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In this paper the methods of recursive function theory
are applied to certain classes of real numbers as determined
by their Dedekind cuts or by their binary expansions. Instead
of considering recursive real numbers as in constructive
analysis, we examine real numbers whose lower Dedekind cut
is a recursively enumerable (r.e.) set of rationals, since the
r.e. sets constitute the most elementary nontrivial class which
includes nonrecursive sets, The principal result is that the
sets A of natural numbers which ‘‘determine’” such real
numbers « (in the sense that the characteristic function of
A corresponds to the binary expansion of «) may be very far
from being r.e., and may even be cohesive, This contrasts
to the case of recursive real numbers, where A is recursive
if and only if the corresponding lower Dedekind cut is re-
cursive,

With each subset A of the set of natural numbers N, there is
naturally associated a real number in the interval [0, 2], namely
O(4) = 3,...27", and (@) =0. Fix a one-one effective map from
N onto @, the set of rationals in the interval [0, 2], and denote the
image under this map of an element # by the bold face n. Identifying
each natural number »n with its rational image n, the (lower) Dedekind
cut associated with A is simply

L(A) = {n|n = 0(A)} .

It is well known in recursive analysis [4] that A is recursive if and

only if L(A) is recursive, and in this case @(4) is said to be a recursive
real number.

From the point of view of recursion theory, however, it is more
natural to consider certain wider classes of Dedekind cuts, especially
those which are recursively enumerable (r.e.). The most interesting
results in recursion theory concern these sets. In going from recursive
to recursively enumerable Dedekind cuts, we find that: A r.e. implies
L(A) r.e.; but not conversely. (C.G. Jockusch has observed the following
simple counter-example to the converse. If A is any r.e. set and if
B = A join A = {2n|nec A} U {2n + 1|nc A}, then L(B) isr.e., but B
is not r.e. unless A is recursive.) It is now natural to ask just how
‘‘sparse’’ the set A can be so that L(A) remains r.e. At the end of
§3 in [8] we indicated how to construct a hyperimmune set H such
that L(H) is r.e. We now consider two notions (dominant and hyper-
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hyperimmune) which are natural extensions (as explained in §2) of the
two equivalent properties used to define a hyperimmune set. We will
prove that:

(1) There is a set A such that: (i) A is dominant (i.e. the
principal function of A dominates every recursive function); (ii) L(A)
is r.e.; and (iii) A contains an infinite retraceable subset, and is not
hyperhyperimmune.

(2) There is a cohesive (and hence hyperhyperimmune) set C
such that L(C) is r.e.

In addition to illustrating the wide range of sets A which can
yield r.e. Dedekind cuts, L(A), these results suggest another method
of classifying r.e. Dedekind cuts. Recursively enumerable Dedekind
cuts appear to defy classification by the usual division of the r.e.
sets into such categories as creative or simple, because the dense linear
ordering imposed by the rationals prevents any Dedekind cut from
being simple or creative (see [8]). We have suggested in [8] a partial
classification of r.e. Dedekind cuts using certain classes of fixed point
free recursive maps which preserve them. The construction of the
dominant set now suggests the notion of an r.e. Dedekind cut being
stably recursively enumerable, a requirement which is strictly inter-
mediate between requiring that A be r.e., and requiring merely that

L(A) be r.e.
Background material may be found in the references listed at the

end of the paper, especially [6] and [7]. We used the standard
enumeration of the r.e. sets, W,, W, ..., that is obtained by setting
W, = {x| Qy)T\(e, x, y)} for each ¢; and we set W: = {x| (3y)..T\(e, z, y)}
for each ¢ and z. For natural numbers « < y, I[z, y] will denote the
finite set {x,z + 1,2+ 2,---,9y}. We will also used the standard
effective indexing of the finite sets, {D,}. Namely, if ,a,, ---, 2,
are distinct natural numbers, and & = 2" + 222 + ... + 2% then D,
denotes {x,, x,, -+, 2,}, and D, denotes the empty set, . We use the
standard pairing function, j(x,v) =« + (1/2)(x + y)(@ + y + 1), and
following Rogers [6] we will let {x, y> denote the image j(x,y). If
P(x) is a predicate, then ~ P(x) denotes the negation of P(z), and
12P(x) denotes ‘‘the unique x such that P(x) holds’”’. For any set
AS N, A denotes N — A, card A denotes ‘‘cardinality of A’’, and @(A)
denotes the real number >,., 2", while &(®) = 0. Finally, we write
Ac*B if B — A is finite.

1. Stably recursively enumerable Dedekind cuts. Before de-
fining the notion of a stably r.e. Dedekind cut, it will be convenient
to have the following characterization of a r.e. Dedekind cut. (From
now on ‘‘cut’’ will always mean Dedekind cut.) A sequence of finite
sets, {4°}, is said to be canonically r.e. if there is a recursive function
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f such that A* = D, for all s.

LeMMA 1.1, For any set A, the cut L(A) is r.e. if and only if
there is a canonically r.e. sequence of finite sets, {A°}, such that

(1.1) (s)[@(AF) = 0(4%)], and
1.2) A = lim, A® (i.e. (r)(3S)(M)<.(D)zm e A = m € A'])

Proof. If A is recursive the lemma is clear, so we may assume
that A is nonrecursive and thus @(A) is nonrational. Now assume
that {A°} is canonically r.e. and satisfies (1.1) and (1.2). For each s,
define the rational x, = @#(4°). Then lim, x, = @(4), and L(A) is r.e.
because U {x,} is r.e., and because y € L(4) = (3s)[y < x,], since @(4)
is nonrational.

Conversely, assume L(A4) is r.e., say L(A) = W,. For every s
such that W: = ), define x, = max{y|ye W¢}, and let B® be the re-
cursive set such that @(B°) = x,. Let A* = B*NI[0,s]. Note that
B* is recursive since x, is rational, and B°® is unique if whenever a
rational has two distinct binary expansions, we always favor the
expansion ... 1000 ...instead of...0111... (Since for each =z,x is
effectively presented as a quotient of natural numbers, we can effectively
recognize this case.) Clearly, the sequence {4} satisfies (1.1) and (1.2).

In general there is no further restriction upon these sets 4°, so
that in particular an element % may appear and disappear in subsequent
sets many times (at most 2"*') as long as

S)red’ — A" = @Aylyc A — A&y < n]

so that @(A°*) = @(A°) holds.

In view of this we define an r.e. cut L(A) to be stably recursively
enumerably (s.r.e.) if there is a canonically r.e. sequence of finite sets
{A®} satisfying (1.1) and (1.2) as well as

(1.3) (R)(S)(t)ss[m e A° — A =neg A'] .

If the set A itself is r.e., say A = W,, then L(A4) is clearly s.r.e.
because we may take A° = W; so that the antecedent in (1.3) never
holds. The converse, however, is false by Jockusch’s example L(B)
given earlier which is easily seen to be s.r.e. but B is not necessarily r.e.

Furthermore, Theorems 1.2 and 3.1 together will imply that not
every r.e. cut is s.r.e., and hence that the requirement that L(A) be
stably r.e. is strictly intermediate between requiring that A be r.e.,
and requiring merely that L(A) be r.e. Theorem 1.2 proves that if
A is infinite and L(A) is s.r.e. then A contains an infinite retraceable
subset. Theorem 3.1 proves that there is a cohesive set C such that
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L(C) is r.e. Since no cohesive set contains an infinite retraceable
subset (Rogers [6], Exercise 12-48), L(C) cannot be s.r.e.)

Dekker and Myhill [1] define a set R to be retraceable if there
is a partial recursive function f such that f(r)) = r,, and f(r,.,) = 7,
for all », where 7, 7, ---, are the elements of R in ascending order.
Given such an f, for each x in the domain of f, we adopt the con-
vention that f°(x) = x, and define the set,

F@) = {y|@n)f"@) = yl} .

THEOREM 1.2. If A is infinite, and L(A) is stably r.e., then A
contains an infinite retraceable subset B, which 1s retraceable by a
finite-one, partial recursive fuction f.

Proof. Assume that A is infinite and that {A°} is a canonically
r.e. sequence of finite sets satisfying (1.1), (1.2) and (1.3). At each
stage s, the partial recursive retracing fuction f will be defined on
at most a finite number of elements. Let a, = px[xe A], and s, =
psla, € 4°].  Our construction begins at stage s = s,.

Stage s = s,. Let a, ap, -+-, be the elements of A which are
greater than a,, listed in ascending order. Define f(a,) = a,, and
f(a;y) = a; for all 1.

Stage s > s,. Let af, a, --- be the elements of 4° — J,., A’ listed
in ascending order. Define

fla) =2 < a &Flx) S A
& W)y<a: &fy) S A= d(F(x) = O(F )]
fai,) =af, for all ¢ > 1.

Clearly f is partial recursive and finite-one because of our conditions
on the sequence {A4°).

We now exhibit an infinite subset of A, namely B = {b, b,, -+ -},
which is retraced by f. Define b, = a,,

by = pal fl@) = b, && > al] .

Clearly, B is retraced by f, and B is infinite since 4 is infinite. To
show B= A we first define s(m) = ps[b,c A°&s=s]. We prove
simultaneously by induction on m that,

(1.4) (m)[b,, € A]
(1.5) BOzem®p, [neA=neA].

These are clearly true for m = 0. Assume true for all m < p. Now
s(p + 1) = s(p) because f(b,.,) = b,. Suppose ne A'*' — A' for some
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n < b,,, and some ¢ = s(p + 1). Let n’ be the least such =, and ¢
the least corresponding ¢. By inductive hypothesis b, < n’, but by
stability of {4°}, n’' € U.< 4*. Thus at stage ¢’ + 1 we must define
f(n’) = b,, contradicting the definition of b,.,. Hence (1.5) holds for
m = p + 1. But then b,.,e¢ A by (1.5) and (1.1) since b,,, € A*?*+",

2. A dominant set with recursively enumerably lower cut:
Following Martin [3], we say that a function f dominates a function
g, if for all but finitely many =, f(n) = g(n). The principal function
of an infinite set A is that function which enumerates the members
of A in order of magnitude without repetition. A function f dominates
an infinite set A if f dominates the principal function of A.

We define an infinite set 4 to be dominant if the principal function
of A dominates every recursive function. It is easily seen that A is
dominant if and only if the principal function of A dominates every
infinite r.e. set, and we will use this property in the proof of Theorem
2.1. (Martin [3] used no name for a dominant set, but called a set
A dense if A is either finite or dominant.)

A set H is said to be hyperimmune if there is no recursive
function f such that for all x and v,

DywNH=# @ &[x#y= Dy, N Dy, = @1,

or equivalently if no recursive function dominates the principal function
of H (Rice [4]). A set H is hyperhyperimmune if there is no re-
cursive function f such that for all x and v,

Win NH = O & Wy, is finite & [v £y = Wy, N Wy, = O] .

The notions of hyperhyperimmune and dominant represent respectively
the strengthenings of the two equivalent conditions of hyperimmunity.
Since it is possible [8] to construct a hyperimmune set H such that
L(H) is r.e., it is natural to attempt to obtain the same conclusion
for these two ‘‘sparser’’ types. We construct below a dominant set
A such that L(A4) is stably r.e. By Theorem 1.2, A contains an in-
finite subset B retraced by a finite-one, partial recursive retracing
function, and hence A is not hyperhyperimmune (by the same proof
as in Rogers [6], Exercise 12-48 (a)). (Martin [2], p. 275 constructs
a co-r.e. set A which is dominant but not hyperhyperimmune. Of course,
our set A cannot be co-r.e. since L(A) would be recursive.)

For each s and ¢, we define the partial recursive function k(s, ¢, n)
to be that function which enumerates the members of W in ascending
order and is undefined for »n = cardinality of W; (denoted card W?).
(Since the first element of W: is given by h(s, e, 0), the function will
be defined only for n < card W?.) Now lim, k(s, e, n) clearly exists for
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each e and n < card W¢, and will be denoted by the partial function
h(e, »), which is the principal function of W, if W, is infinite. Note
also that,

(2.1) (s)(e)(m)[h(s, e,n) = k(s + 1, e, n) = h(e, n)]

whenever the functions are defined.

THEOREM 2.1. There is a dominant set A such that L(A) is stably
recursively enumerable.

(Intuitively, one may think of the following proof as én attempt
to satisfy an infinite number of ‘‘requirements’’, where requirement
{e, iy, denoted R, states that

(mIe, iy <n =<e, i + 1) = a(n) = hie,n)] ,

where a(n) is the principal function of A. We say that requirement
R, has higher priority than requirement R, ,, if {e, i) <<z, y>. In
Lemma 2.4 we will prove that if W, is infinite, then for every 7,
R, is satisfied, and thus a(n) dominates h(e,n). To convert our
proof into a ‘‘movable markers’’ argument as in Rogers [6] one need
merely imagine that a ‘‘marker’’ /., is uniquely associated with
R, for each {e, iy, and that v(s, e, i) denotes the integer occupied
by marker A, at stage s. Then for example, (2.2) states that the
markers are always arranged in order according to the priority of
R,..;,, and the definition of v(s + 1, e, ) may be viewed as a description
of how the markers move.)

Proof. We will construct by stages a canonically r.e. sequence
of finite sets, {A°}, which satisfies (1.1), (1.2) and (1.3), and such that
if a(n) is the principal function of the set A = lim, 4°, then a(n)
dominates \nh(e, n) whenever W, is infinite. Simultaneously, we will
define by stages a recursive function v(s, e, ) such that for all s, e, 7,

and vy,
(2.2) v(s, €,1) < v(s, ®, y) = <e, iy < (&, Y
(2.3) v(s,e, 1) S v(s + 1,e,1).

Define A° = @, and v(0, e, 7) = e, 1) for all ¢ and i.

Stage s = 0. We say that the integer (e, 1) is eligible at stage
s if v(s,e, 1) ¢ A° and card W; > <{e, 7 + 1). If no integer is eligible
at stage s then set A°** = A° and v(s + 1, ¢, %) = v(s, ¢, 7) for all ¢ and
i, and go to stage s + 1. Otherwise, let <e,, ¢,> denote the least
integer eligible at stage s, and define,
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At = (4° N I[0, v(s, e, 1,)]) U {v(s, e, 1,)} .
Note that in either case,
(2.4) DA z O(AY)

because in the second case {e,, i,> eligible at stage s implies that
v(s, e, 1,) € A°.

In order to insure stability of A as well as (2.2) and (2.3) we
define a predicate V(¢ + 1,¢e,4,n) which specifies certain integers »
which are available as values for v(t + 1,¢,4). (It will be clear that
the function (¢, e, 1) is recursive by recursion first upon ¢ and then
upon <e, 1) because v(t + 1, e, 1) is uniformly recursivein V(¢ + 1, e, 7, n)
which itself is uniformly recursive in v(¢, e, 7) and »(f + 1, z, y) for
Lo, Yy < e, 1))

Vit +1,e,4,m) = (W [ne A &n = v(t, e, 1)

& ()W, yp < e, ip=2(t + 1, z,9) <n]] .
We now complete our construction by defining at stage s,

(s, e, 1) if e, iy < <e,, 1,

pnfn = ks, e,, e, 1)) if e, 1.0 <<e, iy =<e, 1, +1>
&V(s+1,e,1,n)]

nVis+1,e,1,n) if le,, i, + 1> < e, o> .

v(s+1,e1)=

Note that the second and third clauses of V guarantee that
v(s, e, 1) satisfies (2.3) and (2.2) respectively. (Notice how by the second
clause in the definition of v we attempt to satisfy requirement R,, ,, at
stage s.) Furthermore, we have for all s,¢,1 and n,

2.5) ne A — A*=mn = v(s, e,, 1,)

(2.6) wv(s,e, 1) <v(s+1,e,1)= Am)m < v(s, e t)&me A — A°]
2.7 ne A+ — A = (t),.[n = v(t, e, 1) = e, 1y = {e,, 1,)]
(2.8) (1)s.[v(t, e,y 1) < v(s, e, 1,) = v(s, €, 1,) < v(t +1,e,1,)],

where (2.8) is considered vacuous unless <e,, ¢,> and <e,, 7,> are defined.
Clearly (2.6) follows from the definition of w(s + 1,¢,7) and in fact
m = v(s, e, 1,) by (2.5). To prove (2.7) fix s and suppose for some
n that ne A*" — A°. Then =n = v(s,e,,1,). But nmeA*** implies
(t)s, ~ V(t,e,1,n). Thus, if » = v(t, e, 7) for some ¢ and 7, and some
t > s, it can only be through the first clause in the definition of
v(t, e, 7). It follows by an easy induction on ¢ that {e, i) = e, 7.>,
thus establishing (2.7). In (2.8) fix s and ¢ > s, and assume that
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e, 1,y and e, 1,> are defined, and that the antecedent holds. Now
v(s, e, 1) = v(t, e, 1) by (2.3), and thus <e, 1) <<e, i,» by (2.2).
If n=wv(s,e,,1,), then ne A**' — A* implies ~ V(¢ + 1, e,, 7,, n) because
t > s. Hence, by the definition of v, v(t + 1, e, 7,) = n. Thus by (2.3),
n = (s, e, 1) <v(t+1,e,1,).

By (2.4) we know that @#(A4*') = @#(A4*) for all s. Hence, lim, 4°
must exist and will be denoted by A. That A is infinite will follow
by Lemma 2.3.

LEmmA 2.2. L(A) is stably recursively enumerable.

Proof. By Lemma 1.1 and the above L(A) is r.e. because the
sequence {A4°} satisfies (1.1) and (1.2). To prove that L(A) is stably
r.e. fix ne A, and suppose that ne A*** — 4°. Then n = v(s, ¢, t,) by
(2.5). Now suppose for some t > s that nme A* — A'*', and that ¢’ is
the least such ¢. Necessarily n > v(¢, ¢, 7,,). Now by (2.8) and (2.3),
(®)sy[n = v(u, e, 1,)]. But then by (2.7), (#)s.(e)(?)[n # v(u, e, 7)], and
thus (u)..[n e A"].

LEMMA 2.3. For all e and 1, lim, v(s, ¢, ©) exists (and ts denoted
by v(e, 1)), and A = {v(e, 1) |card W, > (e, © + 1)}

Proof. We prove both parts simultaneously by induction on {e, 7).
If {e,t) =0, thene = ¢ = 0, and v(s, 0, 0) = »(0, 0) for all s. Further-
more, clearly

v(0, 0) € A = (3s)[card Wy > <0,1)] .

Fix ¢ and ¢, and assume by induction that the lemma holds for
all # and y such that <{z, y> < e, iy>. Now define,

8" = ps(t)., (@) W) K, y)> < e, iy
= [v(t, z, ¥) = v(z, Y] & [v(x, y) € A = v(z, y) € A']] .

Then w(s’, e, 1) = v(e, 1) because if v(s + 1,e,17) > v(s,e,t) for some
s = s’, then by (2.6), ne A’ — A* for some n < v(s,e,1). But by
(2.5), n = v(s, e, t,), and by (2.2), <e,, i,» < {e¢, iy contradicting the
definition of s’.

Before proving the second half of the lemma note that for all s
and #,

(2.9) [neA&ne A — Al=n = v(s, e, t.) = v(e,, i,)

because n = v(s, ¢,, 1,) by (2.5), but if w(s, e,, ©,) < v(¢, e,, 1,) for some
t > s, then (w).,[n ¢ A*] by the proof of Lemma 2.2.
Now suppose v(e,7) € A, say w(e, 1) e A" — A°. Then wv(e, 1) =
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v(s, e, 1) =v(s, e,, 1) by (2.9). Hence, e, iy={_e,, 1., and card W > {e,1+1>
by the eligibility of <{e,¢) at s.

Conversely let t' = (ut).,[card W! > e, ¢+ + 1)], where s’ is defined
as above. If w(t,e,7)¢ A" already, then (e, 7 is eligible at ¢, and
is the least eligible at ¢’ by the definition of s’. Hence, v(¢, ¢, 1) € AV,
and v(t', e, ©) = v(e, 1) by (2.6) since t’ = s’. Finally, v(e, 1) € A because
if v(e, 1) e A* — A" for some t > t’, then v(¢, ¢, y) € A'** — A' for some
{x,yy < <e, iy contradicting the definition of s'.

Before proceding to Lemma 2.4, we note that by (2.2),

(2.10) () (D) (@)(W)[v(e, 1) < v(x, y) = e, 1y < <&, Y] .
Now from (2.10) and the second part of Lemma 2.3,
(2.11) @)z, vD) = v(x, y)]

where a(n) is the principal function of A.

LeEMmA 2.4. For all e, 1f W, is infinite, then
(n)[<e, 0> < n = a(n) = hie, n)] .

Proof. 1If false, let e, ¢, and n be such that W, is infinite, and
le,ip<n=<ei+ 1), and a(n) < h(e,n). Now v(e, i) € A by Lemma
2.3 since W, is infinite. Let v(e, ) € A**' — A°. Then by (2.9), v(e, 7) =
v(s, e, ) = v(s, e, 1,), and thus {e, i) = <{e,, 1,». Let n = {x, y>. Since
e, 1y < <x,yy <<e, 1 + 1), we have by the second clause in the de-
finition of v,

(2.12) v(s + 1, @, 9) = h(s, e {2, 9)) .
Now by (2.11) and (2.3) respectively,
(2.13) alz, ¥)) = v(z, y) = v(s + 1, 2, y), and

(2.14) h(s, e, <z, ¥p) = h(e, <&, ¥)), by (2.1) .

Arranging in order the inequalities of (2.18), (2.12) and (2.14) re-
spectively, we conclude that a({x, ¥>) = k(e, <z, ¥)), that is a(n) = h(e, n),
contrary to hypothesis.

3. A cohesive set with recursively enumerable lower cut. An
infinite set C is cohesive if there is no r.e. set W, such that W, N C
and W, N C are both infinite. An r.e. set M is maximal if M is
cohesive. Although the construction of a maximal set requires a
priority argument, it is easy to give a mnomneffective construction of a
cohesive set (which is not co-r.e.). (The following in substance is the
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construction of Dekker and Myhill which appears in Rogers [6], p.
232.) Define a sequence of indices, ¢, ¢, ---, as follows:

e, = pe[ W, is infinite]
i = (re),. [W, N S; is infinite], where S; = N{W,,|j < i} .

Now define C = U, {#;} where z, is some element of S;, then C is
clearly cohesive since

@[W.Nn C infinite=CC*W,].

(Recall that A *B denotes that B — A is finite.)

This procedure is so noneffective, however, that it has rarely been
used in an effective construction of some r.e. set. (For instance, the
usual co-maximal cohesive sets C given by the Yates construction
(see Rogers [6]) do not satisfy the property that C c *S; for every 1.)
We will construct a cohesive set A such that L(A) is r.e., and such
that for every 4, AC *S;. The latter property guarantees that A is
cohesive because if A N W, is infinite, then e¢ = ¢; for some ¢, but
then A *S;, and hence Ac *W,,. (Throughout the proof we will refer
to the indices {e;} and the sets {S;} defined above.)

THEOREM 3.1.! There is an infinite set A such that L(A) is r.e.,
and AC*S; for every © (and hence A is cohesive).

(Again our proof will be an attempt to satisfy certain ‘‘require-
ments’’. Requirement 2z, denoted R,, states that,

Ac*nN{W;|jeD,}.

Naturally, it will be impossible to simultaneously satisfy all require-
ments, but we will prove (Lemma 3.8) that if’D, = {e, e, ---, ¢;} for
some 7, then R, is satisfied, i.e., that

AcC*nN{W,;|jeD,} = S;.

We say R, has higher priority than R, just if @(D,) > &(D,). To
aid intuition one may imagine that a ‘‘marker’’ A, corresponds to R,
for every z, and that »(s, x) denotes the integer occupied by A, at stage s.
Ideally, we would like to reflect the priority of requirements as in
(2.2) by defining v(s, ®) so that for all s, v(s, ) < v(s, ¥) = @(D,) > ®(D,),
because the leftmost markers (i.e., markers occupying smaller integers)
will exercise greatest control over elements eventually admitted to
A. Naturally, this is impossible since markers would have an infinite
number of predecessors. We must therefore begin more modestly with

1This question was suggested to us by T.G. McLaughlin.
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a recursive well ordering of type w, W(x, ), and then allow markers
to change their relative positions so as to more closely approximate
the priority ordering when desirable in order to attempt to satisfy a
certain requirement.)

Proof. From now on we adopt the convention that max D, denotes
max [n|n e D,], and max @ = 0. Define the recursive predicate,

W(z, y) = {max D, < max D,}V [max D, =max D, &90(D,)>®(D,)] .

We define a canonically r.e. sequence of finite sets, {4°}, and a
recursive function v(s, ) as follows. Set A° = @, v(0, 0) = 0, and for
x > 1, define

v(0, 2) = pn(y)[W(y, ) = (0, y) < n] .
Stage s = 0. Define the function f,
f(s,2) = max {U D,| all y such that v(s, v) < v(s, 2)} .

(That f is recursive will follow because v will be recursive and be-
cause Ay v(s, ¥) will be a one-one function.) We define & to be eligible
at stage s, denoted E(s, x), as follows:

E(s,z) =card{n|n > v(s,x) &ne N {W|ieD,}} > 2/,

Case 1. There is no eligible  at stage s. Then set A** = A4°,
and v(s + 1, 2) = v(s, ) for all x, and go to stage s + 1. (Note that
(3x)E(s, x) is decidable given A\x v(s,x) since one need only examine
those 2 such that w(s, ) < s, because (7)(2):.]z¢ W:] by the Godel
numbering.)

Case 2. Otherwise. Let x, be the unique eligible # which satisfies
the predicate

L(S) ﬂ'}) = E(Sy .'X;) & ~ (ay)[E(S, y) & 'I)(S, y) < ?)(S, x)] .

(That is, x, is the unique eligible 2 whose marker 4, is leftmost
among all the markers 4, such that y is eligible at s.)
Now let m, = f(s, x,) + 1, and define the sets,

X? = {w]v(s, ») < v(s, v,)}
X2 = {z|v(s, ») = v(s, x,) & D, < I0, m,]}
X3 = {x|v(s, ) = v(s, w,) & D, ZI[0, m,]} .

Note that card X; < 2/¢#+%, (Viewing the following definition of
v(s + 1, ) as a description of how the markers move, notice that only
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the markers /A, for z ¢ X; are allowed to change their relative order,
and they move only so as to more closely approximate our priority
ranking. Furthermore, since the elements wv(s + 1,x) are potential
elements of A’ for some ¢ > s + 1, the first conjunct of the case
x ¢ X; attempts to partially satisfy requirement R,). Define,

At = [A° 0 1[0, v(s, ©,)] U {v(s, %)}, and

(s, x) if xe X¢

pnfne N{WilteD, }&n > v(s, ) ifxe X;
v(s+1l,2) =1 &W|lye X:&0(D,)>0(D,)]=v(s+1,y)<n]]

ey e X5 V [ye X3 & v(s, y) < v(s, 2)]] ifxe X

=v(s+1,y) < n].

(It is clear by recursion on s that the function w(s, ) is recursive

since Mxv(s + 1, ) is uniformly recursive in Az f(s, z), E(s, ), and

X:,1 <14 <3, which in turn are uniformly recursive in Az v(s, x).)
By the definition of v(s + 1, ) we have for all s, z, ¥ and z,

(3.1) v(s, %) Vs, Y) = FY

8.2 2eXi&yecX;&zeXi=v(is+1La)<v(s+1,y)<v(s+1,2)
3.3) v,y <vs, Y&vis+1,2)>v(s+Lyy=2eX;&yeX;
(3.4) reXi—uv(s+ La)ye Nn{W;|ieD,}.

To see (3.2), suppose zc€ X and ye X7, then v(s +1,%) > v(s,y) =
v(s, 2,) > v(s, ) = v(s + 1, x2). The rest of (3.2) is clear, while (3.3)
follows from (3.2) and the fact that if »,ye X7 or «,ye X? then
v(s, ) < v(s,y) if and only if v(s + 1,x) < v(s + 1, y). Finally, (3.4)
follows by the definition of v(s + 1, x).

By the definitions of v and f, we have for all s that if (3x)L(s, x),
i.e., if x, is defined, then

(3.5) f(s, ) < f(s +1,2,)

because if D, = D, U{m,} then ye X;, and so by the second clause
in the definition of v, v(s + 1, ) < v(s + 1, x,) because @(D,) > &(D, ).
But then f(s +1,2,) = m, =1+ f(s, 2,).

Furthermore, it is clear that for all x, » and s,

(3.6) ne At — A =mn = v(s, x,)
3.7 w(s,x) #= v(s + 1, x) = Am)[m < v(s, x) &me AT — A°]
(3.8) neA — A" = (Am)[m < n&me A°* — A°].
Using (3.6) and the fact that v(s + 1, «,) > v(s, x,) (because z, € X;),
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it is easily seen by induction on s that
3.9) (s)(x)[v(s, ) ¢ A°] .

Now by (3.9) and the definition of A", we have @(A4A°*') = @(A4?)
for all s. Thus lim, 4° must exist, and will be denoted by A. Since
the canonically r.e. sequence, {A‘}, of finite sets satisfies (1.1) and
(1.2), we have proved.

LEMMA 3.2. L(A) is r.e.

(Of course, unlike the sequence in Theorem 2.1, we know that
{A®} cannot satisfy (1.3) because no cohesive set may contain an infinite

retraceable subset.)
For future reference we will define the nonrecursive function s,

(3.10) s(n) = pt(m),ofme A —=me A .
By (3.8) and the definition of s(n) we have,
(3.11) B ssin (M) fme A = me A’} .

Finally, by the minimality of s(n) we see that if ncA, then
ne A*™+ — A*™ so that by (3.6),

(3.12) (m)fne d=mn=v(sn), z..)] .
LEMMA 3.3. A is an infinite set.

Proof. If A is finite, let m = max{n|ne A}. Then by (3.11)
and (3.7),
@)()ssmld = A" & v(t, @) = v(s(m) + 1, 2)] .

But since there are an infinite number of x such that N {W;|ie D,}
is infinite, there must exist some ¢ > s(m) and some % such that « is
eligible at stage ¢t. But then wv(¢, x,) ¢ A*+ — A’, contradicting A'™ =
A = A for t > s(m).

LemMA 3.4. For all 0, of N{W,|ieD,} is finite, then
{s1@WD, 2D, & L(s, y)]} s finite also.

Proof. Fixa # 0. Let m =max{n|ne{W,|1eD,}}. (Recall that
max @ = 0.) Then
(y)(t)>s(m)[Dy 2 Da: = NL(tl y)] b

because if v(t, ¥y) < m and L(t, y) then v(¢, y) € A — A* contradicting
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(8.11). But if wo(t,y) > m, then ~L(t,y) because ~E(t,y) since
N{Wwilie D)<= I[0, m].
Now define a (nonrecursive) function d as follows:

Dy = {e €, -+, e}
where e, ¢, --+ is the sequence of indices defined in the beginning of
§3. (Note that Sﬁ = () {W7 {j € Dd(i)}-)

LEmMMA 3.5. (n)[re A= n < v(s(n), d(i))].

Proof. Suppose that n > v(s(n), d(i)). Now by (3.7) and (3.11),
v(t, d(7)) = v(s(n), d(z)) for all ¢ > s(n). Now since N {W;|je Dy} is
infinite, there must be some ¢ > s(n) such that d(¢?) is eligible at stage
t. But then L(¢, y) holds for some y such that v(t, ¥) < v(¢, d(7)), and
hence m e A'+* — A* for some m < v(s(n), d(3)), contradicting (3.11).

LEMmA 3.6. For all s, 2z, and vy,
v(s, ) < v(s, y) = [max D, < max D, v &(D,) > @(D,)] .

Proof. This is clearly true for s = 0 by definition of Az (0, x).
Assume true for some fixed s, and suppose v(s + 1, ) < v(s + 1, y).
Now if wo(s, ) < v(s,y) then the conclusion follows by inductive
hypothesis. But by (3.3) if v(s, ) > (s, ), then x, y € X;, and thus
(s + 1,%) <v(s+ 1,y only if @(D,) > @&(D,).

LeEMMA 3.7. For every 1, there exists t; such that
(8)5¢(2) [ L(s, @) & v(s, @) < (s, d(2)) = D. 2 Dy)] -
Proof. The proof is by induction on 7.

Case © = 0. Define
t, = max {¢t [ (I)AW[J < e, & {5} = D, & L(t, »)]} ,

which is at most a finite set by Lemma 3.4. Now by Lemma 3.6,
for all s and =z,

v(s, ) < v(s, d(0)) = [max D, < d(0) V @(D,) > &(D,)]
S (8)se (@ L(s, ®) & (s, @) = v(s, d(0)) = D, 2 D,y] .
Case v + 1. By induction, assume that for all j < 1, ¢; is defined

so that the above statement holds. Define

(8.13) w=max{s|@)@)e; <J < €. & D, 2 Dyiy U {5} & L(t, y)1}
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which is at most a finite set by Lemma 3.4, and the definition of
¢;+;. Define r = max {¢;, w}. Thus,

(3.14) ()5 (@)L(s, #) & v(s, @) < v(s, d(2))] = D 2 Dygii1)]

because by inductive hypothesis and (3.1), D, 2 D,,, and by (3.13),
D,2 Dy, U{j} for any j < e.,. (That D,2D,; U{j} for j <e; and
je Dy, follows of course by inductive hypothesis.)

Subcase 1. (3s).Jv(s, d(t + 1)) < v(s, d(¢))]. If w is the least such
s, then a second induction on s for s = u proves simultaneously that,

(8.15) (8)s.Jv(s + 1, d(z + 1)) < v(s + 1, d(¢))], and
(8.16)  (8)su(®)[L(s, ) & v(s, ) < v(s,d(i + 1)) = D, 2 Dyy4n] -

By the definition of u, we have v(u, d( + 1)) < v(u, d(¢)). Choose
t = u, and assume (3.15) and (3.16) for all s such that u < s <t. We
may assume that,

@)L, ») & v(¢, @) = v, d(@ + 1))]

because otherwise v(t + 1, y) = v»(f, y) for all y, such that v(¢, ») <
v[t, d(7)), and (3.15) and (3.16) hold trivially for s = t. Now by (3.14),
D,.2D,;., thus establishing (3.16) for s = .

To prove (3.15) for s = ¢, note that f(¢, «,) = e;,, by the definition
of f since D,, 2 Dyi.y. But then d(i), d(s + 1) € X; because D, S
I[0, f(t, ) + 1], and w(, z) < v, d(@ + 1)) < v(, d(?)). Hence,
vt + 1, d( + 1)) < v(t + 1, d(7)) by the second clause in the definition
of v because O(D ;.,) > P(Dy)-

Subcase 2. (s)s.[v(s, d(7)) < v(s, d(¢ + 1))]. This assumption will
lead to a contradiction. Define

w(l) = (¢8)> (AY[L(s, y) & v(s, y) = v(s, d(4))] .

(Such an s exists by Lemma 3.5 and (3.12) since A is infinite and A~
is finite.) Now by (3.1) and (3.14), D, . 2Dy, Or @,, = d(i). But

Tu(l) =

if the former then d(¢), d(i + 1) € X3, because
v(u(l), ©,q) < v(u(l), d(z)) < v(ud), d@@ + 1)) .
But then since @(D,;..) > 9(D,;)) we have by the definition of v that
v(u(l) + 1, d(z + 1)) < v(u(l) + 1, d(2))

contrary to the hypothesis.
We conclude that z,,, = d(¢). But then by (3.5),

f@) + 1,d@) > fu), d@)) = e; .
Now define,
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w(2) = (18)5uy QY[ L(s, y) & v(s, ¥) = (s, d(3))] .
By the same argument as above, z,, = d(z), and
Fu(2) + 1, d(2)) > f(u(2), d(z)) > f(u(l), d(7)) = e; .

Continuing in this manner, after at most k = e¢;,, — e; steps, we must
have f(u(k), d(7)) = ¢;., — 1. But then D,;.,<SI[0, m,,,] so that
d(3), d(¢ + 1) e X3, Thus by the definition of w»,

v(uw(k) + 1, d(z + 1)) < v(u(k) + 1, d(7)) ,

contradicting the assumption of subcase 2.
Thus if we define

i = (128)5,[v(s, d(i + 1)) < v(s, d(7))]

then Lemma 3.7 follows.

LEMMA 3.8. For every i, AC *S,.

Proof. Fix 1, and let ¢; be defined as in Lemma 3.7. Let n =
pmlme A — A"]. By (3.12), n = v(s(n), @,.,), and s(n) > t; since n¢ A".
By Lemma 3.5, n < v(s(n), d(¢)). Now v(s(n), ®,.,,) < v(s(n), d(z)) implies
by Lemma 3.7 that D, =2 D,;. Hence, d(i)e X;. But then by

Ts(n) =

(3.2) and the definition of v we have for all v,
n < v(s(n) + 1,y) < v(s(n) + 1,d(1) =ye X;™ .

Thus, by the second clause in the definition of v, we have for all y
and for t = s(n) + 1,

n < v, y) = v, d@i) =, y) e N{W;|ieD,,,} .
But since D, 2 D,;, we have for all y, and for ¢ = s(n) + 1,
(3.17) n < v(t, y) = v, d@) = v, y) €S, .

Now we will prove by induction on ¢ that (3.17) holds for all ¢t = s(n) + 1.
This will prove that

(m)sn[me A= meS]

because if m € A then by (3.12) m = v(s(m), ). But m > n implies
s(m) = s(n) + 1. Now by Lemma 3.5,

v(s(m), Tym) = m < v(s(m), d(7)) .

Hence, v(s(m), %,..) € S; by (3.17).
It remains to prove (3.17) by induction on ¢t = s(n) + 1. Since
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(8.17) clearly holds for ¢t = s(n) + 1, choose u = s(n) + 1 and assume
by induction that (3.17) holds for all ¢ <u. Now (3.17) follows
trivially for £ = w + 1 by inductive hypothesis and the definition of
v unless,

AYI[L(u, y) & v(u, y) < v(u, d(?))] .

In this case by Lemma 3.7, D, 2D,; since u > s(n) >t,. But
D, 2D, implies d(7) € Xy, Thus by (3.2) for all y,

v+ 1, y) <o+ 1,d@)=[ye XrVyeX:].

Now if ye X¥, then o(u +1,%) = v(u,y) and so if =n < v(u,y),
then v»(u + 1,y)eS; by inductive hypothesis. But ye X implies
v(u + 1, y)e N{W;|jeD,} by (38.4). Hence, since D, 2 Dy, v(u +
1, pesS.
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