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J. L. Alperin proved the following theorem about finite
p-groups G: if E is maximal among the abelian, normal sub-
groups of G of exponent dividing p”, then 2,6,(F) = E, provided
that p*=<2. It turns out that the restriction to p-groups and
also to finite groups in Alperin’s proof is not essential. In fact
a similar theorem holds in a large class of hypercyclic groups
(Theorem 2.2). By the same method also a modified version
(Theorem 2.8) will be obtained, the word “normal” in the
assumptions about E being replaced by ‘“characteristic”’, here
G is supposed to be hypercentral; the modification results in
enlarging F to a characteristic subgroup X.(X) of class 2 in
a very definite way before taking its centralizer,

The proofs of both theorems rely on a fairly general version (not
used in its full strength) of the lemma used by Alperin on p-automor-
phisms of abelian p-groups that centralize all elements of order p. The
first paragraph is devoted to this generalization (Theorem 1.11) and
may be of independent interest.

TERMINOLOGY. We denote by ~ the set of all functions from the
set of all primes to the set of all rational integers extended by the
symbol co. Addition and subtraction are defined on /" by (f + q)(p) =
f(p) &= g(p), where o is handled in the usual manner; also f < g for
frg¢e /if and only if f(p) < g(p) for all primes p. A function fe /
is called finite, if f(p) < « for every prime p. The constant funections
in / will be denoted by their single value. The function d ¢ #” which
is 2 at 2 and 1 elsewhere will play a particular role in our discussion.

Let f be a function in /. The nonegative part f* of f is defined
by f*(p) = f(p) if f(p) =0, and f*(p) =0, if f(p) =0. With every
torsion element % of a group X there is associated a function e, e /
such that [7{p°*”|p prime} is the order of 2. We say that an element
x i8 restrained by f, if x is a torsion element and e, < ft. The
elements of X restrained by f generate a (characteristic) subgroup
2+X) of X. We say that X is restrained by f, if every element of
X 1is restrained by f.

For every torsion element 2 of a group X and every prime p there
is a uniquely determined power x, of x such that the order of %, is a
power of p and the order of x, = x;'x is prime to p. X, is the set
of all p-elements of X.
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A group G is called hypercyclic, if every epimorphic image, not
1, of G has a cyclic, normal subgroup, not 1. This implies that every
normal subgroup, not 1, of an epimorphic image H of G contains a
cyclic, normal subgroup, not 1, of H. A group G is called hypercentral,
if every epimorphic image, not 1, of G has a nontrivial center. This
implies that every normal subgroup, not 1, of an epimorphic image H
of G intersects the center of H nontrivially.

We use the notation (a,b) = aob = a~'a® where b is an endomo-
phism or a group element and a® = b~'ab. If b operates on A, then
Aob is the set of all (a, b) with ae A. (a,bd,¢) = ((a,b),c). An element
or automorphism x of X centralizes the x-invariant factor B/A, if «
fixes every element in B/A. MN;(A) = normalizer of A in X, €,(A) =
centralizer of A in X, 8(X) = center of X, X’ = commutator subgroup of
X, Ay = largest normal subgroup of X contained in A, {S) = subgroup
generated by the set S, p’ = set of all primes different from p.

1. After a few lemmas of a general nature this paragraph will
be concerned with torsion automorphisms that centralize 2,(G).

LEMMA 1.1. For a group G, an endomorphism x of G and an
element b of G define the elements b;,,7v = 0, by

bo = by bf = bib'H-l 1
and assume bb;,, = b,..b; for © > 1. Then for every integer s = 0,

bt — 500 5O

Proof. Since <g) =1 for all s >0, the statement is true for
s = 0. We proceed by induction on s to get
b — OO - b, O
— [0 D6 - 15,5,
5, Op,0p.0) ... [ 60, O, )
B e I G I Ce

+1

(5)=

LemMA 1.2. If x is an automorphism of the group G that cen-
tralizes the subgroup U of G, then U and {N (U)o x) centralize each
other,

where we use the formulas (i) + (i f_ 1> = (i :LL }) and (8)
1. This proves the lemma.
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Proof. Let we U and ge Ry (U). Then u® e U, hence u? = (u°)°® =
(»*)*" = u**. Therefore g~'¢g° centralizes U which proves the lemma.

LEmMMA 1.3. Let U be a subgroup of a group G and x an auto-
morphism of G that centralizes U and satisfies {Gox) & U. Then

(1) <G°€I}> S C,(Us);

(2) 4f the set Gox has finite exponent n, then x is a torsion
automorphism of order dividing n;

(3) ©f x is a torsion automorphism, then for every gec G the
order of gox divides the order of x.

Proof. (1) follows from Lemma 1.2 applied to U,. Let ge G and
put A = g'g°c Gox & U. Then ¢g° = gh and, by induction, ¢g°" = gh".
In particular, under the assumption of (2), g = gh" = g. Hence 2" =1
proving (2). On the other hand, if % is a torsion automorphism of
order m, then g = ¢g°™ = gh™, hence A™ = 1 proving (3).

LEemMA 1.4, [4, p.49, 1.5 Hilfssatz.] Every automorphism of a
finite p-group P that cemtralizes 2, P) has order a power of p.

Proof. Let P be a counterexample of minimal order and v =1 a
p’-automorphism of P centralizing Q,(P). Assume by way of contra-
diction that {(Pox> is a proper subgroup of P. P being a minimal
counterexample and (P-x) being x-admissible, (Pox> must be centralized
by x. So Lemma 1.3 (2) implies # = 1, a contradiction. Therefore
P = (Pox). Since P is solvable, P’ is a proper, xz-admissible subgroup
of P. Hence P’is centralized by . By Lemma 1.2, P’ & G ,({Pox)) =
B(P) and P has class 2. Let ¢t be minimal such that P = 2,.,(P),
hence ¢t = 1, and let ge P be an element of order dividing p'*!. Then
g € 2,(P) is centralized by x, hence

(glgx)pt — (g_l)pt(gx)pt(gx, g~1)(g) — (gx’ g~1)(g) ,
see [9, p. 8., (10)]. If p = 2, then p* divides (g); put s =t¢. If p =2,
then p'~' divides <g>, put s =¢t —~ 1. Now

(g% 07" = (g%, 97%) ,
see [9, p.80, (9)], and ¢*° € 2,(P) = B(P) by Lemma 1.2, Therefore
(@) = 1, (¢5, g% =1, and (gg7) =1

showing that

P=(Porx>=<K2,,,(P)ox> S Q(P)C P,
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a contradiction. No counterexamples exist.

COROLLARY 1.5. Let E be a subgroup of a finite group G such
that €4(E) has a p-Sylow subgroup S which satisfies 2,S) S E. Then
Co(E) has a normal p-complement.

Proof. Suppose U is a subgroup of S and x is a p’-element of
NA(U),C=C4E). Then 2,U) < 2,S)< E is centralized by x. Lemma
1.4 implies that U is centralized by . By a well-known theorem of
Frobenius [3], C has a normal p-complement.

PropoSITION 1.6. If A is a locally finite, normal subgroup of the
group B, then any torsion automorphism of B that leaves A invariant
and centralizes B/A and 2,(A) has order divisible by primes that are
orders of elements in A only.

Proof. Such an automorphism 2z is the product of its primary
components 2z,, ¢ prime, x, being a power of x. Put y = x, and assume
that ¢ is not the order of an element in A. Pick ac A. Being finitely
generated F' = {a®) is a finite, y-admissible subgroup of A. For any
prime p the number of p-Sylow subgroups of F' is prime to ¢ and
y normalizes at least one p-Sylow subgroup P of F. By Lemma 1.4,
P is centralized by y. So F' = <{P|p prime) is centralized by y and, in
particular, a is centralized by y.

Pick be B. A being a torsion group, b~'6Y€ A has finite order
prime to q. By Lemma 1.3 (3) this order divides the order of y,
b7 =1 and %, = y = 1.

We shall only need the following special case of Proposition 1.6.

COROLLARY 1.7. Let A be a normal torsion subgroup of a group
B, assume 2,(A)/Q:_i(A) S B(2:4.(A)/2;_4(A)) for all functions iec /
with 1= d, let © be a torsion automorphism of B that leaves A
wmvariant and centralizes B/A and Q,(A). If the order of x is prime
to the order of every element in A, then x = 1.

Proof. A is locally finite, since it is the union of solvable (hence
locally finite) torsion subgroups. Exploiting the structure of A one
may prove Corollary 1.7 also without reference to Lemma 1.4.

REMARK 1.8. The quaternion group of order 8 shows that Q.,(P)
in Lemma 1.4 may not be replaced by 2,(P). However, if P is abelian,
this may be done. Similarly in Proposition 1.6 and Corollary 1.7 2,(4)
may be replaced by 2,(4) provided that finite 2-subgroups of A are
abelian.
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LEMMA 1.9. Let A be a torsion group with abelian factors
0(4)/2;_(A) for all finite functions ic /. Let 0 <ke / satisfy
k2) = 2 and 2,(4) & B(A), assume that only finitely many primes
are orders of elements in A. Then any automorphism of A that
centralizes Q,(A) also centralizes all the factors 2,(A)/2._.(A) for
finite functions ne /.

Proof. Clearly by the structure of A, 2,(4) is'restrained by r for
re /. If there are counterexamples, then there are also counterexamples
of finite exponent, since only finitely many primes are orders of elements
in A. Let A be a counterexample of minimal (finite) exponent /7p™*,
Then automorphisms of A that centralize 2,(4) also centralize

Q,(A)/2;-1(A)

for j < m. In particular, A centralizes 2,(4)/2;_.(4) for j < m.
Let x be an automorphism of A that centralizes £2,(4), pick

acf,.(4) =4,

and let p, a prime, be the order of an element in A. Let g, have the
value ¢t at p and 0 elsewhere. Then (a”, a™') lies in 2,,_,(A), since
2,(A)/2,,(A) is abelian, and this commutator commutes with a* and
a~'mod 2,,_, ,(A), since A centralizes 2,,_,(4)/2,_,_(4). Therefore

¢ ¢ ¢ @ t)

(@~'a®)”" = (@) ()" (a*, @) ' mod 2,,_, _(4)
for natural numbers ¢, cf. [9, p.81, (10)]. Since z centralizes
hQm—gl(‘4)/‘(274——gl——k(fl)

by the minimality of the exponent of A, we have

(a—l)pt(aa;)pi — (apt)—_l(az)t)x =1 ITIOd ‘Qm—g1—~k(A)
and

(1) (a'a®)?" = (a?, a"l)(gt) mod 2,,_, _.(4) .

Using a well-known formula, cf. [9, p. 80, (9)], and remembering that
A centralizes Q2,,_,(4)/2,_, _(A) we get

(2) (@, a™)" = (@), &™) = 1 mod 2,,_, _(A).

~91

Assume first that p = 2 and choose t = 1. Then p divides (120)

Hence by (1) and (2), (a~'a*)* = 1 mod 2,_, _.(A), a~'a* € 2,_,(4), and z
centralizes 2,,(A4)/2,._.(4). ,

If p =2, choose £ = 2. Then p divides <€) and it follows (2)
that (2%, ¢)¢) = 1mod 2,_,_.(4). So (1) implies

(¢7'a”)”* = 1mod 2,_, ,(A)
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and a7'a”€ 2,y _i+4(A) & 2,_,(4), since k(2) =2 implies k = g,.
Therefore

(a®, a™) = (a(a'a®), a™') = (a7'a”, a™)
lies in 2,,_, _.(4), and ¢t =1 in (1) implies
(a'a®)? = 1mod 2,,_, _(A) .
Consequently a~'a* e 2,,_,(4), and z centralizes 2,,(4)/2,._.(4).

LEMMA 1.10. Let 0 < ke / satisfy k(2) = 2, let A be a torsion
group with 2,(A)/2;,_.(4) & 3(2;..(A4)/2,_.(A)) for all finite functions
i€/, and assume that only finitely many primes are orders of
elements in A. Then any automorphism of A that centralizes 2,(A)
also centralizes all the factors 2,(A)/2,_. (A) for finite functions ne /.

Proof. Let A be a counterexample of minimal (finite) exponent
[Ip™®, Then 02,(A) #1 and there exists a prime p with k(p) >0
and 2,(A) # 1 where g(p) =1 and 0 elsewhere. By assumption A4 =
Q2,(A)/2,._,_(A) satisfies 2,(4) = 3(A), since 2,(A) = 2,_,(A)/2p_,_1(A).
By the minimality of the exponent of A, an automorphism x of A that
centralizes 2,(4) also centralizes 2,,_,(A4)/2,._,_(4) = 2,(A). Therefore
by Lemma 1.9, x centralizes 2,,,(4)/2,(4), i.e., 2,(A)/2,_.(A).

THEOREM 1.11. Let A be a normal torsion subgroup of a group
B, assume 2,(A)/Q2;,_.(A) S 3(2;:.(A4)/2,_i«(4)) for all finite functions
ie /, let x be a torsion automorphism of B that leaves A imvariant
and centralizes B/A and Q,A), and let f=0 be a function in /.
Then x centralizes B/2,(A), if and only if x is restrained by f.

Proof. (1) To prove the if-part of the theorem we shall assume
without loss of generality that f is finite and assumes only finitely
many positive values, because « is a torsion automorphism.

Assume first that the statement in question is false for some group
A of finite exponent. Then there are counterexamples A of minimal
finite exponent /1pi® of A. Choose one where also f is minimal with
respect to the partial ordering <. It follows 70, f+#0, and x = 1.
There exists a prime ¢ such that both 4?1 and ¢ divides the order
of x, since otherwise Corollary 1.7 would imply # = 1. Define ge /~
to be 1 at ¢ and 0 elsewhere. A/2,(A) is restrained by j — g <j and
has the required structure. 2 induces in B/2,(4) an automorphism
that leaves A/2,(A) invariant and centralizes [B/2,(4)]/[A/2,(A)] and
02,(A/2,(A)); this last fact follows from Lemma 1.10. So the minimality
of j yields that x centralizes [B/2,(A)]/2,(A4/2,(4)), i.e., B/2;.,(A4).

Again by our hypothesis and Lemma 1.10, x centralizes
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Q/A)[Q;_o(4) and 2, ,(A)/2r:yu(A) .

So we may apply Lemma 1.1 for any be B to get

b = bbib, D mod 2,_,(4)
with b, € 2,,,(A), by 2y, o(A) S 2,(4), be 2,_4(A), since
b.b, = b,b, mod2,_,(A)

by the structure of A. If ¢ == 2, then bz(g) €2, ,(4). If g =2, then
even b,e 2, ,(A). Hence

bt = bb? mod 2,_,(A) .

On the other hand by the minimality of £,z being restrained by
f— 9 = 0 centralizes B/2,_,(A) so that

b= b"mod 2,_,(A) .

Hence b7e¢ 2,_,(A) and b e Q2,(A4). This signifies that 2 centralizes
B/2,(A) contradicting our assumption and proving the statement for
groups A of finite exponent.

Now consider the general case and let bc B. Since A is a torsion
group, there exists a function j = f in / such that 2,(4) has finite
exponent and contains b~'b°. Hence x leaving Q;(A) invariant central-
izes <b>Q2,;(A)/2;(A). By what we have already proved above we may
conclude that x centralizes <{b>2,(4)/2,(A), whence b*=bmod 2,(4).
This shows that x centralizes B/2:(4).

(2) Conversely, if « is a torsion automorphism of B centralizing
B/Q:(A), we may assume x = 1. Let p be a prime that divides the
order of » and define ge /" to be 1 at p and 0 elsewhere. There
exists /1, = f depending on be B such that 2,,(4) has finite exponent
and contains b, = b-'6". By Lemma 1.10 applied to 2,,(4), b, = b7
is contained in 2,, (4) & 2,_,(4). Therefore

b = bb? mod 2;_,(A)

by Lemma 1.1. But b’e 2,_,(A), hence z” centralizes B/2;_,(A).
By induction on the order of x, 2? is restrained by f— ¢. So =
is restrained by f.

REMARK 1.12. H. Leptin [6, p. 101] proved that in the case of a
reduced abelian p-group A with »p = 5 the conclusion of Theorem 1.11
remains valid under the weaker hypothesis that x only centralizes
certain factors of 2,(4) instead of 2,(4) as a whole.

ReEMARK 1.13. Let A be an abelian 2-group of exponent = 8 and



204 ULRICH SCHOENWAELDER

let © be the automorphism of A that maps every element onto its
inverse. Then x centralizes 2,(A) and has order 2, but does not
centralize A/Q,(4).

2. Let E be a normal subgroup of the p-group G and denote
by &*(E) the subgroup of G formed by all the elements of G that
centralize all the factors Q(E)/Q,_(E), ¢ = k. The following proposition
may be generalized to the case where E satisfies E S &*(F) instead of
being abelian (k = «). But if x € &*(F) satisfies x? ¢ K and (v, 9) S E
then it does not follow that the subgroup W generated by E and x
satisfies W < &¥(W), since 2(W) < 3(W) may be violated. Hence
no application of the proposition in this case which would be similar
to the proof of Theorem 2.2 or Theorem 2.8 below is to be expected.
Consequently we shall restrict our attention to the abelian case and
follow Alperin’s argument.

ProPOSITION 2.1. Let G be a group, E an abelian subgroup of
G, E, a subgroup of G that contains E, and f =0 a function in
such that
(1) f@2) +#1,
(2) if h is a function in # with 0 < h < f and if 2,84E) is
restrained by f, then 2,8,(E) S E,
(8) there exists an abelian subgroup A of G and a subgroup
A, of G such that
(a) Q,CuE,) normalizes A,
(b)y AA2A22/4) =E, EJdA,
(c) 2,C,(B) NECHA) & A4,
(d) if the element x of CyE) is restrained by f, then x
centralizes A,[Q:(A).
Then 2,8.(E) S E.

Proof. Assume that the proposition is false and choose % e f
minimal with respect to 0 < h < f and Q2,C(E) ZL E. So by (2),
Q2,8 ,(F,) is not restrained by f.

Aiming at a contrary statement pick =1 and y in €, (F,) where
x is restrained by % and y is restrained by f. We shall examine <{z, y>.

By (3d),x and y centralize A,/2,(A). Hence <z, y> induces an
abelian group of automorphisms in A,, whence

(0(7, ’Z/) € -Qf@G(E1)’ N @G(Al) g A

by (3c). But again x and y centralize A/E, so (z,y,x) and (x,y,y) are
in E, and <z, y> has class of nilpotency at most 3. By Lemma 1.1,

Yy =y" =y, v)y, 7, x)(g) ,
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hence
(*1) 1= (y, 2)'(y, &, o))

for every natural number e that is divisible by the order of ». Let
g be a prime that divides the order of #. Let ge / be 1 at ¢ and 0
elsewhere and let % be the smallest function > 0 in ~ that restrains
. Then a7 is restrained by k — g, hence 2'¢c 2, ,C4(E,). We have
still k—g¢g=0,but k—g<k <h, since k is finite. So the minimality
of & yields 2,_,C.(E) S E < A, hence

(*2) 1=(y, 2,29 = (y, 2, 2)7,

ctf. [9, p. 80, (9)].

Assume first that %(2) = 1 and let y be restrained even by h.
Choose ¢ to be the least common multiple of ¢*¢ and the orders of
x and y. Note that &(q) = d(q), since ¢ divides the order of =.

Therefore ¢ divides (g , entailing (y, x, x)(g) = 1 because of (*2) and

(¥, ) = 1 because of (*1). By the choice of e this proves that (y, )
is contained in 2,(4) & E. Therefore (cf. [9, p. 80, (], (¥,2)* = (y, x%) =
1, since € 2,_,C(E) & E, and (cf. [9, p. 81, (10)])

(vy)® = x'y*(y, x)(g) =1.

This proves that 2,8.(E,) is restrained by % < f; a contradiction.
Assume now that i(2) = 1 and let A'e /" have the value 2 at 2
and coincide with & elsewhere. Then’ < &’ < f, since 1 = 2(2) < f(2) = 1.
Suppose that y is restrained by 4’ and choose ¢’ to be the least common
multiple of 4 =2"® and the orders of # and y. Again ¢ divides

(g), (y, #) is contained in 2,.(4) & E, and (2y)* = 1. This proves

that xy is restrained by %’ and hence that 2,8.(F,) is restrained by
K £ f, if h(2) = 1; again a contradiction.

THEOREM 2.2. If f is a function in £, if G is a hypercylic
group, and if E is maximal among its abelian, normal subgroups
restrained by f, then Q8. E) = E, provided that f(2) = 1 and that

(*) there exists an abelian, normal torsion subgroup A 2 E of
G such that Q,C,(EY NECHA) & A and 2,(4) = QF).

Proof. We have to establish the hypotheses of Proposition 2.1.
Without loss of generality f= 0. Let E, = E. Assume by way of
contradiction that (2) is not satisfied, so that EQ,€,(F)> E for some
h in / with 0 < h < f such that 2,8,(E) is restrained by f. Then by
hypercylicity, EQ,C.(E)/E contains a cyclic, normal subgroup H/E = 1
of G/E. But E < 3(H), hence H = 3(H). Furthermore EQ,C.(E) is
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restrained by f, and so is H. This contradicts the maximality of E.
Hence (2) is satisfied. Put A, = A. By maximality of E, 2,4) = E.
So (3a, b, ¢) are satisfied. Now let xe €,2,(A4) be restrained by f.
Then z centralizes E and Q,E) = 2,(A4), so that Theorem 1.11 is
applicable, x centralizes A/2,(4). By Proposition 2.1, Q,8.(F) = E.

REMARK 2.3. The condition (*) in Theorem 2.2 may not be dropped
as shown by the following example of [2, p.19, Example 1]. Let A4
be a torsionfree, abelian group and 2 the automorphism of A that
sends every element onto its inverse. Then G = A<{z) is hypercylic
and every element in the coset Ax is of order 2. Let f= «. Then
E =1 is a maximal abelian, normal subgroup of G restrained by f,
but Q,8.(F) = G + E.

REMARK 2.4. As already indicated by J. L. Alperin the condition
f(2) # 1 in Theorem 2.2 may not be dropped. If G is a dihedral group
of order 2"*+* = 16, then G has no elementary abelian, normal subgroups
of index 2, since G contains elements of order 8 Therefore it follows
from [8, Lemma 1] that a maximal elementary abelian, normal sub-
group E of G has order 2 and as such lies in the center of G. But at
least half of the elements of G have order 2. This proves Q2,84 FE)DE.
This question has been investigated further by G. Tani Corsi [7].

COROLLARY 2.5. If f=0 is a function in <, if G is a hyper-
cylic group, and if E is maximal among its abelian, normal subgroups
restrained by f, then 2,8, E) = E provided that one of the following
holds:

(1) f(Q #1 and 24G) is restrained by f where f(p) =0 if
fp) £ 0 and f(p) = o if f(p) > 0.

(2) f=d and 2AG) is a torsion group.

(8) There exists a prime q such that f(p) =0 for p < q and
f) =1 for p>gq.

(4) f2) %=1 and the set of p-elements of G is a subgroup for
every prime P.

(5) f(@ =1 and G is hypercentral.

Proof. Assume (1). It will suffice to show that condition (*) of
Theorem 2.2 is satisfied. Let A be maximal among the abelian, normal
subgroups of G containing E and restrained by f; such a subgroup
exists by the maximum principle of set theory. F' = 2:G)N €y (A)
is restrained by f. Therefore, since G is hypercylic, a similar argu-
ment as used in the proof of Theorem 2.2 shows that F' is contained
in A. In particular, 2,(G)Y NCyA) & F < A. If for some prime p
the component A, of A is not 1, then f(p) = « and f(p) > 0, hence
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f(p) = d(p). Therefore, 2,(A) & 2,(4). By the maximality of E,
2,(A) = E. This implies 2,(4) = 2,(F), and Theorem 2.2 is applicable.

(2) 1is a special case of (1).

In any hypercylic group G the torsion elements of an order divisible
by primes p > ¢ only form a subgroup G(g); cf. [2, p. 21, Proposition
1]. Therefore (3) is also a special case of (1).

Clearly (4) implies (1).

Every hypercentral group is locally nilpotent [5, p. 223] and every
locally nilpotent group has a unique p-Sylow subgroup for every prime
» [5, p.229]. Hence (5) is a special case of (4).

COROLLARY 2.6. For a p-Sylow subgroup P of a finite group G
let B be maximal among the abelian, mormal subgroups of P of eux-
ponent dividing p*, n = d(p). Then €4 ) has a normal p-complement
and E is the set of all elements in C (E) of order dividing p".

Proof. Since P normalizes C = € K), S = C,(F) is a p-Sylow
subgroup of C. Moreover, 2,S) = 2,€.(E) & E by Corollary 2.5 (5),
hence Corollary 1.5 yields the existence of a normal p-complement in
C. An arbitrary p-Sylow subgroup S, of C is conjugate to S in C =
€y (E). Therefore £ = 2,S) = 2,(S,). This completes the proof.

DEFINITION 2.7. (a) For fe / define f'ec by f'(p)=0 if
flp) = 0 and f'(p) =1 if f(p) > 0.

(b) For an abelian normal subgroup E of a group G such that
E is restrained by fe / define ¥;(E) by

X(E)E = 2,[2,8,(B)/E N 3(G/E)] .

THEOREM 2.8. If f is a function in 2 with f(2) # 1, if G is a
hypercentral group, and if E is maximal among its abelian charac-
teristic subgroups restrained by f, then Q2,C.XL(F) = K.

Proof. (1) Let U be a normal subgroup of G contained in
€,XL(E) and restrained by f, and assume by way of contradiction that
UZE. Then UE/E 1, whence UE/EN 3(G/E) + 1 by hypercentrality.
Since UFE is restrained by f we see that 2,(S) = 2,.(S) for every sub-
group S of UE/E, in particular

1 = Q,|UE/E 0 3(G/E)] € [UE N ¥,(E)|/E .

But UENXLE) = [U N XL(E)E, where U NX4H(FE) S 2,83%(E) S E by
the maximality of E. This contradiction shows that U & E.

(2) Consider first the case where f assumes only the values 0
and c. Since G is hypercentral, 2.(G) is restrained by f (cf. proof
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of Corollary 2.5 (5)) and so is U = 2,8,X/(F). Therefore (1) implies
QCXL(E) S E. Clearly E < 2,8,%/(F), and the theorem is proved
in this case.

(3) Now consider the general case and put E, = X.(&). Then
condition (2) of Proposition 2.1 follows from (1) above. Let A be
maximal among the abelian, characteristic subgroups of G containing
E and restrained by f, where f is defined as in Corollary 2.5 (1). Put
A, = %¥/(A). Then 2,(A) = E by the maximality of E and 2-C,%/(A4) =
A by (2) above. In particular since 2,6, (E\) S 2+G) is restrained
by f,

Q,C,(E) NECeA) & 256,(4) = A

proving (3c) of Proposition 2.1. Clearly A,/A is centralized by every
element in G. As in the proof of Corollary 2.5 (1), 2,(4) = Q.(E).
Therefore (3d) follows from Theorem 1.11, and Proposition 2.1 yields
Q,C,(FE) = E.

COROLLARY 2.9. For a p-Sylow subgroup P of a finite group G
let E be maximal among the abelian, characteristic subgroups of P
of exponent dividing p", n = d(p). Then CX3(E) has a normal p-
complement and E 1is the set of all elements in C X:(E) of order
dividing p".

Proof. Use Theorem 2.8 in the proof of Corollary 2.6.
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