EXISTENCE OF A SPECTRUM FOR NONLINEAR TRANSFORMATIONS

John William Neuberger
EXISTENCE OF A SPECTRUM FOR NONLINEAR TRANSFORMATIONS

J. W. Neuberger

Denote by \(S \) a complex (nondegenerate) Banach space. Suppose that \(T \) is a transformation from a subset of \(S \) to \(S \). A complex number \(\lambda \) is said to be in the resolvent of \(T \) if \((\lambda I - T)^{-1}\) exists, has domain \(S \) and is Fréchet differentiable (i.e., if \(p \) is in \(S \) there is a unique continuous linear transformation \(F = [(\lambda I - T)^{-1}]'(p) \) from \(S \) to \(S \) so that
\[
\lim_{q \to p} ||q - p||^{-1} ||(\lambda I - T)^{-1}q - (\lambda I - T)^{-1}p - F(q - p)|| = 0
\]
and locally Lipschitzian everywhere on \(S \). A complex number is said to be in the spectrum of \(T \) if it is not in the resolvent of \(T \).

Suppose in addition that the domain of \(T \) contains an open subset of \(S \) on which \(T \) is Lipschitzian.

Theorem. \(T \) has a (nonempty) spectrum.

If \(T \) is a continuous linear transformation from \(S \) to \(S \), then the notion of resolvent and spectrum given here coincides with the usual one ([1], p. 209, for example). Such a transformation \(T \) is, of course, Lipschitzian on all of \(S \) and hence the above theorem gives as a corollary the familiar result that a continuous linear transformation on a complex Banach space has a spectrum.

The set of all complex numbers is denoted by \(C \).

Lemma. Suppose that \(d > 0 \), \(p \) is in \(S \), \(Q \) is a transformation from a subset of \(S \) to \(S \), \(D \) is an open set containing \(p \) which is a subset of the domain \(Q \), \(Q \) is Lipschitzian on \(D \) and \((I - cQ)^{-1}\) exists and has domain \(S \) if \(c \) is in \(C \) and \(|c| < d \). Then,
\[
\lim_{c \to 0} (I - cQ)^{-1}p = p.
\]

Proof. Denote by \(M \) a positive number so that \(||Qr - Qs|| \leq M ||r - s|| \) if \(r \) and \(s \) are in \(D \). Suppose \(\varepsilon > 0 \). Denote by \(\delta \) a number so that \(0 < \delta < \min (\varepsilon, 1/2) \) and \(\{q \in S: ||q - p|| \leq \delta \} \) is a subset of \(D \). Denote by \(\delta' \) a positive number so that \(\delta'(\max(M, ||Qp||)) < \delta/2 \). Denote by \(c \) a member of \(C \) so that \(|c| < \min(\delta', \delta) \). Denote \((I - cQ)^{-1}p\) by \(q \), denote \(p \) by \(q_{0} \) and \(p + cQq_{n-1} \) by \(q_{n} \), \(n = 1, 2, \ldots \).

Then,
\[
||q_{1} - q_{0}|| = ||p + cQq_{0} - q_{0}|| = |c|||Qq_{0}|| < \delta/2.
\]
Suppose that \(k \) is a positive integer so that
\[
||q_{m} - q_{m-1}|| < (\delta/2)^{m}, m = 1, 2, \ldots, k.
\]
Then \(\| q_m - p \| \leq \sum_{j=0}^{m-1} \| q_{j+1} - q_j \| \leq \sum_{j=0}^{m-1} (\delta/2)^{j+1} < \delta, \ m = 0, 1, \ldots, k \) and hence

\[
\| q_{k+1} - q_k \| = \| cQq_k - cQq_{k-1} \|
\leq |c| M \| q_k - q_{k-1} \|
\leq |c| M(\delta/2)^k \leq (\delta/2)^{k+1}.
\]

Hence \(\| q_n - q_{n-1} \| \leq (\delta/2)^n, n = 1, 2, \ldots \) and therefore \(q_1, q_2, \ldots \) converges to a point \(r \) of \(S \). Note that \(\| q_{n+1} - p \| \leq \sum_{j=0}^{n} (\delta/2)^{j+1} < \delta, n = 1, 2, \ldots \) so that \(\| r - p \| \leq \delta \) and hence \(r \) is in \(D \). But \(\| r - (p + cQr) \| = \| (r - q_{n+1}) + (p + cQq_n) - (p + cQr) \| \leq \| r - q_{n+1} \| + |c| \| Qq_n - Qr \| \leq \| r - q_{n+1} \| + |c| M \| q_n - r \| \to 0 \) as \(n \to \infty \). Hence \(r = p + cQr \), i.e., \((I - cQ)r = p \), i.e., \(r = (I - cQ)^{-1}p = q \). Hence, \(\| (I - cQ)^{-1}p - p \| \leq \delta < \varepsilon \). This proves the lemma.

Proof of theorem. Suppose the statement of the theorem is false. Then \(T \) has an inverse since if not, \(0 \) would be in the spectrum of \(T \). Denote by \(D \) an open set on which \(T \) is defined and is Lipschitzian. Denote by \(p \) a point of \(D \) different from \(- T(0)\).

Define \(f(\lambda) \) to be \((\lambda I - T)^{-1}p \) for all \(\lambda \) in \(C \). Suppose \(b \) is in \(C \). If \(q \) is in \(S \) and different from \(p \) denote

\[
(1/\| q - p \|)[(bI - T)^{-1}q - (bI - T)^{-1}p] - [(bI - T)^{-1}]'(p)(q - p)
\]

by \(L(q) \). Denote by \(L(p) \) the zero element of \(S \) and note that \(\lim_{q \to p} L(q) = L(p) \) since \((bI - T)^{-1} \) is Fréchet differentiable at \(p \). Denote \((bI - T)^{-1} \) by \(Q \). If \(\lambda \) is in \(C \), then

\[
(\lambda I - T) = [I - (b - \lambda)(bI - T)^{-1}](bI - T)
\]

and, since both \((\lambda I - T)^{-1} \) and \((bI - T)^{-1} \) exist and have domain \(S \), it follows that \([I - (b - \lambda)(bI - T)^{-1}]^{-1} = [I - (b - \lambda)Q]^{-1} \) has the same properties and \((\lambda I - T)^{-1} = Q[I - (b - \lambda)Q]^{-1} \).

Hence, if \(\lambda \) is in \(C \),

\[
f(\lambda) - f(b) = Q[I - (b - \lambda)Q]^{-1}p - Qp = Q'(p)[I - (b - \lambda)Q]^{-1}p - p] + \| [I - (b - \lambda)Q]^{-1}p - p \| L([I - (b - \lambda)Q]^{-1}p) .
\]

But \([I - (b - \lambda)Q]^{-1}p - p = (b - \lambda)Q[I - (b - \lambda)Q]^{-1}p \) so

\[
(\lambda - b)^{-1}[f(\lambda) - f(b)] = -Q'(p)Q[I - (b - \lambda)Q]^{-1}p
+ ((b - \lambda)/(\lambda - b)) \| Q[I - (b - \lambda)Q]^{-1}p \|
\times L([I - (b - \lambda)Q]^{-1}p) \to -Q'(p)Qp
\]

as \(\lambda \to b \) since \(\lim_{\lambda \to b}[I - (b - \lambda)Q]^{-1}p = p \). Hence,
\[f'(b) = -[(bI - T)^{-1}]'(p)(bI - T)^{-1}p. \]

Now \(\lim_{c \to 0} (I - cT)^{-1}p = p\). Denote by \(\delta\) a positive number so that if \(|c| \leq \delta\), then \(\|(I - cT)^{-1}p\| \leq \|p\| + 1\). Then if \(\lambda\) is in \(C\) and \(|\lambda| \geq 1/\delta\), \(\|f(\lambda)\| = \|(\lambda I - T)^{-1}p\| = \|1/\lambda\| \|(I - (1/\lambda)T)^{-1}p\| \leq \delta(\|p\| + 1)\). Hence \(f\) is bounded. So, by Liouville's theorem ([1], p. 129, for example), \(f\) is constant, i.e., there is a point \(q\) in \(S\) such that if \(\lambda\) is in \(C\), \((\lambda I - T)^{-1}p = f(\lambda) = q\), and so \(\lambda q = p + Tq\). Hence it must be that \(q = 0\), i.e., \(p = -T(0)\), a contradiction. This establishes the theorem.

The author considers it likely that the statement of the theorem is true if the condition (in the definition of resolvent) that \((\lambda I - T)^{-1}\) be locally Lipschitzian is dropped.

Reference

Received December 12, 1968. The author is an Alfred P. Sloan Research Fellow.

Emory University
James Burton Ax, *Injective endomorphisms of varieties and schemes* 1
Richard Hindman Bouldin, *A generalization of the Weinstein-Aronszajn formula* ... 9
John Martin Chadam, *The asymptotic behavior of the Klein-Gordon equation with external potential. II* .. 19
Rina Hadass, *On the zeros of the solutions of the differential equation*
\[y^{(n)}(z) + p(z) = 0 \] ... 33
John Sollion Hsia, *Integral equivalence of vectors over local modular lattices. II* ... 47
Robert Hughes, *Boundary behavior of random valued heat polynomial expansions* ... 61
Surender Kumar Jain, Saad H. Mohamed and Surjeet Singh, *Rings in which every right ideal is quasi-injective* ... 73
T. Kawata, *On the inversion formula for the characteristic function* 81
Erwin Kleinfeld, *On right alternative rings without proper right ideals* 87
Robert Leroy Kruse and David Thomas Price, *On the subring structure of finite nilpotent rings* ... 103
Marvin David Marcus and Stephen J. Pierce, *Symmetric positive definite multilinear functionals with a given automorphism* 119
William Schumacher Massey, *Pontryagin squares in the Thom space of a bundle* ... 133
William Schumacher Massey, *Proof of a conjecture of Whitney* 143
John William Neuberger, *Existence of a spectrum for nonlinear transformations* ... 157
Stephen E. Newman, *Measure algebras on idempotent semigroups* 161
K. Chandrasekhar Rao, *Matrix transformations of some sequence spaces* ... 171
Robert Bruce Schneider, *Some theorems in Fourier analysis on symmetric sets* ... 175
Ulrich F. K. Schoenwaelder, *Centralizers of abelian, normal subgroups of hypercyclic groups* ... 197
Robert Irving Soare, *Cohesive sets and recursively enumerable Dedekind cuts* ... 215
Kwok-Wai Tam, *Isometries of certain function spaces* 233
Awadhesh Kumar Tiwary, *Injective hulls of semi-simple modules over regular rings* ... 247
Eldon Jon Vought, *Concerning continua not separated by any nonaposyndetic subcontinuum* ... 257
Robert Breckenridge Warfield, Jr., *Decompositions of injective modules* 263