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It is shown that a right alternative ring R without proper
right ideals, of characteristic not two, containing idempotents
e and 1, e # 1, such that ex = e(ex) for all x € B must be alter-
native and hence a Cayley vector matrix algebra of dimension
8 over its center,

In the classification of simple right alternative rings of characteristic
not two it is still an open question whether there exist any which are
not alternative, in contrast to characteristic two, where there do exist
division rings which are not alternative [8]. A number of people have
worked on this problem and were able to prove the alternative identity
whenever they assumed an additional hypothesis such as finite dimen-
sionality [1, 3], other identities [6, 7], or internal conditions on the
ring [4, 5, 9]. It seems natural to try to tackle the case where there
exists an idempotent ¢ = 1 in R such that (e, ¢, B) = 0. If one could
establish in this case that all simple R of characteristic not 2 are
alternative, then this would be a natural generalization of the theorem
of Albert [2] for alternative rings, in which he showed that a simple
alternative ring with idempotent ¢ = 1 had to be either associative or
a Cayley vector matrix algebra of dimension eight over its center.

In this paper we do not quite achieve this result, for we need to
strengthen the hypothesis of simplicity to the assumption that the ring
has no proper right ideals. On the other hand there is a good deal
of information here that should prove useful in either romoving the
hypothesis of (e, e, R) = 0, or in constructing an example of a simple,
right alternative ring of characteristic not two which is not alternative,
if indeed such an example exists.

The main tool here is the fact that (e, e, R) = 0 allows a Peirce
decomposition into four “subspaces” R, ;, 7,5 = 0,1 as in the associative
and alternative cases. The multiplication table for these subspaces
differs in six places from the same table for alternative rings. By
constructing appropriate right ideals we show in fact that the tables
are the same. In the process we reduce the problem to the one studied
by M. Humm-Kleinfeld [4], although by that time one can deduce from
our work quite readily that indeed R must be alternative.

2. Preliminary identities. In the course of the paper we require
a number of identities which are true in arbitrary right alternative
rings of characteristic not two:
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(1) (ab,c,d) + (a,b,(c,d) = a(d, ¢, d) + (a, ¢, d)d.
(2) (x,ab,a)= (z,0b, a)a.
(3) ([abJe)b = a([be]b).
Proofs of these identities may be found on page 940 of [5].
(4) (ab)e = a(bec) + a(edb) — (ac)d,
also holds as this is the linearization of the right alternative identity.

3. Peirce decomposition. Henceforth in the paper, we assume
that R is a right alternative ring of characteristic not two, and that
R contains 1 and an idempotent of e # 1, such that (¢, ¢, B) = 0. If
we define R;; = {x € R|ex = iz, xe = ja} and 2,7 = 0,1, then R may be
decomposed into a direct sum by R = R,, + R, + R,, + R,. Humm-
Kleinfeld has shown on page 166 [4] that the multiplication table of
the R;; has the following containment properties:

Ru Ry Ry Roo
Ry Riu + Ro Rio Rio 0
Rio 0 Ry + Ro Ru Rio
Ro: Ro: Roo Roo + Ruo 0
Roo 0 Ro: Ro: Roo + Rio

Thus the first entry gives the information that (R,)*C R, + R,
etc. Besides, it is true that #% € R;;, and whenever ¢ # 7 that «%; e R;;

as well as a3, = 0.

Throughout the paper whenever we need to refer to this result
we shall use the phrase “it follows from the table that...”

We should bear in mind that in an alternative ring there are six
places where stronger assertions can be made. These are: (R,)*CR,,
R120 - Rou R%l c Rwy (Roo)z c Roo: RuRm = 0, and Roon = 0.

4. Main section.

LEMMA 1. In R we have (RY)uR, = 0, and (R:),R, C R,.

Proof. Let x,, 9, € Ry, 2, R,. From the table it is obvious that
(%, 210, ¥) = 0. Hence, using the right alternative identity,

0= (@11y Yury Z0) = (XuYu)Z0 — Tu(YuRi) -

Let x,y,, = a,,+b,. Then, by substituting this in the previous equation,
it follows that A2y + bOlzIO - xn(yuzm) =0, so that bmzm = 2u(YuRw) —
20 € RN Ry = 0, by use of the table. Hence, b,2,, = 0, thus proving
the first part. Also let z,€ R,. Then
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@iy Yisy 20) = (XuY1)%0 — T0(YuRer) = @20 + boZo — 20 (Yii0r).

From the right alternative identity it follows that

@11y Yty Z) = — (Tuy Zory Y1) = — @uRo)VYu + C0(Ra¥s) = 2u(20Yu) € Ry,

using the table. Hence solving the previous equation for b,z,, we see
that b,z = (%u, Yus o) — @uRa + Bu(¥u?u) € Ry, using the table. This
completes the proof of the lemma.

DEFINITION. Let T, = {#,€ Ry |%.R, =0, and 2z,R,C R,} and
form T = To1 + T01R01 F e + (' °c (TmRm)Rm °c ')Rm + +-- + where
each term except the first is obtained from the preceding by right
multiplication by R,,.

LEMMA 2. T is a right ideal of R such that TC R, + R, + R,.

Proof. For arbitrary ¢, e T, 2., € Ry, ¥, € Ry, and 2z, € R,, we have

(o) Y0 = (Lory Tury Ys0) = — (bory Yoy Tu) = — Eaio)®u + Lo(Yho) = 0,

using the right alternative identity and the definition of T, as well
as the table. Also,

(C0®)20 = (bory @ty Zor) + Ea(@020) = (Eory By Ror)
- (tou Zo1s xu) = - (tmzm)wn + to1(z01xu)
= Uy, + to1(zo1x11) = tm(zmxu) € Rm’

using the same reasons as before. But then t,x,, € T\, and thus T,R, C
Ty. Also, from the definition of T\, it follows almost immediately that
T,R, =0, and T, R, CR,,, while the table implies that T, B, = 0. Let
P(n) be the n + 1 term in the sum that defines T, and let U(n) =
Ty, + TyRy, + «++ + P(n), be the sum of the first » + 1 terms in the
definition of 7. We shall prove by induction that Pn)R,c U(n),
Pn)R,c U(n) and P(n)R,C U(n). We have already seen this is true
for n = 0. Assume it is true for » and then we shall prove it true
for n + 1. We abbreviate P(n) by simply P. Then using (4), and
the table, (PR,)E,C P(R,R,) + P(R,R,) + (PR,)R, C PR, + PR, +
(PR)R,C P(n + 1) + Un) + Un)R,, < U(n + 1). Also similarly,

(PR)R,C P(R,R,) + P(R,R,) + (PR,)R, C PR,, + PR,
+ (PR)R,,c Un) + Un)R,,c Un + 1),
and
(PR,))Ry C P(RyRy) + P(RyRy) + (PR)R, C PR,
+ (PRy)R,, c P(rn + 1) + Un)R, C U(n + 1) .
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Consequently, P(n + 1)Ac U(n + 1) for A = R,,, R,, and R,. This
completes the induction. But then, TAcC T. Of course, also TR, CT.
But then, TR T and, hence, T is a right ideal of R. Also, P(1) =
TwR,C R,, by definition of T,. Hence P(2)c R,R,C R,,, and so
P@3)cR,R,c R,. Thence P2n + 1)c R, and P(@2n)C R,, so that
TcT,+ R,+ R,CcR, + R, + R,. This completes the proof of the
lemma.

We note that there is complete symmetry if the idempotent e is
replaced by the idempotent 1 —e. In terms of the Peirce decomposition
this has the effect of simply permuting subscripts. We shall frequently
use this play in order to obtain new results from theorems already
proved, and justify it by stating that “we may reverse subscripts....”
Thus we may assert:

COROLLARY 1. If R has no proper right ideals then R C R,,.
COROLLARY 2. If R has mo proper right ideals then R, C R,.

Proof. The right ideal T of Lemma 2 cannot be R since 1 —ec R,,
would then have to be zero, contrary to assumption. But then 7 =0,
hence T,, = 0. But Lemma 1 implies that (R?}), € Ty, so that (R%), = 0,
hence R}, c R,,. But then we may reverse subscripts and obtain the
second corollary as well.

In the remainder of the paper we shall assume tacitly that, in
addition, B has no proper right ideals, so that we may freely use
the results of the last two corollaries.

LEMMA 3. R, is associative.

Proof. Let A= (R,, R, R, + R.R,,R,,R,). Since R ,R,=0
follows from the table, while R? c R,, because of Corollary 1, we can
easily verify that (R, R., B.) = 0. Select w,,, y,,, 2.1, € R, and x,, € R,,.
Then substitute ¢ = w,;, b = %, ¢ = ¥, d = 2z, in (1), obtaining

(wuxmy ylly zll) + (wlli xl.O! (yu) zll)) = wu(xmy yll! zll) + (wlly yllr zll)xlo .

However, by inspection (R, R, R,,) = 0, as a consequence of the
table, so that only one term survives in the preceding equation. Thus
(R, Ry, R,)R, = 0. We have already observed that (R,,, R, R,;) = 0.
If we apply the right alternative identity in this situation then it
follows that (R,, R, R,) =0, and hence (R,,(R., R., R.), R, = 0.
Expanding the last associator, thus R, (R,, R, R.)-R,, = 0. But then,
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AR, =0. Since AcCR,, it follows from the table that AR, = 0.
Besides, it is well known that even if R, where an arbitrary ring,
not necessarily right alternative, that A is always a two-sided ideal
of R,, so that AR, C A. Let us form

B:A+AR01+(AR01)R01+ e +("‘(AR01)R01"')+ e

where the n'* term is obtained from the preceding by right multipli-
cation by R,, except for n = 1. As in the proof of Lemma 2 the
reader may easily check that B is a right ideal of R using induction.
But the odd terms in the equation defining B are contained in R,
while the even terms are contained in R,, using the table. Hence,
BCc R, + R,. Since B= R implies 1 — ¢ = 0, we must have B = 0,
hence A = 0. Thus R, is associative, completing the proof of the
lemma.

COROLLARY. Ry is associative.
Proof. We may reverse subscripts in the lemma.

LEmmA 4. ( i ) -Ru =+ R01 = R10R01 + R%o =+ Roon-
(11) Roo + Rm = ROLRlo + Rgx + RuRm-

(111) Roo = RmRm-

(IV) R, = R,R,.

Proof. Define inductively R} = R} 'R, and form A = R,R, +
R,+ +++ +R:y+ ---. First we aim to show that A must be a right
ideal of R. By repeated use of (4) and table we see that

(Rme)Rn c Rm(RmRn + RuRm) + (RwRu)Rox c R,R, + R}, ,
(RwRox)Rm c RuRm C R, (R10R01)R01 c RuRox c Rm ’
(RmRm)Roo c RuRoo =0 ’

thus showing that (R,R,)Rc R,R, + R,, + R;,C A. Also R,R,, =0,
R,R, = R}, R ,R,C A, R ,R,C R,, using the table. But use of (4)
and the table shows that

(RfO)Rll - RlO(RloRll + RuRw) + (Rlo ll)RIOC R%O? R%ORIO = R?O ’
(Rl Ry C Ri(RyRy + ByRy) + (RiRo)Ri C RyoR,,
+ RIDROO + RuRmC Rm ’

while (R%)R, C (R, + Ry)R, = 0. Now define
Q(n) = Rme + Rm + oeee + R;ﬂo .
The above calculations show that Q(2)B < Q(2), for B = R,,, B, and
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R,. Assume inductively that Rj,BC Q(n) and we proceed to prove this
inclusion for » + 1 in place of n. Besides the induction hypothesis,
our main tools are (4) and the table. (RLR,)R,CR:(R,R, + R,R,) +
(RLR,)R,C RR,, + (RLR,)R,,C Ry + Q(r)R,C Q(r + 1). Similarly,

(RiR,) R, C Ri(R, Ry, + Ry R,) + (RiRy)R,, C RLR,, + RILR,,
+ Qn)R,CQ(n) + Qn + 1)cQn + 1) .

Finally, (RiiR.)Ey, C Riy(R Ry + RyRyw) + (RisRw) Ry, C RiR,, + RiLR,, +
Qn)R,C Q(n + 1). This completes the induction. Armed with this
information we are now ready to prove that A is a right ideal of R.
Since Q(2)BCQ(2)c A and RLBCQ(n)C A, we see that ABC A. Since
obviously R%:R,, = R%™, it follows also that AR,,C A. But then ARC A,
and thus A4 is a right ideal of B. Let us consider first the case A = 0.
In that case, R, =0. Form B = R, + R,. Using the table and
Corollary 2 of Lemma 2, we may varify that B is a right ideal. Since
e¢ B, we must then have B =0. But then R = R, so that ¢ =1,
contrary to assumption. Hence the case A = 0 cannot arise. The
only open possibility is that A = R. Now from the table we see that
R}, C R, + R, while R}, C (R, + R,)R, C Ry, + Ry, and (B, + RBy)R,, C
R, + R,. Consequently, R* C R, + R,, and Ry C R,, + R, for all
positive integers n. Since the Peirce decomposition is direct and A = R,
it must be that R, + R, = >, R¥ + R,R,, and R, + R, = >, R,
But note that by definition R%** = (R R,)R,, C (R, + Ry, R,) R, C R% +
R,R, and so >, R®*C R} + R,R,. But then from two equations back
it follows that R, + R, < R% + R,R,, + R,R,. On the other hand it
is a consequence of the table that R + R,R,, + R,R,C R,, + R,,, so
that R, + R, = R? + R,R,, + R,R,. This establishes part (i). To
obtain (ii) from (i), simply reverse subscripts. By definition

R C (R TR)R, C ([Ry + By]Ryw)Ry, C

R?O + R01R10 C (Rll + ROl)RIO + ROIRLO C Rl() + R01R10 .
But then R, + R, = >, R®*'CR,, + R,,R,CR,, + R,. But then R, +
R,R, = R, + R,. Using the directness of the Peirce decomposition
we obtain that R, R, = R,. This establishes part (iii). Part (iv)

follows from part (iii) by reversing subscripts. This completes the
proof of the lemma.

LEMMA 5. For all a, e R, and %, y,, € R, (a,2,,) Y, = o (Y1,11).

Proof. It follows from Lemma 4—(i) that a,, € R, R, + R} + RyR..
Using (4) and the table we see that for

b1y €10 € Rigy (010€10)%1 = 1€y + 211€10) — (D10211)C10 = Dyo(®11€10)
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By repeated use of this last equation, then ([b,,¢.]®.)y., = (Bul®ncu])y, =
bi(Yul®uc,o]). As previously observed, (¥, ., €,) = — (Y, Cio» &) = O.
Thus, bm(yu[xucm]) = bxo(['yuxu]cm) = (b1 C10)(¥,®,) using the table, Lemma
2-Corollary 1, and the previous observation we made use of just before.
Combining two previous equations, we see that ([b,,¢,]%0)¥Yn = (b1Cy,)
(¥u2,,). Thus byey, has the desired property. Let b,e Ry. Then (4)
and the table imply that (boocm)xu = boo(cloxu + xucm) - (booxu)cw = bon(xucm)-
Using the table, Lemma 2-Corollary 1, and the previous equation
repeatedly, it follows that ([0yCi]2u)¥n = (Boof2uCio])¥n = Do(Yul®1Cio]).
As already noted, (¥, @, ¢,)) = 0, s0 that by(¥,[®.c,]) = bu([¥uri]eyw) =
(booCro)(Yuiy). Thus bye,, has the desired property. Finally, if z, e R,,,
then (2,2,)y,, — 2u(¥u®,) € R,, because of Lemma 2-Corollary 1. Hence,
()Y — Co(Yny) € By, But from the table it follows that (@, )y, —
am(ynwn) € Rm- Since R01 N Ru = Oy it must be that (amxn)yu - am(ynxn) =
0. This completes the proof of the lemma.

LEMMA 6. R, and R, are commutative.

Proof. Let ane R, b,c R, and x,;,y, € R,,. As a result of (1),
(bmaou Dygy Yuy) + (bm, Qory (X415 Y11)) = bio(Qory oy Y1) + (b10s 211y Y11) o1 Use of
the table reveals that (b, «.,, ¥,,) = 0, since R,, is a subring. Moreover,
Lemma 3 and the table imply that (b,a,, %,, ¥,) = 0. Thus only two
terms survive in the first equation and we see that (b, @, (X, ¥.,)) =
bo(ay, ©,,, ¥u). Moreover,

(bLOJ a’Oly (wlly yll)) = (bma’m)(xuyu - yllxll) - bw[am(xnyn - yllxll)] ’
expanding the associator. But

- bm[aox(xuyn - yuxn)] = - bm[(amyu)xu - aox(yuxn)]
= - bm(amy Yurs Tyy) = bm(aon Tuyy Yu) »

using Lemma 5 and the right alternative identity. Now if we compare
the last three equations we conclude that (b,,0,,)(®, ¥, — ¥u%,) = 0. At
this point Lemma 4-(iv) may be utilized to conclude that for every
Zu€ R, 2,(uYy — Yu®,) = 0. In particular we may choose z, = e.
Then because of Lemma 2-Corollary 1, x,¥,, — y,2, =0. Thus R, is
seen to be commutative. By reversing subscripts, it follows that R,
is also commutative. This completes the proof of the lemma.

LEMMA 7. (Rm, Ru, Ru) =0= (Rm, Roo» Roo)-

Proof. Let ay,€ R, and 2., ¥, € R,. Then because of Lemmas 5
and 6, (@@.,)¥, = @u(Yu®,) = ay(@,Yy,), thus establishing (@, ., ¥,) = 0.
Hence, (R,, R., R,) = 0. By reversing subscripts, (R, Ry, Rw) = 0
follows. This completes the proof of the lemma.
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DEFINITION. We define @, = nilpotent elements of R,, and @, =
nilpotent elements of R,,.

We note, since R,, R, are associative, commutative, subrings of
R, that Q,, is an ideal of R, and @, an ideal of R,.

LemMA 8. If a,€ R, b, € R, ¢, € Ry, then
iy = (auby)ey = (@, by, €10) = — (@y1y Croy boy)

satisfies d = 0, so that d,€@Q,. Similarly, if
Do = (@poD10)Cor = (Cooy D10y €o1) = — (@, o1y b1o)

then diy = 0 and dy€ Qw. Thus (R, Ry)R,,C Q. and (RyR.)Ry C Q.

Proof' AS a result Of (4)¥ (allbOI)cLO = au(bmcm + clObOI) - (a’llclo)b()l‘
But a,(b,c,) € R,,Ry, = 0, from the table, while a,(cyb,) € R} C R,
— (@u€i0)by; € RyR, C R,;, using the table and Lemma 2-Corollary. Hence
(anbo)ey € Ry and so (R Ry)R,CR,,. Let fi, = a,b, and d;; = (a,,b,)ci.
Then flocm = duy while d?l = (fmcw)du = fxo(cmdu + dncw) - (fwdu)cwy HSing
(4). Since R,R,, =0, follows from the table, two terms vanish in the

last equation, so that di, = fi(d.co). But fi(d,c,) = JSio([frsCroler) =
fu(fulek]), because of the right alternative identity. Since

Suleh) e RyR,, =0,

as a result of the table, it follows that d? = 0, and so d,€ Q.. By
interchanging subscripts we obtain the second part. This completes
the proof of the lemma.

LEMMA 9. Let

Q = Qll + QIIRLO + ROlQll + ROIQURlO + QOO + QOOROI + RIOQOO
+ RIOQOOROI + RllR()l + (RURO!)ROX + R00R10 + (RooRm)Rw .

Then Q is a right ideal of R.

Proof. Most of the calculations involved are routine, and (4) is
an important tool. Unless the reasoning is complicated, we shall state
the appropriate inclusions without comment. (R,R,)R,C R, R, = 0.
(R,R,)R,C Q,, because of Lemma 8. (R, R,)R,C@Q. (R,R,)R,C
RII(ROLROO + RooRm) + (RuRoo)Rm c Rn(RooRm) c RuRou U-Sing (4) and the
table.

([RILROI]ROI)RM c (RIIROI)(ROIRII + RILROI)
+ ([BuRu]R.)E, C (RuRy)Ro + (RuBy)Ry + ([RuRulRu)Ry ,
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using (4). Now (R, R,)R,, C Q,, because of Lemma 8, while we observed
earlier in the proof that (R,R,)R, = 0. Consequently,

([RuRox]Rm)Ru c (RuRm)Rox + Q-
([Ran]Rm)Rm C (Ran)(RmRm + Ry, Ry)
+ ([RuRy]R.)Ro C (RuRy) Ry + (RuRo)Ry + ([RuRo]Ry)Ro ,

using (4). But we have already observed that (R, R,)R.CR.R,, and
(R,R,)R,, = 0, while Lemma 8 implies (R, R,)R,,C R,,, so that

([RMROl]RlO)ROL c RIIROI .

Combining these observations it follows that ([R,.R,]R.,)R.,C R, R,,.
([RllR(]l]ROl)ROl C (RIOROL)ROL C R11R01°

([RIIROIIROI)ROO c (RIORM)ROO c RHROO = 0 .

As we have already observed, @,, is an ideal of R,,, and so Q,R,C@Q,,.
Q11R10CQ- QuRmCRuRm- QuRoo =0. (QuRlo)RuCRmRu = 0. In order
to obtain the desired inclusion for (Q,,R,)R., we observe first that
a, = 0 follows from the table, hence a!, = 0, so that a%}c¢Q,. By
linearization, then aub, + b,a,€Q,. If ¢,€@Q,, then q,a,€ R, so
that (quam)bm =+ bm(%xam) =q,¢€ Qu‘ However, USing (4)9 (bxoam)QH =
b1(@1091 + ¢1010) — (010811) 00 = b10(€1,04), since Ry R, = 0 follows from the
table. Comparing the last two equations, (¢.@.)bw = ¢l — (0,00:0)q.:.
But

(bloam)Q11 - (RfO)Qll c (Rll + ROl)Qll e RllQll + ROLQM c Qll + ROlQll .

Hence (9.a,)b, € @ + RyQ,;, and thus (QuR.)E,C Q. + R.Q,. Also,
(QHRLO)ROICQH(RNRol + ROIRIO) + (QIIROI)RIOCQHRM + QILROO + (RllROI)RlO)
as a result of (4) But QnRuCQuy QuRooCRuRoo = 01 and (RuRm)RmCQu
because of Lemma 8. Hence (Q.R,)R, C Q..

(QuR.)Ry C QiR Ry + RyoRo)
+ (QllROO)RLO c QIIRIO + QIIROI. c QuRm + R11R01 ’

using (4) and the table. Hence (Q,R,)R, C Q.R,, + R,R,,.
(ROLQII)RII C ROL(QIIRII + RllQll) + (ROIRII)QII C ROIQII b

using (4). (RuQ)R,C Q. (RuQuER,C RyRy. To handle (B,Q.)R,,
we recall from Lemma 4-(i) that R, R,, + R}, + R,R,, so that

(5) (ROLQLI)Rol c (RnQu)Rcu + (]RfolQu)Rm + ([ROORIOIQII)R(H .

Next we shall work on each of the three terms in the right hand
side of (5)' Thus (RuQu)RmCQuRmCRuRou or
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(6) (R.Qu)Ry C R, R, .

As previously noted, (R})Q, = R(Q.R.)C(QuR0)R, + Q. since a,b,, +
bloa/IO e Qll' Thus ([R%O]Qll)ROI C ([QlIRIO]Rl())ROI + QIIROI‘ But by use Of
4), ([QuR,]R.)R,,C(QuR)(Ro Ry + RuRyp)+ ([QuR] Ry R, C (QuR)R,, +
(QuR.)Ry + ([QuR,]Ry)R,. We saw previously in the lemma that
(QIIRIO)RII = O’ (QIIRIO)ROO c QIIRIO + R11R019 and ([QIIRIO]R01) C Qll' Thus
([QuR]R)RyC QLR + R,R,. Putting together the various inclusions
we see that

(7) ([BL]Qu By C QuR,, + RyuR,, .
Using (4) it follows that

(RyuRy)Qu C By(RQy + QuBi) + (Ro@u) Ry C Bi(Qu )
because of the table. But then

([ROORI()]QII)RM - (ROO[QURlO])ROI c ROO([QURIO]ROI + ROX[QURIO])
+ (ByBo)(QuRi) C Roo(RyoRo) + Roo( RoQuuRy)
+ ROIQIIRIOC ROO(RDIQIIRIO) + R01Q11R10 ’

using (4) and the table. Observe that
(Rooy Ry By) © — (R, Ryoy Ryy) © (RooRy) Ry, C Qoo
using the right alternative identity and Lemma 8. Hence
Ry(RuQuRy) C (RyBn)(QuRw) + Qo C BuQuRi + Qo -

Now piecing together various inclusions we see that

( 8 ) ([RooRlo]Qu)Rm c ROIQIIRIO + Qoo .

By combining (5), (6), (7), and (8) we now see that (R,Q.,)R,C R, R, +
QuR, + RyQuR + Q.  (RuQuRR,C Ry R, =0. (RBuQuRy)R,CRyR,.
(RuQuR.) Ry = Ry(R,QuR,), as a result of Lemma 6. However, in the
process of establishing (8) we observed that Ry (RyQ.R) C Qu+ K@y R,
Therefore (R, Q:,.R.)RwC @y + Ru@.R,. Because of (4),

(ROLQU.RLO)ROI c (ROLQLI)(RIOROL + RmRm)
+ ([RuQulE)R, C (BuQu) Ry + (Bu@iu) By + ([RuQulRo) Ry .

We established earlier in the proof that (R,,Q.)R,C R,.Q,., (R,.Q.1)R,=0,
(R01Q11)R01 C R11R01 + QIIRID + ROIQIIRIO + QOO' Hence

([RMQLL]ROI)RLO c (RuRm)Rm + (QHRIO)RIO
+ (ROLQHRIO)RIO + QOORIO c Q11 + ROIQII + ROORH) ’

again utilizing inclusions previously established in the proof. There-



ON RIGHT ALTERNATIVE RINGS WITHOUT PROPER RIGHT IDEALS 97

fore (R.Q,.R.,)R,CQ, + R,Q,, + RwR,. We have now established half
of the necessary inclusions for proving that @ is a right ideal of R.
The others all follow from reversing subscripts. This completes the
proof of the lemma.

LeMMA 10. If Q of Lemma 9 is zero, then the table becomes the
same as that for altermative rings.

Proof. Q = 0 implies R, R, = 0 = R,R,, as well as a} = 0 = b},.
Now define A = R,, + R: + (R%)R,, + R,,R,,. We now proceed to establish
that A is a right ideal of R. R,R,CcR,. R,R,CA. R,R,CA. R,R,=0,
follows from the table. Because of (4), (R})R,,CR,(R.R, + R,R,) +
(R.R.,)R, C R, while (R})R,C A. Again using (4),

(R:)R,CRy(RyR,, + R, Ry) + (RyRy) Ry C R, Ry + RyR,, + BR,,CR,, ,
as a result of the table. Again utilizing (4),

(R Ry C Ry(RyRy, + RyRy) + (RyRy)Ry C R,
because of the table. Again because of (4) and the table

([Rgl]ROL)RH c (RSL)(ROIRH + RIIROI)
+ ([RgllRll)ROL c (R(ZJI)ROI + ([-RgllRu)ROI .

But we just established that (R%)R, C R% so that
([RLIRR,, C (R)R,, .
Thence ([R%]R,)R, C (R:)R,. Again because of (4),

([R%]Rw) R, C (BB Ry + RiRy)
+ ([BalRw Ry C (R Ry + (BL)R, + ([RLIR0ER,, -

But we already know that (R:)R, C R:, (R)R, C R and (R%R,)C R,
so that ([R}]R,)R,C R,. Hence ([R}]R,)R,CR},. Since R} C Ry, + Ry,
follows from the table and R, R, = 0,

(IB21R)Ro C (IRu + RulRo)Ro © (B + Ro)Ry C RSy

([R§1]R01)Roo c (Ru + Rm)Roo =0. (R01R10)Ru - RooRu =0.

(ROLRw)Rm c RooRm =0.

(RoR)R, C RyR,, C Ry, .
Because of (4), (BoRy)RoC Ry(Ry R+ ByuRyg) + (RouRo) Ry C By Ry.  Thus
we have proved that A is a right ideal of R. If A =0, then R, = 0.
But then we may verify directly that B = R,, + R,, is a right ideal,
for Rfl C Rll! RllRl(l C RlO! RLLROO = 0! RlORII = 07 RIORIO C: Rll? RlOROO C RLO'
As 1 —e¢B, then B=0, and R, = R. Since e¢ R, this leads to a
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contradiction. Hence we cannot have 4 = 0. But then 4 = R. We
recall that A= R01 + Rﬁl + (Rgl)Rm + R01R10y Whlle R§1 c RIO + Rooy

(B3R C (R + Ru)Ro C Ry, + Royy RyRyyC Ry, .

But because the Peirce decomposition is direct, we must have R,,C R +

R,. And thus R}C(R:)R, + RuR,C(R)R,. But as a result of (4),

(R§1)R10 c Rm(Rleo + R10R01) + (R01R10)R01 c RmRoo + RmRu + R00R01 c Rm-

We have shown that R} cC R,. By reversing subscripts we also obtain
2 — R,. This completes the proof of the lemma.

LEMMA 11. RmQuRm c Qoo and RonoRm c Qu-

Proof. Note that (2,¢,.%.)" = — (@00uY10, Tor, QW) + ([T0@1.Y10]%0,)
(Quyw)- USing (3) with ¢ = Lo1y b= Q11Y10y € = Xy, WE S€E that ([xm%lym]xm)
(91Y1) = To{([€::Y10]%0)(Qu0)}. However, ([¢.%.0]%0)(g1Y10) = (@i Y10y For)
(Q11y10) + (qu[?/wxm])(‘hlym)- Since (Iu[ywxm] € Rm and (Rna Ruy RIO) = 0,
we use Lemma 6 to obtain (¢,.[¥.%.])(¢.%.0) = (¢5.[¥.%u])¥. Going back
to an earlier equation, thus

([91:Y10]®e )(@11¥10) = (Qusy Yioy o)@1Y 10) + (C Y100 Yo
and hence

(X081 Y0) = — (X0@uY0s Tors quY0)
(9) + 20{(Q11, Y10r To1)(@11Y10)}
+ 2o {(gh Y10 )Y} -

We shall now establish that x,,¢.,%,, € Qu, by induction on the degree
of nilpotency of ¢,. Start off by assuming ¢ = 0. Then (1), with
a=>b=gq,,c=Ynd=1u, yields (¢}, ¥, Tu) + (Qu, @1, Ysoor — TaYs) =
401, Yioy Tor) + (Quss Yior T0)qu = 245,(Qusy Yoy ¥or) 88 a result of Lemma 6.
However, the left hand side of the equation is zero, since Lemma 3
implies (R,;, R.,, R,) = 0, and the table implies that (R, R, Ry,) = 0.
But then 2¢,,(¢u, Y., o) = 0, and 80 ¢.,(qu Yu0s Tor) = 0 = (Qusy Yoy T01) Qe
Now in the light of this we go back to (9), which may now be
rewritten as (2,.¢u%.0)* = — (X0@uY10, Tors Qu¥i)s Bt — (20,¢1Y10, Zory Qu¥hio) =
(X09uY10r Qulsor Tor) = ([€0:@u¥00][qu¥i])@n as a result of the right alter-
native identity and the table. Moreover, such an element belongs to
(RwR)R,, C Qy, as a result of Lemma 8. Thus (2,q.,%.)’ € Qn But
then it is obvious that x,,q,¥., € Q-

Assume inductively that %,q.%., € Q, Whenever the degree of nil-
potency of ¢, is k¥ <n and let us then consider the case when ¢, has
degree of nilpotency ». As before, the proof that

- (xo1Q11y10a Z01q11y ylo) € Qoo
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goes over. Now (q., Y., %) € R, so that (g, Y., %.)q., € B,. Lemmas
3 and 6 imply that R, is both associative and commutative so that
(911 Y0, )@l = (s Y0, 0’0}, However, as a result of Lemma 8,
we have (q,,, Y, €)* = 0, so that (¢., Y, X0)0u € @, and its degree of
nilpotency is 2. But then by the previous calculation, or for that
matter by the induction hypothesis, it becomes clear that

Tod[(Qs1, Y10y To1)@1]Ys0} € Qo
Since (R, R,;, R,) = 0 has already been established,
Zou{(Qu1y Yoy xm)(QuyN)} €Qy -

Finally, [¢%(y,%)]* % = 0, and [( + 1)/2] < % in our situation, so
that we may use the induction hypothesis to obtain that

mm{(qz:x[ymxol])yxo} € QOO .

Now going back to (9) we see that (£4,9,,4.,)* € Qun, Since @, is closed
under addition. But then ,¢.,%, € Qw, as before and the induction is
completed. This proves R, Q.R.,C Q.. By reversing subscripts we
obtain the second part. This completes the proof of the lemma.

LEMMA 12. (QuRo)E, C Q. and (QuRy)Ri C Q.

Proof. Let ¢q,€@Q, and a,, by, %o, Yo, € B, Then because of (4),
(9100)bo, = q.(A0ibo; + bo,)) — (91100)a0.  But guy(aedo, + b,a.) € R, Ry, = 0.
Thus

(10) (€100 = — (@1:Dy,) 0, «

Now ([¢,,%u]ye)’ = — ([qnwm]you Q1 %0, Yor) + ({[qum]ym}{Qqu})yox- But as
a result of Lemma 8, — ([¢.,%u]¥u, ¢1%, Yo) € (Bu, Ry, By) C Q. Hence
let — ([qu2o]¥o1s @11%0s Yo) = @1i. On the other hand (3) implies that

({[(Inxm]ym}{(Inxm})ym = ((Inxm)([ym(anvm)lyox)- But then apply (10) with
Qoy = Py, bm = [yox(‘qum)]ym- Thus

(Qufvox)([ym(qum)]yox) = - (Qu{[yox(anm)]yol})xm
= (Qm ?/01(%19701)’ Yo )P0, = [(Qu» 411 %01, yox)ym]xm

using (2). Now ([¢.2u]ye)® = &l + [(%us Cuois Yo)Yal ¥  Let
(91 Quifory Yor) = tus

Then as a result of Lemma 8, we have ¢, = 0, and

(11) ([2:%0]Y0) = @ + EuYo)Po «

In (11), replace g, by t,. Then
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(12) ((tolye)® = Sh + [(fuy 8ios Yor)Yorl@os

In an arbitrary ring one may verify the Teichmiiller identity:
(wz, y, 2) — (w, 2y, 2) + (w, 2, y2) = w(x, ¥, 2) + (W, &, Y)z .

Hence let w =2 = ¢,y = «,, and 2z = y,. Then

(tfly xOly yOl) - (tll! tlleU yOL) + (tuy tll! xOlyOL)
= tll(tu! xOU ?/01) + (tuy tll) xo1)y01 .

Since ¢, = 0, the first term of the left hand side vanishes. Since
(tu, oy oYo) C(Ruy Ry, Roy+ Ryo) = 0, the third term of the left hand side
also vanishes. From (1) it follows that (¢, 2., %) + (tu, tuy (@or, Yor)) =
Lu(tus Ty Yor) + (Eiry Bosy Yo)tu. But &, = 0, while

(tis Lty (Fosy Yo)) € (Buyy Bisy By + Ry) = 0,

so the left hand side of the last equation is zero. If we let (¢,%0)¥o =
L2) and tu(xmym) = bwy then tu(au - bxo) + (au - bm)tu = 0. But tnbm =
tll(tll[x()ly()l]) = - (tu, tll! xOLyOl) e (Rlly Rll) ROO + RIO) = 0’ While blotll = 0!
from the table. Thus ¢,a, + a,t, = 0. Then from Lemma 6 we have
2t,a, = 0, so that t,a, = 0. But then t,(¢., %o, Yu) = tu(a, — byg) = 0.
Thus what remains from the Teichmiiller identity is — (., t,.%u, Yo) =
(tuy tu, %0)Yo. Substituting this into (12) we see that ([2.2]¥.)" =
Sil - {[(tny tll! xm)ym]yox}xm = Sil - {(tlu tll! xol)yél}xolf as a’ result Of the
right alternative identity. But 93 € @, as a result of the table, while
(s Ty o) = — (Busy Ty 1) € Ry Thus — {(¢,, t., xm)ygx}xm € R, Qolos.
But as a result of Lemma 11, R, QR, C Q.. Thus ([t.%0]¥0) € Qu.
But then (£,%,)y,€@Q,. Now we may go back to (11) and obtain
([9.%u]Y0)’ € Q.. and s0 (¢.%)¥o € Q. We have shown that

(QuRn)Ry C Qu -

By reversing subscripts we obtain (QuR.) R C Qoo-
This completes the proof of the lemma.

LEMMA 13' S = Qll + ROLQII + Q11R10+Q11R01+Q00 + RIGQOO + QOOROI +
QuR., ts a right ideal of R.

Proof. We observe that @, as defined in Lemma 9, has six of
the eight terms appearing in S. Indeed we can extract the following
inclusions directly from the proof of Lemma 9.

QuR, C Qu, QuRy, = 0, (RyQ.)R, C ByQy

(RuQu)Ri C QuRy + QuRy + RuQ Ry + Quy (RuQu)Ry =0,
(QuR)R, = 0, (QuR,)R,C Qu + RByQ:

(QuR )R, C Qy, (QuR)Ry, C QiR + QuR,, -
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Also because of Lemma 11, R,Q,. R, C @y, So that in fact
(R()lQIl)ROl C QUROI + QIIRIO + QOO C S bl
Besides, Q,R,C S, and @Q,R,, S. Thus we have proved that

(Qll + ROlQll + QHRIO)RC S .

Then (Q.R,)R,CR,R, = 0, because of the table. (Q,R,)R,CQ., as
a consequence of Lemma 8. As a result of Lemma 12, (Q,.R,)R,C Q...
Using (4) and the table,

(QILROL)ROOC Qll(ROIROO + ROOROI) + (QIIROO)ROI c QLLROIC S d

This completes half of the required number of inclusions. The remain-
ing ones follow by reversing subscripts. This completes the proof of
the lemma.

COROLLARY. S =0.

Proof. Assume S = 0. Then it follows from the lemma that
S = R. But then from the directness of the Peirce decomposition we
must have @, = R,,. Since e¢ @, while ec R,, we have reached a
contradiction. Hence, S = 0.

LEMMA 14. @ = 0.

Proof. Suppose @ = 0. Then as a result of Lemma 9, @ = R.
Since the corollary to Lemma 13 gives us S = 0, looking at Lemma
9 we see that R = R,R,, + (R,R,)Ry, + RyR,, + (RywR,)R,. Since the
Peirce decomposition is direct, then R,R, = R,,. But from this it
follows that R,R,C (R,R,)R,C Q.,, as a result of Lemma 8. But
Q.S =0, hence R ,R,=0. At this point form U = R,, + R,. Then
it follows from the table that R,R,cC R,, R,R,C R, R.R,C R,
R.,R,=0,R,R,=0,R,R,=0,R,R,CR,, R,R,CR,, so that U must
be a right ideal. If U = R, then R, =0, so since 1 — ec R,, we
would have e =1, contrary to assumption. On the other hand if
U = 0, then ¢ = 0, also a contradiction. The contradiction was brought
about by supposing @ == 0. Hence, @ = 0. This completes the proof
of the lemma.

We are now ready to state and prove our main result.

THEOREM. Let R be a right alternative ring without proper right
ideals, of characteristic not two. Suppose that e, 1 e R, where e is
an idempotent other than 1, such that (e,e, R) = 0. Then R must
be alternative, hence a Cayley wvector matrix algebra of dimension
eight over its center.
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Proof. Combining Lemmas 14 and 10, it follows that the table
must be the same as that for an alternative ring and that R, and
R,, have no nilpotent elements. Then it follows from the main theorem
of [4] that R must be alternative. However, the reader can get by
with proving only Lemmas 14, 15, and 17 of that paper, since Lemma
16 coincides with our Lemma 7. Once R is alternative, the main result
of [2] makes R either associative or a Cayley vector matrix algebra.
But R cannot be associative, for having an identity element and no
proper right ideals force R to be a division ring, which in turn could
not have an idempotent ¢ = 1. This completes the proof of the theorem.
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