Pontryagin squares in the T
bundle......... ...
William Schumacher Massey, Proof of a conjecture of Whi
John William Neuberger, Existence of a spectrum for nonli
ransformations . .........c.oouuuuueiiiiieeeeeen..
Stephen E. Newman, Measure algebras on idempotent sem
K. Chandrasekhara Rao, Matrix transformations of some s
SPACES .« o ev et et
Robert Bruce Schneider, Some theorems in Fourier analysi

Ulrich F. K. Schoenwaelder, Centralizers of abelian, norm
hypercyclic groups............c.ccoiiueiiiiiniinnn.
Jerrold Norman Siegel, G-spaces, H-spaces and W -space

Robert Irving Soare, Cohesive sets and recursively enumer

Kwok-Wai Tam, Isometries of certain function spaces . . ..
Awadhesh Kumar Tiwary, Injective hulls of semi-simple m

Eldon Jon Vought, Concerning continua not separated by
nonaposyndetic subcontinuum . ....................
Robert Breckenridge Warfield, Jr., Decompositions of injec


http://dx.doi.org/10.2140/pjm.1969.31.1
http://dx.doi.org/10.2140/pjm.1969.31.9
http://dx.doi.org/10.2140/pjm.1969.31.9
http://dx.doi.org/10.2140/pjm.1969.31.33
http://dx.doi.org/10.2140/pjm.1969.31.33
http://dx.doi.org/10.2140/pjm.1969.31.47
http://dx.doi.org/10.2140/pjm.1969.31.47
http://dx.doi.org/10.2140/pjm.1969.31.61
http://dx.doi.org/10.2140/pjm.1969.31.61
http://dx.doi.org/10.2140/pjm.1969.31.73
http://dx.doi.org/10.2140/pjm.1969.31.73
http://dx.doi.org/10.2140/pjm.1969.31.81
http://dx.doi.org/10.2140/pjm.1969.31.87
http://dx.doi.org/10.2140/pjm.1969.31.103
http://dx.doi.org/10.2140/pjm.1969.31.103
http://dx.doi.org/10.2140/pjm.1969.31.119
http://dx.doi.org/10.2140/pjm.1969.31.119
http://dx.doi.org/10.2140/pjm.1969.31.133
http://dx.doi.org/10.2140/pjm.1969.31.133
http://dx.doi.org/10.2140/pjm.1969.31.143
http://dx.doi.org/10.2140/pjm.1969.31.157
http://dx.doi.org/10.2140/pjm.1969.31.157
http://dx.doi.org/10.2140/pjm.1969.31.161
http://dx.doi.org/10.2140/pjm.1969.31.171
http://dx.doi.org/10.2140/pjm.1969.31.171
http://dx.doi.org/10.2140/pjm.1969.31.175
http://dx.doi.org/10.2140/pjm.1969.31.175
http://dx.doi.org/10.2140/pjm.1969.31.197
http://dx.doi.org/10.2140/pjm.1969.31.197
http://dx.doi.org/10.2140/pjm.1969.31.209
http://dx.doi.org/10.2140/pjm.1969.31.215
http://dx.doi.org/10.2140/pjm.1969.31.215
http://dx.doi.org/10.2140/pjm.1969.31.233
http://dx.doi.org/10.2140/pjm.1969.31.247
http://dx.doi.org/10.2140/pjm.1969.31.247
http://dx.doi.org/10.2140/pjm.1969.31.257
http://dx.doi.org/10.2140/pjm.1969.31.257
http://dx.doi.org/10.2140/pjm.1969.31.263

	
	
	

