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Let X be a discrete symmetric Banach function space with
absolutely continuous norm. We prove by the method of ge-
neralized hermitian operator that an operator U on X is an
onto isometry if and only if it is of the form:

Uf(D=u(OfT) all feX,

where % is a unimodular function and 7' is a set isomorphism
of the underlying measure space. That other types of isome-
tries occur if the symmetry condition is not present is illus-
trated by an example., We completely describe the isometries
of a reflexive Orlicz space Lyy(><L:) provided the atoms have
equal mass (the atom-free case has been treated by G. Lumer);
similarly for the case that no Hilbert subspace occurs,

We shall reproduce some definitions and results from [4] which
will be needed in the sequel.

DEFINITION. Let X be a vector space. A semi-inner-product on X
is a mapping [,] of X x X into the field of numbers (real or complex)
such that

[v + vy, 2] = [, 2] + [y, 2]
A, 2] = [, 2] for all », y,z€ X and X\ scaler.
[z, 2] > 0 for all x = 0

ez, y1 P < [, x]ly, ¥l .

We call X a semi-inner-product space (in short, s.i.p.s.). If X is
a s.i.p.s., one shows easily that [z, ]'# is a norm on X. On the other
hand, let X be a normed space and X* its dual. For each ze¢ X,
there exists by the Hahn-Banach theorem, at least one (and we shall
choose one) functional Wx e X* such that {z, Wx)> = ||« |]>. Given any
such mapping W from X into X* (ank in general, there are infinite-
ly many such mappings), it is at once verified that [z, y] = <z, WyD>
defines a semi-inner-product (s.i.p.).

DEFINITION. Given a linear transformation 7 on a s.i.p.s., we call
the set W(T) = {[T=, «]: [#, ] = 1} the numerical range of T.

An important fact concerning the notion of numerical range is
the following [4, Th. 14]:
Let X be a complex Banach space, and T an operator on X.
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234 K. W. TAM

Although there may be many different s.i.p. consistent with the
original norm of X, in the sense that [, x] = ||« |?, nonetheless, the
convex hulls of numerical range of T relative to all such s.i.p. are
equal. It has real numerical range with respect to one s.i.p., then it
has real numerical range with respect to any other s.i.p. inducing the
same norm.

DEFINITION. Let T be an operator on a complex Banach space
X, then T is called hermitian if its numerical range is real, relative
to any s.i.p. consistent with the norm.

1. A general setting. We shall call an algebra A over the com-
plex field C a *-algebra if there is a mapping * defined on A satisfying:

(i) aecA implies a* e A.

(ii) (a + b)* = a* + b* and (Aa)* = ha*.

(iii) (a*)* = @ and (ab)* = b*a* for all a,bec A and xeC. An
element a such that a* = a is said to be self-adjoint (s.a.). Every
element a of a *-algebra can be written in a unique way: a = % + v
where » and v are s.a. A *-algebra-isomorphism p is an algebra iso-
morphism on a *-algebra A with the condition that (o(a))* = p(a*) for
all a in A.

Let X be a complex s.i.p.s. and A be a *-algebra with a topology.
Assume that X is a two-sided module over A. Suppose that there is
a net {e¢,} in A such that lim, fe, = f for all f in X. For a *-subal-
gebra A, of A such that A, is a subset of X, and {e,} is contained
in 4, the following holds:

THEOREM 1. Suppose that for any s.a. h in A, H,f = hf for all
fin X defines a bounded hermitian operator on X; and that con-
versely every bounded hermitian operator ts of this form. Then any
onto isometry U of X when restricted to A, is given by

Uf = lim p(f)Ue,
where p is a *-algebra-isomorphism on A.

Proof. Let h in A be s.a., then H, is a bounded hermitian
operator on X. On the other hand, let a s.i.p. [,] on X be given,
then [f, 9]’ = [U™f, U™'g] defines another s.i.p. on X inducing the
same norm. It follows that

[UH,U-'f, f1 = [H,U™'f, U™'f] is real for all f.

Thus UH,U~" is another hermitian operator on X, and by hypothesis
there is a s.a. & in A such that
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UH,Uf = H,f for all fin X.

Clearly the mapping k— Fk is linear. If & = 0, then for all fe X,
UH,U-f = 0; in particular UH,U'Ue, = U(he,) = 0. Since U is one
to one, he, = 0 and lim, ke, = h = 0. Hence this mapping is one to
one. We shall set p(k) = k. With s.a. & and ' in A,

Hp(hh’) = []’Hh;ﬂ(]—d1 = [IJJ;L[]—AUJH}L/I]“1 = Hp(h)Hp(h’) .
Thus p(hh') = o(h)p(k'). Extending o on A trivially by letting
o(h + ') = p(h) + 1o(k') ,

it can easily be shown that p is a *-algebra-isomorphism on A. For
all f in A, U(fe,) = UH, U 'Ue, = p{f)Ue,, so that

Uf = lim p(f)Ue, .

2. Function spaces. Let X be a Banach function space with
absolutely continuous norm [6] over a o-finite measure space (2, 2, p).

LEMMA 1. Assume that @ is a measurable subset of Q2 and let
P be the projection of X onto the subspace E of functions in X
vanishing outside w. Then for any hermitian operator H on X,
PHP is a hermitian operator on K.

Proof. Since X has absolutely continuous norm X* = X', the

associated space of X. Let W be a mapping as before. Then a con-
sistent s.i.p. on X is given by: with each ge X,

Lf, 9] = <f, Wo)> = SfWg for all fe X .
Without loss of generality we can take Wg to be yWyg if gc E where

x is the characteristic function of @w. Then for all g ¢ E such that
llgll =1, we obtain

(Hy, g) = | Hox Wo = | 1Hoy Wg = [(PHP)g, o]
which is real valued. Thus PHP is hermitian on E.
LEmMMA 2. [5, Lemma 7]. If he L., is a real function, the oper-
ator H,, defined by H,f = hf for all fe X, is a bounded hermitian
operator on X; and || H, || = ||k |le.

We shall use the following fact several times later.
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LEMMA 3. For «, B, v complex numbers such that e¥a + e~ °5 + v
1s real for all 0 < 6 < 2r, then « = B and v s real.

Let E be a two-dimensional Banach space. Denote the element
f of E as a function defined on the set 2 = {z, y}. We shall assume
that the norm in E has the following properties:

@ A0 =11F1

(2) |f|=|g| implies that || || < [[g|| with all f, g€ E.
The real functions in E can be considered as points in the two-
dimensional Euclidean plane; let v be the convex curve of the boun-
dary of its real unit ball. At each point pe~v there is a supporting
hyperplane, and suppose that the normal vector at p to the hyper-
plane is given by («, 8). We shall define sgn g as the function

0 if g=0

sgng =
gng {M otherwise .
g

LeMMA 4. For any nonzero ge K
[f5 9] = |l 91l A(9){f(x) sgn g(x)a(g) + f(y) sgn g(y)B(9)}

where

a(g) = {188 og) + 19D gigl™ ana (ato), 1)
o]l o]l

is a normal vector at (| g(®) /|l gll, |gm) /Il gll) for all fe K, defines a
consistent s.i.p. on E.

Proof. Clearly it is linear in f and [g, 9] = || ¢|]>. First we as-
sume that f and g are real valued. The fact that {|g| = |/|g]| im-
plies that the curve v is symmetric with respect to both axes. The
funection A(g){sa(g) + tB(g9)} has absolute value no greater than one
on the region between the two lines L, and L, where they are two
chosen supporting hyperplanes at (lg(@)|/llgll, 9@ |/llgl) and
(—lg@/lgll, =lg@)|/lgl) with normal vectors (a(g),S(s)) and
(—a(g), —B(g)) respectively. Sothat A(g) || gl {lsax(g)|+[tB(9) 1} =1lgll
for all (s, t)e~. For all nonzero fe E, (| f(@) /|| £, 1 f I/l f1) e, we
obtain

A9 1 g lI{l f(w) sgn g(@)a(g) | + | f(y) sgn g(y)B(9) [} = [| f I [ g1} -

Now in the above inequality, only the absolute values are involved,
it holds for all complex functions f and g as well.
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Let X, be a m-dimensional real Banach space (# = 2) and S its
unit ball. We shall fix a basis for X, and denote every element x as
a point in the n-dimensional Euclidean space FE,. Define a function
F oon E, as F(x, @, -+, 2,) = || (@, 2 --+,2,)|| — 1. For each i =
1,2, .--n, let ¢ =(©, --+,0,1,0, -.-0) (1L at the ¢-th position).

LevMA 5. Let S’ be an open set of K, consisting of smooth
points of X, then the function F has continuous first partial deriva-
tives at every point of S’'.

Proof. If x is a point of S’, then the norm function is Gateaux
differentiable at « [7]. Therefore with ¢ =1,2, ..., n

lim @+ te']| —|ja]l _ oF
1= t X;

7

() .

D

Suppose W is as before, then from {5, Lemma 1]

(x) = <ei, Way = [¢', o] .

Since the norm topology of X, and that of E, are equivalent, the
weak star compactness of the unit ball of X and the smoothness of
S’ implies that this mapping W is weak star continuous on S’. Thus
oF/ox(2) is continuous on S’.

LEMMA 6. Let H be a hermitian operator en E and

a=[y ]

Then either b =c¢ =0 or else bj¢c > 0 and E is a Hilbert space; in
either case a and d are real numbers.

Proof. We shall start by proving that the set S’ = {(s,t):s#
0 = t} consists of smooth points if b and ¢ are not both zero. For
0<0<2n, let f=(e%,t) be such that (s,f) e S’ and || f|| =1, then
by Lemma 4 [HSf, f] = A(f)(asa + dt B + e bt + ¢®cs 5) is real,
where («, 8) is the normal vector of a supporting hyperplane to the
real unit ball S at (s,?). We have by Lemma 3 that

bt —¢sB=0.

We assume that ¢ = 0. If b =0 then 8 = 0 for all such f and v is
a rectangle. As £ = 0 cannot occur on all four sides of a rectangle,
b and ¢ are not zero. (a, B8) is uniquely determined up to a scaler
multiple. Therefore the hyperplane is unique and every point of S’
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is smooth. Now for & and ¢ being nonzero, the function Fi(s,t) =
[l (s, ) || — 1 is differentiable at (s,t)e S’. The hyperplane is thus
given by the tangent plane. So that for all g e £ such that g(x) =
0 +# g(y), the linear functional in Lemma 4 can be replaced by

oF
as

[/, 61 = AW |l 1| {10 sgn 9(@) 25 + 7(w) sen o) 2L}

and we obtain the equation

bt OF _ OF _,

¢ 0s ot

Now (b/¢)t* + s* satisfies the partial differential equation. By the uni-
queness of solution, the curve v is given by the equation s* + (b/¢)t* =
K. Since the unit ball is bounded, b/¢ and K must be positive. Then
an inner-product on E can be defined by

_ f@)e@) | bfy)ely)
(f,9) = i + S

Thus K is a Hilbert space.

For nonzero ge E such that g¢g(y) =0, by Lemma 4 [f,¢] =
lg1? f(x)/g9(x) for all £ in E. As [Hg,g] = allg|® is real, a is real;
similarly d is real.

3. Discrete symmetric Banach function spaces. Let X be a
Banach funection space with absolutely continuous norm and the mea-
sure is purely atomic; so that X is a sequence space. Assume that
X is symmetric, i.e., if fin X and ¢ is an isomorphism of the atoms,
then || £ || = || f(¢)||]. Choose the set of all characteristic functions of
atoms to be a fixed basis for X. Let H be a hermitian operator on
X and be represented as an infinite matrix (a;;), then Lemmas 1 and
6 imply that a;; = a;;.

LEMMA 7. If there is a hermitian operator H on X such that
its matriz representation 1s not diagonal, then there is a hermitian
operator H' on X with all nonzero off diagonal entries.

Proof. We write H = (a;;). Assume that without loss of genera-
lity that a,, # 0; then @, # 0. Suppose that ¢, is the smallest positive
integer such that a,; = 0. Define U, on X as operator obtained from
the identity I by interchanging its 2nd and 4,-th row. Then U, is
isometric and H, = U,HU, is hermitian. Choose «, > 0 such that
la,H || £1/2 and the matrix entries of a,; of H + a,H, are nonzero
for all 2 <j < 4,. Assume that this has been done for %, steps and
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let i,., be the smallest integer greater than ¢, such that a, = 0.
Again let H,,, = U,.,H,,,U,., where U,., is the isometric operator
obtained from I by interchanging the 2nd and 7¢,,-th row. Take
&, >0 with ||a, H,. || = 1/2** and the matrix entries «a;; of
H+ 3, cicni 0 H, are not zero for j =2, .-+, 14,,,. Then the operator
G, = H + >;» . H, is a bounded hermitian on X. Its entries a,; # 0
for all j = 2. With 1 =2,38, -.- let V; be the operator by interchang-
ing first and i-th row of I. Then G, = V,G,V,; is hermitian and its
entries a; #0 for j=1,2,.--,4—1,9+ 1, --.. Choose a sequence
{B:} of positive numbers such that 3};, < « and for each £ =2,3, -.-
the first k£ rows of 3., B,G; are not zero except may be at the
(4, 7) position. Then H’ = 3 B,G; is the required hermitian operator.
Let X, ={feX: f(k) =0 all £ > n}. Suppose that S is the real
unit ball in X, as represented in the #n-dimensional Euclidean space
E, and v its boundary. For « e~ there exists at least one supporting
hyperplane to S at « with a normal vector (a, «,, ---, @,).

LEMMA 8. For nonzero gc X,

[£,9] = A@) llg11{ 3 ) seno(as}  all fe X,

where A(9) = {Xi= |9(d) [/l gl e} and (@, ay, « -+, @,) is the normal
vector to a hyperplane at (Ig(l)I, 19(2) | , e, |g(n){>’ defines a
gl = llgll gl

consistent s.i.p. on X,.

The proof is similar to that as in Lemma 4.

LEMMA 9. If there is a H' as in Lemma T, then the set S’ =
{feX,: f(9) = 0 all j} consists of smooth points.

Proof. Let (x,%, +--,2,)€S" and k=12, —1,¢g,=
(2, %5y =+, €%, ---,2,) in X, is of unit norm where 0 < 6 < 27. The
restriction of H' to X,, H, = (@;);,j=1,2,.... 18 hermitian by Lemma 1
and

[H.96 9] = Alg){(@na, + « o+ + €“ayum + + o+ + au3,)a + -
+ €7, + o o0 €708 e+ Q)0 - e
F (@, + v o0+ €00uT + oo+ Q,,0,)a,})
= A(g){e*(ausrt, + «+ + Qi@ ® + Qg Ba Qs + <o+
+ C®ity) + €A + v+ QD
+ QpprrBprs T 0t Q)0+ v}
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is real valued. By Lemma 3 we obtain the system of equations:

n n
(1) (Z. aijj>6¥k - Z @ ;%0 = 0
2 Ik

for k=1,2,---,n — 1.

For every real number B, let U be a diagonal matrix whose first
diagonal element is ¢~%’ and the rest is one. In place of H' we sub-
stitute UH'U~'. Then the resulting matrix elements are changed only
for the first row and first column; and the subsequent form of equa-
tions (1) are:

n n
(Z alje—“”rcj>a1 - S a;e e, =0
i=2 j=2

(aheiﬁxl + akj%)ak - (dlke“mkal + 2 djkxkaj) =0
J;i J;i
fork=2,8, ..., — 1. With any fixed (v, «,, -+ -, @,) where z; # 0, j =
1,2, .-.,n, we shall show that this system is linearly independent for
some £; equivalently we show that the following matrix is rank » — 1:

<

. n
S a6 P, —Age e, o0 —@ea, — T, e,
=
n
— @6,  ayefu, + 3, Q250 5 . — @0,
=3
. . n
—a, e, . anePm, + 3y e — 0,
=2
izt
L dln—lelﬁxn—l - dzn—lmn—l * * ¢ - dnn-—lxn—dJ

If we take the first » — 1 columns, we obtain a square matrix
and its determinant is a polynomial P(e‘’) of degree n — 2. The coef-
ficient of the e*"»% term is obtained by finding the determinant of
the following matrix:

- -

n
> 05 —0y® v — QT e — O,
j=2
— a6,  ayeifu, O
—ayeifuy a6,
_—6’.1.7L—1mn—1.ei/3 an_leiﬁxl ]

For k=2,8,...,n—1, we add @,.e*¢/a,, multiple of k-th row to the
first row. We obtain by the condition that a,, = @,, a matrix of non-
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zero diagonal elements and whose entries above diagonal are zero.
Thus the polynomial P is not identically zero and the original matrix
has rank n — 1 for some S. Thus we may assume that the system
(1) is linearly independent. This implies that the normal vector
(a,, &, +++, @,) is uniquely determined up to a multiple of constant.
The proof is complete.

THEOREM 2. Suppose that H is a hermitian operator on X, then
either there is real valued function hel. such that

Hf = hf for all feX

and ||H|| = ||h|l. or else X is a Hilbert space. Conversely for every
real valued function hel, the above formula defines a hermitian
operator on X.

Proof. The converse is the content of Lemma 2. Assume that
there is a hermitian operator H on X which is not diagonal, then
Lemmas 7 and 9 imply that the function F' defined on E,, given by
F(x, 2, «++,x,) = || (x, 2, -+, x,) || — 1, is differentiable at points of
S’. So that the supporting hyperplane at ge S’ is given by tangent
place and the system (1) can be replaced by

2 Q% oF _ PIY PN oF _ 0
i=1 ox, =1 0;
+k +k

k=1,2,...,n — 1. Observe that the function >, 2? satisfies this
system. Let «° = (xS, a3 --+,2%) be a point on the unit ball and
7.(x)* = K for some K > 0. For all other x ¢S’ which is on this
sphere we have
Fla) = F(2") +S grad F:S S OF da; g
r

rizi ox; ds

where T = (dx,/ds, dx,/ds, ---, dx,/ds) is the unit tangent vector. If
F(z) = 0, since grad F. T is continous, then there is a s, such that
x(s,) € I" and grad F(s,).T(s,) = 0. But T(s,) at a(s,) is on the tangent
plane to the sphere at x(s,) and grad F(s,) is normal to this plane,
this is a contradiction. Therefore F(x) = 0 and all € S’ such that
.27 = K are on the real unit ball. As the surface v is continuous,
this equation gives the set of points on 7.
This will suffice to imply that X, is a Hilbert space, since an
inner-product on it can be found to give the original norm. The ab-
solute continuity of the norm thus implies that X is a Hilbert space.
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If X is not a Hilbert space, then every H on X is real diagonal and
the rest is clear.

THEOREM 3. Suppose U is an isometry from X onto itself and
assume that X is not a Hilbert space. Then there is a fixed uni-
modular function w and an isomorphism T of atoms such that

Uf(.) = u()f(T.) for all feX.

Conwversely such a transformation always defines as isometry on X.

Proof. The line of argument follows that of Theorem 5 below.
% is unimodular because of the symmetry condition on X.

4. Reflexive Orlicz spaces. Let L,, be a reflexive Orlicz space
defined by the convex function @. We assume that @ is everywhere
finite. Suppose that the measure is finite.

LEMMA 10. [5, Lemma 6]. Let H be a bounded hermitian opera-
tor on Ly,. If 2, 92" are a.e. disjoint, i.e., m(2' N Q") =0, let ¥’ and

X" be their characteristic functions; then \ Hy” =0 if and only if
Q'

g Hy' = o.
o

LemMA 11. [5, Th. 9]. Suppose H is as above, and p ts purely
nonatomic, then either there exists a real valued fumction hel, such
that Hf = hf for all feLy and ||H|| = || k||l or else Ly, = L,.

Let (2, 2, 1) be a general measure space and decompose L, =
L'y + lys where L), are functions on nonatomic part and [,, are
functions on purely atomic part.

LEMMA 12. Suppose H is as above, then either Ly, ts L, or else
Ly, and 1, are both invariant under H.

Proof. Assume that L,, is not a L, space. Let 2’ be a nonzero
atom and y’ its characteristic function. Suppose that Hy’  is not zero

on a nonatomic set 2”, and Hy' =+ 0. Take y” to be the charac-

Q2
teristic function of 2”. Then for &« = 0 we obtain the equality as in
the proof of Lemma 11 [see 5]:

rar 7))~ e 1)

where ¥ = 1/2(@+ + @) and @+, ¢~ are the right and left hand de-
rivatives of @ respectively. Since Q" is nonatomic, we may replace
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Q" by subset of Q” with arbitrarily small measure, so that

(o) = ()

Then @(t) = ct* and L,, is actually a L, space. This contradict our
hypothesis, Hy' € ly,.
Conversely, if Q" is nonatomic and x” its characteristic function,

then by Lemma 10, S Hy" =0 if and only 1f§ Hy' = 0 where 2’ is
!)

any atom. The previous result shows that Hy’ el,, for every atom

2'. Hence S /Hx” = 0. Therefore Hy" € L’,. Since the step func-

2
tions are dense in their respective subspaces, both L', and [,, are
invariant under H.

THEOREM 4. Suppose H is a bounded hermitian operator on L,
which is not a L, space, then one of the following three cases holds:

1) lyo ts a Hilbert space.

2) lyo contains a two-dimensional Hilbert space but is mot a
Hilbert space.

(8) There is a fived real valued function hel, such that Hf=
hf for all fe Ly, and [|H|| = || h|l|.

Proof. By Lemma 12 and Lemma 11 it is enough to consider the
restriction H' of H on l,,. If l,, dves not have a two-dimensional
Hilbert subspace, the H’ is real diagonal by Lemma 6 and case (3)
follows.

REMARK. Let g be a o-finite measure and Q2 = U5, 2, where
{2,} is a fixed increasing sequence of measurable sets with finite mass.
Suppose that for each #, P, is the projection onto the subspace X,
of functions restricted to 2,. H, = P,HP, is hermitian. As L,, has
absolutely continuous norm, we have for ge L,, || Hg — HP,g9||— 0 as
n— oo, and ||Hg — H,9|| = || Hg — HP,g|| + || HP,9 — H,g||, so that
Hg = lim, H,9. Thus we show that Theorem 4 holds for o-finite
measure as well.

Let L%, be the set of all feL,,N L.. L. forms a *-algebra
under the ordinary conjugation with the set of elements {y,: x. charac-
teristic functions of Q,} satisfying lim, fx, = f for all fe L,,. L,
contains this sequence. Suppose that 7,, is not a Hilbert space and
contains no Hilbert subspace. Then the following is true.

LeMMA 13. Suppose that U is an isometry of Ly, Then there
18 a *-isomorphism 0 on L. such that Ug = up(g) for all ge LY,
where w %= 0 a.e.
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Proof. By Theorem 1 and Theorem 4 we have for all ge L%,
lim, o(9) Uy, = Ug. It is enough to show that Uy, converges a.e. to
a nonzero function u. Since p is an isomorphism, it sends characteris-
tic functions onto themselves. Define Tw = w’, where 0(x,) = Y. -
For every n = 1, UH, U™ = H,,, = Hy,, , so that U(x.) = Xz, Uxa-
That is Uy, =0 on Q — TQ,. Similarly U(ye, ., ) vanishes on
Q-TR,—2,)=2— (TR, — T2,) for 1 <m < n; therefore Uy, = Uy,
on TQ, and lim, Uy, = u exists a.e.

Assume that w is a measurable subset of 7@ such that 0<p(w)<
~ and # =0 on w. For every he L%, Uh=wuo(h) =0 on w. L%, is
dense in L,,, so that with every fe L,,, there is a sequence {f,} in
L%, such that f, —f as n— o. Since the norm is absolutely con-
tinuous, there is a subsequence {f,,} such that Uf,, — Uf a.e. Thus
Uf=0on w. But U is onto and y, is in the range of U. Hence u
is nonzero a.e.

DEFINITION. A regular set isomorphism of a measure space (2, 2, 1)
will mean a mapping S of ¥ into X defined modulo set of measure
zero, satisfying: (i) S(? — w) = SQ — Sw. (i) S(U;-: »,) = U~ Sw,
for disjoint sets {w,}. (iii) p#(w) = 0 if and only if p(Sw) = 0.

LEMMA 14. T, defined as in the proof above, is a regular set
isomorphism of the underlying measure space; and it induces a linear
tramsformation on L,(f(.) — f(T7.)).

Proof. It is routine to show that T is regular. Let fe L,, be
a =< f<b on a measurable set w and zero elsewhere. Assume that
{f.} is a sequence of step functions whose values lying between a and
b on w and zero elsewhere, such that f, —f as n— . Then Uf, =
uo(f,) converges to Uf = upo(f) as n— o. There is a subsequence
uo(f.,) converging to uo(f) a.e. Since u # 0, o(f,,) — o(f) a.e. We
denote the step function o(f,,) as f, (T7".). Then a < f, (T7'.) <D
on Tw; o(f), the a.e. limit of f, (7'.), has the same property. We
shall let this function be g. For any nonnegative function f of L,,,
let w, = {x:n < f(®) < n + 1} and f, be the restriction of f to w,.
Then g, is n < g, <n -+ 1 on Tw, and zero elsewhere. Since T is re-
gular, we can compose these functions to be a function g; and denote
it by f(T.). Extend this definition to negative and then complex
functions. The mapping so defined is clearly linear.

Combining the results, we obtain the following isometry theorem:

THEOREM 5. Let U be an tsometry from a reflexive Orlicz space
Lo = Lo + Uy, onto itself. Suppose that L, + L, then U can be
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decomposed into U, + U, where U, and U, are isometric on L', and
1o Tespectively. Moreover one of the following three cases holds.

1) e ts a Hilbert space.

@) lyo is not a Hilbert space but contains a two-dimensional
Hilbert subspace.

8) There is a regular set isomorphism T of the underlying
measre space and a fived a.e. nonzero function u such that

UF) = w()AT.)  for all feLy,.

Proof. We first show that U decomposes. For all real function
helL,, UH, UL, , < L), by Lemma 12. Hence H,UL',, = UL,. If
ULy & Ly, then there is a characteristic function y of some atom
{a} such that Ug = y with some g in L’,. Without loss of generality
we may assume that ¢ is a characteristic function of a nonatomic set
®. For two disjoint sets @', ®”’ and y’, y” their characteristic func-
tions, | UG + ax) || = 1| Uy’ + aUx"{| = {1y’ + 3" || where |a| =1 and
0 =0 U o’ Thus Uy and Uy” cannot be both nonzero at {a}. Since
w is nonatomic, we may replace it by subset of arbitrarily small
measure; Ug =0. This contradicts the fact that y 0. Hence UL}, <
L, simiarly UL, S L'y,. U(Lle) = Lye. It follows that Ul,, S 1,
with an application of Lemma 12.

Now if 1,,, is not a Hilbert space and does not contain a two-
dimensional Hilbert subspace, then Lemma 2 and Theorem 4 imply
that H is a hermitian operator on L,, if and only if it is of the form
as stated in case (3) of Theorem 4. Hence case (3) holds for all ¢ in
L%, by Lemma 13 and Lemma 14. Since L%, is dense, the proof is
thus complete.

As a special case of the theorem, we record the following result
as a corollary.

COROLLARY. With the conditions as before and assume that the
atoms in the measure space have equal mass, either

(1) There is a regular set isomorphism T and a fixed a.e. non-
zero function u such that Uf(.) = w()f(T.) all f in Ly, or else

(2) U, ts of the form as stated in (1) (T and w in this case
are defined only on the monatomic part) and U, is unitary on Iy,
which is a Huilbert space.

REMARK. U, is always characterized in (3) of the Theorem 5 if
Ly, is not a L, space.

5. An example. The following example shows that the Theorem
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3 does not hold if the symmetry condition is not present. It also
shows that isometries other than the type in Theorem 5 occur if the
atoms in the underlying measure space have unequal mass.

Let (2, 2, pt) be a measure space with contains two atomic sets
m, and m, each with measure 16 and at least one other measurable

set m, of mass 1. With &(x) = g”q/f(t)dt where
4]

2t 0<t<1/2

i) = {tz 134 t>1)2,

the obtained L,, is not a Hilbert space. Specifically the two dimen-
sional subspace on {m,, m,} is not a Hilbert space, because the convex
curve {(y, #): 160(|y|) + @(|z|) = 1} is not an ellipse. Now write L,,=
l, + I, where I, is the two dimensional space of functions vanishing
on 2-{m,, m,} and [, of those being zero on {m,, m,}. Define U = U,+ U,
where U, on [, in matrix form is

11

12 V2
Y
V2 12

and U, is identity on [,. Then for any L, such that || f|| =1, we
have 0 < [ f(m,)|, | f(m.) | < 1/4, so that

(04 U7)) = 18(0( Uftm) ) + 0( UFmy DY+ | 0 UF)

Q—{mj.m

= 16 fom) F + [ fm) 1+ | equry =[eqr.

2—{mq,

Therefore || Uf|| = || f|| = 1. U is isometric.
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