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INJECTIVE ENDOMORPHISMS OF VARIETIES
AND SCHEMES

JAMES AX

It is shown that every injective endomorphism of a scheme
Y of finite type over a scheme X is surjective. The proof is
easily reduced to the case where X is field which in turn fol-
lows from the analogous result for algebraic varieties. This
result is proved using model theoretic methods to transfer the
corresponding and trivially true fact about finite fields.

A ίiniteness property (Corollary 1 to the theorem) of algebraic
varieties observed in [1, §14] is that every injective endomorphism of
a variety is surjective. Our purpose here is to establish a generaliza-
tion of this result.

THEOREM. Let Y be a scheme of finite type over a scheme X.

Let Y > Y be an X-morphism. If φ is injective then φ is sur-
jective.

COROLLARY 1. Let Y be an algebraic variety over an algebra-

ically closed field k. Let Y > Y be a morphism. Assume that the
induced mapping <p(k) of the k-valued points Y(k) of Y to Y(k) is
injective. Then φ(k) is surjective.

COROLLARY 2. Let R —̂ -> R be a homomorphism of a finitely
generated algebra to itself. If for each prime ideal p of μ{R) there
is at most one prime q of R such that q Π μ(R) = P then for each p
there is precisely one such q.

The proof of our main result goes through its Corollary 1 whose
proof in [1] follows certain involved considerations about finite fields
which, although they suggested the existence of such a result and
motivated its proof, are completely unnecessary. We give afresh in
§ 1 a brief proof of Corollary 1. The main new point to be establish-
ed is the special case of the theorem when X = Spec (k), k a field.
This is accomplished by ascent to the algebraic closure.

Several possible extensions of the theorem suggest themselves. Of
course there exist well-known examples of injective analytic endomor-
phisms which are not surjective, for example in [3, Chap. Ill, § 1],
an isomorphism of C2 onto an open nondense subset of C2 is defined.
In § 4 we exhibit a Dedekind domain not having the finiteness pro-
perty.
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1* Injective endomorphisms of algebraic varieties* In this sec-
tion, k denotes an algebraically closed field. Let Y be an algebraic

variety and Y > Y a morphism, both defined over k. φ defines a
mapping (also called φ) from the underlying topological space of Y
(also called Y) to itself, φ also defines a map φc from the closed
points Yc of 7 to Γ δ . In Lemma 1 of § 2 it is shown that φ is
injective (respectively: surjective) if and only if φc is injective (respec-
tively: surjective) . In the present situation Yc can be identified with
the fc-valued points Y(k) of Y over k.

Proof of Corollary 1. The complete case being trivial, the most
interesting case is when Y is affine; to simplify notation, we assume
Y affine (cf. the remark following the proof). Then there exist posi-
tive integers n, t, d and polynomials &,•••, gt,f19 • •• , /»€ k[Xly , Xn] =
k[X] such that: Y is (isomorphic to) Spec (k[X]/ζgu •,#«»;/i, •••,/„
define a fe-morphism Spec (k[X]) —> Spec (k[X]) inducing Y—^-> Y;
deggτ,degfu ^ d, τ = 1, . , t, v = 1, , n.

Let E = Entd be the following statement about an arbitrary field
K:

if G19 -• ,Gt,Fι,---,Fne K[Xlf , Xn] are such that
( a) deg Gτ, deg Fv^d for τ — 1, , t and v = 1, , n; and
( b ) if x£Kn is such that Gr(x) = 0 for r = 1, « , ί then

O^JP^X), , i^(£)) = 0 for τ = 1, . , t; and
( c) it x,yeKn are such that GT(x) = GΓ(i/) = 0 for τ = 1, , t

and F.(x) = Fv{y) for v — 1, , ̂  then x = y;
then for all ̂ eULw such that GΓ(a?) = 0 for τ = 1, •••, ί there exists
we Kn such that Gτ(w) — 0 for τ = 1, , t and such that xv = Fv(w),
v = 1, -. . , w.

It suffices to prove that i? holds when if is algebraically closed.
Briefly, i? says that for all choices of Y and of a polynomial mapping

of Kn to itself inducing Γ(if) —ί-> Y(ίί) and for all v e Γ ( ί ) there
exist w,x,ye Y{K) such that either X(w) = i; or λ(a?) = λ(?/). Prom
this we see that i£ is an elementary property, i.e., there exists an
elementary statement if = &ntd such that E holds for K if and only
if g7 is true in K. Moreover from our brief description of E it is
seen that g3 can be taken to be of universal-existential type, i.e., g7

is in the normal form VXX VXα3Xα+1 ^Xh^ where ^ is quan-
tifier free. This last fact means that if E holds for each member of
an ascending sequence of fields than E holds for the union of the
sequence. This is also easily verified directly.

E is true when K is finite since an injective mapping of a finite
set to itself is surjective. Since the algebraic closure of a finite field
is an ascending union of finite fields, E is true when K is the algebraic
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closure of a finite field. Now E being an elementary statement is
true in one algebraically closed field if and only if it is true every
algebraically closed field of the same characteristic [8, §5.8] or [7,
§ 9, p. 109]. Thus E is true in every algebraically closed field of
prime characteristic. By a corollary [7, § 6, p. I l l] to the compactness
theorem [7, Proposition 2, p. 100], E is true in every algebraically
closed field, as desired. A more algebraic version of this proof would
proceed by observing that E is true for ultraproducts of fields for
which it is true. Thus E is true for every ultraproduct of the algebraic
closures of finite fields. Since every algebraically closed field of cardi-
nality the continuum can be so obtained [7, § 0, p. 67], the result fol-
lows again by the Lefshetz Principle.

REMARK. A detailed proof for Y an abstract variety would be
similar but with more complicated notation. It would necessitate
considering a finite affine cover of Y,Y — (Jt=i Y% w ^ h F* Π Yj = F lV

affine. Then we would need to consider affine imbeddings of the Yi

and Yij and polynomials defining the imbeddings as well as the maps
including φ. Then there exists an elementary statement E = EadN

corresponding to the case where the above polynomials are all of degree
at most d in at most N variables. The proof then continues as before.

2* Injective and surjective morphisms* Let A; be a field and
let V, W be schemes of finite type over k. Let Vc denote the closed

points of V. Any Spec(&)-morphism V > W induces a mapping

LEMMA 1. ψ is injective <=> ψ€ is injective, ψ is surjective <=> ψc

is surjective.

Proof. Let closures be denoted by bars. Let ve V, we Y. Then
ψ(v) = w if and only if ψc({v}c) is dense in {w}c. The lemma is a
straightforward consequence of this characterization of ψ by ψc and
dimension theory.

We denote the function field of a variety V by K(V). If F is a
scheme and x is a point of Y then fc(x) is the residue class field of
the local ring at x.

LEMMA 2. Let V—^-*W be a Spec (k)-rnorphism of reduced and
geometrically irreducible Spec(k)-schemes. Assume ψ is dominating
and injective. Then ψ is purely inseparable.

Proof. The domination of ψ allows us to regard L = K{W) as a
subfield of N ~ K(V). The injectivity of ψ implies that N/L is a
finite algebraic extension; we must show this extension is purely in-
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separable. By passage to affine opens we can assume V and W are
affine: V = Spec B, W = Spec A. Let M be the maximum separable
extension of L contained in N. There exists θ eN such that M — L(β)»
We can find an aeA~{0} with the following properties: θeB[l/a]m

r

B[l/a] is integral over A[l/d\; A[l/a] is normal; and All/a, θ] is un-
ramified over A[l/a]. For all maximal ideals p of C = A[l/a] we have

[M: L] = Σ W ί ) : *(P)1

where the sum is over all maximal ideals q of Z) = C[θ] for which
ϊ Π C = p. Since B[l/a] contains D and is integral over C, the injec-
tivity of ψ implies there is precisely one such maximal ideal qp. To
complete the proof it suffices to find p such that [fc(qp): ιc(p)] — 1. Let
fe L[X] be the monic irreducible polynomial for θ over L. Since C is
normal, feC[X].

We assert f(C) ^ C*, i.e., that there exists ceC such that f(c)
is a nonunit of C, provided that C Φ k (if C ~ k then L = M = k and
there is nothing more to prove); i.e., provided m = dim W ^ 1. By
Noether normalization, C is a finite integral extension of k[Y] =
k[Yu •••, F m ] . Let c ^ 1 denote the norm map L—»k(Y). ^K defines-
multiplicative maps C-+k[Y],C*-+k[Y]* = k*, and C[X]-+k[Y][X].
g = <yK{f) is monic polynomial in X with coefficients in k[Y]. Hence
there exists cek[Y]^C such that g(c) ek[Y]~k*. Thus ^K(f(c)) =
^Γ(f)(c) = g(c) ek[Y]~ k[Y]*. Thus f(c)C - C* which establishes
our assertion.

Let p be any maximal ideal containing f(c). The C-homomorphism

C [X] — -̂> C defined by μ(X) — c composed with the natural sur jection

C * > κ(p) gives a Λ-homomorphism C[X] -—> tc(p) with kernel W

generated by X — c and p. Since f(c) e p, f(X) e W and so v o ^ defines

a &-homomorphism J5 = C[X]/(/) p > κ(p). The kernel of p is a maxi-

mal ideal of D above p, i.e., gp and ^ induces an inverse of the natural

inclusion fc(p) c=—> tc{qp). This completes the proof.

REMARK. The case of Lemma 2 corresponding to k algebraically
closed is well-known [5, Th. 3, p. 115]. In the general case the crucial
point is to establish the existence of a closed point of degree 1. The
existence of a closed point of degree 1 can actually be established in
greater generality. For example, if V—^->W is any nonconstant k-
morphism of algebraic varieties (defined over any field k), then there
exists closed points q of V and p of W such that ψ(q) = p and

3. Reduction to varieties* In this section we show how the



INJECTIVE ENDOMORPHISMS OF VARIETIES AND SCHEMES δ

theorem follows from the special case where X = Spec (k), k a perfect
field and where Y is variety defined over k, i.e., Y is a reduced and
geometrically irreducible scheme of finite type over k.

Let x be a point of X, Ox its local ring and /c(x) the residue class

field of Ox. Let Fx be the fibre of Y-?-* X above x;Fx can be defined
as the fibre product of π and the canonical map Spec (/c(x)) —• X. Thus
we get a universal commutative diagram

Fx

 λ-^Y

Spec (φ)) > X .

The map Xx is a bijection of the points of Fx onto the points
y e Y for which π(y) = x. The commutative diagram

φ o:c

Y > Y induces Fx '- > Fx

X Spec

and since φ is injective so is φx. Using that Y > X is of finite
type we deduce that πx is of finite type; indeed the only finiteness
condition we need about π is that πx is of finite type for all x e X.
As Y = \JXX(FX), it suffices to prove that every φx is surjective. This
shows that it suffices to prove the main theorem in the special case
where X = Spec (k), k a field.

Let V k denote the perfect closure of k. Then

XsSpetί(Λ)Spec (i/ΊΓ) > X
j

is bijective so that we can assume k perfect. If Yvcά > Y is the
canonical map of the (maximal) closed reduced subscheme of Y to Y
then j is a bijection so that we can assume Y is reduced.

We now show that we can assume that Y is irreducible over k,
and hence a fe-variety. Let Y — U*-i Yτ where the YT are /c-varieties.
We proceed by induction on d = dim Y = maxΓ dim Y.. We arrange
notation so that Yu , F, are all the components of dimension d.
Since φ is injective, 9>((j£=i Ύo) S U^i ^ . For all σe [1, s] as Fσ is
irreducible there exists p(σ) e [1, s] such that ^(Fff) £ Yp{σ) The mapp-

ing [1, s] > [1, s] is, by dimension theory (cf. § 2) and the injectivity
of φ, itself an injection, i.e., a permutation of [1, s]. Thus there exists
a positive integer β such that p{e] is the trivial permutation of [1, s].
Replacing φ by φ[e) we have that p is already trivial. Thus
(φ \ Yσ): Ya —* Yσ is injectve. Hence assuming the theorem established
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for k-varieties we have that each (φ\ Yσ) is surjective for σe[l,s]m

This implies that <p(Ur=s+i Yr) S Ur=*+i ^r and so by inductive hypo-
thesis, φiUl-s+i Yτ) = Ur=s+i FΓ. Therefore φ is surjective.

Still assuming k is perfect let Y > Spec (k) with Y a A -variety..
Let k' denote the relative algebraic closure of k in K(Y), the func-
tion field of Y. Then we have the factorization [Y—* Spec (&)] =

[ Γ — Spec (&') -> Spec (k)]. Here Γ-^-> Spec (&') gives Γ the struc-

ture of a variety defined over k' but F > Y need not be a Spec (&')-
morphism. Nevertheless φ induces a A -automorphism a of k'. Since
[&': A:] < co there exists a positive integer / such that af is trivial on
k'. Then <pr is a Spec (&')~morphism and our reduction is complete.

4* Completion of the proof* We now complete the proof of
the main theorem by proving it when Y is an algebraic variety defined
over a field k and f is a fc-morphism. Let Y' denote the normaliza-
tion of Fa?3pβc(fc)Spec (fc) where k is an algebraic closure of k. We have
a commutative diagram:

Y JUY.

Since τ is surjective with finite fibres and ψ is injective, ψ' has
finite fibres. By Zariski's Main Theorem [6, p. 414], there exists a
factorization Y' c=—> Z —°-^> Yf of ψ where σ is finite and Yf <=—> Z is
an isomorphism of Yf onto a (dense) open of Z. By Lemma 2, ψ is
purely inseparable. Hence so are ψ' and σ. As Γ' is normal, a is a
bijection. Thus ψ* is injective. By the corollary to main theorem
which we have already established in § 1, ψr is surjective. τ is also
surjective and hence so is ψ. This completes the proof.

AN EXAMPLE. The implication "one-one implies onto" seems to
be a persistent property of self-mappings of objects with "some finite-
ness" conditions. Indeed this property is for abstract sets the defini-
tion of finite. The "first" set not satisfying this is the positive integers
P with the mapping p-+p + 1. This can be made into an example
of a nice Noetherian ring R and a homomorphism R —^-* R which
gives a nonsurjective injection Spec (R) —* Spec (R). Indeed, let R =
C[ί, (t - c)-1: c e C - P ] and let φ be defined by t -> t + 1. Then as
point sets, P = Spec (R) and the mapping is as above. Since R is the
intersection of the discrete valuation rings C[t]q where q runs through
the prime ideals (t — c)C[t] for c e P, R is a Dedekind domain.
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We would like to mention some recent proofs of these results.
In conversation, G. Shimura showed how to obtain Corollary 1 by using
reduction modulo p to again reduce the result to the case where k is
the algebraic closure of a finite field. It seems that this technique
would also be able to directly establish the case of the main result
where X = Spec (k),k a field (from which the theorem is easily deduced).
A third proof was given by A. Borel [4]. His proof is cohomological
and proves Corollary 1 at least in characteristic zero. While the prime
characteristic case would be difficult to establish by this technique in
complete generality, Borel was able to extend his method to prove a
real analogue of Corollary 1. More recently S. Lichtenbaum gave a
direct proof of the theorem when X — Spec (k), k a field and Y is affine
using the Mordell-Weil Theorem. Finally we should mention that the
first and only previous result of this kind was obtained by A. Bialynicki-
Birula and M. Rosenlicht who gave a simple proof in [2] of the special
case of Corollary 1 when Y is affine space A*.

We would like to thank S. Lichtenbaum for his helpful discussion
of several points.
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A GENERALIZATION OF THE
WEINSTEIN-ARONSZAJN FORMULA

RICHARD BOULDIN

This paper uses a technique of abstract spectral theory to
reduce the study of certain eigenvalues, which are not neces-
sarily isolated, to the case of isolated eigenvalues. By this
method the Weinstein-Aronszajn formula for the change in
multiplicity of an isolated eigenvalue of a self adjoint operator
under a finite dimensional perturbation is extended.

The hypotheses of this generalization are studied in the
abstract and also by demonstrative example.

The central result of this work is Corollary 3 to Theorem 1 which
gives a generalization of the Weinstein-Aronszajn formula for the
change of multiplicity of an eigenvalue under a finite dimensional
perturbation. The reader should observe that the hypotheses of that
corollary are trivially satisfied in the case of an isolated eigenvalue.

Although the hypotheses of this main result are easy to under-
stand from the point of view of abstract spectral theory, there are
obvious questions about their computability and about their applicability.
These two questions are investigated in § 1 and § 3. Section 1 describes
some Hubert space geometries under which the hypotheses are satisfied.
Section 3 gives two elementary examples.

The actual technique used to prove Theorem 1 is to remove a
small deleted interval about the eigenvalue from the spectrum of the
operator. This is accomplished by replacing the original Hubert space
with the orthogonal complement of the subspace causing the spectrum
in that deleted interval. Such a constructive process requires the
handling of complicated technical details. Then we apply the theory
for isolated eigenvalues and we deduce from that conclusion some
conclusions with the original hypotheses. This new technique, which
seems to be very general in nature, is probably the most interesting
feature of this paper.

1. Preliminaries*

NOTATION. Throughout this paper To will be a self adjoint (not
necessarily bounded) unperturbed operator and V — Σ5=i< » 0J>CJ0* *s

a self adjoint perturbation; both operators are defined on a complex
Hubert space H. So T = To + V is defined on the dense domain of
To and we write R(z) = (T - zl)~\ B0(z) = (Γo - zl)~\ The spectral
measures and the resolutions of identify of the two operators To, T
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are denoted EQ( ), E(-) and EQ(t), E(t), respectively. &(V) means the
range of V and the Weinstein-Aronszajn matrix is denoted by W(z) =
[I + VRQ(z)]/&(V) while ω(z) = det W(z) is the W-A determinant.

MAIN HYPOTHESES. This paper is concerned with a generalization
of isolated eigenvalues which in many instances includes the so called
embedded eigenvalues (eigenvalues which belong to an interval which
is wholly contained in the spectrum). If λ0 is not in the essential
spectrum of TOf i.e., λ0 is in the resolvent set or λ0 is an isolated
eigenvalue of finite multiplicity, then by the stability of the essential
spectrum under compact perturbations (the Weyl Theorem, see p. 367
of [5]) we get that λ0 is not in the essential spectrum of To + V.
Thus there exists a Dδ = (λ0 — δ, λ0) (J (λ0, λ0 + δ) with δ > 0 such that
E0(Dδ) = 0 and E(Dδ) = 0. Necessarily

( * ) E0(Dδ)E({X0}) = 0 and (**) E(Dδ)E0({X0}) = 0 .

However, the converse of the last statement is not true; in fact both
(*) and (**) may be satisfied while λ0 is actually an embedded eigen-
value of To. If both (*) and (**) are satisfied we say that λ0 is
quasi-isolated. Since (*) and (**) depend on V we should say "quasi-
isolated with respect to F." However, we shall abuse notation and
use the shorter phrase.

All isolated eigenvalues are quasi-isolated. The following propo-
sitions will demonstrate some of the Hubert space geometries which
produce quasi-isolated eigenvalues. These constructions exploit the
easy fact that the spectral measure of a direct sum operator is the
direct sum of the spectral measures of the operators in the sum.
Thus if To = T, 0 T2 is self adjoint and defined on H = H, 0 H2, then
E0(D)Hi c Hi and in fact E0(D)/Hi is the spectral measure for Γi#

PROPOSITION 1. Let To = ϊ\ 0 T2 be self adjoint and let V =
V1 0 V2 be a compact self adjoint operator on H = H1 0 H2. If X&

is not a point in the essential spectrum of Tx and λ0 is not an
eigenvalue for T2, then E(Dδ)EQ({X0}) = 0 for all sufficiently small <5.

Proof. Let Dδ = (λ0 - δ, λ0) (J (λ0, λ0 + δ) for δ > 0. Since λ0 does
not become a point of the essential spectrum of TΊ + Vt there is some
positive δ such that E(Dd)H, = {0}. Then E(Dδ)H - E(Dδ){H, 0 Hz) c
H2 since E(Dδ)H2 c H2. By hypothesis E0({X0})Hcz H,. Thus E0({X0})H
is orthogonal to E(Dδ)H and we have E(Dδ)EQ({XQ}) — 0.

PROPOSITION 2. Let To be self adjoint and let V be a finite
dimensional self adjoint operator on H. Let {ry} be a basis for
E({X0})H. If for each τό there exists some d(j) > 0 such that
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E0(DiU))Vτd = 0 , then E0(Dδ)E({X0}) = 0

for all sufficiently small δ.

Proof. Since V is finite dimensional for only a finite subset of
{τ3} can V be nonzero. Let {τlf •• ,rp} be that subset; so Vτά = 0
for j ^ p + 1. Let 0 < <5 < δ(j) then

0 - ^ ( ΰ ^ l F r , Vτόy ^ ζE0(D9)Vτi9 Vτό> = || E*(D>)Vτs ||
2 ^ 0 .

Thus E0(Dδ)Vτd = 0 for all i . Hence
( ΐ ) E0(DΛ)VE({\0})H = {0}.

If r 6 J57({λo})2ϊ; then 0 = (Γ - λo)r - Fτ + (Γo - λo)τ or Vτ =
(λ0 — Γ0)r. Using (f) above we see that

0 - E0(Dδ)Vτ = # 0(A)(λ 0 - Γo)r - (λ0 - TQ)E0(Dδ)τ .

This says that E0(Dδ)τ which is conspicuously a vector from E0(Dδ)H
is a Veigenvector of Γo. Since E0({X0})E0(Dδ) = E0({X0} n A ) = ^70(^) =
0 the above is only possible if E0(Dδ)τ = 0. By the arbitrariness of r
we have shown E0(DB)E({X0})H = {0} or J^φ^jEXfλo}) - 0.

COROLLARY 1. Let TQ and V be self adjoint operators on H. If
E0(Dδ)Hczkeγ V, then EQ(D8)E({X0}) = 0.

Proof. Taking orthogonal complements of E0(Dδ)H and ker V
while using that EQ(DB) and V are self adjoint we get that ker
E0(D8)ZD &(V). So the hypotheses of the preceding proposition are
trivially satisfied.

2* A generalization of the Weinstein-Aronszajn formula* In
this section we shall prove a generalization of the formula given by
Weinstein and Aronszajn and extended by Kuroda for the change in
the multiplicity of an eigenvalue under perturbation. As in the work
of Weinstein and Aronszajn the perturbation will be finite dimensional.
Because we use Kuroda's form of the W—A theorem the restriction
that the operators be self adjoint is essential. For Kuroda in [4]
uses the notion of algebraic multiplicity of an eigenvalue while the
notion used here is that of geometric multiplicity. For self adjoint
operators the two notions coincide.

Before giving the generalization of the Weinstein-Aronszajn-Kuroda
theory, we reformulate the theory in a manner appropriate for this
work. Proofs of the following facts may be found in [3, pp. 244-250].

The Weinstein-Aronszajn formula for isolated eigenvalues.
Clearly &(V), the range of the perturbation, is invariant under the
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operator I + VR0(x); so it makes sense to consider ω(z) = det {/ +
VR0(z)/&(V)} and the usual definition is available since &(V) is
finite dimensional. We define a multiplicity function for a self adjoint
operator S by

S) =

0 if ζ is in the resolvent set of S

dimension of the eigenspace for S
if ζ is an isolated eigenvalue

oo otherwise.

We define the multiplicity of o)(z) at ζ by

'k if ζ is a zero of ω(z) of order k

v(ζ, ω) = — k if ζ is a pole of ω(z) of order k

0 otherwise .

Then the W-A formula is just v(ζ, To + V) = v(ζ, To) + v(ζ, ω) for
ζ G D where D is a region of the complex plane such that the only
spectra of TQ and To + V in D are isolated eigenvalues.

In what follows it will be convenient to have the W—A formula
in a slightly different form. A statement clearly equivalent to the
one given above is the following: there exists an integer k such that
(ζ — z)kω(z) is bounded above and bounded away from zero in some
neighborhood of ζ and k = v(ζ, To) - v(ζ, To + V). This statement
follows from the well known behavior of a meromorphic function in
every neighborhood of a pole and in every neighborhood of a zero.
In fact the integer k can be specified by 0 < m <̂  7}c \ ω(ζ + ίy)\ ^
M < + co for 7 ^ 70 for some positive 70 where ζ is real. In the
following we shall use this determination of k.

THEOREM 1. Let P be the orthogonal projection onto &(V) which
has {φj}r

j=ί as an orthonormal basis. Let To and V' — Σj = 1 < , Φj}cόφά

be self adjoint operators on the complex Hilbert space H. If there
exists a δ > 0 such that

(1) E(D8)E0({X0}) = 0 with Dδ = (λ0 - δ, λ0) (j (λ0, λ0 + δ)
and

( 2 ) || PR0(X0 - ij)/E(Dδ)^(V) \\ £ M < + oo for all sufficiently
small 7, say 7 < 70, then the following are true:

(a) There exists an integer k such that

(λ0 - z)kω(z) = (λ0 - z)k det [(/ + VRQ(z))/.&(V)]

is bounded above and bounded away from zero for all z — λ0 + iy
with 7 sufficiently small and

( b) v(λ0, To + V) ^ î (λ0, TQ) — k where v(ζ, S) is the multiplicity
of ζ as an eigenvalue for S.
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Step 1. Let Q, = I ~ E{Db). Then y(λ0, T - QδVQδ) ^ y(λ0, To).

Proof. It is sufficient to show that every solution of Toτ = λor
is a solution of (T — QδVQs)τ = λoτ. If τ is a solution of Toτ — λoτ,
then r e E0({X0})H and by hypothesis (1) E(Dh)τ = 0 or Qhτ = r for δ
sufficiently small. Thus (T - QδFQδ)τ = (ΓQ8 - ζ)δF)r = QδΓor = λor
as required.

Step 2. Let P be the orthogonal projection onto &(V). For all
sufficiently small δ > 0 {Qδφj\ is a basis for &( — QδVQδ) and in this
basis the matrix of I + (~QδVQδ)R(z) restricted to ^ ( - ζ > δ F Q δ ) is
identical with the matrix of [P(Qδ - Qδ VQ*R(z))]/&(V) in the basis {φά}.

Proof. First let us note that a straightforward consequence of
the measure-theoretic properties of i?( ) is that E{Dδ) —> 0 strongly as
d —• 0 and so Qδ —> / strongly as δ —•> 0.

So for each ^ , l ^ j ^ f , there exists a S(j>) such that || (/ — Qδ)ψό \\ <
l/2r for δ ^ δ(j). If δ < 3(i) for all i and F = Σί=i /3*^* and 1 =
II "^ll2 = Σί=i I βu I2 then I βk I ̂  1 for each k,l^k^r, and

|| Q ^ || ^ || 7̂ ; || - || (/ - Q8)v || ^ 1 - | Σ Λ(J - α ) ^ |

^ i - Σ I βu 111 (I - α ¥ , 11 > i - (i/2r) i; | Λ I
k=L k=ι

^ 1 - (l/2r)r - 1/2 .

So Q,v ̂  0. Thus ker Qδ/^(V) = {0} or Qδ/^(V) is one to one for
all sufficiently small δ. Since {φά} is a basis for ^ ( F ) it must be
that {Qδφj} is a linearly independent set for all δ sufficiently small.
We note that

-Q5VQδ = -

Clearly Span {Qδ̂ j} = &( — QδVQδ) and since { Q ^ } is a linearly inde-
pendent set for all sufficiently small δ, we get that {Qδφό} is a basis
for ( — QδVQδ) for all sufficiently small δ.

A straightforward computation gives that both

i9 Qδφdy and

are equal to <Qa^, Φj> - <^VR{z)Qδφi1 Qδφ>? for i,j = 1, , r.

3. For v - x;(λ0, Γ) - y(λ0, Γ - Q.FQ,), (λ0 - s)*det {P(Q, -
;))/^(F)} is bounded above and bounded away from zero for

all z — λ0 + ij with 7 sufficiently small.
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Proof. First we note that we may add to the hypotheses of the
theorem the conclusion of the preceding step. This condition is
guaranteed by simply choosing δ sufficiently small.

Consider T/QδH as an unperturbed operator and - Qδ VQδ/QΰH as
a perturbation. Since Qδ = I — E((X0 — 5, λ0) U (λ0, λ0 + δ)) it is clear
that λ0 is isolated from the spectrum of T/Q«H. Thus we can apply
the classical W—A formula and we observe that the W—A matrix
is [I + (-QδVQδ)R(z)]/&(-QδVQδ). The W-A theorem asserts the
existence and uniqueness of an integer v such that

(λ0 - s)*det{[J+ (-QδVQδ)R(z)]/^(-QδVQδ)}

is bounded above and bounded away from zero for all z — λ0 + ir with
Ί sufficiently small and v = v(λ0, T) — i;(λ0, T — QδVQδ). By the previ-
ous step we see that this v is the unique integer such that

(λ0 - zy det {[P(Qδ - QδVQδR

is bounded above and is bounded away from zero for all z = λ0 + ίy
with 7 sufficiently small. Thus Step 3 is proved.

Step 4.

[PQ>(T - QsVQs - z)(T - z)-'\l<&(V)[(T - z)(T0 -

•converges to I&[v) in the norm topology as δ —• 0 and the convergence
is uniform in y for all sufficiently small 7, say y < y0. Thus the
determinant of the composite operator is bounded above and is bounded
away from zero for all sufficiently small δ uniformly in z = λ0 + ίy
for 7 < 70.

Proof. Note that &(V) is invariant under (T - z)(T0 - z)~ι =
I + VRQ(z) and observe the following simplification

[PQ*(T - QsVQs - z)(T - z)-^(V)[(T - z)(T0 -

= [PQz(T - QsVQs - z)(T0 - z)-ι\l<#(V)

- PQδ[(TQ - z)(T0 - s)-1 + (V - QδVQδ)(T0 -

- P[Qs + QsV(I - Qδ)(T0 - z)

Because &(V) is finite dimensional it would suffice for the con-
clusion of Step 4 to show convergence in the strong topology of
PQsl^(V) to Inv) and PQ0V(I - Q,)i20(λ0 + ίj)f^(V) to 0 as ap-
proaches zero. The first limit is established by taking xe^(V) and
noting

|| (/ - PQδ)x || - || (P - PQs)x \\ = \\ PE(D,)x \\^\\ E(Dδ)x\\
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and recalling that E(Dό) converges strongly to 0. To establish the
second limit observe

VE(Dδ)R0(X0 + iy)x = Σ < E(DB)R0(X0 + iy)x, φk)ekφk

and || P#0(λ0 - iy)E(Dδ)φk \\ ^ \\ PR0(X0 - iy)/E(Dδ)^(V) || || E(D8)φk || ^
ikf || E(Dδ)φk ||. Since r is finite this proves the second limit is 0 and
thus it proves the conclusion of Step 4.

Step 5. Let v be the same integer as in Step 3. Then

(λ0 - z)-» det {(/

is bounded above and bounded away from zero for z — λ0 + il and
7 < 70. This proves the conclusion of the theorem.

Proof. Note the following equation

[7* det {P(Qδ - Q8VQδR(X

x [7-y det {(Γ - λ0 - iy)R0(X

= det {PQδ(T - QδVQδ - λ0 -

X ( Γ - λ0 -

By Step 3 the first bracketed factor is bounded above and bounded
away from zero for 7 < 70; by Step 4 the right side or second line of
the equation is bounded above and bounded away from zero for 7 < 70-
Thus v must be the unique integer such that the second bracketed
factor is bounded above and bounded away from zero for 7 < 70. Since
(T — λ0 — ίy)R0(X0 + iy) = I + VR0(X0 + iy) this proves the first as-
sertion of step 5.

By Step 3, v = v(X0, T) - (λ0, T - QδVQδ). Recalling from Step 1
that v(X0, T - QδVQδ) ^ v(X0, To) we get v(X0, T) - v ^ v(X0, To). By
letting k — —v we see that part (b) of the theorem is proved. Since
part (a) was proved in the above paragraph this concludes the proof
of Theorem 1.

COROLLARY 1. Let (1) and (2) of Theorem 1 be satisfied. If
ω(λ0 + ίy) is bounded above for all sufficiently small y then Xo is an
eigenvalue for TQ + V with multiplicity at least as great as its
-multiplicity for To.

Proof. This is immediate from Theorem 1.
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By using the symmetry between the perturbed and the unperturbed
operators—i.e., add (-V) to (To + V) and get To—we can get a result
symmetric to Theorem 1.

COROLLARY 2 (to Theorem 1). Let λ0 be an eigenvalue of To. If
there exists δ > 0 such that

( 1 ) E0(Dδ)E({X0}) = 0 with Dδ = (λ0 - δ, λ0) U (λ0, λ0 + δ) and
( 2 ) || PR(X0 - iy)/E0(Dδ)^(V) \\ ̂  M < + ̂  for all sufficiently

small 7, say y < 70, then the following are true:
( a ) there exists a unique integer k such that (λ0 — z)ko)(z) —

(λ0 — z)k det {I + V"JR0(2)/^(TO} 'ίs bounded above and bounded away
from zero for all z = λ0 + ίy and Y sufficiently small, and

( b ) v(λ0, To)

Proof. By a direct application of Theorem 1 considering To + V
as the unperturbed operator and (—V) as the perturbation one gets
the existence of an integer — k such that (λ0 — z)~k det {7 — VR{z)l&(V)}
is bounded above and bounded away from zero for all z = λ0 + iy and
7 sufficiently small. Also

v(X01 (To +V)-V)^ v(\o, (To + F)) - {-k)

or

To) ^ v(λ0> To + F ) + k .

1 = {(λo - z)~k det [I - VR(z)]/^(V)}

x {(λ0 - zf det [7 +

is obviously bounded above and bounded away from zero everywhere.
Since the first factor in braces has this property also, it must be that
the second factor in braces has this property. This proves the corollary.

COROLLARY 3. (The generalized Weinstein-Aronszajn formula.)
If λ0 is a quasi-isolated eigenvalue for To and if there exist positive
numbers 70 and M such that \\PR0(X0 — ij)/E(Dδ)^(V)\\ ^ M and
|| PR(XQ - iΎ)/E0(Dδ)^(V) || ^ M for 7 < 70 then the following are true:

( a ) there exists a unique integer k such that

(λ0 - z)kω(z) = (Xo - z)k det {/ + VR0(z)/^(V)}

is bounded above and bounded away from zero for all z = Xo + iy and

7 < 70, and
( b ) v(X0, T) = y(λ0, To) - k.

Proof. Simply apply Theorem 1 and Corollary 2 both.

3* Examples* In this section two examples of the preceding
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theory will be given; however the verification that they are examples
will only be outlined. Following each example, the significant facts
about that example will be given.

No effort has been made to render the examples as general as
possible; in fact many arbitrary choices have been made. The examples
do demonstrate how the theory can be applied and Example 1 shows
that the generalization is a proper generalization of the W—A
theorem.

EXAMPLE 1. Let H^ and H2 be the spaces of square integrable
functions on the interval (1, 2) with the measures du(t) and dt, re-
spectively. Here dt is Lebesgue measure while du(t) agrees with dt on
(1, 5/4) U (7/4, 2) and ^([5/4, 3/2) (j (3/2, 7/4]) = 0 and (̂{3/2}) = 1. Let
Γo(/i(*),/«(ί)) = (ί/i(«), «/«(*)) where (/#),/,(«)) is an element of ff =
•Hi 0 H"2. We obviously have a spectral representation space for To

and it is clear that 3/2 is an eigenvalue for To with a corresponding
eigenvector (χ{m(t), 0) = ψ,. Set V = < , ^ X ^ + < , Φ^c2φ2 with ψx =
(1, 0), ^2 = (0, 1).

Fact 1. 3/2 is quasi-isolated.
Fact 2.

= (3/2 - z)-1 + ( (ί - z)"ιdt

(1,5/4) Ju(7/4,2)

(ί — z)~ιdt and I (ί — λ — ij^dt approaches as

(1,2) J (1,2)

a limit ln[(2 — λ)/(λ — 1)] + πi provided λ 6 (1, 2) and 7 approaches
0 from the right.

Fact 3. If ω(z) is the W—A determinant ίy <w(3/2 + i7) is bounded
above and is bounded away from zero for | 7 | sufficiently small.

Fact 4 . F o r a l l | 7 | suf f ic ient ly s m a l l \\PR(X0 - ij)/EQ(DUi)^( V)\\^
M and thus by Corollary 2 to Theorem 1 we get v(3/2, To + V) = 0.

Although 3/2 is quasi-isolated it is an embedded eigenvalue.
Still the change in the multiplicity is given by the formula involving
the W—A determinant. Finally there is no triviality involved in the
example in the sense that H has no proper subspace reducing Γo and
containing

EXAMPLE 2. Let H, Hl9 H21 and To be as in Example 1. In the
definition of V change φ, to (χD(t), 0) where D = (1, 5/4) U (7/4, 2).

Fact 1. 3/2 is quasi-isolated.
Fact 2.

= \ (t - z)~ιdu(t) = \ ( t - z)~ιdt
J D (1,5/ ) J U(7/4,2)
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and (R0(z)φ2, φzy = 1 (t — z)~xdt which approaches as a limit
J (1,2)

ln(2 - λ)/(λ - 1)] -I- iπ for λ e (1, 2) .

Fact 3. If ω(z) is the W—A determinant then ω(3/2 + iy) is
bounded above and is bounded away from 0 for 171 sufficiently small.

Fact 4. The 3/2-eigenvector of To, {χ[m{t), 0) is in ker V. Thus
it is a 3/2-eigenvector for T = TQ + V and y(3/2, T) ^ 1.

5. For all \y\ sufficiently small

II PR(X0 - ίy)/E0(Dll4)^(V) || S M .

Using Corollary 2 in addition to the preceding fact we get v(3/2, T) = 1.

Note. This example is guilty of some triviality since a 3/2-
eigenvector of To is in the kernel of V. Nevertheless the quasi-isolated
eigenvalue 3/2 is embedded and is preserved by the finite dimensional
perturbation. Also the new multiplicity is given by the W—A formula.

The author wishes to acknowledge helpful discussions with both
Dr. Marvin Rosenblum and Dr. James Howland.
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THE ASYMPTOTIC BEHAVIOR OF THE
KLEIN-GORDON EQUATION WITH

EXTERNAL POTENTIAL, II

JOHN M. CHADAM

Let Uo(t) and U(t) be the one-parameter groups governing
the time development of solutions of the Klein-Gordon equation,
"Qφ — m2φ, and the perturbed equation, Πφ = m2φ -f V(x)φ,
respectively. In a previous work the author obtained sufiScient
conditions on the potential V(x) which guaranteed the existence
of the wave operators, W±: = s — lim U(—t)U0(t) as t —> ±oo.
Here it is shown that if, in addition, the associated (Schrodinger)
wave operators, Wξ.: = s — lim eii«

2r+v-j)te-nm*i-*)t a s ^-^oo,
are complete and the Invariance Theorem is valid then the
W± are also complete and are isometries. Finally, these results
are used to show that the scattering operator, W^}W-9 is
unitarily implemented in Fock space.

The similarity between the wave operators W± and Wi observed
in [1] as far as their existence theories are concerned, is clearly
reaffirmed in their completeness theories. Indeed, the proof of the
above results is based on the development of an explicit relationship
between these wave operators. Connections of this sort were observed
by Birman [3, p. 114, §5] for abstract differential equations of the
form φtt + Aφ — 0. Sufficient conditions for such a relationship in
this more general framework were obtained by Kato [4, §§ 9, 10] and
used to study both potential and obstacle scattering for the wave
•equation [4, § 11].

In this investigation of the Klein-Gordon equation the argument
will be directed so as to take best advantage of the above general
results of Kato. However some generalizations will be necessary in
order to establish the cited results on the Lorentz-invariant as well
.as the finite-energy solution spaces of the Klein-Gordon equation.
Because a specific equation is being considered some simplification of
Kato's arguments will also be possible.

1Φ Preliminaries* In this section the concepts discussed above
are given precise definitions. Some related results which are directly
used in the proofs of the main theorems are also included in summa-
rized form.

Suppose Δ is the Laplacian in three dimensions and A2 is the self-
adjoint realization of m2/ — A on L2(E3). Throughout this paper V is
taken to be a real-valued function of three (space) variables and in

19
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LP(E3) for some 2 <̂  p <̂  oo.1 With these hypotheses on V it is a
fairly standard result that the perturbed operator, A2 + V, is self-
ad joint with D(A2 + F ) = D(A2) = D(J). This self-ad joint realization
of A2 + V will be denoted by B2.

So that fractional powers of the above operators can be compared
we ask that the perturbation satisfy a restriction on the size of its-
negative part:

( i ) || F_ ||, < M(q) for any q ^ 3/2 (including oo) where M(q) is
a constant depending only on q and m.

REMARK. More specifically M(q) = constant. m{2~2g)h where the
constant is that appearing in the Sobolev inequalities [6, p. 125]. The
precise value of M(q) is inessential in what follows. All that is needed
is that the g-norm of F_ is sufficiently small for at least one q ^ 3/2.

PROPOSITION 1.1. For perturbations V, as above, satisfying con-
dition (i), the self-adjoint operators Ad,B° satisfy

( 1 ) raθ\\φ\\ ^\\Aoφ\\^C{\\Beφ\\^Ci\\A°φ\\

for all φ e D{BΘ) = D{AΘ) and all 0 ^ θ ^ 1. In addition

( 2 ) Cvθ II A - V || fS Cr^ II B~9φ || ^ || A~V II ^ m ^ |l ̂  II

for all φeU(Ez) and all 0 ^ # ̂  1. Ĉ  α^d C2 are constants de-
pending on V,m, p and q.

Proof. [1, Lemma 2.4, Th. 2.5].
In order to discuss the solution spaces of the K — G equation we

shall first write it in its equivalent vector-valued form

as its

φ(t)\

Φ(t)l =

d ί *~p \

at/ \ cp f

formal solution

IΨ(0)\ 1

\<P(O)I \

1 ° u)

cos At

— A sin Aί

Uj

4"1 sin A^

cos At )

|M0)\
'U(O)j

where <p(0), Φ(0) are the Cauchy data at t = 0. Indeed, it is a fairly
well known fact that equation (4) rigorously defines the solution of
the K — G equation on H(A, a) (defined below) in the sense that t —•
UQ(t) is a one-parameter group of unitary transformations on ϋ(A, a)

with infinitesmal generator ( *2 \ J. The solution spaces H{A, a)

1 11 \\p will denote the usual norm in Lp(Ez). However, for notational convenience
J2 will be replaced by | | | | and the associated inner product will be written as (,) .
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are described in the following.

DEFINITION. For each a e R, the complex Hubert space H(A, a)
is the completion of D(Aa) φ D(Aa~ι) with respect to the inner product

= (A"φ19 A*ψd + (A*-1^, A'-'ψt) .

As a direct sum H(A, a) will be written as D[Aa] φ D[Aa-x].

REMARK. Our primary interest is in the finite energy (H{A, 1))
and the Lorentz-invariant (H(A, £)) solution spaces of the K — G
equation. We shall handle both simultaneously by proving the main
results on H(A, θ) for all 0 ^ θ ^ 1. For θ in this range it can be
checked that the above completion is only required in the second
summand of H{A,Θ). In fact, except for the norm, D[Aθ~ι] is iso-
morphic to the Sobolev space Wθ~lt\Ez) and hence contains non-L2(i?3)
elements.

Condition (i) insures that B2, like A2, is a nonnegative (self-adjoint)
operator. For this reason the above discussion can be repeated with
A replaced by B to obtain the dynamical propagators U(t) on the
solution spaces, H(B, θ), of the perturbed K — G equation. The
following observation, which is a direct consequence of Proposition 1.1,
will be convenient in the next section.

PROPOSITION 1.2. With the hypothesis of Proposition 1.1 H(A, θ)
and H(B, θ) are isomorphic as linear spaces for each 0 ^ θ ^ 1 and
the norms satisfy

(5) i fJI-l l^^ll-lk^^H-li,,,

where Kx and K2 are constants depending on C1 and C2. It follows
that U0(t): H(B, θ) -> H(B, θ) and U(t): H(A, θ) -> H(Ay θ) are uniformly
bounded.

The above result allows us to form products of the finite-time
propagators even though they were defined on a priori different spaces
and hence define the wave operators.

DEFINITION. The (free-to-physical) wave operators W± are given by

W± = s- limU(-t)Uo(t)
ί->±oo
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whenever this strong limit exists on all of H(A, θ).

REMARK. The existence of the strong limit is demanded on all
of H(A,Θ) because the generator of U0(t),(^2

 τ

Q\ is spectrally
absolutely continuous (c.f. Lemma 2.2 to follow). For notational
convenience the ^-dependence of W± is deleted since the conditions
obtained are valid for all 0 <* θ ^ 1.

If one further restriction is made on V,
(ii) VeLp(Es) for any 2 ^ p < 3,

then the following existence theorem can be proved [1, Th. 4.1].

THEOREM 1.3. If V is real-valued and satisfies conditions (i)
and (ii) then W± exist on if (A, θ) for each 0 tί θ ^ 1.

2* Main results* In this section the isometric nature and the
completeness of W±: H(A, θ) —> H(B, θ) will be established for pertur-
bations which satisfy the additional conditions

(iii) Wί- s - l im^^ eiBUe~iAH are complete;
(iv) Wί = s — lim^±oo e

iφlB2)te~iφu2)t for φ as in Invariance Theorem.*
The method of proof will be to establish a relationship between W±

and Wί by using the ideas concerning identification operators proved
by Kato [4, §§ 9,10]. Indeed the proof will be directed so as to take
best advantage of these general results of Kato.

We begin by considering the transformation Γ(A, θ): H(A, θ) —>
L2(E3) © U{EZ) formally defined by the equation

1 (A? iA6

This transformation, which is the analog of one considered by Birman
[3, p. 114, § 5] and Kato [4, p. 335, 8.9], will provide us with a unitary
operator which "diagonalizes" U0(t) in an operationally convenient way.

LEMMA 2.1. For each 0 ^ θ S 1,

Γ(A, θ): D{AΘ) φ D{Aθ~ι){(Z H(A, θ)) — L\EZ) © L2(E3)

defined above has a unique unitary extension

Γ(A, θ): H(A, θ) -> L2(E3) φ L\E'6) .

In addition

2 The strongest version of condition (iv) required is with φ(λ) = λ9/2, 0 ^ θ ^ 1.
This is not an operationally weaker condition, however, since the full Invariance
Theorem [5, p. 544-7] must be used to determine conditions on V for it to occur.
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Γ(A, θ) U0(t)Γ(A, θ)~ι = e~iAt 0 eiAt .

Proof. For Φ = (φΛ e D{AΘ) 0 DiA6"1), a straight-forward compu-
xPzJ

tation using the defining equation gives 11 Γ{A, Θ)Φ \\ — \\ Φ \\Ayθ.
3 Further-

more

Γ(A, Θ)(D(AΘ) 0 D{AΘ~1)) = R(A°) 0 R{AΘ) = L2(EZ) 0 L\EZ) .

Thus the isometry Γ(A, θ) has a unique extension to one with domain
the H(A, ̂ -closure of D(AΘ) 0 D{Aθ~ι) (i.e., all of H(A, θ)) and range
L2(E3) 0 L2(E3). This unitary extension is

w h e r e

is the unitary transformation defined by Aθ~ιφ = Aθ~ιφ for all
φeL2(E3) c D[AΘ~1]. A simple algebraic computation shows that

Γ(A, θ)U0(t) - {e~iΛt 0 eiAt}Γ(A, θ)

on a suitable dense set from which the relation (6) follows by con-
tinuity.

Before applying the above to the problem at hand we shall obtain
a more precise description of the absolutely continuous part of the

generator of U0(t) (i.e., of ( _ j2 \) on H(A, θ)j since it is at the

basis of the completeness problem for W±. In particular we shall

relate the subspace of absolute continuity of ( _ -Λ2 \ J to that of A

by means of an adaption to the present situation of a result of Kato
[4, p. 355, Lemma 8.1].

LEMMA 2.2. Let PAiθ and QA denote (the projections in H(A, θ)

and L\E3) onto) the subspaces of absolute continuity of ( . . 2 \ j

and A respectively then the following conditions are equivalent:

( a ) ΦePA,θ;
( b ) Γ(A,θ)ΦeQA@Qt;

( c ) Aθφx G QA and Ad~^2 e QA.

Proof. Since QA is a closed linear subspace of L2(E3) [5, p. 516,

3 The norm (|| | I 2 + I H I 2 ) 1 / 2 in L 2 ( ί 3 ) Θ W 3 ) is also denoted by | | |l since t h e r e
is no possibility of confusion.
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Th. 1.5] (b) and (c) are clearly equivalent. Suppose E(X) and e(X) are

the spectral projections for A and ( _ ^ 2 1Q) respectively. Then

equation (6) is equivalent to f(A, θ)e(S)Γ(A, θ)~ι = {E(S) 0 -E(S)}

for all Borel sets SuR. Thus

II e(S)Φ \Uo = || {E(S) 0 -E(S)}Γ(A, Θ)Φ \\

from which the equivalence of (a) and (b) is immediate.

REMARK 1. Because m 2 l — A is spectrally absolutely continuous,

A and hence (_ Λ2 \ ) J is likewise. This motivates the definition

of W± in the previous section.

REMARK 2. Clearly if condition (i) is satisfied (so that Bθ is a
nonnegative self-ad joint operator for each 0 ^ θ g 1), the above two
results can be proved with A replaced by B. In general, however, B
will not be spectrally absolutely continuous so that PB>Θ Φ I.

Returning to the main problems we now indicate how the above
may be used to provide a connection between the quasi-relativistic
wave operators W± and the nonrelativistic wave operators W±. This
will be accomplished by comparing each to the wave operator

Wί:= s - lim U(-t)Γ(B, Θ)-T(A9 θ)U0(t) .
t-+±oo

The requirement that the identification operator [4, p. 343,1.2 and
p. 346, Definition 3.1] Γ(B, Θ)~T(A, θ)eB(H(A, θ), H(B, θ)) is satisfied,
since Γ(A, θ) and Γ(B, θ) are unitary.

THEOREM 2.3. // the perturbation V satisfies conditions (i) and
(iv), then

( a ) W± exist if and only if Wl exist)
( b ) W± are complete if and only if W± are complete.

Proof. Relation (6) for A, and the corresponding one for B can
be used to obtain

Γ(B, θ)U(-t)Γ(B, θ)-ιΓ(A, θ)U0(t)f(A, θ)"1

Because the Γ-operators are bounded with bounded inverse, standard
results on strong limits can be used on the above equation to give

Γ(B, θ)WίΓ(A, θ)-1 = s - lim {eiBte~iAt 0 e~iBteiAt}
( 7 )

- Wl 0 Wξ .
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The last equality follows from the invariance condition (iv). This
establishes part (a). Similarly, part (b) follows from (7) and the
equivalence of the first two statements in Lemma 2.2.

REMARK. The existence and completeness of W± are equivalent
to the same questions for the more familiar wave operators,

s- ,
t-*±oo

since the associated prewave operators are identical. In particular,
the existence of the latter is assured for potentials which satisfy
condition (ii) [5, p. 534-5]; the completeness follows if Ve L\E") Π L2(E")
[5, p. 546, Example 4.10], The proof of the completeness shows that
condition (iii) and (iv) are closely related. It is interesting to dis-
tinguish them, however, since the latter is used for other purposes
(e.g., in equation (7) and in a more essential manner in Lemma 2.5
to follow).

All that remains then is to show that W± = W±. This will
require condition (i), (iv) and the existence of W± (e.g., condition (ii))
in an explicit way. We now state this as a theorem, the proof of
which is rather lengthy, and as a result, will proceed as a sequence
of lemmas.

THEOREM 2.4. // V satisfies conditions (i), (ii) and (iv) then
W± — W± in the sense that the existence of one implies the existence
of the other and their equality.

Proof. A straightforward application of Theorem 4.2 of [4] shows
that sufficient conditions for the equality of W± and W± are

( a ) Γ(B, θ)~ιΓ(A, θ) and Ie B(H(A, θ), H(B, θ)), and
( b) s - lim^±ββ (Γ(B, Θ)-Ύ(A, θ) - I)U0(t) - 0 on H(A, θ).

The first part of (a) has already been noticed to be true if condition
(i) is satisfied. The second part follows from Proposition 1.2 which
likewise requires condition (i). In addition U0(t): H{A, θ) —> H(B, θ)
is uniformly bounded by K2 (c.f. Proposition 1.2). Thus it suffices to
establish (b) on a dense subset of H(A, θ); say D(A)@L\E"). For

(Γ(B,θ)-ψ(A,θ)-I)Uβ(t)Φ

1 / B~β B~» \ /A" iA6~l\ (I 0

)-iA'-Ί w irm)φ

0 \ίφo(t)

'-'A'-1 - I)\φt{t\
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where φo(t) is the solution of the K — G equation with Cauchy data
φu φ2 at t = 0, and Φ0(t) is its time derivative. Thus

\\(Γ(B,θ)-T(A,θ)-I)U0(t)Φ\\l,β

= U&ίB-Ά' - I)φo(t)

= || (A, - 2 ? > 0 ( ί ) II2 +

The last equation follows from Proposition 1.1 (i.e., D(A) =
D(B) c D{Aβ) = D{Be)) and the fact that D{A) φ U(ES) is invariant
under U0(t). Thus (b) is implied by || (A0 - B°)<po(t) || and {{(A1*-1-
B^Φoit) 11 — 0 as t -> ± oo.

We now reduce the conditions, step-by-step, to one which is much
more amenable [4, p. 361, Condition 10.2 and Th. 10.5]. Let

a n d

LEMMA 2.5. Under the hypothesis of Theorem 2.4, \\Aθφ0(t) —
Bθφ±(t)\\ and \\ AΘ-ιφ0(t) - B°-^±(t)\\ tend to zero as t-+±oo.

Proof. As previously observed the hypothesis implies the existence
of Wl which, by the invariance condition equals s — l im^^ e

iBθte~iAθt

for each θ ̂ > 0 (in particular for 0 <̂  θ ̂  1). Now

Aθ<p0(t) = Aθ(cos Atφί + A~ι sin Atφ2)

= i-β-^^AVi + iA^-1^) + —eίAt(Aθ

φi - iAθ~ιφ2) .
A Li

But the existence of Wl implies that s - l inw^ (e~iΛt - β~ίjBί W|) =
0 and Wl Aθ — Bθ Wl (using the invariance condition and the fact that
QA = I). It is clear then that

+ l.eiBI(BβWξφί - iBe-lW^

tends to zero as t —> ± oo. A straightforward algebraic computation
shows that the term in braces is Bθφ±(t). This establishes the first
part of the lemma and the second part can be proved similarly.

By writing
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|| (A° - BΘ)φ0(t) II - II AVo(ί) - B°φ±(t) + B°φ±(t) - BVo(t) II

^ II A'φo(t) - B°φ±{t) II + \\B\φQ{t) ~ φ±(t)) \\ ,

it is clear that || (A0 - Bθ)φ0(t) || — 0 as £ -> ± oo if || B°(φo(t) - φ±(t))\\ ~>
0 as t -> ± oo. Similarly 11 (A'-1 - B°~^0(t) 11 -> 0 as £ — ± co if

I I S ^ Φ o W - ^ ^ l l - O as t — ± o o .

LEMMA 2.6. Under the hypothesis of Theorem 2.4,

11 B'(φo(t) -φ±{t))\\ and \ \ B°~ι(φΌ(t) - φ±(t)) 11 -> 0

a s t~>±oo if || J?(^0(ί) - 9>±(ί)) || -> 0 as ί -> ± oo.

Proof. Since Φ e D(A) 0 L2(£;3), φo(*) and <p±(t) 6 D(A) - D(B) [8,
p. 614, Th. 2.1]. But || B°f \\ = || B°~ιBψ \\ £ {mCτΎ~ι\\ Bψ \\ for all
ψeD(B) by Proposition 1.1, which establishes the first part. The
second part follows directly from the existence of W± and (iv). To
see this write

φQ(t) = — A sin AtφL + cos Atφ2

( 1 0 ) = ~e-iAt(Aφι + iφ2) + ̂  ei

Δ Δ

and

(11) φ±(t) - ~e-iBtWi(Aφi + iφ2) + ±
Δ Δ

Thus || Φo(t) - Φ±(t) || -> 0 as ί ~^ ± oo if 8 - lim ( e ^ 4 - e~i5i TΓ|) - 0
as έ-^+oo which follows from conditions (ii) and (iv). The proof is
completed by again observing that

II B^iΦoit) - Φ±(t)) || ^ (mCT1)0-1 II Φo(t) - Φ±(t) || .

LEMMA 2.7. 11B(φo(t) - φ±(t)) \\~+0ast-^±ooif\\ Ve~ίmWίψ \\->
Oαs ί - > ± o o /or all ireD(A2).

Proof. This is essentially condition (e) of Theorem 10.5 of [4].
A careful examination of the proof shows that it suffices to have
s - linv_±oo Ve~iBt = 0 on {Wίψ; ψ e D(A2)} rather than on all of
D(B2) Π QB. Condition (iv) is used in the present formulation but in
a rather inessential way.

LEMMA 2.8. Under the hypotheses of Theorem 2.4,

|| V(e~iBtW£ - e-iAt)ir\\-+0
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as ί—>±co for all γeD(A2).

Proof. Since ψ e D(A2), eriAt^ and erim Wlγ e D(A2) = D(B2)
[8, p. 614, Th.2.1]. Now

where q — 2p(p — 2)~ι. The last term is estimated using inequalities
of the Sobolev type [6, p. 125] to obtain

|j (e-imWs _ e-iAt)γ | |? ^ c o n s t a n t || (-Δ)(e-iιnWi - e-iAt)-f \\>

where 7 = 3(2p)"]. The result will now follow if it can be shown
that the first term on the right in (12) is uniformly bounded in t and
the second tends to zero as t —> ± co. The second requirement follows
from the existence of W± and the invariance condition provided 7 < 1
or p > 3/2 which is guaranteed by the hypothesis. Turning to the
second requirement,

\\{-Δ){e~imWi - β - ^ ) t | | ^ \\A\e~imWί - e-iΛt)γ\\

^ \\A2e~ίmWhϊ\\ + ||A%H; .

To show that the first term on the right of the above inequality is
bounded recall [1, Th. 2.1] that if VeLp(E3) for any p ^ 2, there
exist constants a < 1 and b, such that for γe D(A2),

b\\χ\\

Hence

(13)

Applying (13) to the above and using well-known properties of
one obtains

which proves the lemma.
Clearly, the above result reduces the proof of Theorem 2.4 to

showing that || Ve~iΛtψ || —• 0 as t —* ± ̂  for all i/r G J9(A2).

LEMMA 2.9. 7/ FeL^fi 3) /or any 2^ p < co, tfeβw j| Ve-ιΛt^ \\ ~>
0 α.s ί-^±oo /or αίi f e ΰ ( i 2 ) .

Proof. We first show that it suffices to prove the result on a core
of A2 (i.e., a set ^'cfl(A2) such that for each feD(A2), there exists
a sequence {i/rK} c v̂ ' such that || A2(^ — ψn) \\ + || q/r — Λ>?/ |! —> 0 as
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n—> co), If ψ and ψn are as above then the observation follows from

||Fe-^%HI - \\Ve-iA\ψ-ψn + ψ%)\\
^ || Ve~iΛt{f - ψn)\\ + \\Ve-iAtψn\\

£\\A*e~^(ψ-ψn)\\ + I I F e - ^ H

^ | | A 2 ( t ~ t.)ll + II Ve~iAtφn\\ .

Of course, the above computation requires VeLp(E'0) for any p ;> 2
so that || Vχ|| ^ ||A2χ|| for all χeD(A2).

In particular take ^ = $$C?(E'S) (i.e., the image under Fourier
transformation of CT(E3)). i f is a core for A2 if and only if CΓ^3)
is a core for Λf*2+W2 [5, p. 300]. The latter condition is true since
Mk2+m2 maps C?(E*) onto C7(E'd) [5, p. 166, 5.19]. All that remains
then is to show that || Ve~iΛtψ \\ -* 0 as t —> ± co for all α/r e ^ . Now

where g - 2p(p - 2)-1. But || e~iAtf | | r - 0(| ί |-8«w-u/'») a s | ί | --, oo
for each 2 ^ r ^ oo and each i/r e c ^ by a variant of Proposition 4.2
of [1] which is a direct consequence of a result of Segal [7, p. 95,
Lemma 3]. Thus the decay is established i f g > 2 o r 2 < ^ p < CO ,

The above results can be used in a fairly obvious manner to prove
the result indicated at the beginning of this section; namely,

THEOREM 2.10. // conditions (i)-(iv) are satisfied then the W±

are complete.

REMARK. A careful examination of the above proofs shows that
condition (ii) is used only to show that W± exist. Thus the above
theorem is valid if condition (ii) is replaced by the weaker condition

(ii)' Wί exist.
Indeed the same change gives an alternate formulation of the existence
Theorem 1.3. This result is more appealing from the viewpoint of
the similarly of W± and W± but the proof requires the very restrictive
condition (iv). It is interesting however, that condition (i) is present
in both versions.

One further result which follows from the above is the isometric
nature of the W±. More specifically,

THEOREM 2.11. // conditions (i), (ii)' and (iv) are satisfied then
for each 0 ^ θ ^ 1, W±: H(A, θ) -> H(B, θ) are isometries.

Proof. Theorems 2.3 and 2.4 give
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(14) W± = Γ(B, θ)~ι{ Wl 0 Wξ}Γ(A, θ) ,

from which the result immediately follows since the /"-operators are
unitary and the Wl are isometries.

3* Application* In this section the preceding results will be
used to show that the scattering operator, S — W+]W_, is unitarily
implementable in the free representation of the quantized Klein-Gordon
field with mass m. We shall introduce only the most basic concepts
here and direct the reader to [2] and the references therein for a
more detailed and systematic discussion.

The unique, relativistically invariant, classical dynamical system
associated with the K — G field in three space consists of the real
Hubert space Hr(A, | ) (the real part of H(A, i)) and the nondegenerate,
skew-symmetric bilinear form Re(/ , )̂ ,i/2 where J= (Λ Q )• A
transformation on Hr(A, i) which preserves the above form is called
symplectic. It is well-known that the symplectic transformations form
a group. By means of a straightforward algebraic computation [e.g.,
2, p. 391, Lemma 3.4], it can be shown that both U0(t) and U(t), and
hence the prewave operators W{t), are symplectic. In addition, it is
not difficult to show that strong limits of symplectic operators are
likewise symplectic. Thus W± and S are symplectic in the above sense.

A quantization of the above classical K — G field is basically a
map Φ —> Q(Φ) from Hr(A, i) into unitary operators on a complex
Hubert space <%f which satisfy the Weyl (exponentiated) form of the
commutation relations. The most familiar of these, and the one with
which we shall deal, is called the Fock-Cook quantization. It will be
denoted by Qo on βgrQ. If T: Hr(A, i) -> Hr(A, i) is symplectic then
Φ-+Q0(TΦ) is another quantization. If it is unitarily equivalent to
the Fock-Cook quantization, T is said to be unitarily implementable
(in the free representation of the K — G field with mass m). This
situation occurs if and ond only if T, as an operator on Hr(A, J), is
bounded with bounded (everywhere defined) inverse such that T*T — I
is Hilbert-Schmidt [2, p. 388, Corollary 2.3].

THEOREM 3.1. S is unitarily implementable in the free represen-
tation of the K — G field with mass m if conditions (i)-(iv) are
satisfied.

Proof. Since W± are complete, D{W+ι) - R(W+) = R(WJ = PB,m,
and hence S is well defined on H{A, J). In addition, since R(W^) =
D(W+) = iί(A, i), the image of H(A, i) under S is all of H(A, ί) .
Furthermore, the isometric nature of W±: H(A, I) —* H(B, I) implies
that S: H(A, i) —» H(A, i) is an isometry, and hence unitary. Thus
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S: Hr(A, i) —> Hr(A, £) is orthogonal and the required conditions for
unitary implementability are satisfied trivially.
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ON THE ZEROS OF THE SOLUTIONS OF THE
DIFFERENTIAL EQUATION

y{n\z) + p{z)y{z) = 0 .

RINA HADASS

In this paper sufficient conditions for disconjugacy and for
nonoscillation of the equation y{n)(z) + p(z)y(z) — 0 are given.
For n = 2m a theorem ensuring that no solution of this equa-
tion has two zeros of multiplicity m is obtained. Here the
invariance of the equation under linear transformations of z
is used.

In [6] Nehari considered the equation

-l){z) + + Po(z)v(z) = 0 ,

where the analytic functions Pi(z), i — 0, •••, n — 1 are regular in a
given domain D, and obtained a disconjugacy theorem for bounded
convex domains and a nonoscillation theorem for the unit disk. Equa-
tion (1) is called disconjugate in a domain D, if no nontrivial solution
of (1) has more than (n — 1) zeros in D. (The zeros are counted by
their multiplicity). The equation is called nonoscillatory in ΰ , if no
nontrivial solution has an infinite number of zeros in D.

In this paper we obtained related results for a special case of (1);
i.e., for the equation

( 2 ) y^(z) + p(z)y(z) = 0 ,

where the analytic function p(z) is regular in the unit disk.
Section 1 deals with the invariance of equation (2), where p(z) is

analytic in a general domain, under the linear transformation

( 3 ) ζ , adbc^0 ,
cz + d

(Theorem 1). The invariance of

( 4 ) y"(z) + p(z)y(z) = 0

played an important role in Nehari's results on this second order
equation [3; 5].

In § 2 we obtain sufficient conditions for disconjugacy and nonoscil-
lation of equation (2) in the unit disk (Theorem 2 and Theorem 4
respectively). From Theorem 2 and the invariance of (2) under the
linear transformations (3) we get a sufficient condition for the discon-
jugacy of (2) in non-Euclidean disks (Theorem 3).

33
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In § 3 we deal with equations of even order n = 2m, and obtain
a condition on p(z), which ensures that no solution of (2) has two
zeros of multiplicity m. For the proof of this Theorem 5 we apply
Theorem 1 and the method used in [5].

1* Invariance under linear transformations*

THEOREM 1. The equation

(2) #1L + p(Z)y(Z) = 0

is transformed by the linear mapping

(3') ζ = a z + b , αd-δc = l ,
cz + d

into an equation of the same form

(2') -ξ^L + PSQwtf) - 0 .
etc,

Here

( 5 ) W l(ζ) = (α - cζ)»-ιw(ζ)

and

( 6) P,(Q

where

(7) w(ζ) = y(z) = yl d ζ - b

\ — cζ + a

and

(8) P(ζ) = p(z) = p( d ζ ~ b

\ — cζ + a

Proof. It is easily verified that

Applying this and (5)—(8) to equation (2) we obtain
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ηj^Γ + P(z)y(z) = - 0 - + p(z)^(ζ)(α - cζ)1-

which proves the statement of our theorem.
The assumption ad — bc = l in (3') was made just for convenience.

In the general case (3), formula (6) has to be replaced by

p(O= , ( α ~ c P"'I TO-
(ad — bc)~n

The converse of Theorem 1 is also true: the only transformations
ζ = ψ(z), which leave the form of equation (2), for n ^ 3, invariant
are the linear transformations (3). This follows from a theorem of
Wilczynski [11, p. 26], For n = 2 equation (4) is invariant for any
univalent transformation ζ = ψ(z); however if ψ(z) is not linear, the
connection between p(z) and P^ζ) is more complicated than (6).

2» Disconjugacy and nonoscillatiom

THEOREM 2. Let the analytic function p(z) be regular in | z | < 1.

< 9 ) I p(z) I < V± , I z I < 1 ,
( l l z Q d + l i r 1

equation

< 2 ) !/<•>(*) + ^ ) τ / ( ^ ) = 0

i s disconjugate in \z\ < 1.

We remark that for n — 2, (9) becomes

| g ( s ) l ^ , 2 „ , | 2 | < i ,
1 — I Z I

which is a condition of Pokornyi [8; 5] for disconjugacy of equation
<4) in the unit disk.

In the case of equation (2) and | z \ < 1, the general theorem
[6, p. 328] gives that

— 1)1 J l C I =

implies the disconjugacy of (2) in | z \ < 1.
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Using [4, p. 127, Ex. 8] this corollary to Nehari's theorem follows
from Theorem 2.

As the function fn(r) — nl/(l — r)(l + r ) ^ 1 is monotonic decreas-
ing in 0 ^ r ^ (n — 2)/n, it follows by the maximum principle that,
for n > 2, (9) is equivalent to

Proof. For proving this theorem we use "divided differences"
[6; 7, Chapter 1]. We denote by [z,zu ,zk] the k — th divided
difference of ?/(£), i.e., we set

[z, z l y , zk\ , fϋ — Δ, , n .
« - zk

If C is a closed contour in the unit disk, such that z, zt, , zn

are in the interior of C, then it follows from the definition that

[Zy Zlf * * ' , Zn\ — — ~ I -—
27Γ^ )c (Γ —

v(O
(ζ - z)(ζ - Zί) (ζ - *„)

The right hand side is defined also when some of the z'β coincide and
may thus serve as a definition of the left hand side also in that case
(where the divided differences would have to be defined with the help
of derivatives). Clearly then [z, zu « , 2 j is continuous in all its ar-
guments. Moreover, if y{zx) = = y(zn) — 0, we obtain

(10)
\Z) #!, * # * , Zn\

v(z)

Π

To prove the theorem, assume now, by negation, that (2) has a
nontrivial solution y(z) which vanishes at the ^-points zl9 , zn of
the open unit disk E. These n points cannot all coincide, as y(z*) —
y'(z*) = - = y[n~l)(z*) — 0 implies y = 0. Therefore there are at least
two distinct points. Let H be the convex hull of the points zu , zn.
H is therefore either a segment or a convex polygon.

Let z be any point in H; we use now Hermite's formula for the
divided difference of y{z) [7, p. 9]

(11) [z, zl9 , zn] = \ j y{n)(toz + t,zL + + tnzn)dtx dtn ,

where the integral is extended over the n dimensional simplex of
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volume 1/nl given by

(12) ti ̂  0 i = 0, , n Σ ί< = 1 .

We remark that formula (11) is proved in [7, p. 9] only made the
assumption that all the 2 s are distinct. As however both sides are
continuous in z19

 m ,zn, this formula is valid also in the case where
some of the z s coincide. The point ζ = toz + + tnzn, where the t{

satisfy (12), belongs to the convex hull of the n + 1 points z, z19 zn,
and as ze H, it follows that ζ e H.

From (10), (11) and (2) it follows that

[viQviQdt,... d ί n ,
J

where ζ = ί0̂  + ίA + + iw«w e Jϊ. Let ζ0 be a point, or one of the
points, in which | p(z)y(z) \ attains its maximum in H. (This maximum
is positive, otherwise p(z)y(z) = 0, and as y(z) φ. 0, it follows that
p(z) = 0. Equation (2) becomes y{n)(z) = 0, which is clearly discon-
jugate). As

(14) \p(Qy(Q\^\p(z)y(z)\, zeH,

it follows by (13) that for every z e ϋ ,

Choosing now z = ζ0 and using #(ζ0) ̂ 0 we obtain

(15) I P ( C O ) I Π I C O - ^ I ^ W ! .
i = l

We prove that for ζ0 satisfying (14),

(16) Π I Co — «• I < (1 — IColKl + ICol)"-1;

(cf [10, Th. 2)].

Let us assume first that the convex hull H of z19 * ,zn is a
polygon. Then, by the maximum principle, ζ0 is on the boundary of
H. Therefore ζ0 is on a segment, the endpoints of which are two of
the n given points z19 , zu. We denote these points by z19 z2 Clearly,

i = 3, , n .
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Denoting by z?, z* the endpoints | z* \ = \ z* | = 1 of the chord deter-
mined by z1 and zz, we obtain

(18) I Co - «L 11 Co - βk I < I Co - «χ* 11 Co - «»* I .

As the product of the segments of a chord through ζ0 depends only
on Cot we have

| C o - « i * I I C o - « l = ( l - I C o l ) ( l + ICol).

This and (18) give

(19) I Co — «L 11 Co — «. I < (1 — I Co l)(l + I Co I) .

(17) and (19) imply (16).
If H is a segment and ζ0 one of the points of the segment in

which I p{z)y(z) | becomes maximum, then we denote by zίf z2 the end-
points of H and by z?,z* the endpoints of the corresponding chord.
(17) and (19) hold and therefore (16) is again valid.

(15), which followed from the assumption that (2) is not discon-
jugate in \z\ < 1, and (16) imply

(20) IP(Co) I ̂  > TΛ . , m , . . ^ ,
JLJLI Co — s» I

which contradicts assumption (9). This contradiction concludes the
proof of the theorem.

For the proof of the next theorem it is convenient to state some
simple consequences of Theorem 2. The transformation ζ = z/p maps
\z\ < p on ICI < 1, and equation (2) is transformed into (2') with
Pi(C) — pnp(z). As (2) is discon jugate in | z \ < p if (2') is discon jugate
in I ζ I < 1, we obtain a sufficient condition for disconjugacy of (2) in
I z I < p, namely

Using the minimum of the function nl/(p — r)(p + r)71"1 for 0 ^ r<p,
we obtain another, weaker, sufficient condition for disconjugacy of (2)
in I z I < p ,

We remark that for p — 1, n — 2 the value of the constant in (21) is
2. The exact constant in this case is π2/A [3, Th. 2].

THEOREM 3. Let the analytic function p(z) be regular in \ z \ < 1
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and assume that there exists p, 0 < p < 1, such that

(22) I p(z) I (1 - I z \T ^ {n

 w !

l r l (-

39

equation (2) is disconjugate in every non-Euclidean disk of radius

Proof. Let <o satisfy (22) and let G be a given disk in | z \ < 1
with non-Euclidean radius 1/2 log [(1 + ρ)/(l — p)]. By mapping the
unit disk on itself, G can be mapped onto a disk Gλ given by | ζ | < p.
Equation (2) is transformed into (2'). As for linear mappings ζ = ζ(z)
of the unit disk on itself

dζ
dz

_ 1 - ι c ι
1 - U I

we obtain

(23) ( l -

a - icir
From (23) together with (22) it follows that

nl ( n y (1 - p2γ

which for \ζ\ < p gives

(n- I)"-1 \2p) ( 1 - | ζ | 2 ) κ

n\
' (n - l)n~ι \2p

By (21), this is a sufficient condition for disconjugacy of (2') in Glf

\ζ\ < p, and therefore (2) is disconjugate in G. Theorem 3 is thus
proved.

This theorem can be stated as follows: if

(24) I p(z) I (1 — I z \2)n ̂  C < oo , I z I < 1 ,

then equation (2) is disconjugate in every non-Euclidean disk of radius
1/2 log [(1 + pQ)/(l - pQ)], where pQ = g-ι(C) and

g(p) is a monotonic decreasing function. Therefore the smallest C
satisfying (24) gives the biggest non-Euclidean radius.

For n = 2 non-Euclidean disks of disconjugacy were considered in
[2] and [9].
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THEOREM 4. Assume that the analytic function p(z) is regular
in I z I < 1. Let n >̂ 3 and let C be a positive constant. If

(25)

equation (2) i s nonoscillatory in \z\ < 1.

In the case n = 2, equation (4) is nonoscillatory in
there exists x1? 0 < xι < 1, such that

< 1, if

(26)

Proof. Assume that equation (2) has a solution with an infinite
number of zeros in the unit disk. We can then find a sequence of
zeros zu z2, tending to z* on the boundary, | z* | = 1. For any p,
0 < p < 1, let (?(/?) be the intersection of the disk | z — z* \ < p with
the unit disk. Any G(p) contains an infinite number of zeros. Denote
n of these zeros by zί9 •••,«». As in the proof of Theorem 2, we de-
note the convex hull of these n points by H and choose ζ0 e H such
that (14) holds. We choose zi and z2 as in that proof; (15) and (19)
are again valid.

If n ^ 3, then clearly

I ζ0 - Zi I < 2p i = 3, , n .

Using this and (19) we obtain

(27) Π I Co - zt | < (1 - I Co |)(1 + I Co l)(24oy-2 < (1 - I Co | ) 2 - > - * .

From (15) and (27) it follows that

(28) P(Q I >
n\

For any given C, we can find p such that

(29) > C .

From (28) and (29) we obtain a contradiction to our assumption (25),
which completes the proof of the first part of the theorem (n ^ 3).

For n = 2, we choose /> such that p = 1 — # lβ (15) and (19) imply

(30) I p(ζ 0 ) I >
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As a?i < I ζ01 < 1, (30) contradicts (26), which completes the proof of
the second part of Theorem 4 (n — 2).

By [9, Th. 1] the condition

I p(z) I ̂  - — ί - — , \z\>x0, 0 < x0 < 1
( 1 — \Z\ )

is sufficient for nonoscillation of (4) in | z | < 1; hence the second part
(n — 2) of Theorem 4 follows from this theorem.

Nehari has given a nonoscillation theorem for the general equation
(1) in any bounded convex domain. In the case of the unit disk and
the special equation (2) his sufficient condition becomes

(31) \\mΓ\p{reiθ)\dθ
r-*l JO

This sufficient condition (31) implies our condition (25). (See [4, p. 127,

Ex. 8]).

3* Equations of even order n = 2m nonexistence of solutions
with two zeoros of multiplicity m.

THEOREM 5. Let the analytic function p(z) be regular in \z\<l.
The equation

(32) y«»\z) + (-ir+1p(z)y(z) = 0

has no solution having two zeros of multiplicity m in | z | < 1 if

(33) \p(z)\£P(\z\),

where P(x) is a function with the following properties:
( a ) P(x) is positive and continuous for — 1 < x < 1;
y k) j JΓ \ — <\j) — x \w) f

( c) (1 — x2)2mP(x) is nonincreasing if x varies from 0 to 1;
( d ) the differential equation

(34) u{2m\x) + (-l)m+1P(x)u(x) = 0

has no solution with two zeros of multiplicity m in — 1 < x < 1.

Proof, (cf. [5]). Suppose the theorem is false and there exists
a solution of (32) with zeros of multiplicity m at a and β(\a\ < 1,
β\<l,aΦβ). The circle passing through a and β and orthogonal

to I z I — 1 is divided by | z \ — 1 into two arcs. We denote the arc
inside | z \ < 1 by C. Without loss of generality, we may assume that
C is in the upper half plane and symmetric with respect to the ima-
ginary axis. The linear transformation
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(35) z = ζ + fP , 0 ^ p< 1 ,
1 - ^pζ>

maps I z | < 1 on | ζ | < 1 and C on the linear segment — 1 < ζ < 1.
With the aid of Theorem 1 and (23), equation (32) is transformed into
the equation

(36) w<*->(ζ) + (-l)m+1q(ζ)w(ζ) = 0 ,

with

(37)

It follows
tion (c) it

(1

1*01 l**)l

from (35) that I
follows that

- 1 z \JmP{\ z \ ) S

dz 2t

dζ

VII
( i -

n

', if

P(2)

- 1

ζ ypfl

i (1

(1

< ζ

CD

—
—

<

>

12

IC
1.

2\2m

2\2m

He

1 < c < l .

Combining this with (33) and (37) we obtain

(38)

Thus, our assumption that (32) has a solution with two zeros at
a and β of multiplicity m implies that (36) has a solution w(ζ) pos-
sessing two zeros of multiplicity m a t α and δ, — l < α < δ < l . Let
w(ζ) be this solution. Multiplying equation (36) by w(ζ) and integrat-
ing from a to 6 along the real axis, we obtain

w{2m)(x)w(x)dx + ( - l ) w + 1 \h q(x) | w(x) |2 dx = 0 .

Integrating by parts m times and noting that all the integrated parts
vanish, we get

Γ w{m)(x)wim)(x)dx = Γ q{x) I w(x) \2dx .
Ja Ja

By (38) and assumption (b) it follows that

(39) \b I w'm){x) I2 dx ^ Γ P(x) I w(x) |2 dx .
Ja Ja

If we write w(x) = σ(x) + ir(a?), both α* and τ have zeros of multipli-
city m at α and b and we have | w{m) |2 = [σ(m)]2 + [τ ( m )]2. (39) becomes

(40) ({[σ^(x)Y + [τw(x)]2}dx ^ f& P(a;)[σ2(^) + τ\x)]dx .

Let now λ be the lowest eigenvalue of the real differential system
given by
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(41) U{ΐm\x) + (-ϊ)m+1XP(x)u(x) = 0

with a 5Ξ x 5Ξ δ, — l < α < δ < l , and the boundary conditions

u(a) = u'(a) = . . . = »'—1J(α) = 0

u(b) = u'(b) = . . . = ttim-1!(6) = 0 .

As σ and τ are admissible comparison functions for this problem, it
follows by Rayleigh's inequality that

λ \" P(x)σ\x)dx ^ Γ [σίm)(x)Ydx

!;
λ P(a;)r2(x)d* ^ [r(

Combining (42) with (40) we obtain

(43) Γ {[<7(w)(#)]2 + [τim)(x)]2}dx ^ — Γ {[ί7(w)(^
Jα X Jα

Hence, λ ^ 1. If λ = 1, then equation (41) becomes (34), and the first
eigenfunction of the corresponding system contradicts assumption (d).
If λ < 1, we take a <c <b and consider equation (41) for a^x ^ c,
with the boundary conditions

u(a) = v/(a) = ... = u{m-l){a) = 0

u(c) - u'(c) = . . . = ^ (w"X)(c) - 0 .

Let Xp(c) be the first eigenvalue of this system. By the minimum
characterization,

(44) re >

I Pv2(x)dx

where the minimum is taken over the class of all functions v(x) in
Cm (or Dm) satisfying

v(a) = v'{a) = . . . = v^-^ia) = 0

v(c) = v'(c) = . . . = v{m~l)(c) = 0 .

Hence, λp(c) is increasing as c goes from 6 to a. From (44) it follows
that

(45) Xp(c) ^ λ*(c) ,

where k is a constant satisfying

k > P(a ) > 0 in [a, b] .
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Denoting c — a = I and It = x — α, the system

u{2m){x) + (-l)m+1Xku(x) = 0

u(ά) = - = u{m~l){a) = 0

u(c) = = ^(m-1}(c) = 0

is transformed into the system

wv2m)(t) + (-l)m+1Λku(t) = 0

%(0) = . . . = ^"-"(O) = 0

u(l) = . . . = ^ " - " ( l ) = 0 .

Denoting the first eigenvalue of this system by Ak, it follows that

(46) Λk = X

From (45) and (46) it follows that as c goes to a (I—>0), Xp(c) tends
to oo. Hence, there exists a value c19 a <cx<b, such that λ(c:) — 1,
and we again obtain a contradiction to our assumption (d). This com-
pletes the proof of Theorem 5.

For m = 1 Theorem 5 reduces to [5, Th. 1].
We bring now some examples. For m — 2, i.e. for the differen-

tial equation of the fourth order,

yi4)(z) - p(z)y(z) = 0 ,

the following functions may serve as examples in Theorem 5 :

(47) P,(x) = (0.753 τr)4 = 31.28

( 4 8 ) P2{x) = (i-x2γ

and

(49) P,(s) - — * ± — .

Px(x), P2(x) and Ps(x) clearly satisfy assumptions (a), (b), (c) of the
theorem. In order to show that Px{x) satisfies assumption (d), we con-
sider the equation

= 0 ,

which has u(x) = CΊ cos kx + C2 sin kx + C3 cos hkx + C4 sin hkx as ge-
neral solution. The requirement u(±l) — uf(±l) — 0 implies tan hk =
±tan&, the smallest solution of which is k = 2.3550 = 0.753 TΓ. The
equation

?Λ(4)(&) - (0.753 π)4u(x) = 0
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has therefore a solution with double zeros at ± 1 ; in other words, the
first eigenvalue λx of the system

u^{x) - λ(0.753 π)4u(x) = 0

u(±l) = u'(±l) = 0

equals 1. As for any α,6, — 1 < α < 6 < 1, the eigenvalues of the
system

u{i)(x) - λ(0.753 πYu(x) = 0

u(a) = u'(a) = u(b) = u\b) = 0

are greater than the eigenvalues of (50), the system (51) cannot have
an eigenvalue equal to 1. Px(x) thus satisfies assumption (d).

The following inequalities due to Beesack [1, p. 494]

S I f l Q-,,2

V"*dx > — — dx , veD" , v(±l) = v'(±l) = 0
-i j - i ( l — x2y

unless v = A(l — x2f12, and

v"2dx>\ —=^-—dx , veD", v(±l) = v'(±l) = 0
-i J-i ( 1 — X2)2

unless v — A(l — x2)2, imply that P2(x) and PB(x) satisfy assumption (d).

The author wishes to thank Professor B. Schwarz for his guidance
and help in the preparation of this paper. The author wishes to thank
the referee for his helpful remarks.

REFERENCES

1. P. R. Beesack, Integral inequalities of the Wirtinger type, Duke Math. J. 25 (1958),
477-498.
2. P. R. Beesack and B. Schwarz, On the zeros of solutions of second order linear
differential equations, Canad. J. Math. 8 (1956), 504-515.
3. Z. Nehari, The Schwarzian derivative and Schlicht functions, Bull. Amer. Math.
Soc. 55 (1949), 545-551.
4# 1 Conformal mapping, 1st ed., McGraw-Hill Book Company Inc., 1952.
5. 1 Some criteria of univalence, Proc. Amer. Math. Soc. 5 (1954), 700-704.
6. , On the zeros solutions of n-th order linear differential equations, J. Lon-
don Math. Soc. 39 (1964), 327-332.
7. N. E. Norlund, Leςons sur les series dyinterpolation, Gauthier-Villars et Cie, Paris,
1926.
8. V. V. Pokornyi, On some sufficient conditions for univalence, Doklady Akademii
Nauk SSSR (N.S.) 79 (1951), 743-746.
9. B. Schwarz, Complex nonoscillation theorems and criteria of univalence, Trans.
Amer. Math. Soc. 8 0 (1955), 159-186.
χθ. , On the product of the distances of a point from the vertices of a polytope,
Israel J. Math. 3 (1965), 29-38.



46 RINA HADASS

11. E. J. Wilczynski, Protective differential geometry of curves and ruled surfaces,
Chelsea Publishing Company, New York, 1905.

Received February 29, 1968. This paper is based on a part of the author's thesis
towards the D. Sc. degree at the Technion Israel Institute of Technology, Haifa.

ISRAEL INSTITUTE OF TECHNOLOGY



PACIFIC JOURNAL OF MATHEMATICS
Vol. 31, No. 1, 1969

INTEGRAL EQUIVALENCE OF VECTORS OVER
LOCAL MODULAR LATTICES, II

JOHN S. HSIA

In an earlier paper in this Journal we have shown that the
integral equivalence problem for vectors in a modular lattice
L on a dyadic local field F can be determined, for dim Lφ 4,
5, 6, by inspecting the numbers represented in F by the charac-
teristic sets which are canonically associated to the given
vectors. The purpose of this paper is to remove this dimensional
restriction of L. In addition, we shall discuss the effective
determination of integral equivalences amongst vectors as well
as derive some " cancellation " results. Finally, we prove, as
expected, that this same improvement carries over in the
characteristic two situation.

The presentation of the results contatined herein shall be as
follows:

l Preliminary observations.
2* Statement and proof of the main theorem.
3* Effective computability.
4* Cancellation theorems.
5* Characteristic two case.
We shall adhere to the same terminology and notations as those

contained in [2]. The following data will be fixed throughout this
paper. L is a unimodular lattice, u and v are two maximal (primi-
tive) vectors in L having the same quadratic length Q(u) = Q(v) = δ.
Integral equivalence between u and v shall always be denoted by u~ v.

1* Preliminary observations* For any maximal vector w e L,
the characteristic set of w in L is defined as

Έlw = {xeL\B(x,w) = 1} .

It is easy to see that

mw = id + O ) 1 = {w + y\ye<wy}

where Ho is any vector in 3Jίw.

NOTATION 1.1. Almost always when we write

^x + έ?y = A(a, β)

we mean that

47
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(*) Q(x) = a , Q(y) = β , B(x, y) = l .

However, sometimes—and the context under which it occurs will be
clear—it may simply mean that the lattice &x + έ?y is isometric to
A(a, β) without necessarily implying that the basis vectors {x, y) satisfy
(*).

LEMMA 1.2. <V>! = <V>L does not, in general, imply u ~ v.

Proof. Let L = ̂ x + έ?u — A(a', 0) where ar is a norm generator
for 2?L. Suppose v = e[u — (2/a')x] for some unit ε, and y = — ε~\τ.
Then,

A(ε-V, 0) .

Clearly then,

<V>J = ̂ u ^ έ?v = <v>L .

Any isometry σ e O(L) sending u onto v takes x onto, say,

σ(x) = ay + βv,a, βeέ? .

But, B(σ(x), v) = B(x, u) = 1 implies a ~ 1. The length of σ(.τ) must,
on the other hand, be a! so that

(**) a'( X ~~f V + 2/9 - 0 .

This equation (**), of course, does not always admit integral
solution for β when norm generator a9 and unit ε can be arbitrary.
Thus, we can not expect, in general, to have u — v with just requir-
ing their orthogonal complements to be isometric.

1.3. Unless otherwise specified, d i m L ^ 4 shall be assumed
throughout the rest of this paper. To avoid excessive repetitions, let
us fix a few more notations here. For any primitive vector w e L,
and any vector weWv., put

L(w; id) = έ?w + έ7w M(w; w) = L(w; w)- .

LEMMA 1.4. Let dimL be arbitrary. Q($Jlu) = Q(Wlv) implies

Proof. Pick ΰefΰlUJ and veWlv such that Q(u) = Q(v). Let D
be the common discriminant of L(u; ΰ) and L(v; v). Then,
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<v,y = M(u; ΰ) 1 <<7ζu - δΰ> ^ M(u; ΰ) _L

< » x = M(v; v) 1 ^ < > - δv> ~ M(v; v) _L

An application of Witt's theorem yields

Also, it is not difficult to see that hypothesis of the lemma implies
the equality of the norm groups (via 93: 21, [4]) may be assumed:

S?M(u; ΰ) = &M(v; v) = Sf *

when d i m L ^ δ ; here, ^ * = ^(<>>±) = ^(<i;>L). Hence, by O'Meara's
theorem on modular lattices (93:16, [4]) M(u; ΰ) is isometric to M(v; v).
So let dim L = 4. Adjoin the hyperbolic lattice A(0, 0) to L and call
the enlarged lattice I/ . Then, ζu)L is isometric to ζvyL in I/. But,

<u>x(in U) = <u}} (in L) ± A(0, 0) ,

and similarly for <V>L. Cancelling A(0, 0) gives the desired result.
When dim L ^ 3, the proof is entirely trivial.

REMARK 1.5. The proof of Lemma 1.4 is one without using the
fact that <3(2ftJ equals Q(^Sflv) implies u — v for large enough dimen-
sion of L as we did in Corollary 4.2, [2].

LEMMA 1.6. If \8\ = 0,1, then Q(MU) = Q(2RV) implies u ~ v.

Proof. By Lemma 1.4, ζu}L ~ ζv)L. If δ is an unit, then every-
thing is clear. Otherwise, let δ = 0. Let ΰ and v be the two vectors
as in Lemma 1.4, then we have the radical splittings

= Rad <u>x JL M(u; ΰ) = ^ u ± ikf(^; u)

= Rad <v>1 _L Λf(t;; v) = ^ t ; JL Λί(v; ϊ;) .

But, in this case

(u)1 = <V>X if and only if M(u; ΰ) = Λf(t;; v ) .

In view of this Lemma 1.6, we shall henceforth, unless otherwise
noted, assume that \δ\ is neither 0 nor 1.

1.7. In the proof of Theorem 4.4, [2], an important fact used
was Lemma 4.5, [2], whose proof can be much simplified by observing
that in the case when both u and v are Type I vectors, Q(Wflu) equals
Q(ίΐftv) implies u and v are of the same parity, and also (u}L is iso-
metric to <V>X via Lemma 1.4. Therefore, u — v by Proposition 3.5,



50 JOHN S. HSIA

[2]. Hence, Lemma 4.5, [2] becomes easy to see.

2* Statement and proof of the main theorem*

MAIN THEOREM 2.1. Let L be an unimodular lattice over a
dyadic local field; then, two maximal (primitive) vectors in L having
the same quadratic length are integrally equivalent if and only if
their characteristic sets represent the same numbers in the field.

NOTATIONS 2.2. Put Sf * = %?«u>L) = S^O) 1 ). For any ΰ e
we set

λ- = δQ(ΰ) - 1 ,

the discriminant of <^ΰ + ^u. The letters α, b shall always be
used for norm and weight (base) generator of S^L respectively;
similarly, α* and δ* for the norm group S^*.

2.3. In view of Theorem 4.1, [2], it suffices to prove for dimL =
4, 5, 6. Proposition 3.5, [2] allows us to assume that both u and v
are Type II vectors.

2.4. Because u and v are Type II vectors, we may further sup-
pose henceforth that ζu}1 (hence, also ζv}1) are not "depleted" in
the sense of [1], For, if not, then the norm group of M(u; ΰ) will
be equal to &*,vΰeWlu. Consequently, the integral equivalence be-
tween u and v may be readily deduced from the hypothesis of the
Main Theorem. So, in particular, α*δ* ~ π (i.e., ord α* + ord 6* is odd).

2.5. Roughly, we first observe that the number δ may be assumed
to have a special feature. Using this "reduction lemma," we settle
the 4-dimensional case by computational means; in the case of dimL
equals five, we shall show that the hypothesis, and hence also the
conclusion, of Theorem 4.4, [2] is satisfied. Finally, the dim L = 6
case falls through by a modified argument tailored after the 5-dimen-
sional situation.

LEMMA 2.6. // the quadratic defect Sf{δX-a*) is strictly con-
tained in the ideal a*b*& for some norm generator α* of &*, then

' ) S α * δ * ^ for every norm generator a' of &*.

Proof. Put δ\u = a*t2 + b*t2 + δ χ t,aeέ?. Now, u is a Type
II vector implies | ί | < l . The hypothesis together with the fact
that α*6* — π yields \a\ < 1. Now then,
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a' = α*ε2 + b*M, \e\ = 1, Me &

and

(o) hχ-a' = a*ψe + α*δ*αε2 + a*t*b*M + b*2aM .

The quadratic defect of the right hand side of (o) is clearly contained
in a α*6*^ since each of the last three terms is in it.

COROLLARY 2.7. If lue-$Ru such that for some a*, we have
&(dX-a*) = α*&*^ then, &(dXφ') — a*b*<^ for every norm generator
<L* Of 5?*.

COROLLARY 2.8. // lΰeMu such that for some α*, we have
^(δλ^α*)9α*&*^, then for every xeWlu such that λ ^ e λ ^ 2

denotes the group of units in έ?), the inequality below is valid

/ ) g α * 5 * ^ , af norm generators of &* .

REDUCTION LEMMA 2.9. We may henceforth assume that

for every ΰ&Έlu and every norm generator af of 5f*. (Of course,
the same goes for all veWlυ and all a! of <&*.)

Proof. Since u is a Type II vector so that, by definition, for
each vector u e $Jl%, the sublattice M{u; u) has norm ideal equal to
α * ^ . If there exists a vector ue$Ru with the property that

then Corollary 2.8 together with a simple computation of the weight
ideal Ύ^«uY) of <uY tell us that ^M{u; u) equals 6*^. In other
ivords, we have an equality of the norm groups

%?M(u;ΰ) - 5f* .

Now, pick any veMv with Q(v) = Q(ΰ). Since λ ^ G λ ^ 2 , Corollary
2.8 implies that the norm group of M(v;v) must equal to Ŝ 7* also.
Hence,

M(v; v) = M(u; ΰ)

by Witt and O'Meara. Thus, u ~ v.

2.10. What Lemma 2.9 says, in effect, is that for any norm
generator α* and weight generator 6* of 5^*, and any vector ue$Jlu,
the number δ has the special feature that
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δx- = a*t2 + δ*7

where 7 is an unit. (Of course, t is not an unit by Type Π-ness.)

2.11. Proof of the Main Theorem for dim L = 4.

Proof. The following claims may be readily proved and we do
not give the proofs here:

(I) For any binary nondepleted unimodular lattice K, whenever
K is represented as K ~ A(a, 7) either a or 7 must be a norm
generator for &K and furthermore, the quadratic defect £&(ay) must
be ^V~L-W~L.

(II) If K has same hypothesis as in statement (I), and if, say,
a is a norm generator for &K and Q(x) = a, for some xe K, then
K = <^x + &y = A(a, β)—where one may take, if needed, β to be a
weight (base) generator.

SUBLEMMA. Suppose K = cώ^(a, b) with ab ~ π and b & 2έ?—in
Riehm's notation, see [6]—and if L is any binary unimodular lat-
tice such that FK (i.e., F(&#K) is isometric to FL, and a'eQ(L)
is a norm generator for both &L and &K, then K = L.

Proof. Let Q(x) = α', for some primitive vector xeL. FL iso-
metric to FK implies the discriminant of K equals that of L so that
if we write the common discriminant as — (1 + a) whose defect is aέ?,
then

L ~ c^(a', —aa'~ι) .

It is easy to see ord( — aa'-1) = ord (b). Hence, their weights (and
therefore their norm groups as well) are equal.

SUBLEMMA. There exists a vector ΰ e -$Jlu such that M(u; u) has
norm group equaling to <&*.

Proof. Choose any u e Έiu. If the norm group of M(u; u) is not
Ŝ 7*, we put

< » J ~ M(u; u) _L <δλ̂ > ,

where, since L is 4-dimensional M(u;u) is isometric to A(a*,β). (N.
B. We used Type Il-ness here.) Performing an ow-transform (see [5])
changing β to β j_ SX^ we see we endup with

<X>L = M(u; ΰ) _

where
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M(u; ΰ) = A{a*, β _L δX^)

whose norm group is obviously that of ^ * .

Using the results collected in this § 2.11, the proof of the dim L = 4
case is apparent. Indeed, choose such a vector ΰ in Wu as mentioned
in the sublemma. Choose a veTtv having Q(u) — Q(v). Since 2.4
allows us to assume <V>L is not depleted, one of the sublemmas im-
ply ies immediately that M(u; u) = M(v; v).

2.12. Proof of the Main Theorem for dim L = 5. In view of
Theorem 4.4, [2], it is sufficient to prove the following statement.

PROPOSITION. Let dim B be either 5 or 6, u be a Type II vector
in L with <V>X being nondepleted; and Q(u) = δ is a number satisfy-
ing the equation in § 2.10. Then, there exists a vector ΰ e Ίίtu such
that M(u; ΰ) is isotropic.

Proof. Recall 5?«u»ι = %?* = a*έ?2 + b*έ?, for any norm
generator α* and weight generator 6* of Sf(^X). Pick any u from
Wlu. We see by 93:21, [4], the sublattice M(u;u) may be assumed
to have norm group equal to 2^*.

If dimL - 5 then by 93: 18, [4],

M(u; u) ~ A(V, Apb'-1) J_ < -

where A = 1 — 4p. Here again, V can be any weight generator! And
d is the discriminant of M(u; u). But, clearly by a suitable op-trans-
formation on M(u; u), we can have the following splitting:

( * ) M(u; u) ~ A(b' 1 (-dJ)s2, Apb'~ι) ± <ε>

for some unit ε; s can be any integer.
Now, § 2.10 tells us that

-δxz = (-dJ)f + b ,

where b is a weight generator and t is not an unit because of Type
H-ness. All we have to do next is to let b' to equal to b and apply
the above op-transform so that s = t. Finally, apply another op-
transform on <V>\ this time, changing br JL ( — dA)s2 into

6' _L (-dJ)s2 J_ δX- = 0

and the resulting picture looks like

<XX ~ A(0, 0)
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for some unit μ and some u e 3JΪW. (N.B. We get surely an hyper-
bolic component because Apb'"1 lies in 2<^\) This is, of course, the
vector ΰ that does the job for us.

The proof of the case for dim L = 6 is almost identical except
there the original sublattice M(u; ΰ) looks like

M(u; u) s A(b'9 ±ρV~ι) I A{a', [1 -

for arbitrarily chosen norm generator a' and weight generator b'.

REMARK 2.13. An important observation to be made in the proof
of the proposition in § 2.12 is that under the conditions given in that
proposition, one can always derive a vector ΰ e 9KW such that the
sublattice M(u; ΰ) has an hyperbolic component. This is the key to
the short proof the dim L = 6 case of our Main Theorem to be given
below. Our first proof for this 6-dimensional situation involved long
and elaborate arguments treating the vectors "case by case"; that is,
considering them when they are both ^r- (gf-) regular, irregular,
... etc. Yet, it is precisely by looking at them at such detailed level
that enabled us to realize the necessity for some result like our
"Reduction Lemma", and hence the equality in §2.10.

2.14, Proof of the Main Theorem for dimL = 6.

Proof. By § 2.13, choose a vector ΰ e 2KW such that M(u; ΰ) in-
corporates an hyperbolic component. [N.B. Strictly speaking, the ex-
istence of such a vector ΰ e Wlu has thus far been verified only when
M(u;ΰ) assumes the so-called "if-form", see 93:18, [4]; that is

M(u; ΰ) ~ A(V, 46'-1) 1 A(a', [1 -

It is not difficult to see, however, that if M(u; ΰ) assumes the "J-form":

M(u; ΰ) = A(b'f 0) l A(α', -aa'~ι)

where a is that integer such that

then, an entirely analogous argument carries through.]
A word of caution! The temptation here is to cancel the A(0, 0)

component in both (u)L and ζvy1, and then claim a "reduction" to
the quaternary case. The fallacy is clearly that the resulting charac-
teristic sets in the now smaller lattices need not necessarily represent
the same field elements any more! What one can claim instead is
that one can indeed find a vector w* in Mu such that M(u; u*) has the
"J-form" because
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s A(a*f •) 1 A(0, 0)

^ A(α*, •) 1 A(δXΰ, 0) ± <βK*> for some u* e

~ A(a*, •) i- A(δ*f 0) _L

Pick any v* from Wtv such that Q(v*) equals Q(u*). Put

for some 6 e <£?. We now claim Mfy; v*) must also assume a "J-form"
This is clear when α*6~l. On the other hand, if a*b~π, then δ*6~l
so that since FM(u; u*) is isometric to FM(v; v*), our claim becomes
clear. Therefore, we have

M(v; v*) = A(a*, •) JL A(b, 0)

and

<^>i ~ M(v; v*)

We are now presented in a situation which is strikingly similar to the
5-dimensional case in Theorem 4.4, [2]. Indeed, if 6 has order greater
than that of 6*, a similar op-transformation finishes the proof.

2.15. The proof of the Main Theorem is now complete.

3. Effective computability*

3.1. Binary case* Given a maximal vector u with quadratic length
Q(μ) = δ, it is easy to find a vector ΰ from Mu. Do the same for v.
Compute Q(ΰ) and Q(v) and see if they are congruent modulo o)^,
where ω, as usual, denotes max {<?, 2}. If they are, then it is easily
verified that u and v must be of the same parity so that Theorem
2.1, [2], tells us u ~ v. If not, obviously u and v are not of the
same parity. Hence, u and v are not integrally equivalent. Since the
vectors u and v are arbitrarily chosen, we see the actual computation
involved for checking integral equivalence in dimL = 2 is quite minimal.

3.2. Computationally, it is not always a pleasant task to deter-
mine Q(Wlu) for a given vector u. Fortunately, for sufficiently large
dimension of the given lattice L, say dimL ^ 5 , there is a good
remedy. We have, indeed the following result.

THEOREM. Suppose one can find a single pair of vectors ΰ e SKM

and veWlv such that Q(ΰ) = Q(v), and suppose further we have
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then, u ~ v whenever dim L ^ 5.

Proof. Express

<u>L = M(u; u) J_

By 93:21, [4], there is a Jordan decomposition

O ) 1 s M(u; v,*) _L

such that Xu* = λ*, and ^(M(u; u*)) = S^*. Do the same for vector
v. We see then the norm groups for M(u; u*) and M(v; v*) are equal
and moreover, ζu}L = <V>L, whenever % and # are anisotropic vectors.
If 8 should be zero, then modulo radicals <V>X is just M(u; ΰ).
Similarly for <¥>L. But, ^«n}L) = &(M{u; ΰ)) so that the hypothesis
that the norm groups for <V>L and <V>X being equal implies here their
isometry.

Suppose, for the moment, that dim L ^ 7, then dim M(u; ΰ) g: 5
so that

Therefore, the hypothesis of the theorem here implies Q(2Ktt) =
and ^ — v by the Main Theorem.

For dim L = 6, again ikί(^; ΰ) represents every element of its own
norm group by a theorem of Riehm, see Theorem 7.4, [6]. So, once
again u ~ v by Main Theorem.

Let dim L = 5. If % is ^-regular and S satisfies condition (D) in
the sense defined in §3, [2], then it is not difficult to see with the
help of Corollary 3.3, [2], that u ~ v. If δ does not satisfy condi-
tion (D), then, since we have already shown that ζu}L = <V>X, we
deduce u ~ v by Proposition 3.4, [2]. So, let u be %Ar-regular, but
^-irregular. If £^(δλ^α*)§Ξα*&*^ = 6*^, then, we can show, by
same argument in the proof of Main Theorem, that 5^(M(u; ΰ))
would equal to S^7*. Similarly, for t and M(v; v). Thus, u — v. If,
on the other hand,

then, as in §2.14, we can find a vector u* such that M(u\ u*) supports
an hyperbolic component and again we get

Q(M(u; u*)) = %?(M(u; u*))

by Theorem 7.4, [6]. Everything repeats once more; u ~ v is there-
fore clear.

The theorem is therefore proved.
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COROLLARY 3.3. If dimL ^ 6, S^«V>L) equals ^ ?«i;> 1) and there
exists a single pair of vectors ΰ e %RU and v e Tlv such that

Q(u) = Q(v) mod 5f (O) 1 ) ,

then, u ~ v.

REMARK 3.4. As in the binary case, if one can concoct a single
pair ΰ e Tlu and ve Wlv such that Q{u) is not congruent to Q(v) modulo
5^*, then u can not be integrally equivalent to v. Here again, there-
fore, the computation is reduced essentially to finding the norm groups
for <V>L a n d (vyλ The Jordan decompositions involved are rather
simple and the associated fundamental invariants can usually be read off
directly from an arbitrary Jordan splitting. In the cases for dim L — 3,
4, it is expedient to check the classification of the given vectors u
and v and then employ the results contained in § 3, [2]. The excep-
tional cases in these dimensions must be handled via characteristic
sets, which for such low dimensions are not computationally unman-
ageable.

4* Cancellation theorems*
One of the basic results in the study of integral quadratic forms

over dyadic local rings is a result of O'Meara's which allows one to
(orthogonally) cancel hyperbolic components. Over fields (characteristic
not two), the classical Witt's Theorem can be stated in any of the two
equivalent forms: the cancellation version and the extension version.
The solutions given in this paper and in [2] completes the investigation
of one-dimensional integral analogue of Witt Extension Theorem for the
case of modular forms over any dyadic local ring. (N.B. Over rings,
cancellation is not equivalent to extension.) At present, the theory of
orthogonally cancelling equivalent forms over rings (even over dyadic
local rings) is still practically nonexistent. In this short section, we
observe some immediate consequences of our Main Result and others
from §3.

NOTATION 4.1. If T are S and isometric sublattices of a given
lattice L and if te T, se S, then we write t ~ s over [T: S] to mean
that there is an isometry σ on L such that σ(t) = s, and o(T) — S.

THEOREM 4.2. Let L = Ku l Ju = Kv JL JV with Ju ^ Jv and
ue Ku,ve Kv. Moreover,

Q{JU) c Q(Ttu in Ku)

Q{JV) S Q(mv in Kv) .

Then, u — v over L implies u ~ v over [Ku : Kv].
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COROLLARY 4.3. // u is integrally equivalent to v over

K j_ A(0, 0) ± Λ(0, 0)

where u and v both lie in K, then u ~ v over K _l_ A(0, 0). (N.B.
Thus, if there are two hyperbolic components in the orthogonal com-
plements of the vectors, one can always cancel at least one ef them.)

COROLLARY 4.4. Let L = Ku _L Ju = Kv j_ /„

u 6 ϋΓM, v 6 Kυ, dim ϋΓ% ^ 6. Furthermore, g?Ju g ^ « i 6 > 1 m Ku) and
&JυS &(ζyyL in Kv) Then, u~v over L implies u~v over
[K,: £•.].

5* Characteristic two case* Although there is no longer the
possibility for L having dimension five, it is not difficult to see
that the techniques introduced in the proof of the Main Theorem
in § 2 carry through here in the characteristic two case—with obvious
parallel arguments. Hence, the actual proofs are left as exercises to
the readers. (Note, for example, that the case when both u and v
are both Type I vectors is once more being taken care of by a result
like that of Proposition 3.5, [2]. However, the proof for this propo-
sition must be modified as follows. Pick any u from Tlu. Let σ be
the isometry sending <(u)L onto ζvyL. Put

σM(u, ΰ) — M(v, v)

for some veWlv. If d is integral, then the hypothesis of u and v be-
ing of the same parity implies the equality of norm groups

SfL(M, u) - gfL(v, v) .

Hence, an isometry between the lattices L(u, ΰ) and L(v, v) by theorems
of Sah and Arf (the characteristic two parallels of O'Meara and Witt).
If d is not integral. Once again, define the space isometry:

Φ: FL(u, ΰ) > FL(v, v)

sending u onto v and u + δΰ onto μv + δv, where μ is that number
in the ground field which appears from comparing the Arf invariants
—instead of the discriminant comparisons as in the characteristic zero
situation—of the two lattice. Namely,

δQ{ΰ) = δQ(v) + μ2 + μ .

It is readily checked that Φ indeed is an lattice-isometry between
L(u, u) and L(v, v).

Again, when δ is integral: after seeing L(u, ΰ) is isometric to
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L(v, v). We apply Theorem 2.1, [2] whose characteristic two analogue
was proved in [3].)

Thus, we state the result:

THEOREM. Let L be any unimodular lattice over the local ring
& — &[[ττ]] of formal 'power series in one nniformizing variable π
and k being a finite field of characteristic two. Two maximal vectors
having same quadratic lengths are integrally equivalent if and only
if their respective characteristic sets represent the same elements in
&'. (N.B. The result is of course valid for any 3ϊ-modular lattice, Sί
a fractional ideal in the quotient field of &.)

Clearly, the discussion about effective computability treads through
a parallel course.
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BOUNDARY BEHAVIOR OF RANDOM VALUED
HEAT POLYNOMIAL EXPANSIONS

ROBERT B. HUGHES

This paper is concerned with random series of the form
2^=0 Xn(<o)anvn(xt t) where the Xn's are random variables, the
α/s are real numbers, and the vn

9& are heat polynomials as
introduced by P. C. Rosenbloom and D. V. Widder. The se-
quences {an} are assumed to satisfy lim supw-*oo | an \2/n(2n!e) =
1 which implies Σ~=o anVn(%, t) has 11 \ < 1 as its strip of con-
vergence, i.e., it converges to a C2-solution of the heat equa-
tion in 111 < 1 and does not converge everywhere in any
larger open strip. Associated with each sequence {an} is its
classification number from [0,1] which indicates how rapidly
an tends to zero. Assumptions are placed on the random
variables which imply that for almost every ω the series
Σ?=o Xn((o)anvn(xf t) has [ ί I < 1 as its strip of convergence.

The main results of the paper are two theorems. The
first states that if {an} has its classification number in [0,1/2),
then for almost every ω the lines t = 1 and t — — 1 form the
natural boundary for ^?=o Xn(ω)anvn(x, t). The second is con-
cerned with sequences having their classification numbers in
(1/2.1]. The conclusion implies that for almost every ω no
interval of either of the lines t — 1 or t — —1 is part of the
natural boundary for Σ~=o Xn((o)anvn(%, t).

The present work had it original motivation in the study of the
boundary behavior of random power series. These are series of the
form ΣΓ=o aΛω)zn where the an's are complex valued random variables
and z is a complex number. Reference [1] contains a history of re-
sults in this area. One of the early results which helped to motivate
the first part of the proof of our Theorem 1 is due to Paley and
Zygmund in a 1932 paper [see 6, p. 220]. In this theorem it is as-
sumed that ΣΓ-o a<nZn is an ordinary power series with a finite radius
of convergence. Letting {φn} be the sequence of Rademacher func-
tions, the conclusion is that for almost every ω in [0,1] the series
Σϊ=o Φn(ω)a<nZn has its circle of convergence as its natural boundary.

More recently [see 3] V. L. Shapiro has considered series of the
form X^=o Xn(o))Hn(x) where the Xn's are random variables and

Σ Hn{x)

is the spherical harmonic representation of a harmonic function in the
unit ball. The harmonic continuability across the boundary of the
unit ball of the functions Σ»=o XJfi))Hn(x) was investigated. This

61



62 ROBERT B. HUGHES

work further motivated the first part of the proof of our Theorem 1
and influenced our choice of the class of random variables to be con-
sidered.

2* Definitions and preliminary comments. For a point (x0, t0)
in the plane and a number p > 0 we let

S(x0, to; p) = {(x, t): I x - xQ \ < p and 11 - t0 \ < p) .

If u(x, t) is a C2-solution to the heat equation in the strip \t\ < σ we
say the line t — —σ{t = σ) is part of the natural boundary for u in
case for every x0 and every p > 0 there is no C2-solution v(x, t) in
S(x0, —σ; p) (S(x0, σ; p)) which agrees with u(x, t) where u and v are
both defined.

Let Eo be the set of all sequences {an}ζ=0 of real numbers. For
r > 0 let

Er = {{an} e Eo: | an \ (2n/e)^2 = O(e~nr) as n ~> oo} .

We call sup {r: {an} e Er) the classification number of {an}.
Explicitly, from [2, p. 222]

(2.1) vΛ(x, t) = n\ Σ * O M f | r , n = 0f 1,
AO (^ 2Λ)! k\

In [2, Th. 5.3, p. 231] it was shown that the series Σ?=o <vM#> *)
converges to a C2-solution of the heat equation in the strip 11 | < σ
where

(2.2) σ = (lim sup | an \2ln(2nle)yι

and that this strip is the largest open strip of convergence of the
series. One easily shows that sequences {an} satisfying

lim sup I an \2ln(2n/e) = 1

have their classification numbers in [0,1].
We will make repeated use of the following bounds which appear

in [4] by S. Tacklind. Assume u(x, t) is continuous on the rectangle
R = {(χ91): I x I <; £f, 0 <; t ^ Γ}, is a C2-solution to the heat equation
in the interior of R, and μ is an upper bound for | u(x, t) | on R; then
u(x, t) is in class C°° on the interior of R and for n = 2, 3, , | x \ <
^ and 0 < t ^ T

(2.3,
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3* THEOREM 1. Let {Xn}n=0 be a sequence of symmetric inde-
pendent random variables defined on the complete probability space
(Ω, _^7 P) and satisfying

( i ) there exists a number M such that

\ I Xn(ω) \2dP(ω) ^ M for n = 0,1, , and

(ii) there exists N > 0 such that

N ^ \ I Xn{ω) I dP(ω), n = 0,1, . . . .

Assume {an} satisfies lim sup | an \
2ln(2n/e) — 1 and has its classification

number in [0,1/2). Then for almost every ω in Ω the lines t — 1
and t = — 1 form the natural boundary for

oo

ujx, ί) = Σ XΛω)αΛ(£, ί) .

Proof. Letting Ω' = {ωεi3: Σ"=o Xw(ω)αίlv?1(a;, ί) converges in the
strip I ί I < 1}, we will first show P{Ω') = 1. Clearly

[ l i m s u p I Xn \21n ^ l ] Ώ U Π l \ X n \ ^ n M 1 ' 2 ]
k l k

and by the Borel-Cantelli Lemma the last set has probability 1 since
P[\ Xn I > nM112] ^ 1/n2 from (i). Hence

P{ω: lim sup | Xn(ω)an \2ln(2n/e) ^ 1} = 1

which by (2.2) shows P(Ω') = 1.
The following fact is essentially a merger of Lemma 1 from [3]

and a special case of Lemma 2 from [3]. There exist numbers Λ in
(0,1) and B > 0 with the following property: for E e J^ with
P(E) > A there is a positive integer n0 such that for n ^ nQ, every
sequence {Cj}J=0 of real numbers, and k ^ 1 we have

(3.1) Σ c} ^ β (

We will show that for almost every ω the line t — — 1 is part of
the natural boundary for uω and will use this in the proof for the
line t = 1.

Assume it is false that for a.e. ω in Ω the line t = — 1 is part
of the natural boundary for uω. The first part of the argument we
give in order to obtain a contradiction is analogous to parts of the
proof of Theorem 1 in [3] by V. L. Shapiro. We will employ (2.3),
(3.1), and an asymptotic estimate for heat polynomials from [2] in
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order to obtain conditions on the sequence {an} which contradict the
fact that the classification number of {an} is in [0,1/2).

Let E — {ωeΩΊ t = —1 is not part of the natural boundary for
uω}. Then either (i) EίJ^ or (ii) EeJ?" and P(E) > 0. Using the
fact that the real line is separable and the countable additivity of the
probability P, it follows that there exist a real number x0 and p0 > 0
such that Ex = {a) e E: there is a C2-solution to the heat equation in
S(x0, —l po) which agrees with uω where they are both defined} satis-
fies either (i) Eγ £ j^7 or (ii) E,e^ and P{EX) > 0. For i = 1, 2, . .
define

2ίi = \E2ίi = \ω e Ω'\
I

(x, t) ^ immm for (a?, ί) in s(x0, - 1 ; -^-1 ,
V 2

111 < 1, and m — ί, i + 1, >

and let ^ = UΓ=i -Ê ,*. ^2 is in the tail <7-field generated by the in-
dependent Xn'&. From (2.3) it follows that E, c E2. By Kolmolgorov's
zero-one law P(E2) — 1. Let A and I? be as in (3.1). Take i0 suf-
ficiently large that P{E2Λ) > A and let w0 correspond to E2>iQ as in
(3.1). Now let m ^ max {nOf %} and let (x9t) be in S(a?0, — 1; po/2)
with I ί I < 1. Then by (3.1) for k = 1, 2, . . .

v — m)!

Σ , ^
E2>io Ln=m (n — m)!

Making use of the independence and symmetry of the random varia-
bles and of condition (i) we see that the integrand of the last integral
is Cauchy in the variable k in U(Ω) and thus in L\E2>i). Hence

00 Γ w\ Ί 2

v V± anvn Jx, t)
έLL(n- m)l J

2dP(ω) ^ BiT
dxn

with the last inequality following from the definition of E2tiQ. We
conclude that for every m ^ max {n0, %}, every n^ m, and every
(x, t) in S(&0, — 1 ; po/2) with | ί | < 1; we have

(3.2)
— m)!

, ί) | ^
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It follows from Theorem 3.1 of [2] that there exist numbers A and
l0 such that for n^> lQ

sup \vn(x, - 1 ) | ^
\^~XQ\<P0I2

T h u s f r o m (3.2) w e h a v e f o r n>m + lo>m^ m a x {n0, %}

I an I V* A[2(n - m ) / e ] ( w - m > / 2 ^ Bll2i^mm .
(n — m)\

Employing Stirling's theorem we see there is a number C such that
for n>m + lQ>m^ m a x {n0, %}

(3.3) I an I (2n/ey'2 ^ Γ Cm

Let r be a number which is strictly greater than the classification
number of {an} and strictly less than 1/2. Let m be related to n by
m — [4nr] + 1 where the brackets denote the greatest integer func-
tion. Then from (3.3), for sufficiently large n,

(3.4) I an I (2n!e)nl2 ^ (1 - 4/wl"r)(*1"r/4)'8'*r .

For large enough n, (1 - 4/^-r)(wl~r/4)'2 ^ 1/β and thus from (3.4) we
have for such n, \an\ (2n/e)nl2 ^ l/en\ Hence {an} e Er which con-
trandicts the fact that r is strictly greater than the classification
number of {an} and concludes the proof for the line t — — 1.

For the last part of the proof we find it convenient to introduce
the probability space (Rω, j&", μ') which we now describe.

Rω = Π R«

where each Rn is the set of real numbers. Let J^J be the field of
all subsets of Rω of the form B x (Π.n=nQ+iRn) where n0 is a positive
integer and B is a Borel set in Πϊ=o^» Let J%? be the σ-field
generated by j*J. Let μ be the probability on (JSω, Sf) which is
induced by the Xn's. Then (Rω, jtf", μ') is the completion of (J?ω,

μh
Let {̂ }Γ=o be a sequence of ±Γs. Define T:Rω-+Rω by

Notice that

I (α,, K] x κ Π Λ ) = Πo P[Xn 6 (o., δ,J]

= Πo P[Xn e J7,(α,, 6J] = / / ( τ ( π («« 6.1 x M _Π + I Λ.



66 ROBERT B. HUGHES

where we have used both the independence and symmetry of the X/s.
From this it follows that for A e sf!, μ'(A) = μ\T{A)). We will make
use of this fact twice in the remainder of this proof.

To finish the proof it suffices to show that for a.e. p e Rω the
line t = 1 is part of the natural boundary for

up(x, t) = Σ πn(p)anvn(x, t)

where the πn's are the projection random variables. Suppose this is
false. From the first paragraph of the present proof we know Rwf =
{peRω:Σ^oπn(p)anvn(x, t) converges in 11 \ < 1} has ^'-measure 1.
Now let F — {peRω'ι t = 1 is not part of the natural boundary for
up}. Then either (i) Fξ s/', or (ii) Fejy' and μ\F) > 0. It follows
that there exist numbers α, b, p with a < δ and p > 0 such that Fι =
{peRω': there is a function vp(x, t) which is continuous on a ^ x <̂  6,
0 <£ t <̂  1 + p; is a C2-solution to the heat equation for a < x < 6,
0 < t < 1 + p; and agrees with up(x, t) in a ^ x ^ δ, 0 ^ t < 1} satis-
fies either (i) Fλ £ j y" , or (ii) Fλ e s/' and ^'(FO > 0. But F1 = {p e Rωr:
lim ί T l up(a, t) and \imtUupφ,t) both exist}. Fλ is in the tail σ-field
generated by the independent 7Γπ's. From the zero-one law, μ'{F^) = 1.

Either a Φ 0 or δ ^ 0 and for definiteness we assume a Φ 0.
Then F 2 = {pG 22°": l i m m up(a, t) exists} has μ\F2) = 1. Let Γ: Rω-+Rw

be defined by Γ((f0, ς :, •)) = (ς0, — ίi, ς2, ~f3, •)• % our earlier
comments concerning such mappings we have μ'(F2 Π T(F2)) = 1. For
peRωf and | ί | < 1 one checks that uτw( — a, t) — up(a,t). Hence for
peF2Π T(F2),Iimtuup( — a,t) and l im ί T 1 up(a, t) both exist. Thus for
pe F2Π T(F2) there is a function wp(x, t) which is continuous in \x\ S
&, 0 ^ t ^ 2; is a C2-solution to the heat equation in | x \ < α, 0 < t < 2;
and agrees with up in | x \ ̂  α, 0 ^ ί < 1. For p e F 2 Π ΪXi^) and 0 ^
ί ^ 2 let φv(t) = wp(0, t) and γp(t) = (dwP/dx)(0, t). Then, employing
(2.3), we see that ψp and ψp are in class C{(2n)l} on [0, 2] (a function
/ is in class C{(2n)l} on an interval / if / is in class C°° on I and
there exist constants β and B such that for every t in I, | / ( Λ )(ί) | ^
βBn(2n)l,n = 0, 1, •••).

Now let T':Rω-+Rω be defined by

r ( ( ς 0 , flf . - . ) ) = (fo, ίi, -f2, ~ ί s , ζt, ί5, - ί 6 , ~ ί 7 , •••)

Then for peRωf and 111 < 1, ^ ( 0 , t) = wΓ,(3>)(0, - ί ) and

d^p (0, ί) - ^ Γ / ( p ) ( 0 , -t) .
5 9x

For p in the almost sure set T\F2 Π Γ(F2)) we have T'(p) eF2Γ) T(F2)
and we define φp and α/r̂  on [ — 2, 0] by $,(£) = φτ>u)( — t) and
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thereby obtaining class C{(2n)l} extensions of up(0, t) and (dup/dx)(0, t)
on [-1, 0]. Thus for peT'(F2 n T(Ft))

A ' } & (2n)l 0
+ Σ

(2n)l -0 (2n + 1)!

provides a solution to the heat equation which is a C2-extension of
up into some rectangle \x\ < r, — 2 < t < 0 which contradicts the
first part of the proof.

4* THEOREM 2. Let {Xn} be a sequence of independent random
variables over a probability space (Ω,J^,P) which satisfies (i) and
(ii) of Theorem 1. Assume {an} satisfies lim sup | an \2ln(2n/e) = 1 and
has its classification number in (1/2, 1] Then for almost every ω
in Ω the following holds: \ t | < 1 is the strip of convergence of
ΣΓ=o Xn(ω)anvn(x, t) which for every £^ > 0 can be extended as a
C2-solution of the heat equation into { | ί | < l } U { |

Proof. We will first show for almost every ω in Ω that 11 | < 1
is the strip of convergence of Σ~=o Xn(<o)anvn(x, t). By (2.2) we must
show that almost surely lim sup | Xn{ω)an \2ln(2n/e) — 1. The argument
given in the first part of the proof of Theorem 1 shows that almost
surely the last limit superior does not exceed 1. Let {%} be a strictly
increasing sequence of positive integers such that

l im I an. \
21

Then lim sup | Xn(ω)an \2ln(2n/e) ^ lim s u p ^ I Xn.(ω)an. \21^(2nj/e) ^ lim
sup^oo I Xn.{o)) \21nj which by the zero-one law is equal to some number
c almost surely. Suppose c < 1. Then Xn.—>0 almost surely. By
(ii) for A > 0 and j = 0,1, .

dP(ω) + A"1 [ | Xnj(ω) \2dP(ω) .

By the Lebesgue dominated convergence theorem the next to the last
integral tends to 0 as j tends to oo. From (i) the last term is uni-
formly bounded by A~ιM. Thus for every A > 0, N £ A~XM which
is a contradiction. We conclude that c ^ 1. Thus almost surely

lim sup I Xn{ω)an \2ln(2n/e) ^ 1

which concludes the proof that almost surely this limit superior is 1.
In order to establish Theorem 2 for the line t = 1 we first con-

struct a function which is C°° on the closed strip 11 \ ̂  1 and has a
heat polynomial expansion in 11 \ < 1. Let r be a number which is
strictly greater than 1/2 and strictly less than the classification num-
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ber of {αj. For n = 0,1, define an = (2n)e~nr. Define / on
[ — 1,1] by f(t) = Σ~=o <****• We will show this definition makes sense
and obtain some bounds on the derivatives of / .

Let n be a nonnegative integer. Differentiating ΣΣU^M* term
by term n times yields Y£=nk\l{k - n)\akt

k-n. For | ί | ^ l the fcth

term of this series is dominated by 2 kn+1e~kr. One checks that

is increasing on (0, (n + l/r)1/r) and decreasing on ((n + l/r)Ur,
Hence

2)/r)/r .

We conclude that / is a C°°-function with | fin)(t) \ ^ 6Γ((rc + 2/r)/r
for w = 0,1, . . . and 111 ^ 1.

Now define

(4.1) *(*,«) = Σ
o

Because of the bounds obtained in the preceding paragraph it can be
shown that the series of (4.1) can be differentiated term by term and
that u(x, t) is a C°°-solution to the heat equation in the closed strip
111 <£ 1. Since both u(091) and du/dx(0, t), as functions of ί on ( —1,1),
are given by their Maclaurin expansions, u has a heat polynomial
expansion in \t\ < 1 (see [5]). Thus

00

u(χ, ί) = Σ
( 4 2 ) δ2 = f^

1)! .

According to the first paragraph of the proof of Theorem 1,
UΓ=i Γin=h [I -X» ^ ^M1/2] has probability 1. Let ω be in this almost
sure set. Let k0 be a positive integer such that for n ^ kQ, \ Xn(co) \ <*
nM112. Since r is less than the classification number of {an}, there
is a number K such that | an \(2n/e)nl2 ^ Ke~~%r, n — 1, 2, « . Using
Stirling's theorem we have for 2n ^ k0

Similarly for 2n +

b2n+1(2(2n + l)/β) t£

Letting JSΓ' = K(Me)ίl2 we have
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I JE,(α>)α. I ̂  K% for n ^ K .

Let .S^ > 0 . Then for 0 < ί < 1 we have

= K' Σ &«»(» - 1) I v_t(±^f, t) I
k

^ K' Σ &.Λ(Λ - 1 K

Thus limtu^=ko Xn(ω)anvn(±^ t) both exist as is easily seen from
the mean value theorem and the Cauchy criterion. Hence we can
obtain an extension of Σ~=o Xn(co)anvn(x, t) into

{(x, t): 11 |< 1} U {(«,«): 1 » l < ^ 0 < }̂

which is a C2-solution of the heat equation. (Notice at this point
that we can also obtain an extension which is a bounded C2-solution
in {(x, t): I x | < J>f, 0 ^ t}.) Since α> was from the almost sure set

U ή [I XΔ £ nM*] ,

this establishes the result for the line t = 1.
We now turn to the line t — — 1. Define {y%}Γ=o on β by F2ft =

(-l)nX2n and Γ2%+1 = (-l)nX2n+1. Then, applying the first part of
the proof, there is a set F in j ^ ~ with P(.F) = 1 such that for ω in
F and ^ > 0 the solution vjx, t) = ΣΓ=o y»(ω)α»̂ n(»> *) can be ex-
tended into {| 11 < 1} U {| x I < Jsf and 0 < t} so as to be a bounded
C2-solution of the heat equation in {(a?, t): \ x \ < <^f and 0 < t). One
easily checks that for ω in F,

Σ X%(<o)wΛ0, t) = Σ Γ n ( ω ) α Λ (0, - ί )

and Σ ^ ί . ί Φ ^ V i ί O , ί) - Σ ^ i ir,(ω)α?ι^ίl_1(0, - ί ) . Using these
facts and (2.3) we see that for ω in F and Sf > 0 the functions
*K«) = Σ:=o X.(ω)α^w(0, ί) and f (t) - Σ : = 1 X J ^ α . ^ ^ O , ί) on (-1,1)
possess sufficiently well behaved extensions φ' and ψr to (—oo,l) that

(2n + 1)!

is an extension of Σ"=o -XΓΛ(ω)αΛt;n(α;, ί) in | ί | < 1 to

{(a?, ί): I ί I < 1} U {θ£> *): I & I < ^ and - co < t < 1} .

5* Examples* The first example will show that our two theorems
are best possible with respect to the allowable values of the classifica-
tion number.
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EXAMPLE 1. We will take [0,1] with Lebesgue measure as the
probability space and the sequence of Rademacher functions, {φn}n=o,
for the random variables.

For k = 0,1, ••• define ak = e~VTc. Then, as in the proof of
Theorem 2, defining / o n [-1,1] by f(t) = Σ£U<M* yields a C°°-f unc-
tion whose wth derivative on [ — 1,1] is bounded in absolute value by
6Γ(2(2n + 1)). In the strip \t \< 1 define u(x, t) = Σ ϊ U (fk%)(t)tf%)l(2n)L
To see that this definition makes sense and that term by term partial
differentiation is permitted, we note that for every closed interval
I Q ( — 1,1), f is in class C{n\) on J. Because of the bounds on the
derivatives of / we see from the defining series for u that u may be
extended as a C°°-solution of the heat equation to

{\t\<i}\j{(x,iy.\χ\<i}.

Since u(0, t) and du/dx(0, t) are both given by their Maclaurin ex-
pansions in 111 < 1, u possesses a heat polynomial expansion in the
strip 111 < 1 (see [5]). Thus for 11 \ < 1, u(x, t) = Σ~=o αnvΛ(&, *); a^ =
(e~^n\)l(2n)\, a2n+1 = 0. One checks that lim sup | an \2ln(2n/e) = 1.
Also it is easily seen that limit | a2n j (4w/e)weVi^ = oo which implies
{an}£E1/2 and thus the classification number of {an} is in [0,1/2]. As
in the proof of Theorem 2, l i m m u ω ( ± l / 2 , t) both exist for every ω
in [0,1]. Thus for every ωe [0,1] the line t = 1 is not part of the
natural boundary for uω(#, ί). Using Theorem 1, we conclude that the
classification number of {an} is 1/2 and that in Theorem 1 we cannot
replace [0,1/2) by [0,1/2] as the allowable range for the classification
number.

We will next show that the conclusion of Theorem 2 does not
hold for Σn=o0n(G>)0n^»(#> Q Assume there is a set A in [0,1] with
m(A) = 1 such that for each ω in A no interval of the line t = 1 is
part of the natural boundary for ujx, t). Thus for ω in A, gω{x) =
limtuuω(x, t) is well defined and is the restriction of an entire func-
tion to the real axis (this last assertion can be seen by employing
(2.3)). Thus for ω in A, lim sup (\gίn)(0) \/nl)lln = 0. For ω in A,

I flr£"+1)(0) = 0 and I flr2 }(0)

lim sup

= IΣ~=* Φk(o))ak(kl/(k
Thus for ft) in 4 ,

k\ _ ,
(k — n)l

(2n)\

Let 8 > 0. For m = 0,1, - - let

I V k = n (k — W)

:g δ for ^ = m, m + 1, >

= 0 .

(2n)l
1/Λ
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and note Fm ] A. Let A and B be two numbers associated with the
sequence {φ2n}n=o as in (3.1). Let m0 be sufficiently large that m(Fmo) >
A. Let n0 be an integer larger than mQ with n0 corresponding to Fmo

as in (3.1). Thus for n ^ n0 and k ^ 1

n + k Γ A] ~I2 f /n + k f \ 2

(5.1) Σ .. J „ e-^ h g B\ ( Σ iM<») J β-^) dm(ω) .
j = n L(J — %) ! J jFmo \i = » ( j — n)\ /

As in the proof of Theorem 1, letting k tend to oo yields (5.1) with
n + k replaced by oo. Using the definition of Fm(), we have

j - n)ϊ

for n :> nQ. From this we conclude that

T °° / k\ \2-|l/2"|l/w

V Lk = n \(k — Ύl)\ / J Λ

lim sup * '- = 0 .

On the other hand, letting L denote this last limit superior, we
have

L ^ lim sup

ί Σ (k - n)2n exp (-2]/k - n) exp (-(2τ/~F -

But exp (-(2i/T - 2Vk - n)) ^ e~2^ for k ^ n and lim (e~^Yln =
1. Hence L ^ lim sup ((Σΐ=ok2ne~2Λ/~h~yβ/(2n)l)ίln. Define hn on (0, oo)
by hn(x) = α;2%e~2^. One checks that /̂ % is increasing on (0, (2^)2) and

decreasing on ((2w)2, oo). Thus Σΐ=ok2ne~2Vl ^ 1 hn(x)dx — hn(

(Γ(in + 2) - 2(4tnYne~in)/(2'42n). Thus

L > λ lim sup [ ( ^ ± ^ - - ^ P ) ((4-)!/((2.)!)2)Ί/ > 0 .
4 L\ ( A ) l (4)l J

This is a contradiction. Hence in Theorem 2 we cannot replace (1/2,1]
by [1/2,1] as the allowable range for the classification number.

The next example shows that in Theorem 1 we cannot omit the
symmetry of the random variables.

EXAMPLE 2. Let k(x, t) - e-*2/47(4ττ£)1/2 for t > 0 and define

u(x, t) = k(x, t + 1)

in the strip 111 < 1. Then [2, Th. 4.2, p. 227]
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u(x, t) = (47Γ)-1'2 Σ ^ ~ vίn{%, t).

Let {αj~=o be defined by a2n = ( — l)n/nl4n and a2n+1 = 0. One easily
checks that lim sup | an \2!n(2n/e) = 1 and that the classification number
of {an} — 0. Let Xn = 1, n = 0,1, on some complete probability
space. Then for every ω, uω can be continued above the line t = 1.
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RINGS IN WHICH EVERY RIGHT IDEAL
IS QUASI-INJECTIVE

S. K. JAIN, S. H. MOHAMED AND SURJEET Singh

It is well known that if every right ideal of a ring R is
injective, then R is semi simple Artinian. The object of this
paper is to initiate the study of a class of rings in which
each right ideal is quasi-injective. Such rings will be called
(/-rings. It is shown by an example that a q ring need not
be even semi prime. A number of important properties of q-
rings are obtained.

Throughout this paper, unless otherwise stated, we assume that
every ring has unity 1 ^ 0 . If M is a right i?-module, then M will
denote the injective hull of M. For any positive integer n, Rn will
denote the ring of all n x n matrices over the ring R. R\ J(R) and
B{R) will denote the right singular ideal, the Jacobson radical and
the prime radical respectively. A ring R is said to be a right duo
ring if every right ideal of R is two-sided. Left duo rings are defined
symmetrically. By a duo ring we mean a ring which is both right
and left duo ring.

It is shown that Rn(n > 1) is a g-ring if and only if R is semi-
simple Artinian. Some of the main results are: (i) a prime g-ring is
simple Artinian, (ii) a semi-prime g-ring is a direct sum of two rings
S and T, where S is a complete direct sum of simple Artinian rings,
and T is a semi-prime g-ring with zero socle, and (iii) a semi-prime
g-ring is a direct sum of two rings A and B, where A is a right self
injective duo ring, and B is semi-simple artinian.

2* Let R be a right self injective ring. If B is any right ideal
of R, then B = eR for some idempotent β of R. Let K = ΐLomR(B, B).
Then K = eRe. In fact every element in K can be realized by the
left multiplication of some element of eRe. By Johnson and Wong
([3], Theorem 1.1) B is a quasi injective as a right ΐί-module if and
only if KB = B. Hence B is quasi injective if and only if B = KB —
(eRe)B = (eR)(eB) — BB. Hence every two-sided ideal in a right self
injective ring is quasi-injective. So, the following is immediate.

2.1. Every commutative self injective ring is a g-ring.
Now, we give an example of a g-ring which is not semi-prime.

EXAMPLE 2.2. Let Z be the ring of integers. Set R = Z/(4).
It is trivial that R is a g-ring. But R is not semi-prime, since its
only proper ideal is nilpotent.
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In fact, Z/(n) is a g-ring for every integer n > 1, since it is self
injective (cf. Levy [5]). Also we remark that Z/(n) has nonzero nil-
potent ideals if n is not square free.

Next we prove

THEOREM 2.3. The following are equivalent
(1) R is a q-ring
(2) R is right self injective, and every right ideal of R is of

the form el, e is an idempotent in R, I is a two sided ideal in R.
(3) R is right self-injective, and every large right ideal of R

is two sided.

Proof. Assume (1). Therefore R is right self injective. Let B
be any right ideal of R. Then B = eR for some idempotent e. Since
B is quasi injective B = BB = eRB — el, where I — RB, the smallest
two-sided ideal of R containing B. Hence (1) implies (2).

Assume (2). Let A be a large right ideal of R. Then A = el,
e2 = e, I is a two sided ideal. Since A Π (1 — e)R = 0, (1 — e)R = 0.
This implies that e = 1. Hence A = I, proving (3).

Now assume (3). Let B be a right ideal of R. If K is a com-
plement of B, then B φ K is large in R. By assumption B © K is
a two-sided ideal in R, hence quasi-injective. This implies B is a
quasi-injective, completing the proof.

THEOREM 2.4. Le£ w > 1 be an integer. Then Rn is a q-ring
if and only if R is semi-simple Artinian.

Proof. Suppose that R is not semi-simple Artinian. By Lambek
([4], Proposition 2, p. 61), there exists a large right ideal B of R
such that B Φ R. Let eij91 ^ ί,j ^ n be the matrix units of Rn and
let E = {X α^y: αiy eB,l ^ j ^ n and α^ 6 i?, 1 ̂  ί J ' ^ w}. It is
clear that i? is a right ideal in Rn. But i? is not two-sided, for enn e E
and eιnenn = β1Λ g 2?. Now, we prove that E is a large right ideal in
Rn. Let 0 Φ x = Σ?,i=i δ i ^ . If δ^ = 0,1 ̂  i ^ w, then xeE. So,
let δ1& =£ 0 for some k. Since B is large in i2, there exists aeR
such that 0 Φ blka e B. Then,

x(a>ekk) = (Σ?,i=i K'eij)(aekk) = Σ?=i δi*αeίfc e # .

Hence, 0 =£ x(αβfcA;) e i?. Therefore JE7 is a large right ideal in Rn

which is not two-sided, and by Theorem 2.3, Rn is not a g-ring. This
proves "only if" part. Other part is obvious.

We are now ready to show the existence of right self injective
rings which are not g-rings.
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EXAMPLE 2.5. Let R be a right self injective ring which is not
semi-simple (we can take R — 2/(4)). Let n > 1 be an integer. By
Utumi ([6], Th. 8.3) Rn is right self injective. But Rn is not a g-ring,
by the above theorem.

Next we prove

THEOREM 2.6. A simple ring is a q-ring if and only if it is
Artinian.

Proof. Let R be a simple g-ring. Let B be a large right ideal
in R. Then B is two-sided, and hence B — R. This proves that R
does not contain any proper large right ideal. Hence R is Artinian.
The converse is trivial.

Now, we give an example of a right self injective simple ring
which is not a g-ring.

EXAMPLE 2.7. Let S be a noncommutative integral domain which
is not a right Ore domain (cf. Goldie [1]). Let R = S. Then R is a
right self injective simple regular ring which is not Artinian. By
the above theorem R is not a g-ring.

LEMMA 2.8. Let R be a q-ring. Then B(R) is essential in J(R)
as a right R-module.

Proof. Since R is self injective, J(R) = Rά, by Utumi ([6], Lem-
ma 4.1). Let 0 Φ xeJ(R). There exist a large right ideal E of R
such that xE = 0. Then xEaP for every prime ideal P of R. Since
R is a g-ring, E is two-sided. This implies that either x e P or
Ed P.

Let {Pi}iei be the set of all prime ideals of R such that xePi
for every iel, and {Pj}jej be the set of all prime ideals of R such
that xgPj for every jeJ. Let X = Γ\ieIPiy and Γ ^ Π i e j i V
X ^ 0, since 0 φ xeX. On the other hand, EaP3 for every jeJ.
Thus ί 7 c F, which implies that Y is large in R. Therefore B(R) =
J Π 7 ^ ( 0 ) . Moreover, there exists aeR such that OΦxaeY.
This implies that 0 Φ xaeXf] Y = B(R), completing the proof.

Hence, we have the following

THEOREM 2.9. A q-ring is regular if and only if it is semi-
prime.
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Proof. The result follows by the above lemma, and Utumi ([6],
Corollary 4.2).

THEOREM 2.10, Let V be a vector space over a division ring D>
and let R — Hom^F, F). Then R is a q-ring if and only if V is
of finite dimension over D.

Proof. The "if" part is obvious. Conversely, suppose that V
is of infinite dimension over D. Let X = {xu α?2, •••} be a denume-
rable set of linearly independent elements of F. X can be extended
to a basis J U Γ" of V. Let F be the ideal in R consisting of all
elements of finite rank. Let σ e R be defined by σ(x2i) — x2i, σ(x2i_1) — 0
for every i, and σ(y) = 0 for every yeY. Let E = σR + F. Then
FaE. Since F is a two-sided ideal in R, F is large. Therefore E
is a large right ideal in R. We proceed to prove that E is not two-
sided. Let λx, λ2 e i2 be defined by: λ ^ ) = x2i for every i, and \(y) =
0 for every | / e 7 , λ2(#2ί) = ̂ , λ2(α;2ί_1) = 0, for every i, and λ2(i/) = 0
for every yeY. Let λ = \2σ\. Then λ(a?t ) = a?< for every i. Hence
I c λ ( 7 ) . We assert that λ g J57; for otherwise, let λ = <τr + /, r e B,
/ e F. Then I c λ ( F ) = (σr + /)(V) c σ(V) + / ( F ) . But since /
is of finite rank, there exists an integer n such that α?2*-i£/ί^).
Also, by definition of σ, aj2ll-1 g o (F). Hence a?2w_! gίτ(F) + / ( F ) , which
is a contradiction. Thus λgJS', as desired. However XeRσRczRE.
Hence £7 is not a two-sided ideal. Therefore, by Theorem 2.3, R is
not a g-ring. This completes the proof.

We remark that the above theorem is also a consequence of
Theorem 2.4.

The right (left) socle of a ring R is defined to be the sum of all
minimal right (left) ideals of R. It is well known that in a semi-
prime ring i?, the right and left socles of R coincide, and we denote
any of them by soci?.

LEMMA 2.11. A semi-prime q-ring R with zero socle is strongly
regular.

Proof. Let M be a maximal right ideal in R. Either M is a di-
rect summand of R or M is large in R. If M is a direct summand
of R, then its complement is a minimal right ideal. This implies
that soc R Φ 0, a contradiction. Therefore, every maximal right ideal
is large, hence two-sided. By Lemma 2.8, J(R) — 0. Thus R is
isomorphic to a subdirect sum of division rings, which implies that
R has no nonzero nilpotent elements. Since R is regular, by Theorem
2.9, R is strongly regular.
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LEMMA 2.12. A prime q-ring has nonzero socle.

Proof. Let R be a prime q-ring. If possible, let socR = 0. By
the above lemma, R is strongly regular. Hence R is a division ring,
and SOCJB = R contradicting our assumption. Therefore socβ Φ (0).

THEOREM 2.13. A prime ring R is a q-ring if and only if R
is simple Artinian.

Proof. By Theorem 2.9, and the above lemma, R is a prime
regular ring with nonzero socle. Hence, by Johnson ([2], Th. 3.1),
R — Hom^F, V), where V is some vector space over a division ring
D. But then R = Hom^F, V), since R is right self injective. By
Theorem 2.10, V has finite dimension over D. Let (V: D) = n. Then
R ~ D%, completing the proof.

LEMMA 2.14. Let {Ra}aei be a finite set of rings. Then the
direct sum Σ«ei © Ra is a q-ring if and only if each Ra is a q-ring.

The proof is obvious.

That Lemma 2.14 is not true for an infinite number of rings is
shown by the following example which is due to Storrer.

EXAMPLE 2.15. Let R be a 2 x 2-matrix ring over a field F. Let
{Ra}aei be an infinite family of copies of R and let S = πRa, a el.
Let E be the right ideal of S consisting of those elements [xa] of S
such that all but finite x'as are matrices with first row zero. Since
RaaE for all a e I, E is a large right ideal of S. To show that E
is not two-sided, consider [xa]eE where xa = (* A for all a el.

Let [ya]eS be such that ya = (Q Δ for all a el. Then [ya][xa] =

[sj, where za = L jjj But then [2α]£i£, and i£ is not two-sided.

Hence, by Theorem 2.3, S is not a q-ring.

Example 2.15 also suggests the following.

THEOREM 2.16. Let {i?α}αe/ be a family of simple Artinian rings
and let R be their complete direct sum. Then R is a q-ring if and
only if all R'as excepting a finite number of them are division rings.

The above theorem shows, in particular, that a regular q-τing
may not be Artinian.

LEMMA 2.17. Let R be a semi-prime q-ring such that soci? is
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large in R. Then R is a complete direct sum of simple Artinian
rings.

Proof. Since soc 22 is large, every nonzero right ideal of R con-
tains a minimal right ideal. Also R is regular, by Theorem 2.9.
Hence by Johnson ([2], Th. 3.1), R is a complete direct sum of rings
Ri9 where each Rt is the ring of all linear transformations of some
vector space Vι 'over a division ring Ό{. But then by Lemma 2.14
and Theorem 2.10, each Ri is a simple Artinian ring. This completes
the proof.

In the following two theorems we assume that every ring has a
unity element which may be equal to zero.

THEOREM 2.18. Let R be a semi-prime q-ring. Then R = S 0 T,
where S is a complete direct sum of simple Artinian rings and T
is a semi-prime q-ring with zero socle.

Proof. Let F = soc R. Since RΔ = 0, F = {x e R: xE c F for
some large right ideal E of R). Then it is immediate that F is a
two-sided ideal in R. Since R is self injective, F = eR for some idem-
potent e. Then e is central, since R is regular. Let S = eR and
Γ = (1 - e)R. Hence R = S φ T. By Lemma 2.14, both S and T
are #-rings. Further, it can be easily verified that (i) S is a semi-
prime ring, soc S = F, and F is large in S, and (ii) T is a semi-prime
ring with zero socle. By the above lemma S is a complete direct
sum of simple Artinian rings, completing the proof.

As a consequence of Lemma 2.11, Theorem 2.16 and Theorem
2.18 we have the following.

THEOREM 2.19. A semi-prime ring R is a q-ring if and only
if R = i φ B , where A is a right self injective duo ring and B is
semi-simple Artinian.
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ON THE INVERSION FORMULA FOR THE
CHARACTERISTIC FUNCTION

T. K A WAT A

In the inversion formula

F(0) = lim MT e t 7 * f(t)dt
T-oo 2ττ J _ τ — it

for the characteristic function fit) of a distribution function
F{x), the limit of the symmetric integral is used. The purpose
of this paper is to give a necessary and sufficient condition for
the existence of the asymmetric improper integral lim \ on
the right of the above formula.

Let F(x) be a probability distribution function and f(t) the cor-
responding characteristic function,

(1.1) f(t) = Γ eitxdF(x) .
J-oo

We assume in this note that F(x) is standardized so that

(1.2) F(x) = i[F(x + 0) + F(x - 0)] .

The well known inversion formula states that

(1.3) F(x) - F(0) - lim - i-Γ e"txt ~ X f(t)dt

for every -co < x < oo.

It is also known that the symmetric integral of the right hand

S T'

(T, T' going
- 7 "

to infinity independently).
Actually we may easily see that

(1.4) Re( j - Γ e~iXt ~ 1 f(t)dt) = Re(^-Γ ^ " 1 f(t)dt)
V2TΓJO — it ) \27rJ-r — it Ji

and

(1 5> H
and hence — \ : f(t)dt cancels out its imaginary part.

2ττ j-τ —it
The real part (1.4) always converges to \\F{x) — F(0)]. This gives
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the proof of (1.3). (See [1], pp. 263-264).
However the imaginary part (1.5) does not necessarily converge

without some condition on F(x). This is why the limit of the sym-
metric integral in (1.3) cannot be replaced by the general improper
integral.

2Φ The condition for the existence of the improper integral*
We shall give the necessary and sufficient condition for the existence
of the limit of (1.5).

THEOREM 1. In order that the limit of (1.5) when T —> co exists,
it is necessary and sufficient that the integral

(2.1) lim
0

exists where,

(2.2) G{u, x) = F(u + x) - F(-u + x)

and if (2.1) exists

(2.3) lim W i - Γ β~iXt 7 1 M)dt) = \~G(u,x)-G(U,0)du
r-co \ 2π Jo — it / J o u

It must be noted that the integral of the right hand side of (2.3)
exists in the neighborhood of the infinity. In fact G(u, x) — G(u, 0) =
[F(u + x) - F{u)\ - [F(-u + x) - F(-u)\ and F(u + x) - F(u) e L,
(-co, oo) for every fixed x.

We shall now prove the theorem.
Let

x, T) = lm(M Λ —±-f(t)dt)
\2π Jo — it I

2π Jo — it

We then easily see that

I(x, T) = IX dF(u)[T s i n x t s i n u t ~ ( 1 ~ c o s xt) c o s n t dt
27ΓJ~~ Jo t

2π

= J_f°° dF(u)[Tdt[* sin vtdv
2π J~°° Jo )u-χ
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= -A-Γ 1~C0SvT dvΓdFju)
27ΓJ-OO v J

5) — G(v, 0 ) ] — ~ cost;—^v ^

As was mentioned before, G(v, x) — G(vy0) e L^—oo, co). Hence the
Hiemann-Lebesgue lemma shows that

lim ("[Gίv, a:) - G(v, 0)] C0SvT dv = 0
J V

for any ε > 0. Therefore we may write

!(*, Γ) = VG(v,x)-G(v,0)(1 _ c o s v T ) d v

JO V

{2A)

a s y ^ . oo, for a fixed ε > 0.
Now we shall show the sufficiency of the condition of the theorem.

Let ε > 0 be arbitrary but fixed. Write

<2.5)

S l/Γ fε

+ = K, + K2 ,
0 Jl/Γ

say. We have

| G(v, x) - G(v, 0) l
(2.6) J°

S l/Γ
I G ( v , a?) - G ( v , 0 ) \ d v ,

0

for some constant C.
limv_>0+ [G(i;, x) — G(v, 0)] exists since F is nondecreasing and it

must be zero, otherwise (2.1) does not exist. Hence the last expression
converges to zero.

(2.7) Kt - o(l), as Γ—co .

Next write

(2.8) χ(v) = G(v, x) - G(v, 0) .

Choose ε such that | χ(v) | < δ for | v \ ̂  ε for an arbitrary chosen δ.
Since χ(v)fv is of bounded variation in [1/Γ, ε], we have, using the
second mean value theorem,
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UT V i/r

= [ JSvLdv- Γχf—)Γ cos vTdv -
JUT v \T/Ji/r

for some 1/T < ξ < ε. Thus

cos vTdv

=

Therefore from (2.4) and (2.5)

(2.9) . T) - f t " -Zί*U
2π Ji/τ V π

This shows the sufficiency of the condition of the theorem and gives
(2.3).

We shall next show the necessity. Define χ(v) as before. We see
that χ(v) has the limit c as v—> +0. If c Φ 0, then from (2.4)

, T) - cj
£ 1 - cos^Γ
o V

dv

The first integral of the right hand side is handled in the same way
as in deriving (2.6) and (2.9) with χ(v) — c in place of

χ(v) = G{v, x) - G(v, 0) .

Actually instead of (2.6) we see that iΓx with φ(v) — c is bounded by

S l/7 7

\χ(v) — c\dv which is o(l). In place of (2.9) we have
0

(2.10) J ( T ) _ j
27Γ

2π Jε v

where d is some constant.

1 - cosvT ,

_ _1_Γ χ(v) - c
2π)uτ v

^ d δ + o(l) ,

(2.11)
V

where d is an absolute constant. Choose ε for an arbitrary given
Ύ] < d so that I χ(v) - c | < ^ for 0 < v < e. Then

(2.12)
JUT V

-civ
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Hence if I(x, T) has a limit as T —> oo, then in view of (2.11) and
(2,12), (2.10) implies a contradiction. Hence we have that c — 0.
Using (2.10), this yields

I(Xf T) - -A
2π JUT v

This proves the necessity of the condition.

3* Remarks* From Theorem 1, we immediately obtain

THEOREM 2. In order that

lim -L\

2
—it

exists, it is necessary and sufficient that (2.1) exists for ε > 0. (The
limit is F(x) - F(0)).

Similar arguments apply to the integral

(3.1) Jλ(χ, T) = Γ fWe~%at dt and J2(x, T) = ("' fM*'"* dt .
Ji it J-τ it

We easily see that Jγ and J2 are conjugate complex. We may
show that in order for Jλ(x, T) or J2(x, T) to converge as T—> oo,
it is necessary and sufficient that

(3.2) [ F( u + x> ~ F(~u + χ) du < -
J

for some e > 0.
(3.1) implies that

(3.3) l i m — Γ f(t)e~ixtdt - 0
τ->oo 2ττ J-21

which is very well known when F(x) is continuous at x. (3.1) says
more than this about the improper integrability of f(t) near infinity
with the additional condition (3.2) on F(x).

The sufficiency of (3.2) for the existence of the limits of (3.1)
was proved in [2] before.
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ON RIGHT ALTERNATIVE RINGS WITHOUT
PROPER RIGHT IDEALS

ERWIN KLEINFELD

It is shown that a right alternative ring R without proper
right ideals, of characteristic not two, containing idempotents
e and 1, e Φ 1, such that ex ~ e(ex) for all x eB must be alter-
native and hence a Cayley vector matrix algebra of dimension
8 over its center.

In the classification of simple right alternative rings of characteristic
not two it is still an open question whether there exist any which are
not alternative, in contrast to characteristic two, where there do exist
division rings which are not alternative [8]. A number of people have
worked on this problem and were able to prove the alternative identity
whenever they assumed an additional hypothesis such as finite dimen-
sionality [1, 3], other identities [6, 7], or internal conditions on the
ring [4, 5, 9]. It seems natural to try to tackle the case where there
exists an idempotent e Φ 1 in R such that (β, e, R) = 0. If one could
establish in this case that all simple R of characteristic not 2 are
alternative, then this would be a natural generalization of the theorem
of Albert [2] for alternative rings, in which he showed that a simple
alternative ring with idempotent e Φ 1 had to be either associative or
a Cayley vector matrix algebra of dimension eight over its center.

In this paper we do not quite achieve this result, for we need to
strengthen the hypothesis of simplicity to the assumption that the ring
has no proper right ideals. On the other hand there is a good deal
of information here that should prove useful in either romoving the
hypothesis of (e, β, R) = 0, or in constructing an example of a simple,
right alternative ring of characteristic not two which is not alternative,
if indeed such an example exists.

The main tool here is the fact that (β, e, R) = 0 allows a Peirce
decomposition into four "subspaces" Rifj, ί,j — 0,1 as in the associative
and alternative cases. The multiplication table for these subspaces
differs in six places from the same table for alternative rings. By
constructing appropriate right ideals we show in fact that the tables
are the same. In the process we reduce the problem to the one studied
by M. Humm-Kleinfeld [4], although by that time one can deduce from
our work quite readily that indeed R must be alternative.

2 Preliminary identities* In the course of the paper we require
a number of identities which are true in arbitrary right alternative
rings of characteristic not two:
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( 1 ) (αδ, c, d) + (α, δ, (c, d)) = α(δ, c, d) + (α, c, d)b.
(2 ) (a?, αδ, a) = (a?, δ, α)α.
( 3 ) ([αδ]c)δ = α([δc]δ).

Proofs of these identities may be found on page 940 of [5].
( 4) (ab)e = a(bc) + a(cb) - (ac)b,

also holds as this is the linearization of the right alternative identity.

3* Peirce decomposition* Henceforth in the paper, we assume
that R is a right alternative ring of characteristic not two, and that
R contains 1 and an idempotent of e Φ 1, such that (β, e, R) = 0. If
we define Ri3 = {x e R \ ex = ix, xe = jx} and i, j = 0,1, then R may be
decomposed into a direct sum by R = Rn + R10 + R01 + R0Q. Humm-
Kleinfeld has shown on page 166 [4] that the multiplication table of
the Ri5 has the following containment properties:

Rn

Rio

Roi

Roo

Rn

Rn + Roi

0

# 0 1

0

-Rio

-Rio

jRll + -Roi

-Roo

JROI

-Roi

.Rio

Rn

Roo + -Rio

Roi

Roo

0

Rio

0

-Roo + -Rio

Thus the first entry gives the information that (Rn)
2 c Rn + RQ1,

etc. Besides, it is true that x2

H e Riiy and whenever i Φ j that x2

i5 e Ru

as well as x\ό = 0.
Throughout the paper whenever we need to refer to this result

we shall use the phrase "it follows from the table that. . ."
We should bear in mind that in an alternative ring there are six

places where stronger assertions can be made. These are: (Rn)
2czRnj

R2

0 c jβ01, -Roi c R10, (Roo)2 c Roo, RnR01 = 0, and R00RlQ — 0.

4* Main section*

LEMMA 1. In R we have (JBU)01JB10 = 0, and c Rl0.

Proof. Let xllf yn e Rn, z1Q e Rί0. From the table it is obvious that
(#m 2ioι Vn) — 0. Hence, using the right alternative identity,

0 = (Xll9 Vn, Zio) = (»ii2/n)«io ~ «u(2/n«io)

Let xuyn = α u + δ01. Then, by substituting this in the previous equation,
it follows t h a t anzι0 + b01z1Q - XuiVn^io) = 0, so t h a t δ01z10 = %n(VnZio) -

anzlQ e R1Q Π RQQ = 0, by use of the table. Hence, δ01210 = 0, thus proving
the first part. Also let zQ1eR01. Then
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(#11 > Vui 2oi) — (#ii2/ii)^oi — #n(l/ii#oi) ~ &n#oi "f" 0̂1̂ 01 #n(l/ii^oi)

From the right alternative identity it follows that

(#11, Vm S01) = - (#11, Z01, 2/π) = - (#ii«oi)l/ii + #ii(«oi2/n) = #n(«oi3/ii) € jβ1 0,

using the table. Hence solving the previous equation for b01z01, we see
that 601201 = (xιi9 yn, z01) - anz01 + XniVn^i) e 221O, using the table. This
completes the proof of the lemma.

DEFINITION. Let T01 = {x01 e R01 | #01Jβ10 = 0, and x01RQ1 c R1Q} and
form T = Toi + Γ01JR0i +•••+(••• (T01R01)RQ1 . . .)ΛOi + + where
each term except the first is obtained from the preceding by right
multiplication by R01.

LEMMA 2. T is a right ideal of R such that T czR01 + R10 + 22n.

Proof. For arbitrary ί01 G Γ01, xn e Rn, yw e R1Q and z01 e JR01 we have

V^oi#n/l/io : = V ôi> #11 > 2/io/ :=:::: v^oi> Viot #11) : = : : V^oil/io/#ii ~ι~ ^oi\l/io#ii/ ^^ " >

using the right alternative identity and the definition of Γ01, as well
as the table. Also,

(^oi#n)^oi : = \toif #11 > ^01) ~r ίoi(#n^oi) = (̂ oi> #ii» ^01/

: = (^oi j ZQ1, ί^n) — V^oi^oi/#ii ι ^oi(^oi#n/

: = : ^io#n 1" ίoiV^oi#n/ ~ ^oi(^oi#ii) ^ -"'io>

using the same reasons as before. But then t01xn e TQ1 and thus T01Rn c
Γ01. Also, from the definition of T01 it follows almost immediately that
T01i?10 = 0, and TOίR0ί(zRίO, while the table implies that TOίRoo = 0. Let
P(n) be the n + l s ί term in the sum that defines T, and let U(n) =
TOί + Γoî oi + + P(w), be the sum of the first n + 1 terms in the
definition of T. We shall prove by induction that P(n)Rn(z U(n),
P(n)R1Qd U(n) and P(n)Rma U(n). We have already seen this is true
for n = 0. Assume it is true for n and then we shall prove it true
for n + 1. We abbreviate P(n) by simply P. Then using (4), and
the table, (PR01)Rn c P(RoιRn) + P(RnRoi) + (PRn)Roi c Pi2Oi + Pi2io +
(PRn)Roι c P(w + 1) + Ϊ7(n) + Ϊ7(W)JB0I C I7(W + 1). Also similarly,

(PRQ1)RlQ c P(R01RlQ) + P(ΛloBoi) + (PR^Roi c

+ (PR10)R01 c tf(w) + Z7(^)i?01 c C

and

(PR01)R00 a P(ROίRoo) + P(R00R01) + (PR00)R01 c P# O i

4- (PRoo)Roi c P(w + 1) + t^(w)501 c
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Consequently, P(n + l ) 4 c U(n + 1) for A = Rn, R1Oί and R0Q. This
completes the induction. But then, TAaT. Of course, also TR01aT.
But then, TRcT and, hence, T is a right ideal of R. Also, P(l) =
TQ1R01c:R10 by definition of T01. Hence P(2) a R10R0ί a Rnj and so
P(3) c i ^ o i c 221O. Thence P(2n + 1) c JB10 and P(2w) c 22U, so that
ΓcΓoi + ΛJio + J?nc JBoi + Rio + #ii. This completes the proof of the
lemma.

We note that there is complete symmetry if the idempotent e is
replaced by the idempotent 1 — e. In terms of the Peirce decomposition
this has the effect of simply permuting subscripts. We shall frequently
use this play in order to obtain new results from theorems already
proved, and justify it by stating that "we may reverse subscripts...."
Thus we may assert:

COROLLARY 1. If R has no proper right ideals then R2

n c Rn.

COROLLARY 2. // R has no proper right ideals then R2

00 c Roo.

'00Proof. The right ideal T of Lemma 2 cannot be R since 1 — e e
would then have to be zero, contrary to assumption. But then T = 0,
hence T01 = 0. But Lemma 1 implies that (RlJoi 6 T01, so that (ϋϋίjoi = 0,
hence R\x c Rn. But then we may reverse subscripts and obtain the
second corollary as well.

In the remainder of the paper we shall assume tacitly that, in
addition, R has no proper right ideals, so that we may freely use
the results of the last two corollaries.

LEMMA 3. Rn is associative.

Proof. Let A = Σ (#u, #n, #n) + #n(#n, Rn, Rah Since R1QRn - 0
follows from the table, while R2

n c Rn because of Corollary 1, we can
easily verify that (JB10, Rn, Rn) = 0. Select wlu yni zni e Rn and x1Q e R1Q.
Then substitute a = wlu b = x10, c = yn, d = zn in (1), obtaining

(WnXm Vn, «n) + (Wn, X10, (Vn, ̂ 11)) = Wufeo, 2/n, «n) + K , 2/n, «ii)»io -

However, by inspection (jβu, R1Q, Rn) — 0, as a consequence of the
table, so that only one term survives in the preceding equation. Thus
(JBU, Rn, Rn)Rio = 0. We have already observed that (Rn, Rι0, Rn) = 0.
If we apply the right alternative identity in this situation then it
follows that (Rn, R1U Rl0) = 0, and hence (Rn,(Rn, Rm Ru), Rio) = 0.
Expanding the last associator, thus Rn(Rn, R1U Rn)'Rio = 0. But then,
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AR10 = 0. Since AaRn, it follows from the table that AR00 = 0.
Besides, it is well known that even if Rn where an arbitrary ring,
not necessarily right alternative, that A is always a two-sided ideal
of Rn, so that ARnc:A. Let us form

B = A + ARQ1 + (ARQ1)RQ1 + . . . + ( . . . (AR0ί)R01 •) +

where the ̂ ί Λ term is obtained from the preceding by right multipli-
cation by ROί, except for n = 1. As in the proof of Lemma 2 the
reader may easily check that B is a right ideal of R using induction.
But the odd terms in the equation defining B are contained in Rn,
while the even terms are contained in JS10, using the table. Hence,
B a R10 + Rn. Since B — R implies 1 — e — 0, we must have B — 0,
hence A = 0. Thus Rn is associative, completing the proof of the
lemma.

COROLLARY. RQQ is associative.

Proof. We may reverse subscripts in the lemma.

LEMMA 4. ( i ) Rn + jβ01 = R10R01 + R\Q + #oo#io.
( ϋ ) RQQ + i? 1 0 = RoiRlO + J?θl + -Bll-Boi

(iii) i?00 = R01R10.

(iv) i?n = i2loi2Oi

Proo/. Define inductively 22?O - ΛΓo""'^ and form A = β 1 0β 0 1 +
RLO + + i2f0 + First we aim to show that A must be a right
ideal of R. By repeated use of (4) and table we see that

(R10R01)Rn c R1Q(R01Rn + RURQI) + (R10Rn)R01 c R10R0ι + i2f0 >

(i210i20i)^io c RnRιo c: i?10, (R1QRQι)R01 c RnRoι c i?10 ,

(R10R01)R00 c RnROo ~ 0 ,

t h u s showing t h a t (R10R01)R c i210220i + JB10 + i2?0 c A. Also JS102?n = 0,

β10jR10 = i2?0> Λio^oi c î> -Rioi?oo c J210, using the table. But use of (4)

and t h e table shows t h a t

c RioiRioRn + RnRί0) + (R1QRn)R10 a R2

lQ, Rl

(Rlo)RQ1 c R1Q(R1QR01 + RoιRίQ) + (Rl0RQl)Rl0 c R1QRLl

+ RioRoo + RnRio c JB10 ,

while (i2fo)i2oo c (JBU + βOi)βOo = 0. Now define

The above calculations show that Q(2)2? c Q(2), for B = Rn, R01 and
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# 0 0 . Assume inductively that Rn

QBczQ(n) and we proceed to prove this
inclusion for n + 1 in place of n. Besides the induction hypothesis,
our main tools are (4) and the table. (R?QRlo)Rnc.R?o(RioRn + RuRio) +
(#r o # n )# ι o c #f o# l o + (R?oRu)Rio c #Γ0

+1 + Q(n)Rl0 c Q(n + 1). Similarly,

(#Γ c#1 0)#0i c #fo(# l o#oi + R01R10) + (#Γo#oi)-Sίio ̂  #Γo#n + #ίo#oo

+ Q(tt)Λ10 c Q(ra) + Q(ra + 1) c

Finally, (#fo#lo)#Oo c RfQ(R10RQQ + RQQR1Q) + (#fo#Oo)#io c #Γo#io + #fo#oi +
Q(w)#1 0c Q(w + 1). This completes the induction. Armed with this
information we are now ready to prove that A is a right ideal of R.
Since Q(2)JScQ(2)cA and RlB(zQ(n)czA, we see that ABaA. Since
obviously #Γo#io = #Γo+\ it follows also that AR10czA. But then ARaA,
and thus A is a right ideal of R. Let us consider first the case A = 0.
In that case, R10 = 0. Form 5 = i?00 + JBoi Using the table and
Corollary 2 of Lemma 2, we may varify that B is a right ideal. Since
egJ5, we must then have B — 0. But then iϋ = jβu, so that e — 1,
contrary to assumption. Hence the case A = 0 cannot arise. The
only open possibility is that A~R. Now from the table we see that
R2

10 c Rn + #oi, while R*Q c (i?u + i201)Λ10 c i?10 + # 0 0 , and (221O + i200)Λ10 c
#ii + #oi Consequently, R\% c Rn + # 0 1 , and #i0

%+1 c # 1 0 + # 0 0 , for all
positive integers w. Since the Peirce decomposition is direct and A = R,
it must be that Rn + ROί = Σ Λw + ̂ Λ i , and # 1 0 + # 0 0 = Σ ΛίT1.
But note that by definition #??+2 - (R%R10)R10 c ( [ # n + # 0 1 ]# 1 0 )# 1 0 c #?0 +
# 0 0 # 1 0 and so Σ ^ i ? c ^ ? o + RooRio But then from two equations back
it follows that Rn + #Oi c #?0 + #oo-Rio + RioRoi- On the other hand it
is a consequence of the table that R2

10 + #oo-Rio + 2?10i201 c 22U + JBOI, SO

that # u + R01 = R2

l0 + #oo#io + RioRoi This establishes part (i). To
obtain (ii) from (i), simply reverse subscripts. By definition

C (ES-Ή^Rio

# 0 1 # 1 0 d ( # n + # 0 1 ) # 1 0 + #oi#io CI # 1 0 + # o l # i

But then # 1 0 + # 0 0 = Σ RlΓ'aR^ + # 0 1 # 1 0 c # 1 0 + # 0 0 . But then # 1 0 +
# 0 1 # 1 0 = #io + #oo Using the directness of the Peirce decomposition
we obtain that #Oi#iO = #oo This establishes part (iii). Part (iv)
follows from part (iii) by reversing subscripts. This completes the
proof of the lemma.

LEMMA 5. For all α01 e R01 and x119 yn e # n , (aQ1xn) yn = aol(ynxn).

Proof. It follows from Lemma 4—(i) that α01 e # 1 0 # 0 i + #Io + #oo#io
Using (4) and the table we see that for

&10> C10 ̂  # 1 0 y (^10^10/^11 — ^lOV^lO^ll + ^l l^ io) (θio^ll)Cio — ^ l θ ( ^ l l C l θ )
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By repeated use of this last equation, then ([bloclo]xn)yn = (blo[xnclo])yn =
δio(2/ii[&iiCi<>]). As previously observed, (yn, xn, c10) = - (yn, c10, a?u) = 0.
Thus, b1Q(yn[xnci0\) = βiod^uXuRo) = (MioXi/iAi) using the table, Lemma
2-Corollary 1, and the previous observation we made use of just before.
Combining two previous equations, we see that ([bloclo]xn)yn = (δ10c10)
(?/iAi). Thus 610c10 has the desired property. Let bQOeR00. Then (4)
and the table imply t h a t (bQOcιo)xn = bOQ(cιoxn -f %ncιQ) - (b0Qxn)c10 = 60 0(^nc1 0).

Using the table, Lemma 2-Corollary 1, and the previous equation
repeatedly, it follows that ([booclo]xn)yn = (boO[xnclo])yn = δoo(ί/ii[a?iiCioI).
As already noted, d/n, xίU c10) = 0, so that δoo(2/ii[a?uclo]) = &oo([2/iAiRo) =
(δoo îo)(̂ ii»u). Thus 600c10 has the desired property. Finally, if s u e Rn,
then (̂ nXiJi/n — zn(y1Lxn) e Rn because of Lemma 2-Corollary 1. Hence,
(«oî ii)2/π — ̂ oi(l/iAi) € i£u, But from the table it follows that (aoixn)yn —
M2/1A1) e #01. Since #01 Π β n = 0, it must be that (aolxn)yn - a^y^x^ =
0. This completes the proof of the lemma.

LEMMA 6. Rn and Roo are commutative.

Proof. Let α01 e B01, δ10 e JR10 and xn, n n e β n . As a result of (1),
(&10α01, a?u, 2/u) + (δ10, α01, (a?n, ?/n)) = &10(α01, α?u, 2/u) + (δ10, a?u, 2/u)α01. Use of
the table reveals that (610, xn, yn) — 0, since Rn is a subring. Moreover,
Lemma 3 and the table imply that (610α01, xn, yn) = 0. Thus only two
terms survive in the first equation and we see that (δ10, α01, (xn, yn)) =

»ii, 2/u). Moreover,

(δ 1 0, α 0 1 , (a?u, 2/u)) = (δloαol)(a?u2/ii - ynXn) ~ blo[aol(xnyn - ynxn)] ,

expanding the associator. But

- blo[a0ί(xnyn - ynxn)] = - δioKαo^n)^! - aoι(ynxn)]

using Lemma 5 and the right alternative identity. Now if we compare
the last three equations we conclude that {bmaQ^(xnyn — yn%n) — 0. At
this point Lemma 4-(iv) may be utilized to conclude that for every
zneRn, zn(xnyn — yn%n) = 0. In particular we may choose zn — e.
Then because of Lemma 2-Corollary 1, xtϊyn — ynxn — 0. Thus Rn is
seen to be commutative. By reversing subscripts, it follows that Roo

is also commutative. This completes the proof of the lemma.

LEMMA 7. (Ron Rn, Rn) = 0 — (i210, i?Oo> -Boo)-

Proof. Let a01eR01 and xn,yn€Rn- Then because of Lemmas 5
and 6, (aolxn)yn = aol(ynxn) = aol(xnyn), thus establishing (α01, xn, yn) = 0.
Hence, (JB01, Rny Rn) = 0. By reversing subscripts, (JB10, JB00, ROO) = 0
follows. This completes the proof of the lemma.
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D E F I N I T I O N . We define Qoo = nilpotent elements of Roo, and Qn =

nilpotent elements of Rn.

We note, since Rn, Roo are associative, commutative, subrings of

R, t h a t Qn is an ideal of Rn and Qoo an ideal of RQ0.

LEMMA 8. / / an e Rn, b01 e R01, c10 e iί1 0, then

dn = (an601)c10 = (a n , δOi, <ao) = - (^n, c1Q, δ01)

satisfies d\x = 0, so £&a£ c?n e Qn. Similarly, if

then doo = 0 and dm e Q0Q. Thus (RnRQ1)R1Q c Qn and (R00R10)R0ί c ζ)00.

Proof. As a result of (4), (c^AiKo = ^nΦoίCio + ÎO^OI) - («n0io)6oi.

But αn(δ01c10) e iϊnJBoo = 0, from t h e table, while αn(c1060i) e Rli c i2 u ,

— (αn0io)&oi s R10R01czRny using the table and Lemma 2-Corollary. Hence

(anbQ1)c10 e Rn and so (RnR01)R10c:Rn. Let / 1 0 = α u 6 0 1 and dn = (αn60 1)c1 0.

Then / 1 0c 1 0 = d u , while ^ = (floclo)dn - Mc10dn + duc1 0) - (f1Qdn)c10, using

(4). Since -BioΛn = 0, follows from the table, two terms vanish in the

last equation, so t h a t d\γ = fQ(dncι0). But flo(dnc1Q) = flo([f1QcίO]clo) =

/10(/10[Ci0]), because of the right alternative identity. Since

/ιo(Cio) ̂  RioRn = 0 ,

as a result of the table, it follows that d\x = 0, and so du e Qu. By
interchanging subscripts we obtain the second part. This completes
the proof of the lemma.

LEMMA 9. Let

Q — Qn + Qii-^io + -BoiQn + -BoiQn-Bio + Qoo + Qoô Roi + RioQoo

+ RwQooRoi + RnRoi + (RuRoι)Roi + RooRio + (RQQRIO)RIO

Then Q is a right ideal of R.

Proof. Most of the calculations involved are routine, and (4) is
an important tool. Unless the reasoning is complicated, we shall state
the appropriate inclusions without comment. (RnR01)Rn c R10Rn — 0.
(RnR01)Rl0aQn, because of Lemma 8. (RnR01)R01(zQ. (RnR01)R00ci

Rn(R01R00 + RooRoi) + (RiiRoo)Roi c Rn(RooRoi) c RnRoi, using (4) and the

table.

([RnRoi]Roi)Rn c (

i2oi c (R11R0ί)R01 + (RnR0])R10 + ([RuRol]Rn)Roi ,
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using (4). Now (RnR01)R1Q c Qn because of Lemma 8, while we observed
earlier in the proof that (RnRoι)Rn = 0. Consequently,

H C (RIIRQI)ROI + Q

([RnR01]RQ1)R10 c (RnRoi)(RoiRio

+ ([RnR01]R10)R0ί c (RnROί)ROQ + (RnRQ1)Rn + ([RnR01]R10)R01 ,

using (4). But we have already observed that (R^R^RQQCLR^R^, and
(RnRQ1)Rn = 0, while Lemma 8 implies (RnR01)R10 c Rn, so that

([RnRQ1]Rι0)R01 c RnRoi

Combining these observations it follows that ([RnRQ1]Roι)RίO c RnR01.

([RnRoi]Roi)Roι c: (Rί0R01)RQl c RnRQl.

([RnROί]RQ1)RQO c (R1QR01)RQ0 c RnR00 = 0 .

As we have already observed, ζ)n is an ideal of JRU, and so Qiii2 ncQ u .
QnRloc:Q. QnR0laRnR01. QnR0Q = 0. (QMR^R^ = 0. In order
to obtain the desired inclusion for (Qni2io)i2lo, we observe first that
u% = 0 follows from the table, hence αί0 = 0, so that a2

10 e Qn. By
linearization, then αlo6lo + δiô io e Q u . If qn e Qn, then qna10 e R101 so
that (?11αlo)δlo + δlo(?11αlo) = 5;1eQ11. However, using (4), (610α10)gn =
Ki^Qn + ίiAo) - (δio^n)αio = &io(#iAo), since i210βπ = 0 follows from the
table. Comparing the last two equations, (^nαlo)6lo = q'n — (&KAO)#H*

But

(610α10)gn c (R2

10)Qn c (RL1 + Roι)Qn c ΛπQn + J?OiQu c Q u + JB0 1QU .

Hence (guα10)610 € Qn + ROιQn, and thus (QnRιQ)Rl0 c Q u + BOiQn. Also,

(QnR10)RQ1c:Qn(R10RQ1 + RQ1RlQ) + (QUJROI)-RIOCIQII-RII + QnRoo + (RuRoι)Rιoj

as a result of (4). But QnRnc:Qn, QnRQQczRnRQ0 = 0, and (RnR01)R10c:Qn

because of Lemma 8. Hence (QnRlo)Roi c Q l t.

(QnRLO)Roo c Qn(R10R00 + RQ0R10)

+ (QuRoo)Rιo c: QnRiQ + QuRoi c QnRίo + RuRoi >

using (4) and the table. Hence {QnR^)Rw c: Qni210 + i2ui2Oi.

(JBoiQii)Λn C RMnRn + J?uQn) + (ΛoiΛn)Qn C Λ01Oπ ,

using (4). (R01Qn)R10(zQ. (RolQn)ROo c J?OiJ?oo. To handle (R01Qn)R01,

we recall from Lemma 4-(i) that J?01 c JBU + JB?0 + ôo-Kio> so that

( 5 ) (ΛoiQπ)Jϊoi C (ΛπQΛBo! + (IΛϊolQn)βoi + ([ΛooΛio]Qn)Λoi

Next we shall work on each of the three terms in the right hand
side of (5). Thus (RnQn)R01c:QnR01c:RnR01, or
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( 6 ) (RnQn)RoιaRnROί.

As previously noted, (R%)Qn - RUQuR^aiQnR^Rio + Qllf since α10δ10 +
6i0α10 e Q11# Thus ([R2

lo]Qn)Roi c ( [ Q u ^ R o ) ^ + QnΛoi. But by use of
(4), ([QnRl0]R10)R01c:(QnR10)(R10R0ί + RoiR^ + ilQnRiolRoJRiodiQuR^Ru +
(QuRio)Roo + ([Qn#io]#oi)#io. We saw previously in the lemma that
(QuΛio)JKii - 0, (QnRio)Roo c QUΛ1O + ΛπΛoi, and ([Qn#io]#oi) c Qπ. Thus
([Qii^iol^io)^!^:©!!^^ + ΛnΛoi Putting together the various inclusions
we see that

(7 ) ([Rlo]Qn)Roι c Q u β 1 0 + RnRQi .

Using (4) it follows that

C

because of the table. But then

Qii^io])J£oi C

R00(R10Roι)

+ RoiQnRio CI J2oo(-RoiQn-Kio) + -KoiQn-Bio ,

using (4) and the table. Observe that

( i ? 0 0 , ^oi> -Rio) ^ — (-Roo> -B1 0, iϊoi) ^ (RooRio)Roi C: Qoo >

using the right alternative identity and Lemma 8. Hence

ROO(RQIQHRIO) C: (-B00i2oi)(Qiii2io) + Qoo CI RoiQnRio + Qoo

Now piecing together various inclusions we see that

( 8 ) ([RooRio]Qu)Roi C RoiQuRio + Qoo

By combining (5), (6), (7), and (8) we now see that (R0]Qn)R01(zRnRQ1 +

QnRio + RoiQuRio + Qoo (R^iQnRi^Rii^-R^Rii — 0. (i2oiQn îo)βioCIjBoo-Rio
(RQ1QnR10)R00 = Roo(RoiQuRio), as a result of Lemma 6. However, in t h e
process of establishing (8) we observed t h a t R00(R01QnR1Q)c:Q00+R01QnR10.
Therefore (RoιQnRlo)Rooc:Qoo + ROίQnRio- Because of (4),

(RoιQιιRw)Roι C CRoiQiiX-Rio-Roi +

C (RoiQu)Ru + (RoiQu)Ro

We established earlier in the proof that (RoiQiJR
Λoi c 22uΛoi + Qii«io + ΛoiQiΛo + Qoo Hence

io([RoιQn]Roi)Ri

+ (i2OiQiil2 lo)lί1o + Qoo-Rio C Qn + i?oiQn

again utilizing inclusions previously established in the proof. There-
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fore (RQίQnRί0)RQίc:Qn + ROίQn + R0QR10. We have now established half
of the necessary inclusions for proving that Q is a right ideal of R.
The others all follow from reversing subscripts. This completes the
proof of the lemma.

LEMMA 10. If Q of Lemma 9 is zero, then the table becomes the
same as that for alternative rings.

Proof. Q = 0 implies RnR0] = 0 = RmRιύ, as well as αf0 — 0 = b2

01.
Now define A — RQl + JRQI + (Rlι)RQί + RoιR io We now proceed to establish
that A is a right ideal of iϋ. R01RnaR01. R01R10dA. RQ1RoιczA. RQίR00 = 0,
follows from the table. Because of (4), (Rlί)RnaR01(R0lRn + RnROι) +
(RQlRn)R01c:R2

0ι, while ( f t ) ] ί o l c 4 . Again using (4),

R^R^ + RlQR01) + (R01R10)R01ciRQ1R0

as a result of the table. Again utilizing (4),

because of the table. Again because of (4) and the table

But we just established that (i?oi)#u c i ^ so that

Thence ([-Bw]i2oi)i2n c (RIJR^. Again because of (4),

([R2

01]RQ1)Rί0 c (R2

01)(R01R10

+ (i2?i)«u +

But we already know that (R2

ϋl)R00c:R2

01, (RlJRndRl and (E*Q1R1Q)czRQ1,
so that ([BoMJBxo^cJBSi. Hence ([R2

01]R01)R10c:R2

01. Since ^ c i200 + R10

follows from the table and RnR01 = 0,

RO! C ([R10 + i?oo]-Roi)̂ oi C (ϋ?n + ROi)Roi C: i?oi

-Koo C (JBU + R01)R00 = 0 . (R01R10)Rn c ROoRn = 0 .

(R01RlQ)R10 c RooRίo = 0 .

(RQ1R10)RQ1 d R0QRQ1 a R01 .

Because of (4), (RϋιR10)RQ0 c RQί(R10R00 + #0o#io) + (ROιRoo)Rio c #0i#io. Thus
we have proved that A is a right ideal of iϋ. If A = 0, then i?01 = 0.
But then we may verify directly that J3 = i? u + iϋ10 is a right ideal,
for J?!! c i?n, RnRί0 c i?10, RIIRQO — 0, RlQRtι = 0, R1QRι0 c ϋ?n, RιoRQQ c J210.
As 1 - e ί ΰ , then i? = 0, and jβ00 = iϊ. Since β g i200, this leads to a
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contradiction. Hence we cannot have A = 0. But then A = R. We

recall that A = R01 + Λ^ + (R2

01)R01 + Λ01Λ10, while Λ?i c Λ10 + i?00,

(Roι)Roi C (J?10 + ROQ)HOI ^ -Bn + i2Oi> RoiRio C i?Oo

But because the Peirce decomposition is direct, we must have R10c:R2

Q1 +
i?oo. And thus i ^ c C R * ^ + l^ ioCCR^JV But as a result of (4),

(Rli)Rιo C R0ί(R01R10 + i? loi2Oi) + (^oi-Rio)-Roi ^ RQIRQO + RQIRH + i2oo-Boi C JBQI
We have shown that βJoci2Oi By reversing subscripts we also obtain
i?oiCi2lo. This completes the proof of the lemma.

LEMMA 11. R01QnR10 c Qoo απd RioQJRoi c Q u .

Proo/. Note t h a t (x01qny1Q)2 = - (XoiQnVm a?Oi, fful/io) + ([«oiϊiil/io]ί»oi)
(ffn2/io). Using (3) with α = a?01, 6 = ffu2/10, c = α?Oi, we see t h a t ([a?0i?n2/io]«oi)

(0π2/io) = »oi{([ϊπ2/io]»oi)(^n2/io)}. However, ([̂ u2/io]ί»oi)(?ii2/io) = (in, 3/io, «oi)
(ffnl/io) + (?n[2/io^oi])(ffii2/io). Since tfπ^/A] e i ? u , and (Rn, Rn, R10) = 0,
we use Lemma 6 to obtain {qn[yιQ%Qi]){qnyιQ) = (??i[2/io ôJ)2/io Going back
to an earlier equation, thus

and hence

ii, l/io, «oi

We shall now establish that XoiQuVio e QOo, by induction on the degree
of nilpotency of gn. Start off by assuming q2

n = 0. Then (1), with
a = b = qn,c = ylo,d = x01 yields (q2

n, yί0, x01) + (qn, qn, yl0xOi - x^Vio) =
?ii(ffn, 2/io, »oi) + (?ii, 2/io, »oi)?u = δgπίffπ, 2/10, a?oi) as a result of Lemma 6.
However, the left hand side of the equation is zero, since Lemma 3
implies (Rn, Rιu Rn) = 0, and the table implies that (R1U Rn, Roo) = 0.
But then 2qn(qn, ym x01) = 0, and so qn(qn, y10, xOί) = 0 = (q119 y10, xol)qllm

Now in the light of this we go back to (9), which may now be
rewritten as (xQ1qny10y = - (a?Oi<7ii#io, ̂ oi, ffn^io). But - {xQlqny^ #oi, ffu^io) =
(«oi?ii2/io, ?n2/io, Soi) = ([»oiϊii2/io][?nί/iol)ί»oi as a result of the right alter-
native identity and the table. Moreover, such an element belongs to
(JBOO-KIO)̂ OI c Qoo, as a result of Lemma 8. Thus (x^q^y^f eQ00. But
then it is obvious that x01qnyio £ Qoo

Assume inductively that x^q^y^ e Qoo whenever the degree of nil-
potency of qn is k <n and let us then consider the case when qn has
degree of nilpotency n. As before, the proof that

- (XoiQuyio, tiffin 2/io) e Qoo
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goes over. Now (qn, y10, x01) e Rn so that (qn, ym xol)qn e Rn. Lemmas

3 and 6 imply that Rn is both associative and commutative so that

ί(tfn, #io, ̂ oi)#ii]2 = (?ii, #io, «oi)2??i However, as a result of Lemma 8,

we have (qlu ym x01)
2 = 0, so that (qn, ym xQl)qn e Qn and its degree of

nilpotency is 2. But then by the previous calculation, or for that

matter by the induction hypothesis, it becomes clear that

?π, #io, »oi)ffii]#io} € Qoo .

Since (Rni Rn, R1Q) — 0 has already been established,

^oi ton, #10, «oi)(

Finally, [gM#i<>αoi)]Cίn+1)/2] = 0, and \(n + l)/2] < n in our situation, so
that we may use the induction hypothesis to obtain that

Now going back to (9) we see that (a?Oitfu#io)2 € QOo, since QOo is closed
under addition. But then xQ1qnyΪO <= Qoo, as before and the induction is

completed. This proves ROίQnRio c QOo By reversing subscripts we

obtain the second part. This completes the proof of the lemma.

L E M M A 12. (QnR01)RQ1 c Qn and (QQORio)Rιo c Qoo.

Proof. Let # u e Q u and α01, 601, a?Oi» #01 € Roι. Then because of (4),

(Quβoi)K = ϊn(αOiδoi + 601̂ 01) - (tfiAiKi. But ?n(αoiδoi + 6oi«oi) € -Bu^oo = 0.
Thus

(10) (?liαθi)6θl = - (9lAlKl

Now ([ίπOJoill/oi)2 = - ([?n»oi]2/oi, ^iΛi, #01) + ({[^Ai]#oi}{tfiAi})#oi. But as

a result of Lemma 8, — ([qnxOi]Voi, ffu»on #01) e (JBU, JB10, R01) c Q u . Hence

let - ([gn^oi]#oi, ?ii«oi> #01) = <?ίi. On the other hand (3) implies t h a t

oi]#oi}{̂ iî oi})#oi = (Qrπ^oi)([#oi(ζlriAi)]#oi). But then apply (10) wi th

^01, δoi = [#oi(^n^oi)]#oi. Thus

= (?n, #01(̂ 11̂ 01), #oiKi = [(?u, ϊii^oi,

us ing (2). Now ([tfA]#oi)2 = q'n + [(? u , ?ua?oi, #oi)#oi]^oi. Let

Wll, QlΆlf #0l) = = ίll

Then as a result of Lemma 8, we have fn — 0, and

(11) ([?ii»oi]l/oi)2 = <?ίi + (*iil/oi)«oi

In (11), replace gu by ίn. Then
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(12) ([tn%oi]y»ιf = S'n + [ ( ί u , tnXQ1J yQ1)yQ1]xQί .

In an arbitrary ring one may verify the Teichmiiller identity:

(wx, y, z) — (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z .

Hence let w = x = tιu y = x01, and z = yoι. Then

(*ii, XQU yoι) (in, in#oi, you ~r (ίn, in, #oi3/oi)

~ iii'^iij #01, you i (ίn, in> #oi/2/oi

Since ί̂  = 0, the first term of the left hand side vanishes. Since
(in, in, #oi2A>i)c(jβu, JBU, 2?Oo + #io) = 0, the third term of the left hand side
also vanishes. From (1) it follows that (t2

n, x0l9 y01) + (ίn, t n , (a?Oi, 2/oi)) —
ίii(*n, »oi, 2/oi) + (in, &oi, 2/oi)*n- B u t ί?± = 0, w h i l e

(in, in, (#oi> 2/oi)) ^ (-Kiu RUJ -̂ 00 + -Rio) = 0 ,

so the left hand side of the last equation is zero. If we let (tnx01)y01 =
α u , and ίu(a?Oi2/oi) = K, then i u (a n - 610) + (α1L - 610)ίu = 0. But ίu610 =

in(iπ[#oi2/oi]) = - (in, in, α?oi2/oi) e (Λn, i?u, i?00 + i?io) = 0, while δ10ίu = 0,
from the table. Thus tnan + antn = 0. Then from Lemma 6 we have
2έ11α11 = 0, so that tnan — 0. But then tn(tn, xQ1, yQ1) = ίuίαn — δ10) = 0.
Thus what remains from the Teichmiiller identity is — (tn, tnx01, y01) =
(in, in, Xoi)yOi. Substituting this into (12) we see that ([znx01]y0iy =
S'n - {[(in, i n , a?ol)2/oi]2/oiKi = Sίi - {(in, in, »oi)2/o2i}»oi, as a result of the
right alternative identity. But y2

01 e Qoo, as a result of the table, while
(in, in, &oi) = - (in, #oi, in) e i210. Thus - {(ίu, t u , #Oi)2/oi}#oi e RloQOoRoι-
But as a result of Lemma 11, RloQooRolciQllm Thus ([iu#Oi]?/oi)2 e Q n .
But then (tnx01)y01 e Qn. Now we may go back to (11) and obtain

e Qu and so {qnxQVyQι e Qn. We have shown that

By reversing subscripts we obtain (QQύRι0)Rl() c Qoo

This completes the proof of the lemma.

LEMMA 13. S = Q u + JB0 1QU + Qui210 + Qui2Oi + Qoo + î ioQoo + Qoo#oi +
QOQRIOI is a right ideal of R.

Proof. We observe that Q, as defined in Lemma 9, has six of
the eight terms appearing in S. Indeed we can extract the following
inclusions directly from the proof of Lemma 9.

Qll-Bll ^ Qll, Qll̂ OO = 0, (-BθlQll)-Bll C -βoiQll ,

(RO1Q11)RO1C1 QnRoi + Qn-Bio + RoiQuRio + Qoo, (RoιQn)Roo — 0 ,

(QnR^Rn = 0, (QnR10)R10(z Qn + R01Qn ,

(QnRlo)Roi a Q1U (QnR1Q)Roo c : QnRw + QuRoi
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Also because of Lemma 11, i2OiQii-#io c QQ0, so t h a t in fact

(#oiQπ)22oi C QπΛoi + QiAo + Qoo C S .

Besides, QnR10(zS, and Q u Jβ 0 1 cS Thus we have proved that

Then (QUJBOI^UCJB^H = 0, because of the table. (QnRQι)RL0(zQn, as
a consequence of Lemma 8. As a result of Lemma 12, (QnJ?2oi)iίoiCQu.
Using (4) and the table,

(QιιRoι)RθQ C Qii(.Boi-Roo + Ĵ oo-Roi) + (QIIRQO)RO\ C QURQI C S .

This completes half of the required number of inclusions. The remain-
ing ones follow by reversing subscripts. This completes the proof of
the lemma.

COROLLARY. S = 0.

Proof. Assume S =£ 0. Then it follows from the lemma that
S = R. But then from the directness of the Peirce decomposition we
must have Qn = Rn. Since eίQn, while eeRn, we have reached a
contradiction. Hence, S = 0.

LEMMA 14. Q = 0.

Proof. Suppose Q =£ 0. Then as a result of Lemma 9, Q = R.
Since the corollary to Lemma 13 gives us S = 0, looking at Lemma
9 we see that i? = RnR01 + (RnRQ1)ROi + iC^io + CB0o#io)#io. Since the
Peirce decomposition is direct, then i?ni201 — R10. But from this it
follows that iϋloi?io c (RnRoi)Rio c Qn, as a result of Lemma 8. But
Q u c S = 0, hence JS10JB10 = 0. At this point form U — Rn + R1Q. Then
it follows from the table that R^R^ c Rn, RnR1Q c JB10, JBU-BOI <= -βl0,
Λiî oo - 0, Λ.oiίn - 0, i210JB10 = 0, RlQRoiC:Rn, R10R0Qc:R10, so that U must
be a right ideal. If U = R, then Roo = 0, so since 1 — e 6 RQ0, we
would have β = 1, contrary to assumption. On the other hand if
U = 0, then β — 0, also a contradiction. The contradiction was brought
about by supposing Q Φ 0. Hence, Q = 0. This completes the proof
of the lemma.

We are now ready to state and prove our main result.

THEOREM. Let R be a right alternative ring without proper right
ideals, of characteristic not two. Suppose that e, l e i ? , where e is
an idempotent other than 1, such that (e, e, R) — 0. Then R must
be alternative, hence a Cayley vector matrix algebra of dimension
eight over its center.
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Proof. Combining Lemmas 14 and 10, it follows that the table
must be the same as that for an alternative ring and that Roo and
Rn have no nilpotent elements. Then it follows from the main theorem
of [4] that R must be alternative. However, the reader can get by
with proving only Lemmas 14, 15, and 17 of that paper, since Lemma
16 coincides with our Lemma 7. Once R is alternative, the main result
of [2] makes R either associative or a Cayley vector matrix algebra.
But R cannot be associative, for having an identity element and no
proper right ideals force R to be a division ring, which in turn could
not have an idempotent e Φ 1. This completes the proof of the theorem.
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ON THE SUBRING STRUCTURE OF FINITE
NILPOTENT RINGS

ROBERT L. KRUSE AND DAVID T. PRICE

This paper studies the nilpotent ring analogues of several
well-known results on finite p-groups. We first prove an ana-
logue for finite nilpotent p-rings [a ring is called a p-ring if
its additive group is a p-group] of the Burnside Basis Theorem,
and use this to obtain some information on the automorphism
groups of these rings. Next we obtain Anzahl results, showing
that the number of subrings, right ideals, and two-sided ideals
of a given order in a finite nilpotent p-ring is congruent to 1
mod p. Finally, we characterize the class of nilpotent p-rings
which have a unique subring of a given order.

The analogy between nilpotent groups and nilpotent rings
which motivates the results of this paper is the replacement
of group commutation by ring product. A nilpotent ring, of
course, is itself a group under the circle composition x o y =
x + y + xy but the structure of this group implies little about
the invariants to be studied here, as shown by the examples
in the last section of the paper.

All rings considered here are associative. The reader may verify,
however, that all results of §§ 1-3 hold without the assumption of
associativity, with the exception of (3.3). The unqualified word "ideal"
means two-sided ideal. The letter p always denotes a prime number.
If 31 is a ring, we denote the additive group of 9t by 3ϊ+. The order
of a ring 3ΐ, denoted |9t|, is the order of the group 9ϊ+; the index of
a subring @ in a ring 3ΐ, denoted [9t: @], is the index of Θ+ in 3ϊ+.
A ring is called null if all products are 0. A ring 9t is called nilpotent
of exponent e if all products of e elements from 9ΐ are 0, but not all
products of e — 1 elements are 0. The characteristic of a finite ring
is the maximum of the additive orders of its elements. The smallest
ideal containing ideals @ and % is denoted @ + %.

We shall need the following elementary results:

(1.1) Let 3ΐ be a ring with periodic additive group. The primary
decomposition of SR+ decomposes 9ΐ into a ring direct sum of p-rings.

Hence, in studying finite rings, it is sufficient to consider only
p-rings.

(1.2.) Let $ be a maximal ideal of a nilpotent p-rmg 3ΐ. Then
[m: 3] - p, 3ΐ2 s S, and p9ϊ g &
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(1.3) Let © be a proper subring of a finite nilpotent ring 3ϊ.
Then there is a maximal ideal of 9ΐ which contains @.

(1.4) If 23Ϊ and 9ϊ are nonzero, nonempty subsets of a nilpotent
ring, then 3K is not contained in {μv \ μ e 2K, v e 9ΐ}.

(1.5) A nilpotent ring of order pn contains an ideal of every
possible order p\ 0 <* i <£ n.

2* Burnside Basis Theorem* The Frattίni subring Φm of a ring
9Ϊ is defined to be the intersection of the maximal ideals of 9t, provided
such exist. Otherwise, Φm = 3ΐ. A set of elements of a ring 3ϊ generates
a subring Θ if @ is the smallest subring of 3Ϊ containing all the
elements.

THEOREM 2.1. Let ?H be a finite nilpotent p-ring. Then 21 =
is a null ring, and 2Ϊ+ is elementary abelian. Let [3t: Φm] = p d .
any set of elements of 9ΐ which generates 3ΐ contains a subset of d
elements, {θlf , θd], which generates 3ΐ. In the canonical homomor-
phism of 9ΐ onto Sί the elements θu *-,θd map onto a basis of 2I+.
//, conversely, θ, + Φm, , θd + Φm form a basis of 2ί+, then θ19 - ,θd

generate 9t.

Proof. By (1.2) 21 is a null ring and 2I+ is elementary abelian.
Thus the images under the canonical homomorphism 3Ϊ—>2I of any
generating set for Sft must contain a basis for 2t+. Let {θlf ••-,#<*}
be a set of elements whose images form a basis for 2t+. Suppose
#i, •••>#<* generate a proper subring of 9ΐ. By (1.3) this subring is
contained in a maximal ideal $, which contains Φm. Thus

are in ^5/Φ^, which is proper in 21. This contradicts the assumption
that the images of θlf •••,#<* form a basis of 2I+. This completes
the proof.

REMARK 1. Theorem 2.1 implies that a finite nilpotent p-ring
contains a unique maximal subring (= ideal) if and only if it is
generated by a single element. A ring [an associative algebra] gen-
erated by one element we call a power ring [power algebra], since
the additive group of the ring [the underlying vector space of the
algebra] is spanned by the generator and its powers. Whereas a
group generated by one element is completely determined by its order,
the same is not true for power rings. In fact, even specification of
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the additive group and the exponent of the ring are not generally
sufficient to determine a nilpotent power ring up to isomorphism.
There is, of course, only one nilpotent power algebra of a given
dimension over any field. Note, finally, that all nilpotent power rings
[algebras] are finite [finite-dimensional].

REMARK 2. It is frequently convenient to use the observation
that Φm = 3ΐ2 + p9ΐ for every finite nilpotent p-ring 3ΐ. To prove this,
observe that (1.2) implies W + p3ΐ S Φm, while $ = 3ΐ/(3ΐ2 + pdt) is a
null ring and $ + is elementary abelian, so the intersection of the
maximal subrings of $ is 0, which means Φ^ — 0, so Φm S W + p3ΐ.

As an application of Theorem 2.1, we shall now derive some infor-
mation about the group of automorphisms of a finite nilpotent p-ring.

THEOREM 2.2. Let 3Ϊ be a nilpotent ring of order pn, and let
[3ΐ: Φ^] = pd. Then the order of the automorphism group of 3ΐ divides

The order of the group of automorphisms of 9ΐ which fix ^
elementwise divides pd^-d\

Proof. This result, due to P. Hall for p-groups, follows in the
same way as § 1.3 of [2].

If $ is an ideal of a ring 3ΐ, we now define Aut (3Ϊ; $) to be the
group of all automorphisms of 3ΐ which leave 3ΐ/$5 fixed elementwise.
For 3ΐ a finite nilpotent p-ring we shall obtain a bound on the class
of the p-group & — Aut (3ΐ; Φm). These results are analogues of
those obtained by H. Liebeck [4] for p-groups.

THEOREM 2.3. Let 91 be a finite p-ring, nilpotent of exponent
e, for which Φ^ Φ 0. Let 9ΐγ3ΐί+1 have characteristic pm\ i — 1, ,
e — 1. Then the class of & = Aut (3i; 0^) does wo£ exceed

This theorem will follow by induction from the next result.

THEOREM 2.4. Lβί 9ΐ be a finite p-ring, nilpotent of exponent
β, for which Φm Φ 0. Let Sΐ6"1 have characteristic pm and let 9ί —
pm~me~\ Then

( i ) the ideal 9Ϊ is elementwise fixed by .ζ? = Aut (5t; Φ^).
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( ϋ ) % = Aut (3t; 31) is in the center of &>.
(iii) JΓ has order prd, where pr is the order of 31, and pd =

[3t:Φ ?].
(iv) &\^ is isomorphic to the subgroup & of automorphisms

from Aut (tR/3l; Φ^/31) which can be extended to 9ΐ.

The proof of (2.4) requires three lemmas, the first of which is
obvious.

LEMMA 2.5. Let 3ϊ be a ring and a an automorphism of ΪR. If
{&i> * •> θd) ̂  a generating set for 3ΐ, then a is completely determined
by the values of 0", 1 ^ i <; d. If $ is an ideal of 9ΐ then a e Aut
(9ΐ; S) if cmd only if 0? - 0< e ̂ , 1 ^ i ^ d.

LEMMA 2.6. TFίίΛ 3ΐ as m (2.4), if ae^ and θeW for some
i, 1 ^ i ^ e - 1, ί^β^ θa - θe pW + 3ΐί+1.

Proof. The lemma is true for i = 1, since Φ^ = p3ΐ + 3ΐ2 and
α e Aut(3ΐ; Φm). Assume the result for i<j. Let deffi. Express
θ as a sum of products

* = Σ ^rî r

where the πr e fRj~ι, ρr e 9ϊ. Then θa = Σ π rp ί = Σ ( ^ + σr)(iθr + τ r ),
where, by induction hypothesis, σr e pSΐ5"1 + ΣR5' and τ r e p3ΐ + 3ΐ2. Thus
^ _ β = Σ (σrior + τrrrr + σ rτ r) e pSΪ^

LEMMA 2.7. Wίί/^ ί/̂ β notation of (2.4), ever?/ automorphism
ζ e %? leaves Φm elementwise fixed.

Proof. For any θ e % θζ - θ e 31. Thus from p9l = 0 follows
0 = p(#ζ - θ) = (p^)ζ — ̂ 0, so ^ fixes ί>3ϊ elementwise. Similarly,
since 5R9ΐ -= 3ΐ5R = 0, %r fixes 3ϊ2, hence Φ^ = 3ΐ2 + p3t, elementwise.

Proo/ o/ (2.4). ( i ) Suppose θ e 31 and a e &. Then θ - pm~ι

for some ψeSt 8" 1, and so, by (2.6),

(ii) Let θe%ae^, and ζ G ^ . Then

(0α)< = (0 + ρ)ζ for some p e Φm

= θ< + p by (2.7)

— 0 + jθ + σ for some σ e 31 ,

while
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(βψ = (θ + σ)a = θa + σ[by (i)] = θ + a + /o .

Thus α:ζ = ζα.
(iii) Let θ19 , θd generate 3ΐ, and ψ ,̂ ψd be arbitrary elements

of 9ΐ. Then the mapping

defines an automorphim ζ e ^Γ. But every automorphism ζ e % induces
a mapping of the form (*). Thus | %" \ — prd.

(iv) Let a e &. Defining (θ + 5R)α = θa + 9£ for all 0 e 91 gives,
by (i), a homomorphism / of ^ into ^ . If (θ + 3i)α - θ + 9£, all 0,
then θa - ί e % so α e ^ . Thus the kernel of / is 3Γ. Now consider
an automorphism βf e &. Let β be an extension of βf to 3ΐ, /3 € ^ .
Then fβ e &, and for θ e % (θ + Wβ = ^ + 91 - (θ + W so the
homomorphism / is onto ^ . This completes the proof of (2.4).

Proof of (2.3). λ(3ΐ) = 0 implies e = 2 and mL = 1, hence Φ^ = 0,
contrary to assumption. If λ(3ΐ) = 1, then either e = 2, mx = 2, or
else e = 3, m1 = m2 = 1. In either case, for 9Ϊ = jΓ*-1"1^-1, % = Φ^.
Hence, by (ii) of (2.4), & is abelian. We now use induction on λ(3ΐ).
Let 9ΐ = ί>w-1~13ΐβ-1. By (2.4) j r = Aut (91; 5Λ) is central in & and
&13Ϊ is isomorphic to a subgroup & of Aut (Sl/Sβ; Φm/9l). Since
λ(St/9l) = λ(9l) — 1< λ(Sft), by induction hypothesis the class of & does
not exceed λ(3ΐ/3ΐ). Thus the class of & does not exceed λ(9ΐ) =

1.

REMARK. The bounds given in Theorems 2.2 and 2.3 are at-
tained by the free nilpotent rings of characteristic p with two or
more generators.

3* Enumeration results* The results of this section depend upon
the following lemma, which is essentially the enumeration principle of
Philip Hall ([2], Th. 1.4).

LEMMA 3.1. Let U be a finite p-group, ^f the set of maximal
subgroups of It which contain a fixed subgroup S3 Φ 11. Let ^ be
any class whose members are subsets of 11, and let each member of
& be contained in at least one member of ^ . Let n(M) be the
number of members of & which are contained in M for each M e ^//.
Then the number of members of ^ is congruent to Sare^w(ilf)
(mod p).

THEOREM 3.2. Let 9ΐ be a nilpotent ring of order pn. Let @
be a subring of 9ϊ, of order ps. Then for s <; t ^ n, the number of
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subrings of 9ΐ of order pt which contain @ is congruent to 1 (mod p).

Proof. If @ = 3t, the result is trivial. Suppose @ ^ 3ΐ. We
proceed by induction on n. Let ^f be the set of maximal subgroups
of 3ϊ+ which contain 33+ = (@ + 3ΐ2)+. By (1.2) and (1.3), ^ is non-
empty. Letting c^ — {©} in (3.1), we see that the number of members
of ^ is congruent to 1 (mod p). If t = w, the result is trivial.
Suppose t < n. Let ^ = {£ | @ £Ξ £, | £ | = p\ X is a subring of 3ΐ}.
By (1.3) and (1.2) each Z e ^ is contained in some Jlf e _ ^ Let w(ikf)
be the number of members of c^ contained in M, for each Me^/f.
By induction, n(M) = 1 (mod p). Hence, by (3.1), the number of
members of ^ is congruent to 1 (mod p).

It is well known that the number of normal subgroups of a given
order in a finite p-group is congruent to 1 (mod p). For rings there
are several analogous results.

THEOREM 3.3. Let 33 be a right module of order pn of a nilpotent
ring 9ΐ. The number of submodules of S3 of order pk, 0 ^ k <Ξ n, is
congruent to 1 (mod p).

THEOREM 3.4. Let ^ be a right ideal of order pm of a nilpotent
ring 9t of order pn. The number of right ideals of 9ΐ of order pk

which contain $ (which are contained in $), m ^ k ^n (0 ^ k ^ m),
is congruent to 1 mod p.

THEOREM 3.5. Let $ be a two-sided ideal of order pm of a nil-
potent ring 9ΐ of order pn. The number of two-sided ideals of 3ΐ of
order pk which contain Qf (which are contained in $), m ^ k ^ n
(0 ^ k ^ m), is congruent to 1 mod p.

The proofs of these results are similar to that of (3.2).

REMARK 1. No analogue of the theorem of Kulakoff seems to hold
for nilpotent rings. For example, the rings with basis a, β, such that
p2a = p2β = 0, a2 = — /S2 = pα, and aβ = βa = 0, have 3p + 1 subrings
of order p2 if p =̂  2, and 5 if p = 2.

REMARK 2. Note that the Anzahl theorems fail to hold for non-
nilpotent p-rings. For example, consider the ring 9ΐ = 3^03^2, where
Sΐi is generated by an element a of characteristic p with a2 = a, and
3ΐ2 is generated by an element β of characteristic p with β2 — 0. Then
3̂ ! and % are the only two subrings (and ideals) of order p, and 2 ξέ 1
(mod p) for any prime p.
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4* Nilpotent brings with only one subring of a given order*

It is well-known that a finite p-group @ which contains only one
subgroup @ of a given order, 1 Φ @ Φ ©, must be cyclic, or else
I @ I = 2 and © is generalized quaternion [1; 131-132]. This section
obtains a characterization of nilpotent rings and (associative) algebras
satisfying the analogous condition. Although the algebra result could
be obtained as a corollary to the ring result, we shall give an indepen-
dent proof to illustrate the general ideas used while avoiding much
detail required for the ring proof. The result for algebras is

THEOREM 4.1. A nilpotent algebra U over a field % contains
only one subalgebra @ of some given finite dimension, 0 Φ © Φ U, if
and only if one of the following conditions holds:

(1) dim @ = dim 11 — 1 and 11 is a power algebra.
( 2 ) dim@ = 1, dimϊt ^ 3,II2 = @, U3 = 0, and φeU,φ2 = 0 implies

REMARK 1. An algebra 11 such that dimU2 = 1, II3 = 0, and ^ e U ,
φ2 = 0 implies φU = Uφ = 0, is called "almost-null." It may be of
interest to note that a nil algebra has the property that every sub-
algebra is an ideal if and only if the algebra is almost-null (see Kruse
[3]). Thus almost-null algebras seem in one way analogous to the
quaternion group of order 8, which plays a key role both in the
determination of p-groups with a unique subgroup of order p, and in
the determination of groups in which all subgroups are normal.

REMARK 2. The classification of the finite-dimensional algebras U
over a field g satisfying (2) of (4.1) is closely related to the study
of quadratic forms over g. Let 11 have a basis {a19 α2, , an, β)
with β e II2, and choose aί5 e%,l<Zi,j^n, so that a^ = ai3-β. Then
condition (2) requires that the quadratic form

n n

have no nontrivial zero (xlyx29 --*,xn). Let us note that when % is a
finite field, then every quadratic form in three variables has a non-
trivial zero, so if g is finite then dim 11 = 3. On the other hand, over
each finite field there exists a quadratic form in two variables with
no nontrivial zero, so algebras satisfying (2) always occur when %
is finite.

Finally, we note that an arbitrary almost-null algebra must either
be null, or isomorphic to the direct sum of a null algebra and either
a power algebra of dimension 2 or an algebra satisfying (2).

Proof of (4.1). It is easy to check that nilpotent algebras satisfy-
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ing (1) or (2) have unique subalgebras of the dimensions indicated.
For the converse we shall first establish two lemmas.

LEMMA 4.2. If U is a nίlpotent algebra of dimension 4, over
a field g> then IX has more than one subalgebra of dimension 2.

Proof. If dim U2 = 3, then II is a power algebra, generated by
one element a. Then all subalgebras generated by a2 + xa3 for different
xe% are distinct and all have dimension 2. If dimII2 rg 1 then U/U2

is null, and 11 contains more than one subalgebra of dimension 2. Thus
we can suppose that dimU2 = 2, and U2 is the only subalgebra of II
of dimension 2. It follows, for any φ e U, φ £ U2, that φ3 Φ 0. Since
dimΐt2 — 2, there are elements a, β eU which are linearly independent
mod U2, so [a, β, a2, a?) is a basis for U. Choose x, y e % so that aβ =
xa2 + ya3 and let β' = β - xa - ya2. Then β' e IT, and aβr = 0. Let
βn = ua2 + va\u,ve%. Then 0 = (aβ')β' = ucc so u = 0. Then /9'3 =
0 and β' % U2, a contradiction.

LEMMA 4.3. Let U be a nilpotent algebra with a unique sub-
algebra @ of dimension 1, emώ Zeί φ e U . If ω2 = 0 then φe&. If
φ^&y then 0 Φ φ2e&.

Proof. If φ2 — 0 then either φ = 0 or 9 generates a subalgebra
of dimension 1, which by hypothesis must be @. Thus φ e @. Suppose
<p ̂  @, and let e be the natural number such that <̂>e — 0 but <̂ >e-1 =£ 0.
By the above argument e ^ 3. If e ^ 4 then (<pe~2)2 = 0 so φe~2 e @.
But @ is an ideal, so nilpotence of U implies U@ = 0, so φφe~2 — 0,
contradicting the definition of e. Thus e — 3. Then (<p2)2 = 0 so
0 Φ φ2 e Θ.

Proof of 4.1, continued. Let 11 be a nilpotent algebra with a
unique subalgebra 6 of a given dimension, 0 Φ @ Φ VL. If dimU =
dim© + 1, then II is a power algebra, and condition (1) of the con-
clusion holds. If dimU ^ dim© + 2 :> 4 then, by the algebra analogue
of (1.5), I! contains a subalgebra S3 with dim S3 = dim© + 2, and an
ideal $ with dim $ = dim @ - 2. Then the algebra S3/$ fails to
satisfy (4.2). Hence we can suppose dim© = 1, dimII ^ 3.

Next we show that II2 = ©. Choose φ, ψGll . By (4.3), φ2,ψ2,
and (φ + τ^)2 are in @. Thus <^^ + ̂ rφ e ©. Hence 0 = φ{φψ + Ψφ) =
99^9, since φ2e& and @U = 0. Thus ( ^ ) 2 = 0, so by (4.3) φψe&.
Thus II2 S @. II2 ̂  0 is trivial, so U2 = ©. (4.3) now implies directly
that U satisfies (2) of (4.1). Thus the proof is complete.

We now turn to the analogous problem for rings. We shall
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establish the following:

THEOREM 4.4. A nilpotent p-ring 3ΐ contains only one subring
@ of a given order, 0 Φ @ Φ 3t, if and only if 9ΐ and @ satisfy one
of the following conditions:

( 1 ) 9ϊ+ is cyclic or quasi-cyclic.
( 2 ) [9ΐ: &] = p. 9Ϊ is α power ring.
( 3 ) | @ | = p . Lei U = {99 6 3ΐ | pφ = 0}. T%e^ U + Λαs rcmfc 2 or

3, u 2 = @, α^d cp € U, φ2 — 0 implies <pe<S). There is, moreover, an
i d e a l (£ of 3ΐ m e & £&α£ 9ΐ = K + t l , K Π U — @, cmcί & + is cyclic or
quasi-cyclic.

( 4 ) I @ I = p 2 . I 9ΐ I = p 4 , 9ΐ+ Λαs %pe (2,2), αwd, if φe?H with

pφ Φ 0, then pφ2 — 0 α̂ cZ φ2 is not a natural multiple of φ.

REMARK. A description of the "exceptional" nilpotent p-ring 5R
satisfying (3) or (4) may be completed in terms of generators and
relations as follows:

( 3 ) Let @ be generated by an element σ. Then pσ — 0 and
alSi = 3ίσ = 0. If (Σ+ is quasi-cyclic, then £3ϊ = 9«£ = 0. The subring
11 satisfies one of the following conditions:

( a ) U+ has a basis σ, β, and β2 Φ 0.
( b ) VL+ has a basis σ,β19β2. Let βiβj = Bi5σ for suitable

integers Bi3, i, j = 1,2. Then 5 n X 2 + (J512 + ΰ 2 1 ) X F + B22Y
2 = 0 (mod

p) for integers X and F implies X = F = 0 (mod p).

(4 ) Let 9ί+ have a basis ax and α2. Then afiί$ — Aiάpaγ + Biάpa2

for suitable integers A^ , J5ί:/ , i,j — 1, 2, and

J5nX3 + (Au + £ 1 2 4- B21)X2 + (S22 + Aί2 + A21)X + A22 ΞΞ 0 (mod p)

has no integer solution X.

Since, over the field of p elements, there are both quadratic forms
in two variables which have no nontrivial zeroes, and irreducible cubic
polynomials, rings satisfying (3) and (4) occur nontrivially for all
primes p.

Proof of 4.4. It is easy to see that nilpotent p-rings satisfying
(l)-(4) have unique subrings of the orders indicated. An infinite nil-
potent p-ring which contains only one subring @ of a given (finite)
order clearly satisfies one of (l)-(4) if and only if each of its finite
subrings which properly contains @ also does. Thus for the converse
we consider only finite rings. As a notational convenience, let ^(n, s)
denote the class of nilpotent rings of order pn which contain only one
subring, generically denoted @, of order p \ If ?ϋe^(n, n — 1), then
the basis theorem (2.1) implies 9ΐ is a power ring. The rings in ^(n, 1)
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are studied in § 5. To characterize the rings in ^(n, s), 1 < s < n — 1,
we first determine those in ^ ( 4 , 2), ^ ( 5 , 2), and ^ ( 5 , 3) and then
proceed by induction. Several steps of the proof are separated as
lemmas.

4.5 Let 3ΐ be a nilpotent p-ring for which 3ΐ+ has type (n, 1).
Then, for 1 < i < n, 9ΐ has exactly p + 1 ideals of order p\

Proof. For 1 < i <L n + l,$&i = {φeΐR\ p^φ = 0} is an ideal of
3ΐ of order p \ For 1 ^ i < n, (£* = {̂ """V | 9? e 3ϊ} is an ideal of 9ΐ of
order p\ Hence 3ΐ has at least two, so by the Anzahl theorem (3.5)
at least p + 1, ideals of order p% 1 < i < n. But these exhaust the
subgroups of 3ΐ+ of order p \

4.6 Suppose $ϊ is a power ring, 3ΐ e ^(n, s), 1 <; s < n — 1.
9ΐ+ is cyclic.

Proof. First suppose s = 1. Let 3ΐ be generated by an element
α, and let Φ = p3ΐ + 9ΐ2. Let 9K = {<?> e Φ | ̂  = 0, φ ί ©}. If SK is
nonempty, then by (1.4) there is someδeSW such that δae&. From
δeΦ follows δ = pψ + α:?, some ^ , f e 31. Then δ2 = δ(pψ + αf) = 0,
so δ generates a second subring of order p. Thus 3ft is empty and
Φ+ is cyclic. By (2.1), [St: 0] = p. If 9t+ had type (w - 1,1), then
Φ — {φ G 3Ϊ I pw~V = 0}, so Φ+ would not be cyclic. Hence 3ΐ+ is cyclic,
as desired.

We now proceed by induction on s. Suppose s > 1. Let $ be an
ideal of order p of 3ΐ. Applying the induction hypothesis to the power
ring 3ΐ/̂ 5 we find that (31/3)+ is cyclic. Hence either 9Ϊ+ is cyclic or
has type (n — 1,1). But type (n — 1, 1) is excluded by (4.5).

4.7 If 3ΐ e ^ ( 4 , 2), ί/m* r<m& 3ϊ+ ^ 2.

Proof. 3ΐ+ cannot have rank 4 by Lemma 4.2, where g — GF(p),
the field of p elements. Suppose 3ΐ+ has rank 3, so 9ΐ+ has type
(2,1,1). Let Z = {φ e 3ΐ | pφ = 0}. Since 12 | = p\ % contains @, the
unique subring of order p2. It follows by (2.1) that £ is a power
algebra over GF(p), and so 3ΐ+ has a basis of the form {φ, ψ, ψ2} where
φ has characteristic p2, ψ and ψ2 have characteristic p, and τ/r3 = pφ.
Since i/r2 e 9l2 and ψ* e W, \ 3ΐ21 ^ p2. By (4.6) 9ΐ is not a power ring,
so I 9ΐ21 ^ p2. Thus 9ΐ2 = @, and @+ has a basis {α/r2, ψ"}. Hence there
are integers A, B such that <pψ̂  = Aψ2 + βτ/r3. Let φ' = φ — Aψ — Bψ2.
Then φff = 0. Let φn = Cψ2 + Dψ3 for suitable integers C, Zλ Then
0 == φ'{φrψ) = φ'2ψ = Cf3 so C = 0 (mod p). Then ^' 2 = Z>p<p', so φ'
generates a second subring of order p2. Thus 9ΐ+ has rank at most 2.
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4.8 // ΐfte %f (5, s), s = 2, 3, then ?H+ is cyclic.

Proof. Suppose rank dt+ ^ 3. Then, for s = 2 (resp. for s = 3),
we can find a subring 11 of order p4 (resp. an ideal $ of index p4)
with rank U+ ^ 3 (resp. rank (3ΐ/3)+ ^ 3). This is impossible by (4.7),
so rank ?H+ ̂  2.

Suppose rank 3ϊ+ = 2. By (4.5) 9ΐ+ has type (3, 2). Let a and
/3, with p3α = p2β = 0, be a basis for 3ΐ+. Since pα and {p2tf, p/3}
generate distinct subrings of order p\ we have s = 3. Then p3ΐ — @.
Moreover, 3ΐ2 = @, since otherwise 9ΐ is a power ring, which is excluded
by (4.6). Let a2 = Apa + Bpβ, β2 = Cpα + Dp/9, C •£ 0 (mod p), α/9 =
.E/pα + Fp/3. By replacing a by α' = a — EC~ιβ, where C~]C = 1 (mod
ί}2), we may assume that £ 7 = 0 . Then (a2)β = BCp2a, while α(α:β) = 0.
Thus β = 0 (mod p), and a generates a second subring of order p\

Proof of (4.4), continued. If 9t e ^ (4, 2), then by (4.5) and (4.7)
either 3ΐ+ is cyclic or has type (2, 2). If 9t+ has type (2, 2) and, for
some φ e 3Ϊ, pφ Φ 0 and <̂ 2 is a multiple of 9?, then both pϊR and the
subring generated by φ have order p2. Thus (4) of (4.4) holds.

Suppose 3ϊ G ̂ /(n, s) with w > 5 , l < s < w — 1. I f s = 2 and rank
9ΐ+ ^ 2, we can find a subring of order p5 and rank ^ 2, which con-
tradicts (4.8). For s > 2 we proceed by induction on n. Let $ be
an ideal of 9Ϊ of order p. By induction hypothesis (9ΐ/S)+ is cyclic.
9ΐ+ cannot have type (n — 1,1) by (4.5), hence 3ΐ+ is cyclic.

5* Nilpotent ^-rings with one subring of order p. In this
section we shall show that a finite nilpotent p-ring 3ΐ which contains
a unique subring @ of order p satisfies condition (3) of Theorem 4.4.
Let @ be generated by an element σ. Then pσ = 0 and 0UΪ = 3ΐσ = 0.
Small Greek letters will denote elements of 3ΐ. For ease of reference
we restate the hypothesis that @ is the only subring of order p.

5.1 If pφ = φ2 = 0, ίftew φ G @.

5.2 Suppose paφ = 0 αuc? pα~> g @, α ^ 1. T%ew α = 1 α^d φ2 e @,

Proo/. By (5.1), ( p * - » 2 ^ 0. This, with paφ2 = 0, gives 2α -
2 < α, so a = 1. Then <̂? together with @ generates an algebra over
GF(p), so (4.3) implies φ2e&, φ2 Φ 0.

L E M M A 5.3. Let aιya2,aSy and b be elements of a ring such that

pb = 0 and there are integers Ai3Ί 0 ^ Aiά < p, i,j = 1,2, 3, sίίcfc that
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didj — Aijb. Then there exist integers 0 <̂  Xi < p, i = 1, 2, 3, not all
0, such that

(X& + X2a2 + X3α3)
2 = 0 .

Proof. This is equivalent to the well-known fact that a quadratic
form in three variables over the field of p elements represents 0 non-
trivially.

LEMMA 5.4. Let it = {φ e 9ΐ | pφ = 0}. Then U2 s @ αwώ o^β o/
£fcβ following conditions holds, according to the rank of U+:

( 1 ) U = @.
(2 ) Π+ λαs α δαsis σ, β, and β2 Φ 0.

( 3) Π+ has a basis σ, β, 7, and (Xβ + F7)2 = 0 /or integers X
and Y implies I Ξ F Ξ O (mod p).

Proof. Since 6 £ U , U is an algebra over GF(p) with a unique
subalgebra of dimension 1. The result follows directly from (4.1) and
(5.3).

In case p3ϊ = 0 we have 3ΐ = IX, and thus 3ΐ satisfies (3) of (4.4).
If pM Φ 0, then, by (5.2), 9ΐ+ = K+ + 11" where £ h is a cyclic p-group
with I Kf I > p, and KH~ ΠU T = @f. The rest of the proof is devoted
to showing that (3ΐ2)+ S p&Γ. This implies that the set of elements of
£ + form a subring E, and thus (3) of (4.4) holds. Let α b e a generator
of (£+. The proof that (3i2)~'r Q p^ is divided into cases depending on
the location of a2 and on the rank of 1I+, which of course equals the
rank of 3ΐ+.

If tt+ has rank 1, then (E = Sft, so (1) of (4.4) holds. Suppose U+

has rank 2, with basis σ,β. If α 2 epK + , then (912)+ has rank 2 so
(4.6) applies. Thus α:2 e p&+. By (5.4) U2 S @, and @+ S P ^ + . Finally,
α/S G @ and βa e Θ by the nilpotence of a.

Thus we may assume that 11+ has rank 3, with basis σ, β, 7. If
(9t2)+ has rank 1, we are done. If (3ΐ2)+ has rank 3, then (4.6) applies.
Thus assume (9ΐ2)+ has rank 2. Without loss of generality we may
asssume β e 3ΐ2. To complete the proof we make use of the following
remark:

5.5 Under the above assumptions, if φe3i2, pφ = 0, and φβ = 0,
then φ e @.

Proof. Since (3ΐ2)!~ has rank 2 and σ, β e 3l2, it follows that φ =
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Xσ + Yβ, some integers X and Y. Thus φβ = Yβ2. Since β2 Φ 0,
Y=0 (mod p). Thus φ e @.

We now continue the proof. Since /S2 e @, 0 = α/32 — (α/S)/S so by
(5.5) α/S G @. Dually /3α e @. By (5.4) U2 S @. Since 7/3 e @, 0 =
α(τ/5) = (<ry)/3 so, by (5.5), αγe©. Dually yae&. Since aβe&, 0 =
a(aβ) = a2β. Thus 3ΐ2/3 = 0. Choose any cp e 3ΐ2. Since (9ϊ2)+ has
rank 2, and /3 e 3ΐ2, @ £Ξ 3ΐ2, we can write φ = p X ^ + X2/3 for some
integers Xx and X2. Then 0 = φβ = ( p J ^ + X2/S)/9 = X2/32. Since
yS2

 ^ 0 , I 2 Ξ 0 (mod p). Thus ^ e p(£+, so (3ΐ2)+ has rank 2.

6* Examples related to circle groups*1 Every Jacobson radical
ring is a group under the circle composition

X o y = x -f y + a ̂ / ,

and every subring [two-sided ideal] of the ring is a subgroup [normal
subgroup] of the circle group. In general, however, not all subgroups
under circle are subrings, and normal subgroups, which may or may
not be subrings, need not be ideals. In fact, a subgroup under circle
is a subring if and only if it is also a subgroup under addition. We
shall consider some examples which show that one cannot tell from
the structure of the circle group alone which subgroups will or will
not correspond to subrings.

6.1 A fully invariant subgroup which is not a subring. Let
3ΐ be the ring generated by an element φ of characteristic 8 with
φ2 = 2φ. The circle group £ of 9ΐ is abelian of order 8 and type
(2,1). The fully invariant subgroup of £ of elements of orders 1
and 2 in E consists of 0, 3φ, 4<p, and 7φ. These elements do not
form a subring of 3ΐ.

6.2 Elementary abelian groups. If 3ΐ is a radical ring whose
additive and circle groups are elementary abelian ^-groups, then all the
additive and circle subgroups of a given order in 3ΐ are indistinguishable
up to automorphisms of the groups. We shall, however, give examples
of such rings in which the subring structure varies substantially.

Suppose 3ΐ is a radical ring such that ?ϋ+ is an elementary abelian
p-group. Then the circle group K of 9ΐ is elementary abelian if and
only if 3ΐ is commutative and φp — 0 for all φeR. To prove this
consider (£ as the multiplicative group of elements 1 + φ where φ e di
and 1 is an identity adjoined to 3Ϊ. Observe that pφ = 0 implies

1 The authors wish to thank the referee and editor for encouraging the inclusion
oί this section.
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(1 + φγ = 1 + φ\ all φ e 3ΐ.
A ring whose additive group is an elementary abelian p-group may

be considered as an algebra over GF(p). We now describe some examples
of rings 3ΐ whose additive and circle groups are elementary abelian.
We denote a basis for 9ΐ as an algebra over GF(p) by {<plf •••,$>„}.

( a ) Null algebra, 9ΐ — 3» Define φtφd = 0 for all i, j = 1, , n.
Every subgroup (under + or o) of 3ΐ is an ideal.

( b ) Power algebra, 3ΐ = §BW. Assume n < p. 35% is the unique
power algebra of dimension n over GF(p). 93W may be defined by
ψ\ — φk, 1 <£ k <* n, ψι+ι — 0. By Theorem 2.1, 58n contains only one
subring of order pn~K For 1 <; k <Ξ w — 2, 93U contains only one ideal
of order #>fe, although more than one subring of order pk.

( c) Direct sum. 3ΐ = S5m 0 3̂ -™* where 0 < m < ?ι and m < p.
(d ) Almost-null algebras. Assume 1 ^ n ^ 3 and p =£ 2. 3ΐ = II,

where U is a commutative ring whose structure is given in Lemma 5.4.
3 of 4.4. U is called "almost-null," and its structure is typical both
of nilpotent rings which have a unique subring of order py and of
nilpotent algebras in which all subalgebras are ideals.

6.3 Remarks on commutative radical rings. It is easy to find
examples of commutative radical rings 3t in which not every subring
is an ideal. If & is the circle group of 9ΐ, then (£ contains normal
subgroups which correspond to subrings but not ideals. If, on the
other hand, we start with the abelian group (£, then the null ring
whose additive group is K also has circle group (£, and every subgroup
corresponds to an ideal. Every abelian group, moreover, appears as a
circle group in this way.

In studying nilpotent rings one soon notices that the fruitful group
analogy is between ring product and group commutation. Under this
analogy an abelian group corresponds to a null ring, the center of a
group to the annihilator of a ring, the lower central series of a group
to the powers of a ring, etc.

6.4 Three special rings. We conclude by describing three nil-
potent rings 9ΐ of order 16, each of which has an abelian circle group
of type (2,1,1), but which differ in several other properties.

ΐϋ = §ί is generated by elements a19 a2, a3, a4, each of characteristic
2, such that a\ = a2 and afiLd — 0 if i Φ 1 or if j Φ 1.

3ΐ = 33 is generated by elements β19 β2, /33, such that char β1 = 4,
char β2 = char βz = 2, β\ = 2βίf β\ = βs, β2β3 = β3β2 = 2βl9 and βJ3t =

βJ3i = β& = ββi = $ = 0.

3ΐ — S is generated by elements Ti and 72 of characteristic 4 such

t h a t Yi = 72, 7i72 = T27L = 27i, and Ί\ = 272.
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Value for
Invariant 21 S3 (£

E x p o n e n t of 3Ϊ: l e a s t i n t e g e r e w i t h 3le — 0 3 4 5
Number of generators required (see (2.1)) 3 2 1
Number of subrings (ideals) of order 8 7 3 1
Number of subrings of order 4 11 3 3
Number of subrings of order 2 7 3 3
Number of ideals of order 4 11 3 1
Number of ideals of order 2 7 1 1
Order of 9ί2 2 4 8
Order of 3ΐ modulo its annihilator 2 8 8
Additive group type (1,1,1,1) (2,1,1) (2, 2)
Order of automorphism group of 9ί 192 8 4
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SYMMETRIC POSITIVE DEFINITE MULTILINEAR

FUNCTIONALS WITH A GIVEN AUTOMORPHISM

MARVIN MARCUS AND STEPHEN PIERCE

Let V be an ^-dimensional vector space over the real
numbers R and let ψ be a multilinear functional,

( 1 )

i.e., φ(xif , xm) is linear in each Xj separately, j = 1, , m.
Let H be a subgroup of the symmetric group Sm. Then φ is
said to be symmetric with respect to H if

( 2 ) φ(Xσ(l), , Xσlm)) = ψ&U ' ' ' , %m)

for all σeH and all x3 e V, j = 1, •••, m. (In general, the
range of ^ may be a subset of some vector space over R.)
Let T: V~>V be a linear transformation. Then T is an
automorphism with respect to p if

( 3) ψ{Txu , Txm) = $*(&!, •••,»„)

for all a?i € F, i = 1, , m. It is easy to verify that the set
3I(iJ, T) of all 9 which are symmetric with respect to H and
which satisfy (3) constitutes a subspace of the space of all multi-
linear functionals symmetric with respect to H. We denote
this latter set by Mm{V, H, R).

We shall say that φ is positive definite if

( 4 ) φ(x, .. f a 0 > O

for all nonzero x in V, and we shall denote the set of all
positive definite φ in %(H, T) by P(H, T). It can be readily
verified that P(H, T) is a convex cone in 2I(ίf, Γ).

Our main results follow.

THEOREM 1. // P(H, T) is nonempty then
( a) m is even

and
(b) every eigenvalue of T has modulus 1.

//, in addition, T has only real eigenvalues then
( c) every elementary divisor of T is linear.

Conversely if (a), (b) and (c) hold then P(H, T) is nonempty. More-
over, if P(H, T) is nonempty then %{H, T) is the linear closure of
P(H, T).

In Theorem 2 we shall investigate the dimension of 2ί(iϊ, T) in
the event P(H, T) is not empty. To do this we must introduce some
combinatorial notation. Let Γm,n denote the set of all sequences

119
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a) = (α)1? . . . 9 Q)m) of length m, 1 ^ ωi ^ n, i = 1, , m. Introduce an
equivalence relation ~ in Γm,n as follows: α ~ /3 if there exists a
σ e H such that

ασ = β

where aσ — (aσω, , α:σ(Ml)). Let Δ be a system of distinct representa-
tives for —, i.e., Δ is a set of sequences, one from each equivalence
class with respect to ~ . We specify Δ uniquely by choosing each
element a e Δ to be lowest in lexicographic order in the equivalence
class in which a occurs.

THEOREM 2. If P(H, T) is nonempty and T has real eigenvalues
7i, , Ίn then Ίi = ± 1 , i = 1, , n. Suppose

yh = = Ίiv = 1 , Ύj = - 1 , j Φ iu , ip .

Let μp be the number of sequences ω in Δ such that the total number
of occurrences of iu , ip in ω is even. Then

( 5 ) dim SI(#, T) = μp .

COROLLARY. If H — Sm in Theorem 2 and T has p eigenvalues
1 and n — p eigenvalues —1 then

dim SICff, T) =
__ ^ (p — 1 + 2fc\/% - p - 1 + m — 2k

P — i A w — p — l

In case m = 2, £Γ = S2,
 SΆ(H, T) is the totality of symmetric bilinear

functionals φ for which

φ(Tx19 Tx2) = ^(a?!, a?2) , xl9 x2 e V ,

and P{H, T) is just the cone of positive definite φ in WL(H, T) i.e.,

φ(χ, x) Ξ> 0

with equality only if a; — 0. In this case we need not assume that T
has real eigenvalues in order to analyze %(H, Γ). We can easily prove
the following result by our methods, most parts of which are known
(see e.g. [1], Chapter 7).

THEOREM 3. Assume that m = 2 and H = S2. Then P(H, T) is
nonempty if and only if

( a ) T has linear elementary divisors over the complex field,
(b) every eigenvalue of T has modulus 1.

Suppose that T has distinct complex eigenvalues

Ίk = ak + ibk {and 7k = ak - ibk)
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of multiplicity ek,k = l, ,p and real eigenvalues

Ίk = rk , k = Σ,2ej + 1, - . . , t t .

// P(£Γ, JΓ) is nonempty then the elementary divisors of T over the
real field are

λ 2 — 2λak + 1 , βfc t i m e s , k = 1, •••, p ,

λ — 1 , q t i m e s ,

λ + 1 , I t i m e s ,

where

Σ,2ej + q + I = n .

Moreover, 2ί(iϊ, Γ) is the linear closure of P{H, T),

a basis E of V such that Sί(iϊ, T) consists of the
set of all φ whose matrix representations with respect to E, [φ]E

E1

have the following form:

( 6 ) [φ)E

E = Σ # (Xk 0 h + Yk (g) ί7) + Hq + If, .

In (6), the dot indicates direct sum, 0 denotes the Kronecker
product, 1^=1 i Q , Xfc is efc-square symmetric, Yk is βfe-square
skew-symmetric, Hq and if̂  are g-square and ί-square symmetric re-
spectively.

2* Proofs* Let FW(H) denote the symmetry class of tensors
associated with H[2]. That is, there exists a fixed multilinear func-
tion τ: Xf V—*Vm(H) symmetric with respect to H, for which

( i ) the linear closure of τ ( χ r V) is Vm(H)
(ii) the pair (Vm(H), τ) is universal: given any space U and

any multilinear function φ: XΐV—> U symmetric with respect to H,
there exists a (unique) linear hφ: V

m(H) —> U satisfying

( 7 ) hψτ = φ.

X V τ > Vm(H)
1 \ /

U
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We shall denote τ(x19 •••,&„) by a?!* * xm, and α?x* * # w is called
a decomposable tensor or a symmetric product of »!,•••,«„. If we
take φ(xί9 , xm) to be To?! * * Txm in (7) then /^ is denoted by
K(T) and is called the induced transformation on Vm(H).

Before we embark on the proof of Theorem 1 we can define 2ϊ(iϊ, Γ)
in terms of Vm(H). First observe that the mapping θ from the space
of multilinear functionals φ symmetric with respect to H to the dual
space of Vm(H),

θ:Mm(V,H,R) >(V

defined by

θ(φ) = hψ ,

is one-to-one linear, and onto. That is, the correspondence φ+-*hφ is
linear bijective. Now, the subspace U(H, T) of Mm (V, H, R) is
defined by

φ(TxL9 , Txm) = φ(xl9 , Xm)

or in view of (7) by

hφ{Txx* * Txm) = hφiXi* *»m) ,

for all » i G 7 , ί = l, ,m. In other words, since the decomposable
tensors span Vm(H) (see (i) above), φ e §l(iϊ, Γ) if and only if θ(φ) = fc^
satisfies

= hφ ,

or

( 8 ) hφ(K(T)-I) = 0

where I is the identity mapping on Vm(H). We have proved the

following.

LEMMA 1. 3ί(iί, T) is nonempty if and only if K(T) — I is
singular. Also,

( 9 ) dim St(fl , T) = η{K{T) - I)

where η is the nullity of the indicated transformation.

LEMMA 2. If P(H, T) is nonempty then m is even and every
eigenvalue of T has modulus 1. Moreover, corresponding to real
eigenvalues, T has only linear elementary divisors.

Proof. If φ e P(H, T) and x Φ 0 then
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φ(-X, •-., -x) = (-l

and hence ( —l) w > 0 and m is even. Suppose that 7 is a real eigen-
value of T with corresponding eigenvector x. Then

φ{Tx, , Tx) = φ(jX, , yx)

Since <p e P(fί, T), φ(Tx, , ΓB) = <£>(#, , x) > 0 and hence τ m = 1
and 7 = ± 1 . If 7 were involved in an elementary divisor of degree
greater than 1 then there would exist linearly independent vectors ux

and u2 such that Tut — yuL, Tu2 — yu2 + uL and hence

, Tu,, Tu2) = φ(yu19 , 7^!, 7^2 +

Now

, Uly U2) =

---,yul9 ΎU2)

so that

0 = <p(yu19 , 7^1, Ύu2 + ^ ) — 9>(7^i, , yu19 Ύu2)

a contradiction.
We now show that any complex eigenvalue of T has modulus 1.

Since 7 — a + i& is now assumed not to be real there exists a pair of
linearly independent vectors v1 and v2 in V such that

TV, - αvL - bv2

Tv2 = δ î + αv2 .

Let F be the extension of V to an ^-dimensional space over the
complex field. Now φ e Sί(iϊ, T) means that

(11) φ(Txlf , Γa?J - (̂ajx, , a?J = 0

is an identity in ^ , - , v If we express the vectors in V in terms
of a basis in F (using in general complex rather than real coefficients)
the identity (11) continues to hold since it is a homogeneous polynomial
of degree m in the components of x19 •••,#«, vanishing for all real
values of these components. Of course it is not true that

φ(x9 , x) > 0

continues to hold for nonzero x e V. Now define



124 MARVIN MARCUS AND STEPHEN PIERCE

eί = v1 + iv2 e V

e2 = vL — %v2 e V

and observe that e1 and β2 are linearly independent in V and satisfy

Te1 = Ίeι

Te2 = Ίe2 .

Let ω — (ω^ , ωm) be a sequence for which each α>; is either 1 or
2, i — 1, , m:

where k of the a)i are 1 and m — k are 2. But by the above re-
marks

φ(Teωi, , TeωJ =

and taking absolute values we have

Thus if 17 I Φ 1 it follows that

(13) <p(eωι, •• , β ω J = 0

for all ω for which ω, is 1 or 2 for i = 1, , m. From (12) we have
^ = (βx + e2)/2 and hence using (13) we see that

... ei + eΛ
(14)

= 0 .

However v1eV and <p 6 P(ίί, T) and therefore (14) is a contradiction.
Thus 17 I = 1 and the proof of Lemma 2 is complete.

L E M M A 3. If m is even, and T has real eigenvalues r x, •••, r%1

and every elementary divisor of T is linear then P(H, T) is non-

empty.

Proof. Since T has linear elementary divisors there exists a
basis for V of eigenvectors e19 , en. Let glf , gn be a dual basis
in 7 * . Let g? denote the multilinear functional whose value for any
a?!, , xm in V is

m

Π gt(χ,)
ii
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Clearly gf e Mm( V, H, R). Set

φ = Σ 97

Then if xά = ΣJU £,-*«*, j = 1, , m, and 2X = rΛefc, fc = 1, . . , n,

w m

= Σ Π ίίtr(
ί=l i = l

_ V r m TT P— ZJL ' t 1 1 ζjt
ί = l J = l

= Σ Π ίίt
t = l 3=1
n m

= Σ Π Λ(aJi)
ί = l j = l

Hence φe%(H, T). Moreover, if ^ — Σ?=ictβt then

But m is even and hence φeP(H, T). To complete the proof of
Theorem 1 we note that if φeP(H, T) and if e19 •••, en is any basis
of V then φ(x9 x9 , x) is a homogeneous polynomial of degree m in
cx, , cn. Hence, on the compact hypersphere S defined by Σ?=i Gt — 1
in V, φ must assume a positive minimum value mψ. By a similar
argument for any φe$L(H9 T)9 \ψ\ must assume a maximum Mψ for
Σ?=i c? ~ l Now let τ/r be an arbitrary element of %{H, T) and choose
a positive constant a such that a > Mγ/m9. If 0 =£ α? e F and [| a? ||2 =

(x/\\x\\)eS and

αφίίc, . . . ,«) - φ(x, ...,α?) - α || a? |

-\\xTf

x\\ \\x\\
X X

= (I x | | \μm<p —

In other words,
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aφ - ψ e P{H, T)

so that ψ is a linear combination of elements in P(H, T).
To proceed to the proof of Theorem 2 we use Theorem 1 to con-

clude immediately that since T has real eigenvalues the elementary
divisors are all linear and thus there exists a basis of eigenvectors of
T:

Tek = Ίkek , k = 1, •••, n .

It is not difficult to show [2] that the decomposable tensors

el = eωi * * eWm , ω e A ,

constitute a basis for Vm(H).

We compute that

K(T)e* = Te ω i * ••• ̂ Γβ ω w

( 1 5 ) = ^ ! β - l * * * * * ^ . ^ m

= π τrί ( ω )β:
ί = l

where mt(ω) denotes the multiplicity of occurrence of t in ω, t —
1, •••,%. The formula (15) shows that (K(T) — I)e* is 0 or a nonzero
multiple of e* according as

Π ΎT^ω)

is 1 or —1. Now we can assume without loss of generality that the
eigenvalues TX, , Ίn are so organized that Yi = =ΎP = 1, 7̂ +1 =
. . . — 7w — ~ l . (This is of course merely a notational convenience.)
Then

/ -

Thus ΠΓ=i7Γί(ω) = 1 if and only if Σf=i wt(α>) is even. This last
statement just means that 1, , p (i.e., i l f , ip) occur altogether an
even number of times in ω.

The proof of the corollary is completed by first noting that if
H = Sm then the set Δ is the totality of nondecreasing sequences of
length m chosen from 1, •••,%. Thus by Theorem 2 if P{H, T) is
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nonempty and T has real eigenvalues 7i, , 7» then these eigenvalues
are ± 1 and we lose no generality in assuming that yι = = yp = 1,
yp+1 = ••• = 7« = — 1 . We want to count the total number of ω in
A for which

(16) Σ m((α)) Ξ 0 (mod 2) .

Now, a sequence satisfying (16) may be constructed as follows. Sup-
pose that ft is a fixed integer, 0 <̂  2 ft g m, and we count the number
of sequences in Δ in which Σ?=i m ί ( ω ) = 2ft. The total number of non-
decreasing sequences of length 2ft using the integers 1, •••,# is

+ 2k -1\ {p - 1 + 2ft

2 f t j 1 p - 1

and any one of these can be completed to a nondecreasing sequence
of length m by adjoining a nondecreasing sequence of length m — 2fc
using the integers p + 1, , n. There are a total of

n — p + m — 2ft — 1\ _ (n — p — 1 + m — 2ft

m - 2ft / V w - p - l

ways of doing this. This completes the proof of the corollary.
To proceed to the proof of Theorem 3 we remark that Theorem

1 cannot be directly applied because we are not assuming that the
eigenvalues of T are real; in general this is not the case. However
the statement (b) does follow from Theorem 1. If JE7 is any basis of
V, A is the matrix representation of T, and C = [<p]f, then to say that

φ e 5I(iϊ, T) is equivalent to the assertion that

(17) ATCA = C .

If φ e P(H, T) then C is a positive definite symmetric matrix and can
therefore be written C = K\ where K is also positive definite sym-
metric. Then (17) is immediately equivalent to the statement that
KAK~ι is a real orthogonal matrix and (a) is evident. Conversely if
(a) and (b) obtain then there exists a real nonsingular matrix S such
that S^AS is a direct sum of a diagonal matrix with ± 1 along the
main diagonal together with certain 2-square matrices of the form

(18)

Since | yk \ — 1, ft — 1, , n, the matrix (18) is orthogonal and hence
= U where U is an ^-square real orthogonal matrix. If we set
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(S7')"1^""1 = C then C is a positive definite symmetric matrix and we
compute that

ATCA = (S-ψUτSτ(Sτ)-1S

Thus if [φ\% = C then φeP(H, T). The dimension of 31 (iϊ, T) can
equally well be computed as in the general case by finding rj(K(T) — I)
where K(T) is the induced mapping on the complex space of 2-sym-
metric tensors over V, i.e., V2(S2). The mapping K(T) is just the 2nd
Kronecker power of T restricted to the second symmetric space. This
mapping is customarily denoted by P2(T)[5]. Since T has a basis of
eigenvectors v19 , vn, so does P2{T) and, for 1 <: ί ^ j ^ n,

P2(T)Vi*Vj = jffjViXVj .

Thus dim3I(H, T) is precisely the number of pairs of integers (i,j),
ί ^ i ^ j ^ ny for which

(19) yen - 1

But T has the distinct eigenvalues ak + ibk of multiplicity β/:, k = 1, ,
p. This yields a total of

pairs (ί,j) for which (19) is satisfied. Also, T has 1 as an eigen-
value q times and —1 as an eigenvalue I times and this yields an
additional

q(q + 1) , Z(? + 1)
2 2

pairs (ΐ, j») for which (19) is satisfied. This proves that

dim «(*, T) = iί«L±l) + iίLhl) + ±e).
2 2 i

We now turn to the derivation of (6). First, we assert that since
T has linear elementary divisors over the complex numbers [4] there
exists a basis E of V such that the matrix representation of T has
the following form:

(20) A = £ I β .® a[ k + / g + -It
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where Is is the s-square identity matrix. We set C = [φ\% and
partition C conformally with (20):

cdί

••• cίd

' Cdd

cq

Cΐ

z

cr

Cι

dj is 2-square, i,j = 1, , d = Σ?=iei>
Cz is Z-square symmetric. Set L = YJlJk

that for (17) to be satisfied Z must satisfy

tf-square symmetric and
akh + bkF) and observe

(21) LτZ(Iq+ -Iι) =

Now, Lτ 0 (Jg + ~Jrz) has eigenvalues ±(αfc ± iδ )̂ [3, p. 9] and none of
these is equal to 1. Hence (21) has only the zero matrix as a solu-
tion. Similarly we see that Cr = 0. Next, consider a typical Cij9 j > i9

call it K. Then K must satisfy an equation of the form

(22)

The

has

(23)

matrix

eigenvalues

(aJt

(a

- bs

(a.

F)K{aτh +

KF) 0 (a,

• KF) --

./, + K

± ibs)(ar ± ibτ).

= K

F)

If r ^ δ , (23) cannot be 1 and in this case K = 0. If r = s then pre-
cisely two of the four complex numbers (23) are 1. Thus the nullity
of the matrix

(24) (aj2 - bsF) ® (aj2 + bsF) - /4

is 2. But K = J2 and K = F are two linearly independent solutions
to (22) for r = s. Also note that since C is symmetric C« must be a
multiple of J2 It follows that the submatrix

is itself a direct sum of 2βfc-square matrices of the form
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xn 0

0 xn

^12 Vl2

Vl2 ^12

•̂ 12 2/l2

2/l2 ^12

x 2 2 0

0 x22

•

a>rr 0

0 xrr Vrs %rs

£ s s 0

0 xss

•••

This matrix is of the form Xk (g) J2 + Ffc (g) JP where Xfc = (xi5) is efc-
square symmetric and Yk = (T/^ ) is e^-square skew-symmetric. This
completes the proof of Theorem 3.

3* Some examples* Let m = 2p and let Sj, be the symmetric
group of degree p on p + 1, , m. In general if V is a Euclidean
space with inner product (x, y) then Vm(H) is also a Euclidean space
[2] in which the inner product of two symmetric products a?!* *xm

and #i * * 2/Λ is given by

* = —- Σ Π
Wll σeH i=i

(25) (a?i * * a?,

Set H = Spx Si (direct product) and define φ e Mm(V, H, R) by

(26) φ(xί9 •••,«,, a?p+1, , a?J = (a?i * * a?p, a?p+1 * . . . * a?J .

Clearly φ is symmetric with respect to H and

9>(a?, -- ,a?, x, « ,aj) = ||α; * * a; ||2

Moreover a? * * a? = 0 if and only if x — 0 [2]. Hence <p is positive
definite. Now suppose that φeP(H, T) where T: V-»V. Then

φ(Txίf p,Txp+1, . . . , Γa?m) =
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and ίrom (26) we have

(27) (Txx * * Txp, Txp+1 * * Txm) = fo *

It follows from (27) that

K(T*T) = I

* αp, a?p+1 * * xm) .

<28)

where Γ* is the adjoint of T and if(Γ) is the induced transformation
in the symmetry class VP(SP). It is not difficult to show [7] that (28)
implies that T*T=ωIυ where | ω | = l . However, since T*T is
positive definite, T*T = Iv, and hence T is orthogonal. It follows
that T must have linear elementary divisors over the complex num-
bers.

In Theorem 1 we proved only that if P{H, T) is nonempty then
T has linear elementary divisors corresponding to real eigenvalues.
We conjecture that in fact the preceding example is typical in the
sense that T always has linear elementary divisors over the complex
numbers if P(H, T) is assumed to be nonempty.

We now give an example to show that if φ e 2l(u, Γ), but φ is
not positive definite, then the elementary divisors of T over the com-
plex numbers need not be linear. Let H = S2 and let dim V = 4.
Choose T to have

(λ2 + I)2

as its only elementary divisor. Then there exists a real basis E =
{#i, •> ej of F s o that

mf =

Let A = [Γ] | . Then from (17) it suffices to determine a symmetric
matrix C such that

0
1

0

0

0
0

1

0

0
0

0

1

— 1
0

2

0

(29)

Define C as follows:

ATCA =

C =

~ 0

1

0

- 3

1

0

1

0

c

0

1

0

1

- 3

0

1

0

Then C is symmetric (but not positive definite) and (29) is easily
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verified. This example also shows that P(H, T) is empty. It is routine
to verify that dim §I(ϋΓ, T) = 1 in this case but the formula (5) pro-
duces the integer 4.
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PONTRYAGIN SQUARES IN THE THOM
SPACE OF A BUNDLE

W. S. MASSEY

The object of this note is to determine the action of the
Pontryagin squares in the cohomology of the Thorn space of a
vector bundle. This computation is then applied to the case
of the normal bundle of a manifold imbedded in Euclidean
space to give simplified proofs of some theorems of Mahowald.

The first of Mahowald's theorems [3] was inspired by some 1940
results of Whitney [9], who showed that in certain cases the Euler
class (with twisted integer coefficients) of the normal bundle of a non-
orientable surface imbedded in Euclidean 4-space could be nonzero.
This contrasts with the well-known theorem that the Euler class of the
normal bundle of an orientable manifold in Euclidean space is always
zero.

2* Notation and statement of results* For any space X, we
will use integral cohomology Hq(X, Z); cohomology with integers modn
as coefficients, Hq(X, Zn); cohomology with twisted integer coefficients,
Hq{X, ^Γ) cohomology with twisted integers mod n coefficients, H9(X, %*n);
and rational cohomology, Hq(X, Q). In the third and fourth cases the
local system of groups which is used for coefficients will be determined
by the Stiefel-Whitney class w1 e H\X, Z2). Note that for the case n = 2,
we have

since a cyclic group of order 2 admits no nontrivial automorphisms.
Let (E, p, B, Sn~ι) be an (n — l)-sphere bundle over the base space

B with structure group 0(n). We will use the following notation for
characteristic classes of such a bundle:

Stief el-Whitney classes:

Wi e Hι(B, Z2) , 1 ^ i ^ n

Wi e H\B, %r) , 1 ^ i ^ n, i odd .

Pontrjagin classes:

Pi e H4i(B, Z) , 1 ^ i ^ n/2 .

Euler class:

Xn e Hn(B, %) . (If n is odd, then Xn= Wn.)

133
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Let (A, π, B, Dn) be the associated ^-dimensional disc bundle; we will
call the pair (A, E) or the single space A/E the Thom space of the
bundle. The Thom class, Ue Hn(A, E, %), has twisted integer coeffi-
cients; by taking cup products with U, we obtain the Thom isomor-
phism (see Thom [6]).

H'(A, 3T) ~ H«+%A, E, Z) ,

Hq(A, Z) ~ H«+n(A, E, 2Γ) ,

H'(A, 3Γn) ~ H<+*(A, E, Zn) , etc.

Recall also that the projection π: A —• B is a deformation retraction,
and hence induces isomorphisms of cohomology groups with any coeffi-
ents (even local coefficients!). For the sake of convenience, we will
often identify the cohomology groups of A and B by means of this
isomorphism; similarly we will identify the cohomology groups of the
pair {A, E) and the space (A/E) (except in dimension 0) with ordinary
coefficients (the local coefficient systems j? and j?n do not exist in the
space A/E).

The obvious epimorphism pn: Z—>Zn and monomorphism θ: Z2-+ Z4

induce homomorphisms of cohomology groups wich will be denoted as
follows:

pn:H«(X,Z) >H'(X,Z%),

θ: H\X, Z2) > mX, ;r4) .

For convenience, we will let U2 — p2{U), the Thom class reduced mod 2.
Our main concern will be the Pontryagin squaring operation,

^ : Hq(X, Z2) > H2«(X, Z4) .

If q is odd, the Pontryagin square can be expressed in terms of
simpler cohomology operations, (see formula (4.2) below); this is not
true for q even. For a list of papers describing this operation, see
the first paragraph of [7]. Our main result is the following, which
describes the Pontryagin square of the mod 2 Thom class, U2.

THEOREM I. Let (E, p, 23, Sn~ι) be a (not necessarily orientable)
(n — l)-sphere bundle with structure group Q(n), n even. Then

As a corollary, we obtain the following result which was proved
by Whitney [9] in 1940 for the case n = 2; the general case is due
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to Mahowald, [3, Th. I]:

COROLLARY 1. Let Mn be a compact, connected, nonorίentable n-
manίfold (n even) which is imbedded differentiably in R2n. Then
the twisted Euler class of the normal bundle, Xn, satisfies the follow-
ing condition:

p4(XJ + θ(βλwn^ = 0 .

(Here wt denotes the ith dual Stiefel-Whitney class of Mn.)

In particular, if wvwn_x Φ 0 (which can only happen if n is a power
of 2, cf. [4]) then Xn Φ 0. Apparently this is the only general result
known about the twisted Euler class of the normal bundle to a non-
orientable manifold.

The corollary may be derived from the theorem as follows: Let
(E, p, By S71-1) denote the normal sphere bundle of the imbedding, and
(A, π, By Dn) the associated disc bundle. It is well known that the top
homology group of the Thorn space,

H2n(A/E, Z) = H2n(Ay Ey Z) ,

is infinite cyclic, and the Hurewicz homomorphism

>H2n(A/E)

is an epimorphism. From this it follows that ζ^(U2), xy — 0 for any
x e H2n(A/Ey Z), and hence ^(U2) = 0. Applying the formula for
^((U2) in Theorem I, we obtain the corollary.

Next, we give formulas for the Pontryagin square of an arbitrary
mod 2 cohomology class of even degree in the Thorn space of a vector
bundle.

THEOREM II. Let (E, p, B, S^1) be an (n — l)-sphere bundle with
structure group 0(n), and let x e Hm(B, Z2), m + n even. Then if m
and n are both even.

while if m and n are odd.

As a corollary, we derive a necessary condition due to Mahowald
[3] for the imbeddability of an orientable manifold in Euclidean space
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of dimension 4k with codimension n.

COROLLARY 2. Let M be a compact, connected, orientable manifold
of dimension q which is differentiably imbedded in Euclidean space
of dimension q + n = 4k. Then for any x e Hm(M, Z2), where m =
l/2(q — n), we must have

wn_ιxSqιx — 0 .

Proof of corollary. One applies Theorem II with B — M and
(E, p, B, Sn~ι) the normal bundle of the imbedding. Since M is assumed
orientable, w1 = 0, wn = 0, Xn = 0, and Wn = 0. Exactly as in the
proof of the previous corollary we know that &*(U2 x) = 0 in this
case. Thus we conclude that

= 0

for any xeHm(M, Z2). Since M is orientable, the homomorphism

θ: Hq(M, Z2) > Hq(M, Z4)

is a monomorphism, and therefore we must have wn_λxSqιx = 0, as
desired.

Perhaps the neatest application of this corollary is to prove that
tf-dimensional real protective space does not imbed in R2q~2 for q =
2r + 1. A discussion of the possibilities of using this theorem to prove
non-imbedding results is given in §5.

COROLLARY 3. Let M be a compact, connected, nonorientable
manifold of dimension q which is differentiably imbedded in Euclidean
space of dimension q + n = 4k, q and n even. Then for any element
x e Hm(M, Z2), where m — (l/2)(# — n), we must have

) = 0 .

This is a generalization of Corollary 1, and the proof is similar.
Presumably this theorem would enable one to prove in certain cases
that pA{Xn) Φ 0, and hence Xn Φ 0, but the author knows of on ex-
amples to illustrate this possibility. Perhaps the most likely case in
which this theorem could be applied is the case where n — q — 4, m — 2.

3* Proof of Theorem I. As is usual in such cases, one only need
prove Theorem I in the case of the universal example, where B —
B0(n), n even. Then E has the same homotopy type as B0(n — 1). Con-
sider the following commutative diagram for this universal example:
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. - ^ H*(A, E, Zk) -^ H*(A, Zk) — H*(E, Zk)-^--

I1 /
H*(A, %h)

-> H*(B, 3Γk) > H*(B, Zk) —^ H*(E, Zk)—+ --.
f μ p* f

The top line of this diagram is the modfc cohomology sequence
of the pair (A, E) while the bottom line is the Gysin sequence of
ίibration. All vertical arrows are isomorphisms; arrow No. 1 denotes
the Thorn isomorphism, and arrow No. 2 is the identity. It is well
known that in these exact sequences for the case k = 2 (i.e., mod2 coho-
mology), the following statements are true:

p* and i* are epimorphisms,
μ and j * are monomorphisms, and
ψ and δ are zero.

We assert that these statements are also true in case k = 4. In
order to prove this, it suffices to prove that j * is a monomorphism,
and for this purpose consider the following commutative diagram:

0 > Hq(A, E, Z2) -¥-+ H"(A, Z2)

> H«(A, E, Zύ - ^ H"(A, Zt)

1' . I'
0 > H*(A, E, Z2) - ^ H'(A, Z2) .

The vertical lines are exact sequences corresponding to the following
short exact sequence of coefficients:

π . y θ . y v . 7 . Λ
\j > ^ 2 > £^ > ^ 2 > [j m

Let x e Hq{A, E, Z4) and assume that j*(x) = j\(x) = 0. Therefore

j2η{x) = rjj\(x) = 0

and since j2 is a monomorphism, η(x) = 0. By exactness, there exists
an element y e Hq{A, E, Z2) such that

θ(y) - x .

Since Θj2(y) = 0, there exists an element z e Hq-\A, Z2) such that
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Sqι(z) = j2(y) .

We wish to show that z can be chosen so that z e image j 2 . For this
purpose, recall that we are identifying H*(A, Z2) with H*(B, Z2) =
Z2[w19 w2, , wn]; using this identification, the image of j * is the ideal
generated by wn. We may split H*(A, Z2) into the (vector space) direct
sum of this ideal and a supplementary subspace as follows: one sub-
space is spanned by all monomials which have wn as a factor, the
other subspace is spanned by those monomials which do not have wn

as a factor. It is readily verified that the homomorphism

Sq1: H*(A, Z2) > H*(A, Z2)

maps each of these summands into itself (this depends on the fact
that n is even). Since j2(y) belong to this ideal generated by wn, we
can choose z so it also belongs to this ideal. Therefore z = j2(u) for
some element u € ί f M ( 4 , E, Z2). It follows that

— Sq'u) = 0 .

Since j 2 is a monomorphism, y = Sq1!/,, and

x = θ{y) = ΘSqιu = 0

as asserted.
Next, let Xn e Hn(BO(n), %) denote the Euler class (n even). We

assert that

To prove this, we make use of the fact that all torsion in H*(BO(n), Z)
is of order 2 (cf. Borel and Hirzebruch, [2]). Hence it suffices to
prove that the following two equations:

ρ2{Xl) = ρ2(pn!2) and

pQ{Xl) = poiPn/z) f

where pQ is the homomorphism of cohomology groups induced by the
coefficient map Z—*Q.

As to the first equation, it is well known that p2(Xn) — wn and
PziVi) = wlif hence

p2{Xl) = w\ = p2(pnl2) .

To prove the second equation, consider the following commutative
diagram.
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H2n(BO(n), Z) -£-> H2n(BSO(n), Z)

H2n(BO(n), Q) -£-> H2n(BSO(n), Q) .

Here / : BSO(n) —* BO(n) is the 2-fold covering induced by the inclu-
sion of SO(n) in O(n). It is well known that p0f*(X2) = /t>0/*(2>»/8)
and that / * is a monomorphism on rational cohomology (see Borel and
Hirzebruch [2]). Hence pQ(Xn) = PoiPn^) as required.

With these preliminaries out of the way, we will now prove
Theorem I by consideration of the following commutative diagram:

H2n(A, E, Z4) -ii-> H2n(A, Zd

It is well known that j2(U2) = wn, and according to Thomas [8],
Theorem C,

Since j \ is a monomorphism, it suffices to prove that

iΛfttar.) + [%w.-i)] tf} = Λ(P /«) + ^(^Sί

in order to complete the proof. Now

βt(Xn).U=Pt(Xn U)

and

OAPm-U) - ΛfttΣ.- CΓ) - Λi(X. 17)
- pA(Xi) = p4(pnl2)

since j(U) = JSΓΛ. Similarly,

hence

since i2(ϊ72) — wn. This completes the proof.

4* Proof of Theorem 2* The proof is a routine application of
the following two formulas. For the first formula, assume that X is



140 W. S. MASSEY

a topological space, u e Hm(X, Z2), v e Hn(X, Z2), and m = n mod 2; then
the Pontryagin square of the cup product uv is given by the follow-
ing formula:

&{uv) (&u)(&v) + Θ[(Sqm-ιu)vSqιv
( + uSqιu(Sqn~ιv)\ .

For the case where m and n are both odd, this formula is given by
Thomas [8], formula (10.5); in case m and n are even, the formula is
given by Nakaoka [5], Theorem III. Our second formula expresses
the Pontryagin square of an odd dimensional cohomology class in terms
of more usual cohomology operations. Assume ue H2q+1(X, Z2); then

(4.2) &>(u) = pJ3Sq2qu + θSq2qSqιu ,

where β is the Bockstein coboundary operator associated with the exact
coefficient sequence 0—>Z—*Z—* Z2 —>0. In particular, if we apply
(4.2) to the computation of &*(U2) for an m-dimensional vector bundle,
modd, and make use of the formula SqiU2 = WiU2, we obtain the
formula

(4.3) &°(UΛ) = [ft( Wm) + θiw.w^ + w\w^)]- U .

The proof of Theorem II is now a direct application of formula (4.1);
one also uses Theorem I in case m and n are even, and (4.3) in case
m and n are odd.

5* Critique of corollary 2* We propose to discuss the follow-
ing question: Under what conditions does Corollary 2 enable one to
prove nonimbedding theorems not provable by more standard and/or
elementary methods? We will assume, as in the statement of the
corollary, that M is a compact, connected, orientable manifold of
dimension q, that wn_1 Φ 0, and

q + n = 0 mod 4 .

We wish to prove that M can not be imbedded differentiably in Euclidean
space of dimension q + n. We may as well assume that v)i = 0 for
all ί > n — 1, otherwise the proof would be trivial.

We assert that if n is even, then for any x e Hm(M, Z2), m —
- n),

= 0

under the above hypotheses, and hence Corollary 2 can not be applied
to prove nonimbedding results.

Proof of assertion. By Lemma 1 of Massey and Peterson [4],
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^ (QixXQWx)

But

(0 if j is odd .

Hence

(Q*x)(Qkx) .= ΣΣ
&where the summations are restricted to even values of j and odd values

of k respectively.

If n = 0 mod 4, then i must also be odd in this sum, and the non-
zero terms occur in pairs which cancel. If n = 2 mod 4, then all terms
cancel in pairs except for the term where i — k — n/2, and one sees
that in this case

w^xSq'x = Qn(x2) = wn-x2 .

But by our hypothesis, wn — 0; hence wn^.1xSqίx = 0 in this case also.
Thus this method is only of interest in case n and q are odd. Perhaps

the first case of interest is the case where q is odd and n = q — 2.
In this case m = 1, x e Hι(M, Z2), Sqιx = x2, and

wn_xxSqιx = Q*-\τ?) e Hq(M, Z2) .

The question is, for what values of n can Qn~ι(xz) be nonzero? Now
it is easy to prove that for any 1-dimensional cohomology class x,

Q{x) = x + x2 + x* + x8 + + x2k + ,

(see Atiyah and Hirzebruch [1], pp. 168-169), hence

Q(x") = (QxY = x* + (x* + a5) + (xδ + x")

+ ... + (x2k + x2k+1) + ... .

Therefore the only case for which Qn~\x3) can possibly be nonzero is
the case q = n + 2 = 2k + l, and in this case

Thus the example M — g-dimensional real protective space is typical
for this situation.
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The next case of interest would be the case q odd, n — q — 6, m — 3.
The author knows no nontrίvial examples to illustrate this case.
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PROOF OF A CONJECTURE OF WHITNEY

W. S. MASSEY

Let M be a closed, connected, nonorientable surface of
Euler characteristic X which is smoothly embedded in Euclidean
4-space, R4, with normal bundle v. The Euler class of i>, de-
noted by e(v), is an element of the cohomology group H2(M; %)
(the letter % denotes twisted integer coefficients). Since the
group H%M; %) is infinite cyclic, e(ι>), is m times a generator
for some integer m. In a paper presented to a Topology
Conference held at the University of Michigan in 1940, H.
Whitney studied the possible values that this integer m could
take on for different embeddings of the given surface M. He
gave examples to show that m can be nonzero (unlike the
case for an orientable manifold embedded in Euclidean space)
and proved that1

m = 2X (mod 4) .

Finally, he conjectured that m could only take on the following
values:

2X — 4, 2X, 2X + 4, , 4 — 2X .

It is the purpose of the present paper to give a proof of this
conjecture of Whitney. The proof depends on a corollary of
the Atiyah-Singer index theorem.

This corollary is concerned with manifolds with an orientation
preserving involution; an elementary proof of the corollary has re-
cently been given by K. Janϊch and E Ossa, [5].

The author is grateful to G. Bredon and W. Browder for helpful
discussions of the Atiyah-Singer theorem.

The precise statement of the theorem which was conjectured by
Whitney is contained in the next section. In order to remove the
ambiguity in the sign of the integer m, it is necessary to give a
rather thorough discussion of some basic notions regarding questions
of orientation, local coefficient systems, etc. Although this material
is more or less known, it is nowhere published in a form convenient
for our purposes; hence it has been relegated to the appendix of this
paper.

2* Precise statement of the theorem* We will assume that M
is a closed, connected, nonorientable surface which is embedded smoothly

1 This result of Whitney was generalized by M. Mahowald in 1964. For a proof
of Mahowald's theorem, see a recent paper of the author entitled "Pontryagin squares
in the Thorn space of a bundle" (Pacific J. Math.).
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in the 4-sphere, S* (the one point compactiίication of ϋ?4), and that
S4 has been given a definite orientation. Let v denote the normal
bundle of this embedding; by the Whitney duality theorem, we have
equality of Stiefel-Whitney classes,

wx{v) = WiiM) .

Let ^T denote the local system of integers on M with twisting determined
by wx{v) = w^M). The local systems of orientations O(v) and O(M)
(see Appendix 1) are both isomorphic to %, and in each case the
isomorphism may be chosen in two different ways. Note that if τ(M)
denotes the tangent bundle to M, we have

v 0 τ(M) = r'

where r' denotes the restriction of the tangent bundle of S4 to M.
Therefore we have a natural isomorphism

( * ) O(v) ® O(τ(M)) ~ O(τ') .

The choosing of an orientation of S4 determines an isomorphism of
O(τ') with the group of integers, Z. Assume that one also chooses
isomorphism

O(v) ™ r and O(τ(M)) ** %: .

Then the equation (*) becomes

(**) & ® ^ % Z .

We will consistently assume that the isomorphisms O(v) p& %* and
O(τ(M)) f^ ^ are chosen so that at each point of M the isomorphism
of (**) is that determined by ordinary multiplication of integers.
This implies that the choice of the isomorphism O(v) ̂  %£ determines
the choice of O(τ(M)) ̂  %£ and conversely. It also implies that e(v)[M]
(the Euler class of v evaluated on the fundamental class of M) is a
positive or negative integer whose sign is determined by the orientation
of S4. With these conventions, we can state our main theorem;

THEOREM. Let M be a closed, connected, nonorientable surface
of Euler Characteristic χ which is smoothly embedded in the oriented
4-sphere, S\ Then the integer e(v)[M] has one of the following
values:

2χ - 4, 2χ, 2χ + 4, . . . , 4 - 2 χ .

Moreover, any of these possible values can be attained by an ap-
propriate embedding of M in S4.
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REMARK. This theorem is actually true if S4 is an oriented
homology sphere; it is not necessary to assume that it is simply
connected.

The rest of the paper is organized as follows: Section 3 contains
an outline of the proof. The more tedious details are relegated to
lemmas which are proved in §4 and 5. In §6 we prove the statement
contained in the last sentence of the theorem; this part of the proof
is completely independent of the rest.

3* Outline of the proof* We are assuming the surface M is
smoothly embedded in the oriented 4-sphere, S\ By the Alexander
duality theorem,

H^S* -M;Z)~ H2(M, Z) = Z2 .

Hence the space S* — M has a unique 2-sheeted covering space, namely,
that which corresponds to the commutator subgroup of the fundamental
group TΓ^S4 — M). This covering space can be "completed" to a
branched covering space

p: S' > S4

with M as the set of branch points (for the theory of branched
covering spaces, see R. H. Fox, [2j We orient S' so that its orientation
agrees with that of S4 under the map p. For the sake of convenience,
we will identify M and p~1(M) by means of the map p. Note that
S' is a 4-dimensional compact orientable manifold; we denote by

T: S' > S'

the obvious involution of S' which interchanges the two sheets of the
covering. T is an orientation preserving smooth involution and its
fixed point set is precisely the surface M.

We will denote by ι/ the normal bundle of the imbedding of M
in £>'. Let S(v) and S(v') denote the associated 1-sphere bundles of
the bundles v and v' respectively; S(v) and S(v') can be realized as
the boundaries of smooth tubular neighborhoods of M in S4 and S'
respectively. The projection p: S' —>• S* induces a fibre-preserving map
S(v') —* S(v) which has degree ±2 on each fibre. We can now apply
Lemma 1 (see §4) to this fibre preserving map and conclude that the
Euler classes of the bundles v and v' are related by the following
equation:

(1) e(v) = ± 2 β(i/) .

Lemma 1 is applicable here, because the Euler class is the first ob-
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struction to a cross section of a sphere bundle. We may assume that
the local orientations, etc., are chosen so that e(v) = 2*e(v').

Next, we will apply equation (6.14) of Atiyah and Singer [1] to
the involution T of the 4-manifold S'. The result is the following
equation:

( 2 ) Sign (Γ, S') - {^{M).^(v')-ιe{v')}[M]

In this equation, we have used the notation of Atiyah and Singer.
Here Sign (Γ, S') denotes the signature of the involution T; for a
simplified definition, see Hirzebruch, [4], or Janich and Ossa, [5].
This simplified definition is repeated below. J^{M) and ^f(v') are
certain polynomials in the Pontr jagin classes of M and vr respectively.
Since M is a 2-dimensional manifold,

In view of (3) equation (2) simplifies to the following:

(4)

Thus to determine the possible values of the integer e{v')[M] (and
hence e(v)[M], by equation (1)), we must determine the possible values
of the signature, Sign (Γ, S')

We recall that Sign (T, S') may be defined as the signature of
a quadratic form defined on the real cohomology group H2(S',R) as
follows:

(x, y) = ( x ϋ T*y)[S'], x,ye H*(S', R) .

Now by Lemma 2, T*(y) = — y for any yeH2(S':R), hence (x,y) is
the negative of the usual quadratic form of the oriented 4-manifold
S'; it follows that (x, y) is a nonsingular quadratic form. It is also
proved in Lemma 2 than H2(S', R) has rank n, where n — 2 — χ is
the (nonorientable) genus of the surface M (i.e., M is the connected
sum of n projective planes). Therefore the possible values of Sign
(Γ, S') are the following:

— n, — n + 2, , n — 2, n .

Whitney's conjecture now follows by making use of equation (1) and
the equation n = 2 — χ. To complete the proof, it remains to prove
Lemmas 1 and 2; this is done in the following sections. We will also
show that all the possible values of the integer e(v)[M] can be attained
by actual embeddings.

4* Statement of Lemma L Let B be a CΫF-complex, p\E—*B
and p':E'—>B locally trivial fibre spaces over B with fibres F and
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F' respectively, and assume that f:E—*Ef is a fibre preserving map,
i.e., the diagram

E-+E'

B

is commutative. Finally, let us assume that the fibres F and Ff are
(n — l)-connected, n^l. Then the first obstructions to cross sections
of these bundles are well-defined cohomology classes

ce H*+\By πn(F)), C e H^\B, πn(F')) ,

(these are cohomology groups with local coefficients in general). The
map / induces a coefficient homomorphism of cohomology groups,

/*: H*+ι(B, πn(F)) > H*+\B, πn{F'))

in an obvious way.

LEMMA 1. Under the above hypotheses, the first obstructions
satisfy the following naturality condition:

f\c) = c' .

The proof of this lemma is an easy consequence of the definition
of obstructions. The details may be left to the reader.

5* Statement and proof of Lemma 2* In this section, we will
use the same notation as in §2:p:S'—>S4 is a 2-sheeted branched
covering with the nonorientable surface M as the set of branch points,
and T: S' —> S' is the involution or covering transformation which
interchanges the two sheets of the covering. The surface M is the
connected sum of n projective planes, where n = 2 — χ.

LEMMA 2. The cohomology group H2(S', R) is a vector space over
the reals of rank n and the homomorphism T*: H2(S', R)—+H2(S', R)
induced by T satisfies the equation

T*(x) = -x,xeH2(S',R) .

The proof of this lemma involves several steps; as a first step,
we will prove the following lemma which may be of independent
interest:

LEMMA 3. Let X be a finite, connected CW complex such that
Ήj(X, Z) is cyclic of order 2, and let π: X—>X denote the covering
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space corresponding to the commutator subgroup of τcλ(X). Then
, Z) is a finite abelian group of odd order.

Proof. Since π:X—*X is a 2-sheeted covering space, it may be
considered as a nonorientable 0-sphere bundle. Hence there is a Gysin
sequence for this situation with if2 coefficients (see Thorn [7]). We will
make use of the following portion of this Gysin sequence:

H°(X) - ίU Hι{X) -^U H\X) ~^~> Hι{X) ~^-> H\X) .

Here the homomorphism μ: Hm(X, Z2) -• Hm+1(X, Z2) is cup product
with the characteristic class, wλ e H\X, Z2). The hypothesis of the
lemma implies that H\X, Z2) is cyclic of order 2; since X is a nontrivial
covering space, w1 must be the unique nonzero element of Hι(X, Z2).
From this it follows that μ: H°(X) —•> H\X, Z2) is an isomorphism onto.
We assert that μ: H\X) —> H2(X) is a monomorphism; it then follows
by exactness that H\X, Z2) = 0. Since H\X, Z2) = Horn [H^X, Z), Z2],
and HL(X, Z) is a finitely generated abelian group, the conclusion of the
lemma follows. It remains to prove the assertion. To do this, it
suffices to prove that μ(wx) Φ 0. Now

μ(wλ) = w1\Jw1 = Sq^Wj) ,

and the homomorphism Sq1 is well-known to be the composition of
the Bockstein homomorphism (associated with the exact coefficient
sequence 0—>Z—>Z-+Z2—> 0) and reduction mod 2. The hypothesis
that H^X, Z) is cyclic of order 2 enables one to prove that Sq\w^) Φ 0;
the details are left to the reader.

REMARK. Professor E. Schenkman has communicated to the author
a purely group-theoretic proof of the following generalization of
Lemma 3. Assume that X is a finite, connected CW-complex and
τr; X —> X is the covering space corresponding to the commutator
subgroup of π\(X), exactly as in the lemma. The generalization
consists in assuming that H^X, Z) is cyclic of prime power order.
The conclusion is that H^X, Z) is a finite abelian group, and the
orders of i?x(X, Z) and H^X, Z) are relatively prime. Professor Schenk-
man also has an example to show that this conclusion does not neces-
sarily hold if H^X, Z) is a cyclic group of order 6.

We will now continue with the proof of lemma 2. Let A be a
smooth closed tubular neighborhood of M in S\ C — closure of S4 — A,
and E — A Π C. Then E is a closed, orientable 3-manifold which is
the common boundary of A and C; also, £ is a realization of the
normal 1-sphere bundle S(v). In general, we will denote the correspond-
ing subsets of S' by means of primes, i.e.,
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A = p~\A) ,

C" = p-'iQ, and

E' = p~ι{E) .

Then A! is a closed tubular neighborhood of M in S', A'UC' = S',
and £" is the common boundary of A! and C. Note that C is a de-
formation retract of S4 — ikf, C is a deformation retract of S' — M,
and C" is a 2-fold (unbranched) covering of C. We can apply Lemma
3 with X = C, X = C" to conclude that ϋΓi(C", Z) is a finite group of
odd order. It follows immediately that

( 5 ) H\C, JR) = 0 .

Next, we wish to compute the real cohomology of the space E'.
Since Er = S{v') is a nonorientable 1-sphere bundle over M, we can
use the Gysin sequence for this purpose:

) — H^E" iί)

Here Hm(M, &) means the m-dimensional cohomology group of M
with local coefficient group the twisted real numbers. By the Poincare
duality theorem for nonorientable manifolds,

H«~2(M, 32) ^ H4_q(My R) .

From this it follows readily that for any value of q, Hq~2(M, &) = 0
or Hq(M, R) = 0. Therefore μ = 0, and

rank H\E', R) = rank Hq(M, R) + rank Hq~\M, &)

= rank ii9(iki, i?) + rank Hs_q(M, R) .

From this we conclude that

( 6 ) rank H°(E', R) - rank H\E', R) - 1 ,

(7) rank H\E\ R) = rank i Γ ^ ' , 12) = n - 1 .

Of course, (6) also follows from the fact that E' is a closed, connected,
orientable 3-manifold.

Next, we consider the real cohomology sequence of the pair (C, Ef).
By making use of (5) and the fact that

rank Hq(C, E', R) = rank H'-\C\ R)

(which is a consequence of the Lefschetz-Poincare duality theorem
for orientable manifolds with boundary) we conclude that
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(8) H\C, R) = H\C, R) = 0 .

Next, since C" is a 2-sheeted covering of C, we have the following
obvious relation between the Euler characteristics:

χ(C') = 2 χ(C) .

Now one readily computes that χ(C) — n (use the Alexander duality
theorem). Hence χ(C") = 2n; then making use of (5) and (8) we conclude
that

( 9 ) rank H\C, R) = 2n - 1 .

Next, we will use the information we have already obtained about
H*(C, R) and the real cohomology sequence of the pair (S', C") to
determine H*(S', R). For this purpose, note that by the excision
property,

H*(S', C) ** H'(A', Ef) .

Now the pair (A', E') is the Thorn space of the normal bundle v';
therefore, we can apply the Thorn isomorphism theorem for (non-
orientable) vector bundles to conclude that

H*(A', E', R) ~ H«-\M, &) .

Also Hq~2(M, &) ^ H4_q(M, R), as was noted above. Combining these
isomorphisms, we see that

(10) rank H%S\ C", R) = 1 ,

(11) r a n k H*(S', C ' , R ) = n - l ,

(12) H'(S', C, R) = 0 for q Φ 3 or 4 .

If we incorporate all the information we have obtained about H*(S', C\
R) and Jff*(C, R) together with the fact that

rank H3(S\ R) - rank H\S\ R)

(which is a consequence of the Poincare duality theorem) into the
cohomology sequence of the pair (S'9 C"), we see that

rank H2(S', R) = n ,

as was to be proved. We note that it also follows that

£Γ(S', R) = HS(S', R) = 0 .

It remains to prove the last statement of Lemma 2. For this
purpose, note that the projection p: S' -> S4 induces a map of the real
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cohomology sequence of the pair (S\ C) into that of the pair (S\ C);
hence we have the following commutative diagram:

0 > H2 (C) — H3(S\ C) > 0

[pi*

0 > H2{S') -^-> H\C) — H\S', C") > 0

The involution T* operates on each of the real vector spaces in the
bottom line of this diagram, and the homomorphisms i* and <?' commute
with Γ*. Each of these three vector spaces decomposes into the
direct sum of two subspaces corresponding to the eigenvalues + 1 and
— 1 respectively of the involution T*. These subspaces are respectively
the subspace of elements left fixed by T*, and the subspace consisting
of those elements x such that T*(x) — — x. The homomorphisms i*
and δ' respect these direct sum decompositions. Furthermore, it is
clear that the images of pf and pf are contained in the subspaces
of elements left fixed by T*.

Next, we assert that pf is a monomorphism, and its image is the
entire subspace of elements of H2(G) which are left fixed by T*. To
prove this, note that C is a covering space of C; hence we can apply
the results of appendix No. 2. By equation (V) we see that

(14) H\C) = image pf © kernel t*

and by (VI) the elements of kernel ί* satisfy the equation

x + τ*(x) = 0 ,

i.e., T*(x) = — x. Thus the direct sum decomposition in (14) is the
same as that corresponding to the eigenvalues of T*.

Finally, we assert that pf is an isomorphism. This follows from
consideration of the following diagram:

TT3/ O4 Z0'\ ^ v tΓ3/ Λ TΠ\

T T 3 / C Γ*t\ v ZJ"3/ /tf 77"\ v
ϋ (o , O ) > ϋ (A , hi ) <

The left hand square of this diagram is commutative, and j and f
are isomorphisms by the excision property. (A, E) and {A\ Ef) are
the Thorn spaces of the bundles v and vf respectively, and φ and φ'
are the Thorn isomorphisms defined by

φ(x) = x U J7,

Λ ) = 2/ U J7' ,
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where Ue H2(A, E; &) and U' e H\Ar, E', &) are the Thorn classes
(with twisted coefficients) of the bundles v and 2/ respectively. Note
that pA: A! —> A is a homotopy equivalence, hence pf is a isomorphism.
The Thorn classes are related by the following equation

p}{U)=±2U'

since the projection p3: (A\ Er) —> (A, E) is a fibre preserving map
having degree ±2 on each fibre (cf. Spanier [6], Chapter V, §7). Thus
the right hand square of the diagram (15) is commutative up to a
factor of ±2. Putting all these facts together, we see that pt is an
isomorphism, as asserted.

It follows that every element of H%S\ C") is left fixed by T*.
Therefore every element of the subspace (kernel t*) of H2(C) (i.e.,
those corresponding to the eigenvalue —1) is contained in kernel
δ' = image i*. But it is readily seen that

rank (kernel t*) = n, and

rank (image i*) = n .

Therefore

image ΐ* = kernel £* .

Since i* is a monomorphism, it follows that on the vector space
H2(Sf) the only eigenvalue of T* is —1. This completes the proof
of Lemma 2.

6. Proof that all possible values of the integer e(v)[M] can
actually be realized* It follows readily from our conventions that
changing the orientation of the 4-sphere, S\ changes the sign of the
integer e(v)[M\. Alternatively, we could achieve the same result by
keeping the orientation of S4 fixed and replacing the given embedding
i: M-* S* by the composite

where h is an orientation reversing diffeomorphism of S\
If we are given two pairs (S{, Mi), i = 1,2, consisting of an

oriented 4-sphere and a smoothly embedded nonorientable surface, we
can form the connected sum

(S\ M) - (Si, M,) # (Si, M2)

as defined by Haefliger [3]. Denote the normal bundles of M, Mlf and
M2 by v, v19 and v2 respectively. We then have the following equation:

e(v)[M] = eMlMJ + e(v2)[M2] .
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The proof of this equation is not difficult; we leave it to the reader.
Let P be a real protective plane imbedded smoothly in an oriented

4-sphere, S4 with normal bundle v. It is a consequence of the theorem
proved so far that

e(v)[P] = ±2 ,

the sign depending on the orientation of S\ Let us assume that
the orientation is chosen so that

e(v)[P] - 2 .

If we now form the connected sum of i copies of the pair (S\ P) and
(n — i) copies of the pair ( —S4, P), we obtain a pair (S\ M) such
that

e(vM)[M] = 4i - 2n ,

and χ(M) = 2 — n. By choosing i — 0,1, 2, , n we obtain all possible
values for the Euler class of the normal bundle of a surface M with
χ(M) = 2 - n .

Appendix 1* Generalities on orientations of vector bundles
and local coefficients* If E—*J3 is an ^-dimensional real vector
bundle over the space 2?, we will consistently use the notation S(E) —> B
and D(E) —»B to denote the associated (n — 1) -sphere bundle and
the associated ^-dimensional disc bundle respectively. For any point
beB, the fibres of these bundle will be denoted by Eb, S(E)b, and
D(E)h respectively. Associated with the bundle E—>B is a certain
local system of groups O(E), called "the local coefficient system of
orientations of E". This local system of groups associates with each
point beB the group Hn(D(E)b, S(E)b; Z) (or alternatively, the group
Hn~ι{S{E)b', Z) or τrw_1(S(£')fe); these different groups are related by ob-
vious canonical isomorphisms). The Euler class, e(E), is an ̂ -dimensional
cohomology class with coefficients in O(E). Note that the local system
O(E) is determined up to isomorphism by the first Stiefel-Whitney
class, w^E).

If M is a (possibly nonorientable) differentiable closed, connected
^-manifold, the local coefficient system of orientations of M is, by
definition, the local coefficient system of orientations of the tangent
bundle of M; it is denoted by O(M). The "fundamental homology
class of M" is a uniquely defined homology class, [M] e Hn(M, O(M)).
If M is triangulated, it is represented by an w-eycle which assigns
to each oriented ^-simplex the corresponding "local orientation' \

Let E and Ef be vector bundles over B, and let E®E denote
their Whitney sum. There is a natural isomorphism
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0(E) 0 0{E') ^ 0{E@E'))

which is determined a t each point beB by the natura l isomorphism

Hn(D(E)b, S(E)b) <g> Hn,(D(E')b, S(E')b)
E')b, S(E 0 E%) .

This natural isomorphism can also be looked on as a bilinear pairing

O(E) x O(E') > O(E © E') ,

which can be used to define cup products, cap products, etc.
Given the bundle E over a connected space B, the local system

of groups O(E) is isomorphic to a local system of groups in B which
assigns to each point beB the additive group of integers, Z, with
the "twisting'' of this local system of integers determined by w^E).
We will denote this local system of integers by %ί. As a matter of
fact, there are actually two distinct isomorphisms between the local
systems O(E) and %\ to choose one of them as a preferred isomorphism
amounts to "orienting" the bundle E in some sense, even though the
bundle E may be nonorientable in the usual sense.

Appendix 2* The transfer homomorphism in a covering space*
Let X be an arcwise connected topological space and p: X—>X a re-
gular covering space of X with finitely many sheets. In this section,
we shall consider some relations between the homology and cohomology
groups of X and X. These relations are well known, but do not seem
to have been published anywhere.

We will simultaneously consider the following two situations:
(a) X and X are simplicial polyhedra, p is a simplicial map, and

we use simplicial chains and cochains.
(b) X and X are not assumed triangulated, and we use singular

chains and cochains.
In either case, the projection p induces a chain transformation

Since the covering is assumed to have only finitely many sheets, the
so called "transfer homomorphism'' is defined in the opposite direction:

t: C*(X) > C*(X) .

The definition of t is as follows: for any ^-simplex σ of X, t(σ) is
defined to be the sum of all %-simplexes σ' of X such that p${σr) = σ.
It is readily verified that t is a chain transformation. One can also
easily verify the following two relations:

(I) tpt(u)= Σ*
geG
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(II) p φ ( v ) = m v f veC

Here G denotes the group of covering transformations of X, and m
denotes the number of sheets of the covering.

If we pass to cohomology with any coefficients, we have induced
homomorphisms.

p*:H*(X) >H*(X)

t*:H*(%) >H*(X)

and the relations (I) and (II) lead to the following relations:

(III) p*t*(x) = Σ 0*0*), α e H*(Z)
geG

(IV) t*p*(y) = my, y e H*(X) .

Let us assume that we use a field for coefficients whose characteristic
does not divide the number of sheets, m. Then from (IV) we easily
deduce that p* is a monomorphism, ί* is an epimorphism, and H*(X)
breaks up into a direct sum,

(V) H*(X) = image p* 0kernel ί* .

The elements of the direct summand image p* are obviously left
fixed by the homomorphisms g* for all geG. It follows from equation
(III) that the elements of the direct summand kernel ί* satisfy the
following condition:

(VI) Σ £*(&) = 0
geG

Appendix 3 (added in proof, August, 1969). Glen Bredon has
pointed out in a letter to the author (dated May 14, 1969) that the
proof of Lemma 2 can be considerably shortened, as follows:

The last statement of Lemma 2 is an immediate consequence of
the known fact that the homomorphism p* : iϊ*(S4; R) ->fP(S'; R) is
an isomorphism onto the set of invariant elements of T*; see Theorem
19.1 on page 85 of Bredon's book (Sheaf Theory, McGraw-Hill, 1967).
The proof of this theorem depends on the fact that the notion of the
transfer homomorphism (see Appendix 2) can be generalized to cover the
case of an arbitrary action of a finite group on a Hausdorff space,
provided, one uses a Cech type cohomology theory; see Bredon's book
(loc. cit.) or Annals of Mathematics Study No. 46, Seminar on
Transformation Groups, Chapter III, §2 (by E. E. Floyd).

The first statement of Lemma 2 can be proved more directly by
use of the exact sequences of P. A. Smith (see Bredon, loc. cit., page
86, or Floyd, loc. cit., Chapter III, §4). In the case at hand this
gives the following exact sequence (Z2 coefficients):
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> H\S\ M) > H\S') > HW, M) © H\M)

> Hί+1(S\ M) > .

Also, the part Hι{M) —> Hi+1(S\ M) of the connecting homomorphism
is just the coboundary for the pair (S\ M). From this it follows
immediately that iΓ(S'; Z2) = 0 = H3(S'; Z2) and the vector space
H2(Sr; Z2) has rank n. Then one applies the universal coefficient
theorem to conclude that H2(S'; R) is also a vector space of rank n.
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EXISTENCE OF A SPECTRUM FOR NONLINEAR
TRANSFORMATIONS

J. W. NEUBERGER

Denote by S a complex (nondegenerate) Banach space.
Suppose that T is a transformation from a subset of S to S.
A complex number λ is said to be in the resolvent of T if
(21 — T)"1 exists, has domain £ and is Frέchet differentiate
(i.e., if p is in S there is a unique continuous linear trans-
formation F= [(21- T)- 1 ]^) from S to £ so that

T)^q-(2I- T)^p - F(q - p) || = 0)

and locally Lipschitzean everywhere on S. A complex number
is said to be in the spectrum of T if it is not in the resolvent
of T.

Suppose in addition that the domain of T contains an open
subset of S on which T is Lipschitzean.

THEOREM. T has a (nonempty) spectrum.

If T is a continuous linear transformation from S to S, then the
notion of resolvent and spectrum given here coincides with the usual
one ([1], p. 209, for example). Such a transformation T is, of course,
Lipschitzean on all of S and hence the above theorem gives as a
corollary the familiar result that a continuous linear transformation
on a complex Banach space has a spectrum.

The set of all complex numbers is denoted by C.

LEMMA. Suppose that d > 0, p is in S, Q is a transformation
from a subset of S to S, D is an open set containing p which is a
subset of the domain Q, Q is Lipschitzean on D and (I—cQ)~ι exists
and has domain S if c is in C and \ c \ < d. Then,

limc_0 (/ - cQ)~ιp = p .

Proof. Denote by M a positive number so that \\Qr — Qs \\ ^

M|| r — s || if r and s are in D. Suppose ε > 0 . Denote by δ a number

so that 0 < δ < min (ε, 1/2) and {q e S: \\ q — p \\ ^ δ} is a subset of 2λ

Denote by δ' a positive number so that <?'(max (M, || Qp ||)) < δ/2. Denote

by c a member of C so that \c\ < min(δ', d). Denote (/ — cQ)~ιp by

q, denote p by qQ and p + cQq^ by qn, n = 1, 2, .

Then, || qx - q01| = || p + cQq0 - qQ || = | c \ || Qq0 \\ < δ/2. Suppose

that k is a positive integer so that

157
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Then || qm - p \\ ^ Σ^o 1 II Qj+ί ~ Qj II ̂  Σ?-"? ( W + 1 < δ, m = 0, 1, . . . , k
and hence

SL\C\ M(δ/2)k ^ (δ/2)k+1 .

Hence \\qn — qn^ || ^ (d/2)n, n = 1, 2, and therefore qί9 q2, con-
verges to a point r of S. Note t h a t || qn+1 -p\\^ Σ;=o (δ/2)' '+ 1<δ, n =
1, 2, so t h a t || r — p || ^ δ and hence r is in D. But |] r ~ ( p + cQr) || =
II (r - qn+1) + (P + cQgJ - (p + cQr) || ^ || r - qn+1 \\ + | c \ \\ Qqn - Qr \\ ^
\\r — ?n+ill + \o\ M\\ q% — r ||—*0 as n-+ ©o. Hence r = p + cQr, i.e.,
(/ - cQ)r = p, i.e., r = (/ - cQ)-1^ = q. Hence, || (I - cQ)-1^ - p \\ ^
<5 < ε. This proves the lemma.

Proof of theorem. Suppose the statement of the theorem is false.
Then T has an inverse since if not, 0 would be in the spectrum of T.
Denote by D an open set on which T is defined and is Lipschitzean.
Denote by p a point of D different from — T(0).

Define /(λ) to be (XI - T)~'p for all λ in C. Suppose 6 is in C.
If q is in S and different from p denote

(1/119 - P\\){[bl- Γ)-1? - ΦI- Γ)-1?] - [ ( 6 1 - T)^\\p){q - p)}

by L(q). Denote by L(p) the zero element of S and note that
l i m ^ L(q) = L(p) since (bl — T)"1 is Frechet differentiate at p. Denote
(bl - T)~ι by Q. If λ is in C, then

(XI - T) = [I- (b- X)(bl - T)~ι)(bl - T)

and, since both (XI — T)" 1 and (61 — T)"1 exist and have domain S,
it follows that [I - (b - X)(bl - T)-1]-1 = [I - (6 - λ)Q]~1 has the same
properties and (XI - T)~ι = Q[I - (6 -

Hence, if λ is in C,

/(λ) - /(δ) - Q[I - (b - X)Q]^p - Qp

= Q'(P)[[I - (6 - x)Q]~1P - P]

+ II [I - (6 - λ)Q]-ιp - p || L([I - (6 - X)Q]'1p) .

But [/ - (6 - λ)Q]-χp - p = (b - X)Q[I - (b - X)Q]~ιp so

(λ - b)^[f(X) - f(b)]

= -Q\P)Q[I-Φ-X)Q]'1P

+ (I 6 - λ |/(λ - 6)) || Q[I - (6 - X)Q]-ίp \\

x L([J - (6 - x)Q]~1p) - -Q'(P)QP

as λ —> 6 since l im^JJ — (6 — λ)^]- 1^ = p. Hence,
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/'(&) - -IΦI - T)^Y(p)(bI - T)-ιp .

Now limc_0 (/ — cT)~*p = p. Denote by S a positive number so
that if \c\^δ, then || (I - cT)~ιp || ^ || p \\ + 1. Then if λ is in C
and I λ I ̂  1/δ, ||/(λ) || = || (XI - Γ)-ιp || - 11/λ | || (I - (l/λ)Γ)-ιp || g
5(|| p || + 1). Hence / is bounded. So, by Liouville's theorem ([1], p,
129, for example), / is constant, i.e., there is a point q in S such
that if λ is in C, (XI - T)~ιp = /(λ) = g, and so λg = p + Tq. Hence
it must be that g — 0f i,e,f #> = — T(0)r a contradiction. This establishes
the theorem.

The author considers it likely that the statement of the theorem
is true if the condition (in the definition of resolvent) that (XI— T)~~l

be locally Lipschitzean is dropped.
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MEASURE ALGEBRAS ON IDEMPOTENT SEMIGROUPS

STEPHEN E. NEWMAN

Taylor has shown that for every commutative convolution
measure algebra M there is a compact topological semigroup
S, called the structure semigroup of M, and an embedding
μ—> μs of M into M(S) such that every complex homomorphism

of M has the form h/(μ) — \ fdμs for some semicharacter /
JS

on S.
This paper deals with commutative convolution measure

algebras whose structure semigroups are idempotent. The
measure algebra on the interval [0,1], where the interval is
given the semigroup operation of maximum multiplication, is
an algebra of this type. These algebras are studied in this
general setting in the hope of shedding new light on the
known theory of measure algebras on locally compact idempo-
tent semigroups and in the hope of extending attempts to
classify a convolution measure algebra in terms of the algebraic
nature of its structure semigroup.

An example is given of a measure algebra on a compact
idempotent semigroup whose structure semigroup is not idem-
potent.

Our goal in this paper is to apply the structure theory for
commutative convolution measure algebras developed by Taylor [5]
to a special class of algebras which includes those studied by Hewitt
and Zuckerman [3], Ross [4], and Baartz [1]. We will assume that
each convolution measure algebra mentioned in this paper is commu-
tative and, in addition, that each semigroup mentioned is commutative.
We begin by giving the essential features of Taylor's structure theory.

A convolution measure algebra is roughly an ordered Banach space
of measures with a multiplication which makes it a Banach algebra
and which relates appropriately to the norm and the order. For a
precise definition, see [5]. Examples include &{&), the algebra of all
absolutely continuous measures on a locally compact group G; M(G),
the measure algebra on G (all bounded regular Borel measures on G);
and M(S), the measure algebra on a locally compact semigroup S.
Convolution is the multiplication operation in each of these examples.
Both &{G) and M(G) are semisimple algebras as is M(S) under certain
not-too-restrictive conditions. We will therefore focus our attention
only upon semisimple algebras.

Let M denote a semisimple convolution measure algebra. Taylor
has shown in [5] that there is a compact topological semigroup S,
called the structure semigroup of M, and an embedding μ—>μs of M
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into M(S) with the following properties.
(A) μ —> μs is an algebraic isomorphism and an order preserving

isometry.
(B) The image Ms of the map μ—*μs is weak* dense in M(S);

i.e., Ms separates points in C(S).
(C) C(S) is the closed linear span of S; i.e., S separates points

of S. (S is the collection of all continuous semicharacters on S),
(D) Each complex homomorphism of M has the form hf(μ) —

I fdμs for some / in S.
JS

The reader will recall that a semicharacter is a nonzero, bounded,
complex valued function / defined on the semigroup S which satisfies
f(x-y) = f(x)f(y) for all x and y in S. As a result of {D), the set
S of semicharacters with the weak* topology induced by M can be
considered the maximal ideal space of M. We will regard a semi-
character / in S as both a continuous function on S and a complex
homomorphism of M via the indentification given by (D), Thus, we
write f(μ) in place of hf(μ).

We are now in a position to define the type of algebra which
will be our object of study.

DEFINITION 1. A semisimple convolution measure algebra M will
be called a P-algebra provided f(μ) ^ 0 for every positive measure μ
in M and every complex homomorphism / of M.

Examples of P-algebras are the measure algebra M(T), under
convolution, of the compact semigroup T — [a,b] with multiplication
x-y = max {x, y} [3], and more generally, the measure algebra M(T)
of a finite product T of locally compact, totally ordered spaces with
co-ordinate wise maximum multiplication [1]. In both examples, each
complex homomorphism of M(T) has the form

h A(μ)= \ lAdμ μeM(T) ,
JT

for some subsemigroup A of T whose complement T\A is a (prime)
ideal of T (Definition 1.5, [1]). Consequently, M(T) is a P-algebra.
In § 4 we will give an alternate proof the M(T) is a P-algebra, based
on the results of § 3.

We pause to define several terms with which the reader may not
be familiar. The reader is referred to Taylor [5] for terms not defined
here.

Let M be a convolution measure algebra.

DEFINITION 2. A closed subspace (subalgebra, ideal) N of M is
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called an L-subspace (subalgebra, ideal) if whenever μeN, then v e N
for all v < μ(y absolutely continuous with respect to μ).

DEFINITION 3. An L-ideal N of M is called a prime L-ideal if
NL = {μe μ\ μiv (μ and v are mutually singular) for all veN} is a
subalgebra of M.

2. Some characterizations of P-algebras* Our first theorem
gives six equivalent conditions for a semisimple convolution measure
algebra M to be a P-algebra. The identity e mentioned in statements
(5) and (6) of the theorem is the identity in M if M has an identity
and is the identity adjoined to M in the usual manner if M does not
have an identity. Similarly, the inversion mentioned in statement (6)
takes place in the algebra M if M has an identity, and in the algebra
"M with identity adjoined" if M does not have an identity.

THEOREM 1. Let M be a semisimple convolution measure algebra.
Then the following statements are equivalent.

(1) M is a P-algebra.
( 2 ) S is an idempotent semigroup.
(3) S is an idempotent semigroup.
(4) For each feS,M = Nf + Nj where Nf is a prime L-ideal

such that if μ = μL + μ2(μL 6 Nf, μ2 G Nj), then f(μ) — (μ2)s(S).
(5) The spectral radius ofμ — e is less than or equal to one

for every positive measure μ of norm one.
( 6 ) μ + e is invertible for every positive measure μ of norm one.

Proof. The order of proof will be (1) => (2) <=> (3) ==> (4) ==> (1) and
(1) => (5) ==> (6) =* (1). (1) => (2). Since the integral of each semicharacter
in S with respect to any positive measure in M is nonnegative, each
semicharacter in S is a nonnegative function by (B). Let / be in S.
Then / is nonnegative and hence for fixed z, fz is in S if Re z > 0.
Now gs(z) = fz(s) is analytic in Re z > 0 for fixed s e S. But then
gs(z) is a nonnegative analytic function and is therefore constant. If
we evaluate gs(z) at z = 1, we obtain f2(s) — f(s) for all Re z > 0.
If we let z = 2 in the above equality, we obtain /2(s) = f(s) for each
se S and hence f2 — f. Therefore S is an idempotent semigroup.

( 2) <=> ( 3). Let fe S and s e S. We conclude that f(s) = f2(s) =
f(s)f(s) — f(s-s) since f2 = /. Thus s s = s by (C), and hence S is
idempotent. Obviously, (3) ==> (2).

(3)=>(4). If S is idempotent, so is S. Given feS, let / =
{seS\f(s) = 0}, We note that / is a prime ideal in S. If we let
Nf = {μe M\ μs is concentrated on /}, then Nf is a prime L-ideal
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(Theorem 3.2, [5]) with orthogonal complement N}. Thus if μ =
μ2 where μλ e Nf and μ2e Nj, then

f(μ) = ^fdμ. = j β /d( A + μ2)s = j^/d^) . + ^fd(a2)s = (μ2)s(S) .

( 4 ) =* (1). Obvious.
(1) => ( 5 ). Recall that the spectral radius of an element χ is a

Banach algebra (written \\χ\\sp) is given by || χ \\sp = l i m ^ || χn \\lln.
If the algebra is commutative, then the spectral radius of χ is also
the supremum norm of the Gelfand transform of χ. If (1) holds, then,
by definition, each complex homomorphism takes positive measures to
nonnegative numbers. Let μ be a positive measure in M of norm
one. Then 0 ^ f(μ) = μ(f) ^ 1 for every feS. Therefore,

1 ^ s u p I (μ - eΠf) | - || (μ - β ) Λ | U = || μ - e\\sp .
feS

( 5 ) ==> ( 6 ). Let μ be a positive measure in M. Then μ/\\μ\\ is

a positive measure of norm one and hence

Clearly μ can never assume the value — 1 . Thus — l^σ(μ)1 and
hence μ + β is invertible.

( 6 ) => (1). Let μ be a positive measure in M. If λ > 0, then
μ/X + e is invertible. Hence μ + Xe is invertible and —X£σ(μ).
Therefore, the spectrum of any positive measure in M contains no
negative members. We claim that this fact ensures us that every
positive measure will have real, nonnegative spectrum. For suppose
μ is a positive measure whose spectrum is not real. Then there is
an / G S such that μ(f) = λ = \ + iX2 where \ and λ2 are real and
A,2 φ o. We can choose a number t > 0 such that exp (tx) < 0. Thus
exp (tμ) is a positive measure with a negative number in its spectrum,
a contradiction. The proof of the theorem is complete.

An L-subalgebra of a convolution measure algebra is again a
convolution measure algebra. Since the spectral radius of a measure
depends only upon the norms of the measure and its powers, statement
(5) together with the above observation yields the following corollary.

COROLLARY. Every L-subalgebra of a P-algebra is a P-algebra.

3. A sufficient condition* Our next theorem gives a sufficient
condition for an algebra to be a P-algebra. We suspect that the
condition is also necessary but have not been able to prove it.

THEOREM 2. Let M be a semisίmple convolution measure algebra
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with structure semigroup S. If for every positive (nonzero) measure
μ in M there exist sequences {μn}, {vn} of positive measures in M such
that

(1) μn->μ,
(2) μn*vf = μn(S)vf for all vr < vn and each n,
( 3 ) vn< Σ ; , o μmβm for all n

then M is a P-algebra.

Proof. Throughout this proof, M is considered a subalgebra of
M(S). Let λ be a positive measure in M, let / be in S, and let J =
{seS\f(s) = 0}. Then J is a prime ideal in S, and hence

Mj — {v e MI v is concentrated on J}

is a prime L-ideal of M with orthogonal complement Mj. Define μ,
μ' by μ'(E) = X(E Π / ) , for Borel sets E, and μ = X- μ'. Then
μeMj and μ'eMj.

If μ — Q, then /(λ) = 0. If ^ =£ 0, then choose sequences {̂ %}
and {v%} guaranteed by the hypothesis of the theorem. We claim
that there is a measure v'n < vn such that f{v'n) Φ 0 for each n. If
not, then for some n, f(v'n) = \/ώv'% = 0 for all v\ < yTO and / = 0 a.e.
[yn]. Thus there is a Borel set EaS of ^-measure zero such that
/ = 0 on E. Hence vneMj. But since μ e Mj and M> is an L-sub-
algebra, Σ : = o / ^ T is in Mj. Since ^ < Σ ; = o Γ / 2 m , v , is in Mj.
Therefore, vn j_ yΛ and so vw = 0, a contradiction. This establishes
our claim.

Choose measures v'n < vn such that /(v'w) Φ 0. Note that since
μ»*»n = μΛS)K and /(v;) Φ 0, then, /(^n) - μn(S) ̂  0. But ̂ n — /*;
thus, f(μn)-+f(μ). Therefore, f(μ) = μ(S) ^ 0 and /(λ) = /(// + μ>) -
/(//) + /(^') - /(//) ^ 0. Hence M is a P-algebra.

4. An application o£ Theorem 2. If T is an idempotent semi-
group we can introduce a partial ordering "<;" in T by defining E ̂  y
if and only if x>y — y for all x any |/ in Γ. A totally ordered
idempotent semigroup is one in which the above partial ordering is a
total ordering. Our goal in this section is to show that the measure
algebra on a finite product of totally ordered, locally compact, idem-
potent semigroups is a P-algebra. This result follows trivially from
a theorem of Baartz (Theorem 3.5, [1]); however, we shall give an
independent development using Theorem 2. We will need the three
lemmas that follow.

LEMMA 1. Let T be a locally compact idempotent semigroup and
let μ and v be in M(T). Suppose suppμ ^ supp v in the sense that
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for any sesuppμ and t esuppy, s ^ t(s t — t). Then μ*v = μ(T)v.

Proof. Supp μ denotes the support of the measure μ. Let A =
supp μ, B = supp v, and E be a Borel subset of T. Then

μ*v{E) = ^χE(x y)dμ(x)dv(y) =

[μ(Ey)dv(y) where Ey = {x e T\ x-ye E} .

But \ μ(Ey)dv(y) — \ μ{Ey)dv{y) since v is concentrated on B. Further-
JT Jβ

more,

_ ίO yeB\E
μ{ y ~ \μ(T) yeB Π E

since for yeBΠE,A(zEy and for y e B\E, Af]Ey = φ. Thus

ί μ(Ey)dv(y) = M?>(#)

and hence //*v = μ(T)v.

LEMMA 2. Lei T be a totally ordered, locally compact, idempotent
semigroup and let μ be a positive measure in M(T). Then given e > 0,
there is anxeT such that μ({y eT\y^x})>0 and μ({y eT\y>x})<e.

Proof. Since μ is a bounded regular measure, there is a compact
set If c supp μ such that μ(T\K) < ε. Let z — sup{?/| yeK}. If
μ({y I y ^ z}) > 0, then the choice of x = z completes the proof. If
μ({y I y ;> 2}) = 0, we again apply the regularity of μ to obtain an
x<z such that μ({y \ y > x})< s. The choice of z forces μ({y \y^x})>0.
The proof of the lemma is complete.

LEMMA 3. Let T — P^Ti be a finite product of totally ordered,
locally compact, idempotent semigroups 2V Let μ be a positive
measure in M(T). Then given ε > 0, there is an x = (xί9 xm) in
T such that μm({y e T\ y ;> x}) > 0 and μ(T\{y e T\ y ^ x}) < ε.

Proof. Let π{ be the projection map of T onto T* for

i = 1, 2, m .

The measure /^ = μoπ^1 is a positive measure in M(Ti), Therefore,
by Lemma 2, there is an xt in Ti such that μ^ye Tt\y > a?J) < ε/m
and ^̂ {7/ e Tt \ y ^ ^J) > 0. For notational convenience, let
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Ji = {yeTi\y>xi) and K, = {ye T< \ y ^ α?J .

Then the above statement becomes ^(J*) < e/m and ̂ ( I Q > 0.
Let x = (xuxif ••• xm). We first note that

T\y£x = U ττrV<) .
i

Thus μ(T\{y e T \ y <a;}) - μ{ u f=1 πr'(J;)) ^ Σ«"ι j " ° *7X(Jt) < ΣΓ-i e/m = e.
We next note that

π-\Km) = n Tcr'iKi) = {yeT\y^x} .
t=l

Since μ has mass on each of the sets πτx(K^, μm has mass on

πτ\Kd^\K2) . . . π-\Km); i.e., ^«({ye Γ |» ^ a?}) > 0 .

This establishes the lemma.

THEOREM 3. Let T = P^LiTi be a finite product of totally ordered,
locally compact, idempotent semigroups T^ Then the measure algebra
M(T) is a P-algebra.

Proof. Let /ibea positive measure in M(T). Lemma 3 guarantees
the existence of a sequence {xn}n=i in T such that

μ(T\{yeT\y^xn] < 1/n

and μm({yeT\y^xn} > 0.
Let μn = μ \ {y e T \ y ^ xn} and let vn = μm\{y e T\y ^ xn}. Here

we denote the measure μ restricted to a set A by μ | A(μ \ A(E) —
μ(A Π E) for any Borel set E). We claim that the sequences {μn}
and {vn} satisfy the hypothesis of Theorem 2. Clearly, μn —* μ. Since
supp jtfn ^ supp vΛ, and since supp v'n c supp yΛ for any v'n <vn, Lemma
1 assures us that μn*K = μn{T)v'n. Finally, vn is a nonzero measure
such that vn< μm < ΣΓ=0μ72\ Since M(T) is semisimple [1], M{T)
is a P-algebra by Theorem 2.

5* A counterexample* Theorem 1 shows that any P-algebra
may be considered as an L-subalgebra of the measure algebra on a
compact idempotent semigroup. Each of the examples given in § 1
is a measure algebra on a locally compact idempotent semigroup (not
the structure semigroup). It is therefore natural to ask whether or
not the measure algebra on any locally compact, idempotent semigroup
is a P-algebra. The answer to this question is "no" as the counter-
example of this section will show. We first make the following
definition.
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DEFINITION 4. A subset Q of an idempotent semigroup S will be
called independent if whenever x^x2 xn = y1-y2 ym for {ίcJ U U

JJLi c Q and m < n, then ^ = 7/y for some i and i (1 ^ ΐ ^ w and

Let C denote the Cantor set on the interval [0,1]. Let S denote the
collection of all finite subsets of C and let union be the semigroup
operation in S. Note that the one point sets form an independent subset
of S in the sense of Definition 4. For an open-compact subset UaC,
XeS, define

if XaU

if xzu.

Give S the weak topology generated by the functions {χ̂ } (U open-
compact). Observe that each χ^ is a continuous semicharacter on S.
Let V be a countable open-compact base for C and let V — {U\ Ue V}.
Finally, let {E/JSU = V [J V and note that the family {χ̂ .jΓ̂ i separates
points in S.

Let T be the countable topological product of the two-point semi-
group {0,1}, under multiplication. Thus T is a compact idempotent
semigroup. We now define a map a: S—> T by [tf(X)]i = lu^X) for
any XeS. Note that a is a continuous one-to-one homomorphism
from S into T. We further observe that C is embedded in an obvious
way in S, and hence in T, as an independent set.

The concluding argument is similar to the one given in the Hewitt-
Kakutani paper on M(G) [2]. There is a positive continuous measure
μ of norm one concentrated on C. Using Fubini's theorem and the
fact that C is independent, it can be shown that μ and all its powers
are mutually singular [2]. Now let σ = δe — μ (e is the identity in
T). Then || σ || = || ΣJU C H f t (- l)kμk || - Σϊ=o CΛf* = 2\ Hence

Thus there is a complex homomorphism h of Jlf(T) such that | h(σ) \ = 2.
This forces fe(^) = — 1. Therefore, M(T) is not a P-algebra.

The countable product of the two point semigroup, with the
operation of coordinatewise multiplication, is a sub-semigroup of the
countable product of unit intervals, with the operation of coordinate-
wise minimum. Thus although the measure algebra on a finite product
of intervals with coordinatewise maximum multiplication is a P-algebra,
this is not the case for an infinite product of intervals. We are
therefore led to conjecture that a measure algebra M(T) is a P-algebra
if and only if T is an idempotent semigroup which satisfies a certain
"finite dimensionality" condition.
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MATRIX TRANSFORMATIONS OF SOME
SEQUENCE SPACES

K. CHANDRASEKHARA RAO

One of the important investigations in the theory of sum-
mability is that of finding necessary and sufficient conditions
on an infinite matrix in order that the matrix should trans-
form one (complex) sequence space into the same or another
sequence space. In this note some such theorems are given.

Let
Co = the space of null sequences;
C — the space of convergent sequences;
Γ = the space of sequences x — {xp} such that |α?p |

1/p —•(), as p—*oo.
The space Γ can be regarded as the space of all integral func-
tions f{z) = Σ P = I XPZPΊ

Γ* — the space of sequences s = {sp} such that the sequence {| sp \ίlP}
is bounded. Γ* may also be considered as the space conjugate
to Γ regarded as the space of integral functions /(3) = Σ~=ia ?*3p.
Each continuous linear functional UeΓ* is of the form U(f) —

Let A — (anp), {n, p — 1, 2, •), be an infinite matrix of complex
elements. The A transform of x = {xp}, y = {yn} is the sequence de-
fined by the equations

Here y = {yn} and x = {xp} are complex sequences. Similarly, the A
transform of s = {sp}, t = {tn} is the sequence defined by the equations

( 2 ) t , = Σ α , , β , , (n = 1,2, . . . ) .

Here also t = {tn} and s — {sp} are both complex sequences.
The following theorems are true:

THEOREM I. Let (1) hold. In order that {yn} should belong to Γ
whenever {xp} belongs to COy it is necessary and sufficient that

(I, 1) the sequence {θn} is a null sequence, where

( 3 ) θn~-

Theorem I holds even if Co is replaced by C.
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THEOREM II. Let (1) hold. In order that {yn} should belong to
Γ* whenever {xp} belongs to C, it is necessary and sufficient that

(II, 1) the sequence {θn} is bounded, where θn, (n = 1, 2, •), are
given by (3).

THEOREM III. Let (1) hold. In order that {yn} should belong to
C whenever {xp} belongs to Γ, it is necessary and sufficient that

(III, 1) I anp \llP ^ M independently of n, p;
(III, 2) lim^oo anp — ap exists for each fixed p.

THEOREM IV. Let (2) hold. In order that {t%} should belong to
C whenever {sp} belongs to Γ*, it is necessary and sufficient that

(IV, 1) the sequence {fn(z)} of integral functions

( 4 ) / • ( * ) = Σ <W* P , fa = 1, 2 , . . . ) ,

is uniformly bounded on every compact set (of the complex plane);
(IV, 2) = (III, 2) lim^oo anp = ap exists for each fixed p.

THEOREM V. Let (1) hold. In order that {yn} should belong to
Γ* whenever {xp} belongs to Γ, it is necessary and sufficient that

(V, 1) I anp \1'{n+p) <: M independently of n, p.

THEOREM VI. Let (2) hold. In order that {tn} should belong to
Γ whenever {sp} belongs to Γ*, it is necessary and sufficient that

(VI, 1) \fn(z) \ιjn —*0, as n—>oo, uniformly on every compact set
(of the complex plane), where {fn(z)} is the sequence of integral func-
tions fn(z) given by (4).

THEOREM VII. Let (1) hold with aiά = 0 for i > j . In order that
{y%} should belong to Γ whenever {xp} belongs to Γ, it is necessary
and sufficient that

(VII, 1) I anp \llP ^ M independently of n, p.

The matrix transformation of Γ* into Γ* was studied by Heller [6].
The sufficiency, in each case is a straightforward calculation.

The necessity of any of the above conditions is proved by taking
special sequences, and constructing sequences to contradict the given
condition, or by using Functional Analysis. Indeed, to prove the neces-
sity of (III, 1), let Un(x) = yn = Σi7=i**pVp> (n = *> 2> ••'), for each
fixed x — {xp}eΓ. Then {Un(x)} represents a sequence of continuous
linear functionals on Γ ([4], Th. 4). Here {\anp\

llP} is bounded for
each fixed n. Since {yn} e C, it follows that l im^^ | Un(x) \ < <χ> for each
fixed x e Γ. Define for each xeΓ,\x\ = upper bound (| xp \ίlP, p ^ 1).
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Then for x, xf e Γ, \ x — x'\ defines a metric or distance in Γ. With
the metric, Γ is a complete metric space. Therefore, by Theorem 11
of ([1], p.19), there is a closed sphere S and a fixed number M such
that

( 5 ) I Un(x) I ̂  M f or x e S and all n ^ 1 .

Take the sphere S as \x\ ^ d. Set xp = (d/2)p and xό = 0 for all
j φ p so that I it? I ̂  d/2 and hence α? = {xp} e Sc: Γ. Then, by (5), it
at once follows that

i Un(x) I - I α n p ( d / 2 y \ £ M .

That is, I αnp \llP ^ MllP(2/d) < 2m(M)/d where m(M) = max (1, M). This
proves the necessity of (III, 1).

A similar proof applies to condition (VII, 1).

Finally, I thank Professor V. Ganapathy Iyer for his help and
guidance. I also thank the referee for drawing my attention to the
papers of Sheffer [10] and Zeller [14], and other useful comments.
Conditions of Theorems V, VI and VII neither include nor are includ-
ed in Sheffer's conditions. However, Γ and Γ* are included in the
spaces considered by Sheffer. Sheffer [10] and Zeller [14] also dealt
with the spaces of all power series with a certain minimal radius of
convergence.
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SOME THEOREMS IN FOURIER ANALYSIS
ON SYMMETRIC SETS

R. SCHNEIDER

Let R be the real line and A = A(R) the space of continuous
functions on R which are the Fourier transforms of functions
in LKR). A{R) is a Banach Algebra when it is given the V(R)
norm. For a closed F 9 R one defines A(F) as the restrictions
of feA to F with the norm of geA(F) the infimum of the
norms of elements of A whose restrictions are g. Let Fr Q R
be of the form

Fr = (ΣΓ^ r(i) : εj either 0 or 1}.

This paper shows that if

Σ (r(i+l)/r(j))2 < oo and Σ (s(i+l)/s(i))2 < oo

then A(Fr) is isomorphic to A(FS). We also show that, in some
sense square summability is the best possible criterion. In the
course of the proof we show that Fr is a set of synthesis and
uniqueness if Σ (Ki+l)Mi)) 2 < °° This is almost a converse
to a theorem of Salem.

We shall also consider sets Em g ΠΓ Zm{j) of the form

Em — {x:jth coordinate is 0 or 1} .

The Em will have analogous properties to the Fr that will depend on
the m(j).

The original work on isomorphisms of the algebras was done in
[2] where Beurling and Helson show that any automorphism of A
must arise from a map φ by f°φ where φ{x) = ax + b. For restric-
tion algebra the situation is more complex. In [5] it is shown that
an isomorphism between A{F^) and A(F2) of norm one must be given
by f—+f°φ where φ:F2—>F1 is continuous and eiφ is a restriction to
F2 of a character of the discrete reals. Further if F2 is thick in
some appropriate sense the character is continuous. However, McGehee
[11] gives examples of Fι and F2 for which the restriction algebras
A{FX) and A(F2) are isomorphic under an isomorphism induced by a
discontinuous character. Meyer [12] has shown that if

X r(j + l)/r(j) < oo and Σ s(j + l)/s(j) < oo

then A{Fr) is isomorphic to A(FS). For appropriate r(j) this is an
example of an isomorphism induced by a φ with eiφ not even a dis-
continuous character. He also showed that under these hypothesis Fr

was a set of synthesis and uniqueness.
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DEFINITIONS AND NOTATIONS. For background material and no-
tation not defined here we refer the reader to [7] and [15].

In this paper G will always be a locally compact abelian group
with dual group Γ. If g and 7 are elements of G and Γ respectively,
the value of the character 7 at the point g will be denoted by (7, g).

When we have a sequence of compact abelian groups Gjy we shall
denote their direct product (complete direct sum [15]) by ΠGj. If
Γj is the dual of G,-, then the direct sum [15] ΣΓά is the dual of ΠGά.
The j t h coordinate of elements g of ΠGό or 7 of ΣΓό will be denoted
by gά and 7j. One has:

(7, g) = /7(7J , gά)

where all but a finite number of elements in the product are 1.
We shall be dealing with the following basic groups:
( i) The multiplicative circle group will be denoted by T. T

shall be identified with the unit interval by # e [0,1) —• exp (x) where
exp (x) = e2πix. The additive group of integers Z is the dual group of
T. If x e [0,1) represents an element of T and ne Z then (n, x) —
exp (nx).

(ii) R will denote the additive group of reals. R is isomor-
phic to its dual under the pairing given by

(y,x) = ex$(xy),

x,yeR.
(iii) Zn for n ^ 2 will denote the additive group of integers

mod n. Zn is also isomorphic to its dual under the pairing given by

(r, s) = exp (rs/ri),

r,seZn.
Any nonzero regular translation invariant measure on a locally

compact abelian group G is called a Haar measure. If μG and μΓ are
Haar measures on G and its dual group Γ respectively, the Fourier
transform / of / in L\Γ, μΓ) is defined by

f(9) =

for geG. The inversion theorem gives

i, -g)dμ0 = C/(7) .
.

We shall normalize μG and μΓ so that C = 1. If G is compact we
can place μG(G) = 1 and if Γ is discrete μΓ(y) = 1 for γ e Γ . ^(G)
will denote L\G, μG) for a normalized Haar measure.
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For f,he L\Γ) define the convolution fji by

f(Ύ - X)h(X)dμΓ .
r

In [15] it is shown that L\Γ) is a commutative Banach algebra
under convolution and for geG

/ϊh(g) = f{g)h{g) .

We denote by M(G) the space of all regular, complex valued
Borel measures on G of finite total variation. In [15] the Fourier
transform μ of μeM(G) and the convolution μ*v of measures in
M(G) are defined. It is shown that M(G) is a Commutative Banach
Algebra under convolution and

y\

μ*v(Ύ) = μ(7)-v(y)
for yeΓ.

Let A = A(G) be defined by

A(G) = {f:feLί(Γ)}.

A(G) is a Banach algebra under pointwise multiplication and with
norm || \\Λ defined by \\f\\A = | |/ |Li<n and is isomorphic to &{Γ)
under *. For a closed set £7 S G define the restriction algebra

A(E) = {f/E: f e L\Γ)}

with norm || 1^ ,̂ defined by

A(E) is again a Banach algebra under pointwise multiplication. Set

I(E) = {f:f/E=0 and feU(Γ)}

A(E) can be identified with the quotient algebra A(G)/I(E).
The dual space of A(G) is denoted by PM (or PM(G)). Its ele-

ments are called pseudomeasures. Each SePM can be identified
with a function S e L°°(Γ) as follows. The action of S e PM as a
linear functional on feA(G) is given by

We shall denote by \\S\\PM the L°°(Γ) norm of S. Thus PM under
|| \\PM is identical with L°°(Γ) under the sup norm.

Since A(E) is the quotient of A(G) by I{E), the dual of A ^ )
consists of those S e PM which annihilate every function in I(E).
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We shall denote this dual of A(E) by N(E). If N(E) is the set of
all SePM with supp SQE [7, p. 161], then E is said to be a set
of synthesis. The set of all μ e M(G) with support in E we denote by
M(E). M(E) can be considered a subspace of N(E) with (μ1f) =

\fdμ. The two definitions for μ coincide.

If Gλ and G2 are locally compact abelian groups and Et and E2

are closed subsets of G± and G2 respectively we say that Φ: A(Eλ) —> A(E2)
is an isomorphism into if and only if it is an injective algebraic
homomorphism and is continuous. If the range of Φ is dense in
A(E2) there exists a continuous φ:E2—*Eι with Φf — foφ [9]. We
always denote the adjoint of Φ taking N(E2) into NiEJ by 0*.

Symmetric sets in R are defined as follows. For any sequence
r = {r(j):j = 1, •••} of positive reals with the property

Σ r(j) < r(k - 1)
k

we define the subset Fr of R by

0'): εJ either 0 or

The representation of the elements of Fr as an infinite sum is unique.
For each positive integer k, the subset Fk

r or Fr is defined by

Fkr = J Σ ^ r(j): ε, either 0 or l l .

We define the subspace N^Fr) of N(Fr) by

r) - U M{Fk

r) .

For any given sequence m = {m(j):j — 1, 2, •} of positive inte-
gers we define the subset Em of ΠjZmU) by

Em = {or. aj G ΠZm{j); xs either 0 or 1} .

For each positive integer fc the subset Ek

m of Em is defined by

El =- {x: x G # w ; α?y = 0 if i > Λ} .

Define the subspace N^EJ of iVr(JE7w) by

For r and m as above there is a standard homeomorphism
φ:Em—>Fr which takes x-^ΣXjT(j). Let the inverse of φ be called
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We shall frequently write E for Em, Ek for Ek

m, F for Fr, and
Fk for Fk when the respective sequences are clear.

Throughout this work Sj will always denote a quantity that may
take on the values 0 or 1.

1* The symbols r and m shall always denote {r(j):j — 1,2, •••}
and {m(j):j == 1,2, •••} respectively. Fr and Em will then represent
the previously defined sets with φ:Em—>Fr and ψ:Fr—>Em the
standard homeomorphisms. The maps φ and ψ induce maps between
N^En) and N^Fr) which we shall again denote by φ and ψ. The maps
have the form

for μeN^E), and

for μ G N,(F).
If x — <^, ek, 0, •> is an element of ^ ^ and μ e M(Ek) set

If 1/ = Σf eMJ) is an element of Fk and v e set

6 ( 6 , , • • • , £ * ) = »

We see that

| P J f - sup

where f, is an arbitrary m(j) root of unity and the sum is taken
over all combinations with εd being 0 or 1. Similarly

\V\\PM = S U P Σ b(elf exp (x Σ e^ίi

where xeR.

For any /£ e ΛΓ1(£') we define

UMAX = SUp . , εk) exp ( Σ Syβ,.)

where θdeR. Define | |v| |M A X for veN^F) by

UMAX = SUp
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I t is c lear t h a t || μ \\PM g || μ ||MAX a n d || v \\PM g || v \\v

s t a n d a r d h o m e o m o r p h i s m φ w e h a v e
F o r a n y

^ \\μ\\*κχl\\μ\

Simi lar ly

One should note that if r is a sequence of reals independent mod 1
over the rationale, Kronecher's Theorem [4, p. 99] implies that
II ̂  UMAX = || V \\PM for V β N ^ ) .

In order to achieve isomorphisms between certain quotient alge-

bras we shall first study the ratios \\ μ\UAχ/\\ μ\\PM and || v | |M 4 X/|| v \\PU.

LEMMA 1.1. // Σ (l/m(j)Y < oo then there is a C depending
only on m so that || μ ||MAX/|| μ \\PM ^ C for all nonzero μ

Proof. For each k, since M(Ek) is finite dimentional, there is a
smallest constant A(k) so that || μ ||MAX/II t* WPM ̂  A(k) for all nonzero
μ e M(Ek). We shall show that there are constants Ck with ΠCk < oo
so that A(k)/A(k - 1) £ Ck.

The quotient || μ \\PMI\\ μ UMAX is equal to

sup
(1.2)

X [(a(elf , e t_ l f 0) + α(elf εk_lf l)ξk)(ξV-

sup Σ [( , ε,-!, 0) + α(ε l f , ek^ l)Zk)(Z?

where fy are m(j) roots of unity and Z3 are complex numbers of

modulus 1. By a division and multiplication || μ \\PM/\\ AMI MAX becomes

sup

(1.3)
sup

X
sup Σ

sup Σ [(α( , 0) + α( ,

The factor used in division and multiplication in (1.3) is nonzero. If
it were zero \\μ\\PM would be zero and hence μ would be zero. The
fraction on the left of (1.3) is greater than or equal to 1/A(k — 1).
Choose Zj — y3- so that the maximum of the denominator in (1.2) is
achieved. The fraction on the right in (1.3) is greater than or equal
to
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(1.4) ι+ Σ [(α( , 0) + α( ,

If Σ α ( , l ) ^ ••• 7/fc1 is zero (1.4) is equal to one. Otherwise set
eix = ξk/yk and (1.4) is equal to

(1.5) 1 + eix -

+ 1

However, in order that the choice z3- = y5 give | |μ | | M A X , the quotient

must be a real positive real number. Call that number s and (1.5)
becomes

,
(cos x — 1) + i sin a?

s + 1

which is greater than or equal to

1 - x2/2 .

For an appropriate ξk9 \x\ is less than or equal to 2π/m(k).
From the above calculation we get

and therefore

A(k) £ C
!»\\2 /

for some absolute constant C1 and for all m(k) sufficiently large.
Since Σ (l/m(j))2 < oo the theorem is proven.

For the symmetric sets Fr we shall need the following lemma
similar to Lemma 1.1.

LEMMA 1.6. Suppose that Σ (r(J + l)Mi))2 < 1/24. Choose a
real number x0 and define the interval I to be

{x:\x-Xo\<2(±l/rU))}.

There is then a constant Cλ independent of k and x0, so that

II v ||MAX/SUP I 0(05) I < d , for all nonzero v e M(Fk

r) .
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Proof. Fix k and choose a nonzero v e M(Fk

r). There exists real
numbers θ19 •••,#* less than or equal to one, for which

II v ||MAX - I Σ b(elf . . . , εk) exp ( Σ ̂ A ) \ .

Define the functions vky , D2, vι = 0 on jβ by

£;(x) - Σ [δ(βi, ••-,«*) exp

Let us estimate sup x 6 7 ι \vk-,(x) |/|| v ||MAX where

There is an #5 within (l/r(&)) of x0 for which α J r(A ) = θk (mod 1).
Pick Xj_ within l/r(k — 1) of x'o so that ^-rίfc — 1) = ^ ^ ( m o d l ) .
Then

s u p I vk^(x) I/I I v ||MAX ̂  I D ^ f e ) |/|| v ||MAX .

As a function of *, υt(a;) is the Fourier Stieltjes transform of a
measure vk having support in [0, r{k)\. Now,

^*(»ί) »k(Xo) 2

I 9fc |
2 has a maximum at a?J. Therefore, if vk — f + ϊg, with / and g

real, f-f + g g' = 0 at a?;. But, at a?ί,

ί̂/̂ A = f + ig'/f + ^

- (//' + gg' + i (/ ί ' - f'g))IP + ^ 2 ,

which is purely imaginary. Therefore,

*̂ A; \ *Ό/ V ^ l * Ό / ι_

If a measure μ has support in [0, δ] a theorem of Bernstein [1, p. 138]
shows that for all x

[β'(x)\^δ\\μ\\PM

and hence its nth derivative β{n] has

\μ™(x)\ ^ δ« || μ \ \ P M .

Since vk has support in [0, r(ifc)] we obtain

I OUxύ l/'ll ̂  UMAX ^ 1 - (r(fc)2/r(A; - I)2) .
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In effect, we have just shown that there is an x1 e ii for which

X/| v^ixd 2(φ)/r(k - I))2 .

Assume that for some j < k — 1 there is an

x - x01 ^Xj elj = Ix:

for which

We shall show there is then an xj+ί e Ij+ι for which

(1.7)
Π 24(r(ί

Consider S = {α;: | ^ — xs \ <Ξ (Λ — (i + 1))}. If | vk^ \ does not have
a relative maximum in S greater than or equal to | vk_ό(xό) |, then
I vk_j I would be greater than or equal to | i>k-j(Xj) \ on some interval
in S of length equal to l/r(k — (j + 1)). However there would be an
xj+ι in the interval for which xj+ί r(k — (j + 1)) = θk_u+1) (modi) and
hence ίk_u+ι)(xj+ί) — vk_5(xj+ι), which implies the induction step. Let
us assume therefore that there is an x'ά where

I x) - x01 ^ (l/r(k - (j + 1)) + Σ.2/r(i)),
k~j

I vk-j(x'j) I ^ I ̂ ife-iί̂ i) I a n d at which | vk_β \ has a relative maximum.
As before, choosing xί+ι within l/r(k — j + 1) of x'3 and satisfying
xj+1-r(k - ( i + 1)) = θk_u+ϊ) gives

-M-) I
(1.8) Aχi+1 - x

,

Ofc-y as a function of x is the Fourier Stieltjes of a measure v ^
having support in [0, 2r(k - j)]. Since || ^ ^ | | P M ^ || y ||MAX, the pre-
viously stated theorem of Bernstein gives

However

^ Γ Π (1
Lι=k-j

+ + l)/r(ϊ))β)] x

^ 3
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Since Σ(r(l + l)/r(l))2 ^ (1/24). Therefore in (1.8),

j)/r(k - (i + I))2

and hence (1.7) is true, finishing the induction.

Lemma 1.6 in its present form is an adaptation and extension of
a lemma of Meyer [12]. Previously we had much more stringent
conditions on the r, to arrive at a similar conclusion to Lemma 1.6.

To utilize the Lemmas 1.1 and 1.6 to obtain isomorphisms of re-
striction algebras we shall introduce some functional analysis.

Let V represent a Banach Space and F * its dual. For r > 0 let
Br = {t:te V*, || ί || ^ r}. A set O £ F * is said to be open in the
bounded topology on F * if and only if 0 Γ) Br is open in the relative
weak* topology of Br for all r > 0. For a distribution of the bounded
topology the reader should consult [6, p. 427].

LEMMA 1.10. Let F, W be Banach spaces with duals V* and
W*. Let Ka V* be a weak* dense subspace of F * . Suppose that
T: K—> W is linear and continuous when K has the topology induced
by the bounded topology on V* and W* has the weak topology. Then
there exists a bounded linear transformation S: W—+ V for which
T = S*/K.

Proof. For each w e W, define the linear functional Tw on K by

Tw(t) = Tt(w) .

Each Tw is continuous in the topology induced by the bounded topology
of F * which is a locally convex topology by Corollary 5, page 428 of
[6]. Hence by the Hahn-Banach theorem there exists an extension
fw of Tw to all of V*, continuous in the bounded topology of F * .

By Theorem 6, page 428 of [6], fw is continuous in the weak*
topology on F * . Hence there exists an element veV such that
Tw(t) = t(v) for all teK. Since K is assumed weak* dense in F * ,
the element v is determined by w. Define S: W —* F by S(w) = v.
S is linear. Since K is weak* dense S is closed. Therefore by the
Closed Graph Theorem S is bouned. If t e K, w e W

S*t(w) = t(S(w)) = Tt(w) ,

which completes the proof.

It is clear that N^EJ and N^Fr) are weak* dense in N(Em) and
N(Fr), respectively. By studying the continuity of the standard maps
between N^E^) and N^Fr), we shall be able to use Lemma 1.10 to
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obtain isomorphisms between A(Em) and A(Fr) for certain classes of
sequences m and r.

Choose μ e N^E). For each k we define an approximating measure
μk in M(Ek) by

= Σ
yeD

where x e Ek and D — {y:y eE and #,• = x5 for i <£ ft}. Let

Γ* = {7: 7 6 ΣZ(m(j)) and 7, - 0 if i > ft}.

If 7 e Γkβk(7) = /έ(7). It is easy to see that

lli"*l|pjtf = supΛ 1^(7)1 .
rer

To each λ e M(Ek) we associate the measure λ' in M(Ek) defined
by

0 if xk = 0

X({x}) if a?fc = 1

It is not hard to see that

Choose v 6 Ni{F). For each k define an approximating measure
vk in M(F«) by

vk({χ}) = Σ v({y})
yεD

where x = YJίxόr(j) and D = {y: y = Σsjrij) and e,- = x3- for j ^ ft}.
To each β e M(Fk) we associate the measure βf in M(Fk) defined

by

k

11 JU — s j θji\J) d Π U . c .̂ — \)
1

1 if x = Σ βjr(i) a n d ε/b = 1
1

We are now ready to prove the following theorem.

THEOREM 1.11. If Σ(l/m(j))2 < oo and Σ(r(j + l)/r(j))2 < oo then
A(Em) is isomorphic to A(Fr).

We shall break the proof into two lemmas.

LEMMA A. Let Fr be any symmetric set. Let Σ(l/m(j))2 < oo
φ: Em—>Fr the standard homeomorphism. Then there is an iso-
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morphism into Φ: A{Fr) —• A{Em) given by

Φ(f)=f°<P, feA(Fr).

Proof. We shall study the continuity properties of

For feA(F) define

a n d \(v,f)\<ε).

To establish that φ is continuous from the bounded weak* topology
of Ni(E) to the weak* topology of N^F) it is sufficient to prove
that the zero element of Nt(E) is an interior point of 9>-1(ϊ7β,/) (i.e.,
that φ is continuous at 0). This follows at once if we prove that
given a and ε, there exists <5, k such that if for μ e N^E)

\\μ\\pM^a a n d \β(y)\<δ for 7eΓk

φ{μ) is an element of Ue,f.

In view of Lemma 1.1 (1.12) follows if we can show that given
α, ε, and M then there exists δ, k such that for μeN1(E)f

II μ \\PM ̂  a and μ(y) <δ for 7 e Γk

(1-13) then

ί \<e for \ x \ ^ M .

We first estimate | φ(μ) — φ(μk) \ for μ e M(ES).

I φ(μ)(χ) - φ{μk){%) I ^ ΣΣ

^ Σ |exp(-α;r(i + 1)) - l\-\\<p(fi») IU

By Lemma 1.1, for any s

I φ(μ)(x) ~ |PJf Σ
k +

For // with \\ μ\\PM ^ &> pick δ < ε/2C where C is the constant of
Lemma 1.1 and choose k so that AπCMaΣΐ+MJ) < e/2. If |μ(τ) | < δ
for yeΓ\ then | |^ f c | |p3ί < δ and by Lemma 1.1 \\φ(μk)\\pM < e/2. If

I a; I ^ M, then | <p(μ)(x) - φ(μk)(x) \ < e/2 so

ε, for \x\£M.

The conditions of Lemma 1.10 are satisfied so φ — 0* for some
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linear Φ: A(F) -> A(E). For μ e Nt(E) and / e A(F)

(Φf, μ) = (/, φ{μ)) .

Therefore if xe\J? Es

Φf(x) = f(φ(x))

Since φ, f and Φf are continuous, Φ is the linear map wanted.

LEMMA B. Let Fr be a symmetric set with Σ(r(j + l)/r(j))2 < oo.
Let ψ:Fr—*Em be the standard homeomorphism of Fr with some
Em. Then there is an isomorphism into Ψ: A(Em) —> A(Fr) given by

ήf) = f°Ψ, feA(Em).

Proof. There is an I so that Σ m (r(j + l)/r(j))2 < 1/24. F is
a union of 2ι sets which are translations of the set Ff — {x: x =
ΣΓ+iεi^(i)} It is therefore sufficient to prove the theorem for Fr.
For convenience, assume Fr has the property ΣΓ (HJ + l)Mi))2 < 1/24.
We shall show as in Lemma A that ψ: N^Fr) ~»Nx{Em) has the re-
quired continuity properties to be the adjoint of a continuous linear
map Ψ\A(Eu)-+A(Fr) satisfying ?(/) = fof.

Using Lemmas 1.6 and 1.10 as in Lemma A, it is enough to show
that if α, ε, M are given, then there exists δ,x19 * ,xt so that the
following holds.

If veN^F), \\v\\PM^a and v(xs)<8 for j = 1, . . . , ί , then

I f(v){Ί) I < ε for 7 e ΓM.
Choosing v e NJJF) wi th || v \\PM ̂  a and estimating | v — vk \ gives

I 0(x) - vk(x) I ̂  Σ I 0j+ί(x) - Vj(x) I
k

^ Σ I e x p (-xr(j + 1)) - 11 I! v'J+ι \\PM .
k

Lemma 1.1 and 1.6 show that the PM norm on N^F,) and
are equivalent when Σ (IM'(i))2 < °° Hence

I $(x) - vk(x) I ̂  AπxCβ \ \ v \ \ P M ±
k+l

^ 87ΓI a? I d C α rίfc + 1) .

An easy consequence of the condition Σ(r(j + l)/r(j))2 < 1/24 is that

lim 8πCt.C.a. ( Σ 2/r(j)\r(k + 1) = 0 .
k->°o \ 1 /
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Pick k ^ M large enough so that

Then

(1.14) I v(x) - vk(x) I < S/4C,

for \x\< Σ ί ( 2 M i ) ) By Lemma 1.6 there is an x0 with

so that for vkeM(Fk)

I I ^ I I M

By a theorem of Bernstein [1, p. 138]

Therefore, if | x* - xo\ < l/2(Σr( i ) ) d

(1.15) II^UAX/I

Choose for ί = 1, , t xi with | a?< | ^ Σ f ( 2 / r ( i ) ) s o that for every x
with | α | ^ Σ ί ( 2 / r ( i ) ) there is an Xj with | x - xs \ < 1/2(ΣriJ^-C,.
If I v(x5) I < ε/4C, for x,, i - 1, . . , t, then | vk(xά) \ < sβC, by (1.14),
and by (1.15) || vk ||ΛIAX < ε. Consequently, || ψ(vk) \\PM < ε. Since k> M

we see that | ψ(v)(y) \ < ε for j e ΓM.
As in Lemma A, the continuity conditions of Lemma 1.10 are

satisfied and

Theorem 1.11 is an immediate consequence of Lemmas A and B.
Meyer [12] has proven that if Σ(r(j + l)/r(j)) < co and

Σ(s(j + l)/s(j)) < -

then A(Fr) = A(FS). Lemmas 1.6 was an analogue and improvement
on his main lemma which allowed us to obtain the theorem with
square summability.

If ro(j) = {e-J-2-*} then every A(Fr) and A(Em) with

Σ(r(j + l)/r(j))2 < oo and

is isomorphic to A{Fr). The isomorphisms are given by

f-+f°<P
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where / is in an appropriate restriction algebra and φ one of the
standard homeomorphisms. We shall call an isomorphism between any
two restriction algebras induced in this manner a standard isomorphism.
If A(Fr) or A{Em) is isomorphic to A{Fr) by standard isomorphisms,
Fr or Em will then be said to belong to the class My. One should
note that for μeN^F^), \\μ\\pM = Hi" UMAX.

Define sets of multiplicity and uniqueness as in [7, p. 52]. In
[7, p. 100] it is shown that if ae [0,1/2) one can construct sets Fr of
multiplicity with r(j + l)/r(j) = 0(j~a). The next theorem shows, in
particular, that if r(j + l)/r(j) = 0(j~a) with αe(l/2, oo) then Fr is
a set of uniqueness.

THEOREM 1.16. Suppose that Σ(r(j + l)/r(j))2 < oo. Then Fr is
a set of synthesis and there is a constant B so that for all S e N(Fr)

\\S\\PM^B\Ei\S(x)\ .

Hence Fr is a set of uniqueness.

Proof. Choose I so that ΣΓ+i (r(j + l)r(j))2 < 1/24. Then F is a
union of 2ι disjoint sets of the form a(e) + F(ΐ) where ε = ζεly , εz)>
and F(l) — {x: x = ΣΠ-i eMJ)}- We can find 2ι functions φε in A(R)
where φs = 1 on α(ε) + F(l) and 0 on the other sets. Let S e PM
with support in Fr. S = ΣεφεS and hence if φ£S e N(a(ε) + F(l)) for
each ε, Se N(Fr). Moreover, for some ε the inequality

\\φεS\\PM^2-ι\\S\\PM

must hold. If \\S\\PM > B lim | S(x) \ we see t h a t

II s i ! >̂ 2rιB
Ψε PM ^ \\<P.\\A

We may therefore assume that Σ(r(j + l)/r(j))2 < 1/24.
Lemma 1.6 and [12, Proposition 2.2.3] imply that there is a

natural isomorphism Γfrom A(Fk

r x [-2r(k + 1), 2r(k + 1)]) in A(R x R)
to A(FJ; + [-2r(k + 1), 2r(k + 1)] with norm

T S (1 - ^4r(& + l).(

and || T"1!] = 1, where a <L 1 and is independent of &. For large
enough k the norm is smaller than some constant Bt. For each xe R
consider the funtion fx e A{Fk

τ + [-2r(k + 1), 2r(k + 1)])

fx(y) = exp (xy) - exp (a?.Σϊεsr(j)) for 12/ - Jfε,-r(i) | ^ 2r(fe + 1) .

Its image in A(Fk

r x [-2r(k + 1), 2r(fc + 1)] is
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fx(t, y) = exp (αί).(exp (xy) - 1) .

Then

| |Λ IU(jp*+[.]) ^ B1 IIΛ IU(^XM) ^ #21 a I r(fe + l ) .

Define vkeM(Fk

r) by

vk{{Iear(j)}) =

where S is a given element of PM with support in Fr. Then for
sufficiently large k

By Lemma 1.6 we have that

v k { x ) - > S(x)Vx e R ; l i m || v k \\PM ^ C \\ S \ \ P M

and hence S e N(Fr) and i^r is a set of synthesis.
For convenience assume that | | S | | P i ¥ = 1 and | S(0) | > 1/2. Sup-

pose that I S(x) I < ε for x > x0. Pick a constant kQ so that

(a?0 + ^Σir(j))B2 \\ S\\PM-r(k + 1 ) < ε

for & > k0. Then if k > k0

for all x satisfying | x — x* \ ̂  Σϊ(2/r(j)) where #* is the center of
the interval [xQ, x0 + 4ΣΪ(l/r(j))]. Since | vfc(0) | > 1/2 Lemma 1.6 shows
that

Theorem 1.16 is essentially methods of McGehee and Meyer utiliz-
ing Lemma 1.6.

We next examine the sets Em. By [15, p. 166] they are sets of
synthesis. If m(j) = 2 for all but a finite number of j , Em has
positive measure and there is an S e N(Em) with \nίτ sup r e~Γ I S(y) | — 0.
The following is a converse.

THEOREM 1.17. Let m(j) be a sequence of integers with infinitely
many m(j) ^ 3. Then there is a constant C so that for all S e N{Em)

II S UP* £ C inf sup I £(7) I
T γε~T

where T is any finite set in ΣZmU).
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Proof. Let SeN(E) and assume for simplicity that | | S [ | P J f = 1
and S(0) > 3/4. Let {μk} be the measure defined by

where x = <εlf , εk, 0, 0, •>. Let jsε Σ /\»u> be that element with

0 if j Φ s

1 if j = sm

Then f or 1 ̂  s ̂  Λ

e ( β ) = 0

+ Σ α(ε(l)> f ε(&)) βxp (l/m(s)) .

ε(β)=l

If we call Σ£ω=o Φ(l), , e(fc)) = α

Σ α(ε(l), , ε(&)) = β then /ϊfc(0) - a + /3
e(β)=l

It is easy to see that a <; 1 and /9 <; 2. Therefore

I ^(7 S ) — /ζ(0) I ̂  2 I exp (l/m(s) — 1) |

^ 47r/m(s) .

Therefore, if m(s) > Sπ

Let 7 s 6 ΣΓm{j) be the element with

(0 if j Φ s
5 I m(s) — 1 if i = s

Then

i«fe(7s) = α + /3exp(-l/m(s))

and hence

I βk(T) - βkm I - 2β sin (2π/m(8)) .

If 3 ̂  m(β) < 8π and | /i,(7s) | < (1/100) then β > (1/3) and

and hence | ̂ (7*) | > 1/50, Therefore we may conclude that for all k
either | μk(T) \ or | βk(is) \ is greater than 1/100 provided m(s) ̂  3.

On Γk, βk and S are identical. Suppose there is a t so that
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(1.19) I S(Ύ) I < 1/200

for 7 £ Γ*. Pick a k > t so that there is an s with k > s > t for
which m(s) ^ 3. Then either | μk{Ψ) | or \μk{Ψ) | is greater than 1/100.
Hence | S(Y) | or | S(ΎS) | is greater than 1/100 contradicting (1.19).

2* In this section we shall exhibit sets Em, Fr that do not have
A{Em) or A(Fr) isomorphic to A(FrQ) by standard isomorphisms. They
are then not in the class My.

The first theorem is a converse to Lemma A.

THEOREM 2.1. If Σ(l/m(j))2 = oo, then Em is not an element of
the class My.

Proof. It is sufficient to show that

SUP | | J K | | M A X / | | J " | | P J Γ = oo
μeN(E)

since for v e N^F^) \\ v \\PM = || v ||MAX. For each integer s, let xs e ΠZm{j)

be that element with x) — b). Let as be the two point measure

as{xs) = exp

For each fc, define an element μk of M(Ek) by

ĵ̂ . ~ aι * * ak .

we see that
I _ Ofc

UMAX — ^

while

I i"* IIPIΓ = sup Π (1 + exp (l/(3m(s))).f.

where the ξ8 are m(s) roots of unity. Since

11 + exp (lβm(s)) | ^ 11 + exp (lβm(s))ξs \

for ξ8 any m(s) root of unity, and since cos (θ) < 1 — #2/4 for θ < 1

Therefore

^ 1/ Π (1 - (l/3m(s))2)
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and since Σ(l/m(s))2

\μk\ \μk
as k

We have actually shown more than claimed in Theorem 2.1. The
proof shows that if {r(j)} is any independent sequence and Σ(l/m(j))2 =
oo, then A(Em) is not isomorphic to A(Fr) by a standard isomorphism.

The next theorem will imply that no condition on the convergence
of (r(j + l)/r(j)) weaker than

Σ(r(j + l)/r(j)Y < co ,

is sufficient for a set Fr to be a member of the class My.

THEOREM 2.2. Suppose that nό is an increasing sequence of inte-
gers. Let b ^ 2 be an integer and put r(j) — b~nκ If

Σ(r(j + ί)/r(j)Y = -

then Fr is not an element of the class My.

Proof. Let us assume for convenience that Σ?(r(2j)/r(2j — I))2 = oo
and b = 10. We can also assume our set F to be on the circle. For
any integer j define the two point measure τ, by

7i{0} = 1

7,-Mi)} = e x p ( - - ί ) .

For each k, define an element vk of M(Fk) by

Then for any integer s

\v (s) I = 22' fίcos(π(s 10~nJ - —
i V V 2

In this product, consider terms δd(s) of the form

cos (7r

If

then

-^-1 - — j J cos (πίsΊO-**'

< 1/10 mod 1 ,

10
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Then

^ k

S 2U Π (1 - Z).(IO^-VIO^)2) ,

where D is an absolute constant. Therefore

II v2k \\PM ^ 22k Π (1 - D(r(2j)/r(2j - I))2) .

However, || v2k | |M Λ X = 2 2 \ so

/ Π (1 - D(r(2j)/r(2j - I))2)

Therefore || v2k ||MAχ/|| 2^' ILY —> °° as k —• oo. Hence Fr is not a member
of the class My. The proof with b Φ 10 is completely analogous to
the proof with b = 10.

The author wishes to thank Paul Cohen, Karel de Leeuw,
Yitzhak Katznelson, and Carruth McGehee, for their counsel.
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CENTRALIZERS OF ABELIAN, NORMAL SUBGROUPS
OF HYPERCYCLIC GROUPS

ULRICH SCHOENWAELDER

J. L. Alperin proved the following theorem about finite
p-groups G: if E is maximal among the abelian, normal sub-
groups of G of exponent dividing pn, then ΩJίG(E) — E, provided
that pn^2. It turns out that the restriction to p-groups and
also to finite groups in Alperin's proof is not essential. In fact
a similar theorem holds in a large class of hypercyclic groups
(Theorem 2.2). By the same method also a modified version
(Theorem 2.8) will be obtained, the word "normal" in the
assumptions about E being replaced by "characteristic", here
G is supposed to be hypercentral; the modification results in
enlarging E to a characteristic subgroup %Q(E) of class 2 in
a very definite way before taking its centralizer.

The proofs of both theorems rely on a fairly general version (not
used in its full strength) of the lemma used by Alperin on p-automor-
phisms of abelian p-groups that centralize all elements of order p. The
first paragraph is devoted to this generalization (Theorem 1.11) and
may be of independent interest.

TERMINOLOGY. We denote by / the set of all functions from the
set of all primes to the set of all rational integers extended by the
symbol °o. Addition and subtraction are defined on /^by (f± Q)(P) =
f(p) ± g(p), where °o is handled in the usual manner; also f^g for
/, g e / \l and only if f(p) <̂  g(p) for all primes p. A function fe/
is called finite, if f(p) < oo for every prime p. The constant functions
in / will be denoted by their single value. The function de / which
is 2 at 2 and 1 elsewhere will play a particular role in our discussion.

Let / be a function in /. The nonegative part /+ of / is defined
by f+(p) = f(p) if f(p) ^ 0, and f+(p) = 0, if f(p) ^ 0. With every
torsion element x of a group X there is associated a function ex e /
such that Π{peχ{p) \ p prime} is the order of x. We say that an element
x is restrained by /, if x is a torsion element and ex ^ / + . The
elements of X restrained by / generate a (characteristic) subgroup
Ωf(X) of X. We say that X is restrained by /, if every element of
X is restrained by /.

For every torsion element x of a group X and every prime p there
is a uniquely determined power xp of x such that the order of xp is a
power of p and the order of xp, = x~ιx is prime to p. Xp is the set
of all ^-elements of X.

197
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A group G is called hypercyclic, if every epimorphic image, not
1, of G has a cyclic, normal subgroup, not 1. This implies that every
normal subgroup, not 1, of an epimorphic image H of G contains a
cyclic, normal subgroup, not 1, of H. A group G is called hyper central,
if every epimorphic image, not 1, of G has a nontrivial center. This
implies that every normal subgroup, not 1, of an epimorphic image H
of G intersects the center of H nontrivially.

We use the notation (α, b) = a © b = α~ V where b is an endomo-
phism or a group element and ab = b~ιab. If b operates on A, then
A o 6 is the set of all (α, 6) with aeA. (α, 6, c) = ((α, 6), c). An element
or automorphism a; of I centralizes the ^-invariant factor i?/A, if x
fixes every element in B/A. $lx(A) = normalizer of A in X, (£X(A) =
centralizer of A in X, 3(X) = center of X, X' = commutator subgroup of
X, Az = largest normal subgroup of X contained in A, <S> = subgroup
generated by the set S, p' = set of all primes different from p.

1* After a few lemmas of a general nature this paragraph will
be concerned with torsion automorphisms that centralize Ωd(G).

LEMMA 1.1. For a group G, an endomorphism x of G and an
element b of G define the elements biy i >̂ 0, by

bQ = b, 6f = δ A + 1 ,

and assume b bi+1 = bi+ιbi for i > 1. Then for every integer s ;> 0,

Q) = 1 for all s > 0, the statement is true for

s = 0. We proceed by induction on s to get

b*s+1 = [bo®]'[bP]m

[b.b.+ιp

= bP[bPbP] [b.('-lhP]b.+P

- 6> ^ ^ } . . bs

{s %\r>

where we use the formulas φ + ( * χ ) = (j + J) and (j) = (j) =
1. This proves the lemma.

LEMMA 1.2. If x is an automorphism of the group G that cen-
tralizes the subgroup U of G, then U and ζ$lG(U)°xy centralize each
other.
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Proof. Let u e U and g e %lG(U). Then u9 e U, hence u9 = (ug)x =
(ux)gX = ugX. Therefore g~~ιgx centralizes U which proves the lemma.

LEMMA 1.3. Let U be a subgroup of a group G and x an auto-
morphism of G that centralizes U and satisfies <(G°xy £ U. Then

(1) < G o ϊ ) s M ί / 6 ) ;
(2) if the set G°x has finite exponent n, then x is a torsion

automorphism of order dividing n;
(3) if x is a torsion automorphism, then for every g eG the

order of g o x divides the order of x.

Proof. (1) follows from Lemma 1.2 applied to UG. Let geG and
put h = g~γgx e f f o ^ g U. Then gx = gh and, by induction, gχr — ghr.
In particular, under the assumption of (2), gχn = ghn = g. Hence xn = 1
proving (2). On the other hand, if x is a torsion automorphism of
order m, then g = gχm = ghm, hence hm = 1 proving (3).

LEMMA 1.4. [4, p. 49, 1.5 Hilfssatz.] Every automorphism of a
finite p-group P that centralizes Ωd(P) has order a power of p.

Proof. Let P be a counterexample of minimal order and x ^ l a
p'-automorphism of P centralizing Ωd(P). Assume by way of contra-
diction that ζPoχy is a proper subgroup of P. P being a minimal
counterexample and ζPoxy being ^-admissible, ζP°x} must be centralized
by x. So Lemma 1.3 (2) implies x = 1, a contradiction. Therefore
P = ζPoχ}. Since P is solvable, P' is a proper, x-admissible subgroup
of P. Hence Pr is centralized by x. By Lemma 1.2, Pf Q (£P«Poχ)>) =
3(P) and P has class 2. Let £ be minimal such that P — Ωt+1(P),
hence t ^ 1, and let geP be an element of order dividing pt+1. Then
gpt e Ω^P) is centralized by x, hence

see [9, p. 8., (10)]. If p Φ 2, then p* divides f ^ Ί ; put s = ί. If p = 2,

then p ί - 1 divides (^ put s = ί — 1. Now

(if, g-Y = (gx, g-pΊ ,

see [9, p. 80, (9)], and gpSeΩd(P) S 3(P) by Lemma 1.2. Therefore

OΛ ^ 8 ) = 1, (0% flr')(?t) - 1, and (g^gψ = 1

showing that

P = <Po χ> = <flt+1(P) o »> S β t(P) c P ,
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a contradiction. No counterexamples exist.

COROLLARY 1.5. Let E be a subgroup of a finite group G such
that <HG(E) has a p-Sylow subgroup S which satisfies Ωd(S) £ E. Then

has a normal p-complement.

Proof. Suppose U is a subgroup of S and x is a ^'-element of
9lc(U), C = &G(E). Then Ωd(U) £Ωd(S) g # is centralized by x. Lemma
1.4 implies that U is centralized by x. By a well-known theorem of
Frobenius [3], C has a normal ^-complement.

PROPOSITION 1.6. If A is a locally finite, normal subgroup of the
group B, then any torsion automorphism of B that leaves A invariant
and centralizes BJA and Ωd(A) has order divisible by primes that are
orders of elements in A only.

Proof. Such an automorphism x is the product of its primary
components xq, q prime, xq being a power of x. Put y = xq and assume
that q is not the order of an element in A. Pick aeA. Being finitely
generated F = <α<2/>)> is a finite, ^/-admissible subgroup of A. For any
prime p the number of p-Sylow subgroups of F is prime to q and
y normalizes at least one p-Sylow subgroup P of F. By Lemma 1.4,
P is centralized by y. So F — ζP \ p prime)> is centralized by y and, in
particular, a is centralized by y.

Pick be B. A being a torsion group, b~~ιby e A has finite order
prime to q. By Lemma 1.3 (3) this order divides the order of y,
b~Ψ = 1 and xq = y = 1.

We shall only need the following special case of Proposition 1.6.

COROLLARY 1.7. Let A be a normal torsion subgroup of a group
B, assume Ωi(A)jΩi_d(A) £ Q(Ωi+ι(A)/Ωί_d(A)) for all functions i e /
with i Ξ> d, ieί x be a torsion automorphism of B that leaves A
invariant and centralizes BjA and Ωd(A). If the order of x is prime
to the order of every element in A, then x — 1.

Proof. A is locally finite, since it is the union of solvable (hence
locally finite) torsion subgroups. Exploiting the structure of A one
may prove Corollary 1.7 also without reference to Lemma 1.4.

REMARK 1.8. The quaternion group of order 8 shows that Ωd(P)
in Lemma 1.4 may not be replaced by ΩJJP). However, if P is abelian,
this may be done. Similarly in Proposition 1.6 and Corollary 1.7 Ωd(A)
may be replaced by Ω^A) provided that finite 2-subgroups of A are
abelian.
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LEMMA 1.9. Let A be a torsion group with abelίan factors
Ω^AjlΩi^A) for all finite functions i e /. Let 0 ^ k e / satisfy
k(2) ^ 2 and Ωk(A) £ S(A), assume that only finitely many primes
are orders of elements in A. Then any automorphism of A that
centralizes Ωk{A) also centralizes all the factors Ωn(A)/Ωn_k(A) for
finite functions n e /.

Proof. Clearly by the structure of A, Ωr(A) is' restrained by r for
r e /Γ If there are counterexamples, then there are also counterexamples
of finite exponent, since only finitely many primes are orders of elements
in A. Let A be a counterexample of minimal (finite) exponent Πpm(p).
Then automorphisms of A that centralize Ωk{A) also centralize

Ωό(A)IΩs_h(A)

for j < m. In particular, A centralizes Ωj(A)/Ωj__k(A) for j < m.
Let x be an automorphism of A that centralizes Ωk(A), pick

a e Ωm(A) = A ,

and let p, a prime, be the order of an element in A. Let gt have the
value t at p and 0 elsewhere. Then (ax, cr1) lies in Ωm_9ι{A), since
Ωm{A)IΩm_gι(A) is abelian, and this commutator commutes with ax and
a-ιmoάΩm_9ι_k{A), since A centralizes Ωm_gi(A)/Ωm_gi__k(A). Therefore

(α-Vr* Ξ (a-Y(ay\a% a-1/2^ mod Ωm^9l^k(A)

for natural numbers t, cf. [9, p. 81, (10)]. Since x centralizes

Ωm_gι(A)/Ωm_9l_k(A)

by the minimality of the exponent of A, we have

and

( 1 ) (α-V)'* = (a% a-ψt] mod Ωm_βl_k(A) .

Using a well-known formula, cf. [9, p. 80, (9)], and remembering that
A centralizes Ωm_9l(A)/Ωm_9ι_k(A) we get

( 2 ) (a*, α - y = {{ay, α"1) = 1 mod Ωm_9ι_k{A).

Assume first that p Φ 2 and choose t = 1. Then p divides Πl)

Hence by (1) and (2), (a-'ay = lmodΩm_9i_k(A), a~ιax e Ωm_k(A), and x

centralizes Ωm(A)/Ωm_k(A).

If p = 2, choose t = 2. Then p divides ^ ) and it follows (2)

that (ax, a-1)^ = l m o d f l ^ ^ ^ A ) . So (1) implies
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and a~ιax e Ωm_gi_k+g2(A) £ Ωm_gi(A), since k(2) ^ 2 implies k Ξ> #2.

Therefore

(α% α"1) - (α(α-V), α-1) - (α~V, α"1

lies in Ωm_gi_k(A), and ί = 1 in (1) implies

(α-V)* = 1 mod βw_ffi_,(A) .

Consequently α~V e Ωm_k{A), and a; centralizes ί

LEMMA 1.10. Let O ^ f c e / satisfy k(2) ;> 2, ίeί A be a torsion
group with Ωi(A)IΩi^.h(A) £ 3(^»+i(^.)/^*-*(^)) / o r α ^ ^ i ί β functions
i e /^ cmcZ assume that only finitely many primes are orders of
elements in A. Then any automorphism of A that centralizes Ωk(A)
also centralizes all the factors Ωn{A)jΩn__k (A) for finite functions n e /\

Proof. Let A be a counterexample of minimal (finite) exponent
Πpm[Ί>). Then Ωk(A) Φ 1 and there exists a prime p with k(p) > 0
and Ωg{A) Φ 1 where g(p) = 1 and 0 elsewhere. By assumption A =
Ωm(A)/Ωm_g_k(A) satisfies Ωk{A) S 3(A), since O4(A) - Ωm_9(A)/Ωm_9_k(A).

By the minimality of the exponent of A, an automorphism x of A that
centralizes Ωk(A) also centralizes βw_ί7(A)/ί2w__ff_fc(.A) = Ωk(A). Therefore
by Lemma 1.9, x centralizes Ωk+tt(A)/Ωg(A), i.e., Ωm(A)/Ωm_k(A).

THEOREM 1.11. Let A be a normal torsion subgroup of a group
B, assume βί(A)/βί_d(A) fi S(Ωi+1(A)/Ωi__d(A)) for all finite functions
i e / , let x be a torsion automorphism of B that leaves A invariant
and centralizes B/A and Ωd(A), and let / ^ 0 be a function in/.
Then x centralizes BjΩf(A), if and only if x is restrained by f.

Proof. ( 1 ) To prove the if-part of the theorem we shall assume
without loss of generality that / is finite and assumes only finitely
many positive values, because x is a torsion automorphism.

Assume first that the statement in question is false for some group
A of finite exponent. Then there are counterexamples A of minimal
finite exponent Πpj(p) of A. Choose one where also / is minimal with
respect to the partial ordering ^ . It follows j Φ 0,fΦ 0, and x Φl.
There exists a prime q such that both Aq Φ 1 and q divides the order
of x, since otherwise Corollary 1.7 would imply x = 1. Define ge/
to be 1 at q and 0 elsewhere. A/Ωg(A) is restrained by j — g <j and
has the required structure, x induces in B/Ωg(A) an automorphism
that leaves A/Ωg(A) invariant and centralizes [B/Ωg(A)]/[A/Ωg(A)] and
Ωd(A/Ωg(A)); this last fact follows from Lemma 1.10. So the minimality
of j yields that x centralizes [B/Ωg(A)]/Ωf(A/Ω0(A))f i.e., B/Ωf+g(A).

Again by our hypothesis and Lemma 1.10, x centralizes
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Ωf(A)IΩf_d(A) and Ω/+β(A)/Ωf+σ_d(A) .

So w e m a y a p p l y L e m m a 1.1 f o r a n y beB t o g e t

b" = bbίbP mod Ωf_d{A)

with 6, e β/ +,(A), b2 e Ωf+g_d(A) S β/(A), 63 e Ωf_d(A), since

by the structure of A. If q Φ 2, then bP eΩf_g(A). If q = 2, then
even b2eΩf_g(A). Hence

bxQ = bbl mod Ωf__g(A) .

On the other hand by the minimality of /, xq being restrained by
/ — g ^ 0 centralizes B/Ωf_g(A) so that

b = bxQ mod i?/_,(A) .

Hence bq

ιeΩf_g(A) and δ^f l^A). This signifies that x centralizes
B/Ωf(A) contradicting our assumption and proving the statement for
groups A of finite exponent.

Now consider the general case and let beB. Since A is a torsion
group, there exists a function j >̂ / in / such that Ωj(A) has finite
exponent and contains b~λbx. Hence x leaving Ω5(A) invariant central-
izes <(byΩj(A)/Ωj(A). By what we have already proved above we may
conclude that x centralizes (byΩj(A)/Ωf(A)y whence bx == bmoάΩf(A).
This shows that x centralizes B/Ωf(A).

( 2 ) Conversely, if x is a torsion automorphism of B centralizing
B/Ωf(A), we may assume x Φ 1. Let p be a prime that divides the
order of x and define g e /"to be 1 at p and 0 elsewhere. There
exists hb ^ / depending on b e B such that Ωhb(A) has finite exponent
and contains bι — b~ιbx. By Lemma 1.10 applied to Ωhb(A), b2 = brιbx

is contained in ΩH_d{A) <Ξ Ωf_g(A). Therefore

b*p = bbf mod ί?/»ff(A)

by Lemma 1.1. But 6f e Ωf_g(A), hence xp centralizes B/Ωf_g(A).
By induction on the order of x, xp is restrained by / — g. So x

is restrained by /.

REMARK 1.12. H. Leptin [6, p. 101] proved that in the case of a
reduced abelian p-group A with p ^ 5 the conclusion of Theorem 1.11
remains valid under the weaker hypothesis that x only centralizes
certain factors of Ω^A) instead of Ω^A) as a whole.

REMARK 1.13. Let A be an abelian 2-group of exponent Ξ> 8 and
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let x be the automorphism of A that maps every element onto its
inverse. Then x centralizes Ω^A) and has order 2, but does not
centralize A/Ω^A).

2. Let E be a normal subgroup of the p-group G and denote
by &(E) the subgroup of G formed by all the elements of G that
centralize all the factors Ωi(E)/Ωi_k(E), i ^ k. The following proposition
may be generalized to the case where E satisfies E <Ξ &(E) instead of
being abelian (k — ©o). But if x e &(E) satisfies xp e E and (x, g) s E
then it does not follow that the subgroup W generated by E and x
satisfies WQ&(W), since ΩX{W) S 8(W) may be violated. Hence
no application of the proposition in this case which would be similar
to the proof of Theorem 2.2 or Theorem 2.8 below is to be expected.
Consequently we shall restrict our attention to the abelian case and
follow Alperin's argument.

PROPOSITION 2.1. Let G be a group, E an abelian subgroup of
G, Eγ a subgroup of G that contains E, and f ^ 0 a function in /*
such that

(1) / ( 2 ) ^ 1 ,
( 2 ) if h is a function in / with 0 <̂  h ^ / and if Ωh&G{E^ is

restrained by /, then Ωhf$,Q(Eύ £Ξ E,
(3) there exists an abelian subgroup A of G and a subgroup

Aι of G such that
(a) Ωf&G(E^ normalizes AX1

(b ) i ^ i i Ωf(A) = E, E < A19

( c ) Ωf<$,Q(Ey Π &β(Ai) S A,
(d) if the element x of &G(EL) is restrained by f, then x

centralizes Ax/Ωf(A).
Then Ωf&aiE,) S E.

Proof. Assume that the proposition is false and choose hef
minimal with respect to 0 ^ h ^ / and Ωh&G(Eύ g E. So by (2),
Ωh&G{Ed is n o t restrained by /.

Aiming at a contrary statement pick XΦ\ and y in ^G(Ej) where
x is restrained by h and y is restrained by /. We shall examine ζx, y).

By (3d), x and y centralize AJΩf(A). Hence ζx, y} induces an
abelian group of automorphisms in A19 whence

(x, y) e Ω/S,0(Ey Π ̂ (A,) S A

by (3c). But again x and y centralize A/E, so (x, y, x) and (x, y, y) are
in E, and <a?, yy has class of nilpotency at most 3. By Lemma 1.1,

ίe\

y = yχe = y(y, %Y(y, x, %r; ,
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hence

(*1) 1 - (y, x)e(y, x, x){l)

for every natural number e that is divisible by the order of x. Let
q be a prime that divides the order of x. Let g e / be 1 at q and 0
elsewhere and let k be the smallest function ^ 0 in / that restrains
x. Then xq is restrained by k — g, hence xq e Ωk_fS,G(Eύ. We have
still k — g ;Ξ> 0, but k — g<k <L h, since k is finite. So the minimality
of h yields Ω^&^E,) Q E Q A, hence

(*2) 1 - (2/, x, α?) - (2/, α, x)q ,

cf. [9, p. 80, (9)].
Assume first that h(2) Φ 1 and let y be restrained even by h.

Choose e to be the least common multiple of qh{q} and the orders of
x and y. Note that h(q) ^ d(q), since # divides the order of x.
Therefore q divides (%\ entailing (y, x, xy2' = 1 because of (*2) and

(y, x)e = 1 because of (*1). By the choice of e this proves that (y, x)
is contained in Ωh(A) S ,&. Therefore (cf. [9, p. 80, (9)]), (yyx)e = (y, xq) =
1, since a* e Ωh^0(Ex) S £7, and (cf. [9, p. 81, (10)])

This proves that Ωh&G(EL) is restrained by h ^ /; a contradiction.
Assume now that Λ(2) = 1 and let hr e / ' have the value 2 at 2

and coincide with & elsewhere. Then ht^h' <^f, since 1 = h(2) <£ /(2) ^ 1.
Suppose that 2/ is restrained by hr and choose ef to be the least common
multiple of 4 = 2Λ'(2) and the orders of a; and y. Again q divides

\%\(Vix) is contained in Ωh,(A) Q E, and (&]/)*' = 1. This proves

that xy is restrained by h' and hence that Ωh^G(E^ is restrained by
Λ' ^ /, if h(2) = 1; again a contradiction.

THEOREM 2.2. If f is a function in X, if G is a hypercylic
group, and if E is maximal among its άbelian, normal subgroups
restrained by /, then Ω/S,G(E) = £7, provided that f(2) Φ 1 and that

( * ) there exists an abelian, normal torsion subgroup A^E of
G such that Ωf&G{E)' Π &G(A) S A and Ωd(A) = Ωd(E).

Proof. We have to establish the hypotheses of Proposition 2.1.
Without loss of generality / >̂ 0. Let Eγ — E. Assume by way of
contradiction that (2) is not satisfied, so that EΩh&G(E)z)E for some
h in / with 0 ^ h ^ / such that Ωh&G(E) is restrained by /. Then by
hypercylicity, EΩh&G(E)/E contains a cyclic, normal subgroup H/E Φ 1
of G/E. But £?£3(ff), hence H=3(H). Furthermore EΩh&G(E) is
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restrained by /, and so is H. This contradicts the maximality of E.
Hence (2) is satisfied. Put A, = A. By maximality of E, Ωf(A) = E.
So (3α, 6, c) are satisfied. Now let x e &GΩf(A) be restrained by /.
Then x centralizes E and Ωd(E) = 42d(A), so that Theorem 1.11 is
applicable, x centralizes A/Ωf(A). By Proposition 2.1, Ωf&G(E) = .57.

REMARK 2.3. The condition (*) in Theorem 2.2 may not be dropped
as shown by the following example of [2, p. 19, Example 1]. Let A
be a torsionfree, abelian group and x the automorphism of A that
sends every element onto its inverse. Then G = Aζx) is hypercylic
and every element in the coset Ax is of order 2. Let / = oo. Then
E — 1 is a maximal abelian, normal subgroup of (? restrained by /,
but Ωf^G(E) = Gφ E.

REMARK 2.4. As already indicated by J. L. Alperin the condition
/(2) Φ 1 in Theorem 2.2 may not be dropped. If G is a dihedral group
of order 2n+ί ^ 16, then G has no elementary abelian, normal subgroups
of index 2, since G contains elements of order 8. Therefore it follows
from [8, Lemma 1] that a maximal elementary abelian, normal sub-
group E of G has order 2 and as such lies in the center of G. But at
least half of the elements of G have order 2. This proves Ω1&G(E)Z)E.
This question has been investigated further by G. Tani Corsi [7].

COROLLARY 2.5. If f ^ 0 is a function in /^ if G is a hyper-
cylic group, and if E is maximal among its abelian, normal subgroups
restrained by f, then Ωf&G{E) = E provided that one of the following
holds:

(1) /(2) Φ 1 and Ωf(G) is restrained by f where f(p) = 0 if
f(p) ^ 0 and f(p) = oo if f(p) > 0.

(2 ) / ^ d and Ωf{G) is a torsion group.
(3) There exists a prime q such that f(p) = 0 for p ^ q and

f(p) ^ 1 for p>q.
(4) /(2) Φ 1 and the set of p-elements of G is a subgroup for

every prime p.
( 5) /(2) Φ 1 and G is hyper central.

Proof. Assume (1). It will suffice to show that condition (*) of
Theorem 2.2 is satisfied. Let A be maximal among the abelian, normal
subgroups of G containing E and restrained by /; such a subgroup
exists by the maximum principle of set theory. F — Ωf{G) Π &G(A)
is restrained by /. Therefore, since G is hypercylic, a similar argu-
ment as used in the proof of Theorem 2.2 shows that F is contained
in A. In particular, Ωf{G)r Π &G(A) S F ξ^ A. If for some prime p
the component Ap of A is not 1, then f(p) = oo and f(p) > 0, hence
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f(p) ^ d(p). Therefore, Ωd(A) £ Ωf(A). By the maximality of E,
Ωf(A) = E. This implies Ωd(A) = fld(£?), and Theorem 2.2 is applicable.

(2) is a special case of (1).
In any hypercylic group G the torsion elements of an order divisible

by primes p > q only form a subgroup G(q); cf. [2, p. 21, Proposition
1], Therefore (3) is also a special case of (1).

Clearly (4) implies (1).
Every hypercentral group is locally nilpotent [5, p. 223] and every

locally nilpotent group has a unique p-Sylow subgroup for every prime
p [5, p. 229]. Hence (5) is a special case of (4).

COROLLARY 2.6. For a p-Sylow subgroup P of a finite group G
let E be maximal among the abelian, normal subgroups of P of ex-
ponent dividing pn, n^ d(p). Then &0(E) has a normal p-complement
and E is the set of all elements in &G(E) of order dividing pn.

Proof. Since P normalizes C = &G(E), S = &P(E) *s a P-Sylow-
subgroup of C. Moreover, Ωd(S) = Ωd^P{E) £ E by Corollary 2.5 (5),
hence Corollary 1.5 yields the existence of a normal p-complement in
C. An arbitrary p-Sylow subgroup SQ of C is conjugate to S in C —
&G(E). Therefore E = Ωn(S) = Ωn(S0). This completes the proof.

DEFINITION 2.7. (a) For fe/ define / ' e / b y f'(p) = Q if
/(p) ^ 0 and f'(p) = 1 if f(p) > 0.

(b) For an abelian normal subgroup E of a group G such that
i? is restrained by fe/* define Hf

G(E) by

THEOREM 2.8. If f is a function in / with /(2) Φl, if G is a
hypercentral group, and if E is maximal among its abelian charac-
teristic subgroups restrained by /, then Ωf&GTίf

G(E) = E.

Proof. (1) Let U be a normal subgroup of G contained in
&GTίf

G{E) and restrained by /, and assume by way of contradiction that
U£ E. Then UE/EΦI, whence UE/Ef]Q(G/E) Φ1 by hypercentrality.
Since UE is restrained by / we see that ΩX{S) — Ωf,(S) for every sub-
group S of UE/E, in particular

1 Φ Ωf\UEIE n 3(G/E)] ^[UEΠ %f

G(E)]/E .

But UE Π U(E) = [UΠ ϊf

G(E)]E, where U n *£(#) £ fl/3^(^) C ̂  by
the maximality of E. This contradiction shows that U £ E.

(2) Consider first the case where / assumes only the values 0
and oo. Since G is hypercentral, Ωf(G) is restrained by / (cf. proof
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of Corollary 2.5 (5)) and so is U = Ωf^GH
f

G{E). Therefore (1) implies
Ωf&0U(E) S E. Clearly E £ Ω/£,oty(E), and the theorem is proved
in this case.

( 3 ) Now consider the general case and put Eι = Ίίf

G(E). Then
condition (2) of Proposition 2.1 follows from (1) above. Let A be
maximal among the abelian, characteristic subgroups of G containing
E and restrained by /, where / is defined as in Corollary 2.5 (1). Put
A, = U(A). Then Ωf{A) = E by the maximality of E and Ω?&G?ίf

G(A) =
A by (2) above. In particular since Ωf&G(ELy gΞ flj(G) is restrained
by/,

ΦMΛ) = A

proving (3c) of Proposition 2.1. Clearly AJA is centralized by every
element in G. As in the proof of Corollary 2.5 (1), Ωd(A) = Ωd(E).
Therefore (3d) follows from Theorem 1.11, and Proposition 2.1 yields
ΩfeaiEd = E.

COROLLARY 2.9. For a p-Sylow subgroup P of a finite group G
let E be maximal among the abelian, characteristic subgroups of P
of exponent dividing pn, n ^ d(p). Then &G%p(E) has a normal p-
complement and E is the set of all elements in &GΊίn

P(E) of order
dividing pn.

Proof. Use Theorem 2.8 in the proof of Corollary 2.6.
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G-SPACES, ^-SPACES AND ^-SPACES

JERROLD SIEGEL

The notions of G-space, W-space, if-space, and higher order
Whitehead product are differentiated through example.

In [3], [4] and [5] D. H. Gottlieb introduces certain subgroups,
Gn(X, x0), of the homotopy groups of a space. These groups are re-
lated to the problem of sectioning fibrations with fibre X. Related to
the groups Gn(X, x0) is the notion of a G-space. A G-space is a space
with Gn(X, x0) = πn(X, xQ) for all n. It is a simple matter to show that
every iϊ-space is a G-space (see below). However, till recently the
status of the converse remained undecided. Recently, Gottlieb pro-
duced an example of a two-stage Postnikov system that is a G-space
but not an H-space (unpublished). The purpose of this note is to clarify
the situation further. We produce a 3-dimensional manifold that is a
G-space but not an ϋΓ-space. Incidently, the theory of G-spaces tells
us that our example is also a ΐf-space, that is, a space whose White-
head products all vanish.

Finally we would like to resolve a question of G. Porter [6].
Namely, our example is also an example of a space whose higher order
Whitehead products all vanish but, again, is not an if-space.

We would like to acknowledge the priority of D. H. Gottlieb's
example mentioned above and thank him for his help in the prepara-
tion of this paper.

1* Preliminaries* In this section we review the elementary
theory of G-spaces presented in [4] and [5].

NOTATION 1.1. We assume all our spaces X are path connected
C. W. complexes with base point x0. We let Xx be the space of maps
X to X. We let M(X) be the component of the identity map 1: X—* X
in Xx. Consider the evaluation map e: M(X) —> X given by e(f) — f(x0).
This map gives a fibration with fibre M(X)0, the space of maps in
M(X) with f(x0) = x0.

DEFINITION 1.2. We define

Gn(X, Xo) = e*(π%(M(X), 1)) S π«(X, x0) .

THEOREM 1.3. The groups Gn(X, x0) are invariant with respect to
base point and homotopy type but not natural with respect to maps.

209
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Proof. [5].

THEOREM. 1.4.

Gn(X9 Xo) = {[/]| 3 F : I x Sn >X ivith F/XW Sn = 1 V /} .

Proof. [5].

THEOREM 1.5.

Gn(X, x0) = {[/1| 3 a fibratίon X^E-^-+Sn+1 with [f] = 3J1]} ,

where 1: Sn+1 —• SM+I is ίfcβ identity map.

Proof. [4].

DEFINITION 1.6. Pn(X, α0) is the subgroup of elements [/] in
πn(X, x0) with [[/], [#]] = 0 (Whitehead product) for all m and all
[g]eπm(X, xQ).

THEOREM 1.7. Gn(X, x0) S Pn(X, »0).

Proof. [5] (see 1.4 above).

REMARK. Ganea [1] has shown that in general Gn{X, x0) Φ Pn(X, »o)
(see 3.4 below).

DEFINITION 1.8. ( a ) A G-space is a space X with Gn(X, x0) =
τrΛ(X, a?0), all n.

( b ) A W-space is a space X with P^(X, xQ) = πn(X, x0) for all n.

THEOREM 1.9. ( a ) Every H-space is a G-space.
( b ) Every G-space is a W-space.

Proof. [5]. ( a ) Follows from 1.4.
( b ) Follows from 1.7.

2 A G-space that is not an lί-space* As mentioned in 1.3 the
groups Gn(X, x0) are not natural with respect to maps. However, we
can prove the following.

LEMMA 2.1. Suppose we are given a map F: Y x X—+Y with

F/Y V X - 1 V / then /*: πu(X, xQ) -> Gn(Y9 y0).

Proof. For g: Sn-+X consider the composition
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Now apply 1.4.

EXAMPLE 2.2. Let H be a closed subgroup of a Lie group G.
Let (H\G) be the left coset space. Let p: G —> (H\G) be the projection.

We have the usual pairing (H/G) x G — (H/G) with F/(H/G) VG =
IV p.

THEOREM 2.3. In the situation of 2.2 assume i*:πn(H,e)—*
πn(G, e) is an inclusion for all n, then (H\G) is a G-space hence a
W-space.

Proof. Since i* is an inclusion p*: πn(G, e) ~*πn(H\G, [e]) is an
epimorphism. On the other hand, by 2.1 p*πn(G, e) g Gn(H\G, [e])
hence Gn(H\G, [e]) - πn(H\G, [e]) or H\G is a G-space.

We are now prepared to produce our example. We represent S1

by the complex numbers eiθ 0 ̂  θ <̂  2τr. In SO(3) we let the symbol
(#) denote the matrix

cos θ sin θ 0\

- sin θ cos 0 0

0 0 1/

2.4. Example of a G-space that is not an H-space. Embed
S1 S SO(3) x S1 as a subgroup by the following map i(βί<?) - (2Θ) x eί8^.
We let

T = i(Sι)\SO(S) x S1 .

LEMMA 2.5. T is a G-space, hence a W-space.

Proof. By 2.3 we need only check

ή^iOS1) ^(50(3) x S1)

Z Z2®Z

is an inclusion, but it is easy to check ^(1) = 0 0 3 . Note this implies

LEMMA 2.6. T is not an H-space.

Proof, (a) T is a 3-dimensional manifold hence Hn(T, Zz) = 0,
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n > 3.
( b ) H'(T, Zd) = Z3J generated say by a. This is by remarks at

the end of 2.5.
( c ) From the universal coefficient theorem we know there is β Φ 0

in H2(T, ZJ β indecomposable (a2 = 0).
(a), (b) and (c) implies that H*(T, Zs) does not support a Hopf

algebra structure, hence, T is not an H space. In particular if

T x T —h—> T is a Hopf map.

0 = h*(β2) = (1 (g) β + β (g) 1 + r(a ® a))2 = 2/3 (g) /3 + ^ 0 .

We could also note that T = Z3\SO(3) where Z, is the group (0),
(2/3ττ), (4/3ττ). Then, using the spectral sequence of a covering we
have

* •-° 1 ί »
0 w > 3 .

This does not support a Hopf algebra structure.

3. Higher order Whitehead products. The purpose of this
section is to point out that our example also answers a question of
G. Porter [6].

DEFINITION 3.1. A space X is said to have trivial higher order
Whitehead products. If given any set of homotopy elements

,] e πp.(X, x0) i S i ^ n .

The map V?=1 /,-: V SPi -> X extends to some / : χ ; u SPί -> X. (see [6]).

THEOREM 3.2. Any G-space has trivial spherical Whitehead
products.

Proof.

LEMMA. Given any n — 1 elements [/J e πPi(X, x0) 1 ^ i ^ n — 1
we can find a map

h: ("XS^) x X > X with

This is proved by induction. For n = 2 this is 1.4. Suppose we
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have a map

Γλ x X >X

with the required property.
Consider h: S^-1 x l ^ I a n extension of fn_x V 1 (1.4). Finally,

consider the composition

(ΓχSpλ x ^-i x X h X.

Set h = h(l x h).
We now finish the proof by noting that the composition

( n-l

x Sp* l χ / - ΓxS'i) x X

is the required extension of V?=i/ί

THEOREM 3.3. There exists finite dimensional spaces with trivial
higher order Whitehead products that are not H-spaces.

Proof. The space T of 2.4 is such an example.

FINAL REMARKS 3.4. Ganea [2] has constructed an infinite dimen-
sional example of a W-space that is not a G-space. G. Lang (un-
published) points out that using recent results of Gottlieb [5] one
can show that CP(3) is a finite dimensional example of such a space.
In [1] it is shown that CP(3) is a ΐ^-space, but in [5] it is shown
that every finite dimensional G-space has Euler-Poinare characteristic
0 hence CP(3) is not a G-space.

Porter [7] shows that CP(3) has nontrivial higher order White-
head products. It would be interesting to have examples of spaces
with vanishing higher order Whitehead products that are not G-
spaces.
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COHESIVE SETS AND RECURSIVELY ENUMERABLE
DEDEKIND CUTS

ROBERT I. SOARE

In this paper the methods of recursive function theory
are applied to certain classes of real numbers as determined
by their Dedekind cuts or by their binary expansions. Instead
of considering recursive real numbers as in constructive
analysis, we examine real numbers whose lower Dedekind cut
is a recursively enumerable (r.e.) set of rationale, since the
r.e. sets constitute the most elementary nontrivial class which
includes nonrecursive sets. The principal result is that the
sets A of natural numbers which "determine" such real
numbers a (in the sense that the characteristic function of
A corresponds to the binary expansion of a) may be very far
from being r.e., and may even be cohesive. This contrasts
to the case of recursive real numbers, where A is recursive
if and only if the corresponding lower Dedekind cut is re-
cursive.

With each subset A of the set of natural numbers JV, there is
naturally associated a real number in the interval [0,2], namely
Φ(A) — Σ»e^2~%, and Φ(0) — 0. Fix a one-one effective map from
N onto ζ), the set of rationals in the interval [0,2], and denote the
image under this map of an element n by the bold face n. Identifying
each natural number n with its rational image n, the (lower) Dedekind
cut associated with A is simply

L(A) = {n\n£ Φ(A)} .

It is well known in recursive analysis [4] that A is recursive if and
only if L(A) is recursive, and in this case Φ(A) is said to be a recursive
real number.

From the point of view of recursion theory, however, it is more
natural to consider certain wider classes of Dedekind cuts, especially
those which are recursively enumerable (r.e.). The most interesting
results in recursion theory concern these sets. In going from recursive
to recursively enumerable Dedekind cuts, we find that: A r.e. implies
L(A) r.e.; but not conversely. (C.G. Jockusch has observed the following
simple counter-example to the converse. If A is any r.e. set and if
B = A join A = {2n \ n e A} (J {2n + 11 n e A}, then L(B) is r.e., but B
is not r.e. unless A is recursive.) It is now natural to ask just how
"sparse" the set A can be so that L(A) remains r.e. At the end of
§3 in [8] we indicated how to construct a hyperimmune set H such
that L(H) is r.e. We now consider two notions (dominant and hyper-
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hyperimmune) which are natural extensions (as explained in §2) of the
two equivalent properties used to define a hyperimmune set. We will
prove that:

(1) There is a set A such that: (i) A is dominant (i.e. the
principal function of A dominates every recursive function); (ii) L(A)
is r.e.; and (iii) A contains an infinite retraceable subset, and is not
hyper hyper immune.

(2) There is a cohesive (and hence hyperhyperimmune) set C
such that L(C) is r.e.

In addition to illustrating the wide range of sets A which can
yield r.e. Dedekind cuts, L(A), these results suggest another method
of classifying r.e. Dedekind cuts. Recursively enumerable Dedekind
cuts appear to defy classification by the usual division of the r.e.
sets into such categories as creative or simple, because the dense linear
ordering imposed by the rationale prevents any Dedekind cut from
being simple or creative (see [8]). We have suggested in [8] a partial
classification of r.e. Dedekind cuts using certain classes of fixed point
free recursive maps which preserve them. The construction of the
dominant set now suggests the notion of an r.e. Dedekind cut being
stably recursively enumerable, a requirement which is strictly inter-
mediate between requiring that A be r.e., and requiring merely that
L(A) be r.e.

Background material may be found in the references listed at the
end of the paper, especially [6] and [7]. We used the standard
enumeration of the r.e. sets, Wo, Wίy •••, that is obtained by setting
We = {x I (as/JΓΛe, x, y)} for each e; and we set Wl = {x \ {ly)<zT,{e, x, y)}
for each e and z. For natural numbers x < y, I[x, y] will denote the
finite set {x, x + 1, x + 2, , y}. We will also used the standard
effective indexing of the finite sets, {Dx}. Namely, if xίfx2, , xn

are distinct natural numbers, and x = 2s* + 2*2 + + 2Xn, then Dx

denotes {xlfx2, •••,#»}, and Do denotes the empty set, 0 . We use the
standard pairing function, j(x, y) = x + (l/2)(& + y)(x + y + 1), and
following Rogers [6] we will let <#, y) denote the image j(x, y). If
P(x) is a predicate, then ~P(x) denotes the negation of P(x), and
\xP(x) denotes "the unique x such that P(x) holds". For any set
A£= N, A denotes N — A, card A denotes "cardinality of A", and Φ(A)
denotes the real number Y^neA2-n, while Φ(0) = 0. Finally, we write
A c *J5 if B - A is finite.

1* Stably recursively enumerable Dedekind cuts* Before de-
fining the notion of a stably r.e. Dedekind cut, it will be convenient
to have the following characterization of a r.e. Dedekind cut. (From
now on "cut" will always mean Dedekind cut.) A sequence of finite
sets, {As}, is said to be canonically r.e. if there is a recursive function
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/ such that As = Df{s) for all s.

LEMMA 1.1. For any set A, the cut L(A) is r.e. if and only if
there is a canonically r.e. sequence of finite sets, {As}, such that

(1.1) (s)[Φ(As+ι) ^ Φ(A% and

(1.2) A = lims A
s (i.e. (n)(ls)(m)^n(t)>s[m eA<=>me A'])

Proof. If A is recursive the lemma is clear, so we may assume
that A is nonrecursive and thus Φ(A) is nonrational. Now assume
that {A8} is canonically r.e. and satisfies (1.1) and (1.2). For each s,
define the rational xs = Φ(AS). Then lim sχ s = Φ(A), and L(A) is r.e.
because U {%s} is r.e., and because y e L(A) <=> (3s)[y ^ χ s], since Φ(A)
is nonrational.

Conversely, assume L(A) is r.e., say L(A) — We. For every s
such that Wl Φ 0 , define xs = max {y | y e W/}, and let l?s be the re-
cursive set such that Φ(BS) = xs. Let As = 5 s n /[0, s]. Note that
Bs is recursive since xs is rational, and Bs is unique if whenever a
rational has two distinct binary expansions, we always favor the
expansion . . . 1000 . . . instead of . . . 0111... (Since for each x, x is
effectively presented as a quotient of natural numbers, we can effectively
recognize this case.) Clearly, the sequence {As} satisfies (1.1) and (1.2).

In general there is no further restriction upon these sets A% so
that in particular an element n may appear and disappear in subsequent
sets many times (at most 2n+ί) as long as

(s)[n e As - As+ι =* (ly)[y e As+ί - As&y < n]

so that Φ(AS+1) ^ Φ(AS) holds.
In view of this we define an r.e. cut L(A) to be stably recursively

enumerably (s.r.e.) if there is a canonically r.e. sequence of finite sets
{As} satisfying (1.1) and (1.2) as well as

(1.3) (n)(s)(t)>s[ne As - As+ι =^neAf] .

If the set A itself is r.e., say A = We, then L(A) is clearly s.r.e.
because we may take As = W* so that the antecedent in (1.3) never
holds. The converse, however, is false by Jockuseh's example L(B)
given earlier which is easily seen to be s.r.e. but B is not necessarily r.e.

Furthermore, Theorems 1.2 and 3.1 together will imply that not
every r.e. cut is s.r.e., and hence that the requirement that L(A) be
stably r.e. is strictly intermediate between requiring that A be r.e.,
and requiring merely that L(A) be r.e. Theorem 1.2 proves that if
A is infinite and L(A) is s.r.e. then A contains an infinite retraceable
subset. Theorem 3.1 proves that there is a cohesive set C such that
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L(C) is r.e. Since no cohesive set contains an infinite retraceable
subset (Rogers [6], Exercise 12-48), L(C) cannot be s.r.e.)

Dekker and Myhill [1] define a set R to be retraceable if there
is a partial recursive function / such that /(r 0) = r0, and f(rn+1) = rn

for all n, where r0, rly •••, are the elements of R in ascending order.
Given such an /, for each x in the domain of /, we adopt the con-
vention that f°(x) — x, and define the set,

THEOREM 1.2. If A is infinite, and L(A) is stably r.e., then A
contains an infinite retraceable subset B, which is retraceable by a
finite-one, partial recursive fuction f.

Proof. Assume that A is infinite and that {As} is a canonically
r.e. sequence of finite sets satisfying (1.1), (1.2) and (1.3). At each
stage s, the partial recursive retracing fuction / will be defined on
at most a finite number of elements. Let a0 — μx[xeA], and s0 =
μs[aoe A']. Our construction begins at stage s = s0.

Stage s = s0. Let af°, as

2°, , be the elements of As° which are
greater than α0, listed in ascending order. Define f(a0) = a0, and
f(ai+1) — aι for all i.

Stage s > s0. Let a\, αj, be the elements of As — Uί«* At listed
in ascending order. Define

f(al) = I x[x < at &/(x) S As

& (y)[y<al &f(y) e As=>Φ(f(x)) ^ Φ(f(y))]\

f(as

ί+1) = as

iy for all i > 1 .

Clearly / is partial recursive and finite-one because of our conditions
on the sequence {As}.

We now exhibit an infinite subset of A, namely B — {60, blf •••},
which is retraced by /. Define bQ = a0,

bn+1 = μx[f(x) = bn & x > α0] .

Clearly, B is retraced by /, and B is infinite since A is infinite. To
show B £ A we first define s(m) = μs[bm eAs&s^s0]. We prove
simultaneously by induction on m that,

(1.4) (m)[bm e A]

(1.5) (thsίM^Jn eA<=>neA*].

These are clearly true for m — 0. Assume true for all m ^ p. Now
s(p + 1) ̂  s(p) because f(bp+1) = bp. Suppose n e At+1 - A' for some
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n < bp+1 and some t ^ s(p + 1). Let w' be the least such w, and V
the least corresponding t. By inductive hypothesis &„ < n', but by
stability of {As}, n' £\Ju^t> Au. Thus at stage t' + 1 we must define
/(^') = 6p> contradicting the definition of bp+ι. Hence (1.5) holds for
m = p + 1. But then 6 p + 1 e4 by (1.5) and (1.1) since bp+ιeAHP+1).

2* A dominant set with recursively enumerably lower cut;
Following Martin [3], we say that a function / dominates a function
g, if for all but finitely many n,f(n) ^ g(ri). The principal function
of an infinite set A is that function which enumerates the members
of A in order of magnitude without repetition. A function / dominates
an infinite set A if / dominates the principal function of A.

We define an infinite set A to be dominant if the principal function
of A dominates every recursive function. It is easily seen that A is
dominant if and only if the principal function of A dominates every
infinite r.e. set, and we will use this property in the proof of Theorem
2.1. (Martin [3] used no name for a dominant set, but called a set
A dense if A is either finite or dominant.)

A set H is said to be hyperimmune if there is no recursive
function / such that for all x and y,

Dnx) ΠHΦ 0&[x^y^ Df{x) n Df{y) = 0] ,

or equivalently if no recursive function dominates the principal function
of H (Rice [4]). A set H is hyperhyperimmune if there is no re-
cursive function / such that for all x and y,

Wf{x) (λHΦ 0 & wf{9) is finite &[χφy=> Wf{x) Π Wf{y) - 0 ] .

The notions of hyperhyperimmune and dominant represent respectively
the strengthenings of the two equivalent conditions of hyperimmunity.
Since it is possible [8] to construct a hyperimmune set H such that
L{H) is r.e., it is natural to attempt to obtain the same conclusion
for these two ' 'sparser'' types. We construct below a dominant set
A such that L(A) is stably r.e. By Theorem 1.2, A contains an in-
finite subset B retraced by a finite-one, partial recursive retracing
function, and hence A is not hyperhyperimmune (by the same proof
as in Rogers [6], Exercise 12-48 (a)). (Martin [2], p. 275 constructs
a co-r.e. set A which is dominant but not hyperhyperimmune. Of course,
our set A cannot be co-r.e. since L(A) would be recursive.)

For each s and e, we define the partial recursive function h($,e, n)
to be that function which enumerates the members of Ws

e in ascending
order and is undefined for n Ξ> cardinality of W! (denoted card Ws

e).
(Since the first element of Ws

e is given by h(s, e, o), the function will
be defined only for n < card Ws

e.) Now lims h(s, e, n) clearly exists for
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each e and n < card Ws

e, and will be denoted by the partial function
h(e, n), which is the principal function of We if We is infinite. Note
also that,

(2.1) (s)(e)(n)[h(s, e, n) ^ h(s + 1, β, n) ^ h(e, n)]

whenever the functions are defined.

THEOREM 2.1. There is a dominant set A such that L(A) is stably
recursively enumerable.

(Intuitively, one may think of the following proof as an attempt
to satisfy an infinite number of ' 'requirements'', where requirement
<e, iy, denoted iϋ<e,i>, states that

(n)[ζe, iy < n ^ <e, i + 1> =* a(n) :> h(e, n)\ ,

where a(n) is the principal function of A. We say that requirement
R<e>i> has higher priority than requirement R<x>y> if <e, i> < ζxf yy. In
Lemma 2.4 we will prove that if We is infinite, then for every ί,
R<e,ί} is satisfied, and thus a(n) dominates h(e, n). To convert our
proof into a "movable markers" argument as in Rogers [6] one need
merely imagine that a "marker" Λ<eti> is uniquely associated with
jβ<6,i> for each <(e, i)>, and that v(s, e, i) denotes the integer occupied
by marker Λ<efi> at stage s. Then for example, (2.2) states that the
markers are always arranged in order according to the priority of
R<eti>, and the definition of v(s + 1, e, i) may be viewed as a description
of how the markers move.)

Proof. We will construct by stages a canonically r.e. sequence
of finite sets, {As}, which satisfies (1.1), (1.2) and (1.3), and such that
if a(n) is the principal function of the set A — \ιmsA% then a(n)
dominates Xnh(e, n) whenever We is infinite. Simultaneously, we will
define by stages a recursive function v(s,e, i) such that for all s, e, i, x
and y,

(2.2) v(s, e, i) < v(s, x, y) <=> <e, i> < <x, τ/>

(2.3) v(s, e, i) ^ v(s + 1, e, i) .

Define A0 = 0 , and v(0, e, i) = ζe, iy for all e and i.
Stage s ^ 0. We say that the integer <(e, ί)> is eligible at stage

s if v(s,e,i)& As and card W; > ζe, i + Γ>. If no integer is eligible
at stage s then set As+1 = As and v(s + 1, e, i) = v(s, e, i) for all e and
i, and go to stage s + 1. Otherwise, let <(es, ie> denote the least
integer eligible at stage s, and define,
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As+1 = (As n /[0, v(8, es, i.)]) U {v(s, eβ, i.)} .

Note that in either case,

(2.4) Φ(A8+ί) ^ Φ(AS)

because in the second case <es, isy eligible at stage s implies that
v(s, e8, i8) $ As.

In order to insure stability of A as well as (2.2) and (2.3) we
define a predicate V(t + l,e,i,n) which specifies certain integers n
w h i c h a r e available as values for v(t + 1, efi). ( I t wi l l b e c l e a r t h a t

the function v(t,e, i) is recursive by recursion first upon t and then
upon ζe, %y because v(t + 1, e, i) is uniformly recursive in V(t + 1, e, i, n)
which itself is uniformly recursive in v(t, e, ί) and v(t + 1, x, y) for

<>, y> < <fi, ί>.)

V(t + 1, e, i, n) = (M)^ [^ ί AM & n ^ v(ί, e, i)

& (x)(y)[<x, y> < <β, i>=>v(t + 1, a?, ?/) < n]] .

We now complete our construction by defining at stage s,

•v(s, e, i) if <β, i> ^ <βs, ί s>

^ Λ(s, es, <β, i » if <βs, O < <e, i> ^ <e s, i , + 1>
+ 1, e,i) =

&F( + l, e, ΐ,w)]
, e, i, n) if

Note that the second and third clauses of V guarantee that
v(s, e, i) satisfies (2.3) and (2.2) respectively. (Notice how by the second
clause in the definition of v we attempt to satisfy requirement R<es,is> at
stage s.) Furthermore, we have for all s, e,i and n,

(2.5) n e As+1 - As <=> n = v(s, e8, is)

(2.6) v(s, e, i) < v(s + 1, β, i) => (3m)[m < v(s, β, i)&m e As+1 - As]

(2.7) n e As+ι - As - (ί)>β[n = v(ί, β, i) - <β, ί> - <βs, iβ>]

(2.8) (ί)>βb(ί, et, ίt) < v(s, e8, i8) => v(s, e8, i.) < v(t + 1, e8, i8)] ,

where (2.8) is considered vacuous unless <eβ, ΐs> and ζeu ity are defined.
Clearly (2.6) follows from the definition of v(s + 1, e, i) and in fact
m = v(s, e8, is) by (2.5). To prove (2.7) fix s and suppose for some
n that n e As+1 — A\ Then n = v(s, βs, ΐ β ). But n e As+1 implies
(t)>8 ~ V(t, e, i, n). Thus, if n — v(t, e, i) for some e and i, and some
ί > s, it can only be through the first clause in the definition of
v(t, e, i). It follows by an easy induction on t that ζe, i> = ζe8, iβ>,
thus establishing (2.7). In (2.8) fix s and ί > s, and assume that
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<es, isy and <βt, ity are defined, and that the antecedent holds. Now
v(s, e8, is) ^ v(t, e8, ίs) by (2.3), and thus <eu it} < <es, ίs> by (2.2).
If n = v(s, βs, is), then % e A s+1 — As implies ~ F(ί + 1, eSJ is, n) because
t > s. Hence, by the definition of v, v(t + 1, es, is) Φ n. Thus by (2.3),
n = v(s, es, is) < v(t + 1, e8, is).

By (2.4) we know that Φ{AsΛl) ^ Φ(AS) for all s. Hence, limβ A
s

must exist and will be denoted by A. That A is infinite will follow
by Lemma 2.3.

LEMMA 2.2. L(A) is stably recursively enumerable.

Proof. By Lemma 1.1 and the above L(A) is r.e. because the
sequence {A8} satisfies (1.1) and (1.2). To prove that L(A) is stably
r.e. fix n e A, and suppose that n e As+1 — As. Then n = v(s, es, is) by
(2.5). Now suppose for some t > s that ne A1 — At+\ and that V is
the least such t. Necessarily n > v(t', et,, it,). Now by (2.8) and (2.3),
{u)>t\n Φ v(u, e8, is)]. But then by (2.7), (v)>t,{e)(i)[n Φ v(u, e, i)], and
thus (v)>t\n$ Au\.

LEMMA 2.3. For all e and i, lims v(s, e, i) exists (and is denoted
by v(e, i)), and A — {v(e, i) \ card We > <(e, i + 1)>}.

Proof. We prove both parts simultaneously by induction on <(e, i}.
If <β, i> = 0, then e = i = 0, and v(s, 0, 0) = v(0, 0) for all s. Further-
more, clearly

v(0, 0 ) e i « (3s)[card TΓO

S > <0,1>] .

Fix e and i, and assume by induction that the lemma holds for
all x and y such that <&, y) < (e, ΐ}. Now define,

, α;, y) - ι;(a, ̂ /)] & [v(x, y)eA<=> v(x, y) e Al\] .

Then v(s', e, i) = v(e, i) because if v(s + 1, β, i) > t;(s, β, i) for some
s ^ s', then by (2.6), neAs+1 — As for some n < v(s, e, i). But by
(2.5), n ~ v(s, e8, i8), and by (2.2), <(βs, isy < <e, i> contradicting the
definition of s\

Before proving the second half of the lemma note that for all s
and n,

(2.9) [n e A&n e As+1 - As] =>n = v(s, e89 i8) = v(e8, i8)

because n = v(s, e8, i8) by (2.5), but if v(s, e8, is) < v(t, es, is) for some
t > s, then (u)zt[n g Au) by the proof of Lemma 2.2.

Now suppose v(e, i) e A, say v(e, i) e As+1 — As. Then v{e, i) =
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v(s,e,ί) = υ(s,ea,ίa) by (2.9). Hence, <β, ί> = <e.» iβ>, and card W; ><e
by the eligibility of (e, %y at s.

Conversely let V = (μ£)>s,[card TΓί > <e, i + 1>], where s' is defined
as above. If v(t', e, i) $ Av already, then <e, ΐ> is eligible at t\ and
is the least eligible at V by the definition of s'. Hence, v(f, β, i) e Atr+\
and v(ί', β, i) = v(e, i) by (2.6) since V ^ s'. Finally, v(e, i) e A because
if v(e, i)e A1 — At+ί for some t > ί\ then v(t, x, y) e At+ί — A1 for some
<#, 2/> < <β, i> contradicting the definition of s\

Before proceding to Lemma 2.4, we note that by (2.2),

(2.10) (e)(i)(x)(y)[v(e, ί) < v(x, y) <=> <β, i> < ζx, y}] .

Now from (2.10) and the second part of Lemma 2.3,

(2.11) (x)(y)[α«x, y» ^ v(x, y)]

where α(n) is the principal function of A.

LEMMA 2.4. For all e, if We is infinite, then

(n)[ζe, 0> < n => a(n) ^ h(e, n)] .

Proof. If false, let e, i, and n be such that We is infinite, and
<e, iy < n <z ζe, i + 1>, and α(w) < Λ(e, π). Now v(e, i) e A by Lemma
2.3 since ΐ^e is infinite. Let v(e, i) e As+1 - As. Then by (2.9), v(e, i) =
v(s, e, i) = v(s, esi is), and thus <e, i> = <βs, iβ> Let n = ζx, yy. Since
<e, i> < <cc, 2/> ^ <β, i + 1>, we have by the second clause in the de-
finition of v,

(2.12) v(s + 1, x, y) ^ λ(s, e, <a;, ?/» .

Now by (2.11) and (2.3) respectively,

(2.13) α«>, 2/» ^ v(a;, y) ^ v(s + 1, x, y), and

(2.14) Λ(8> β, O , i/» ^ A(β, <x, yy), by (2.1) .

Arranging in order the inequalities of (2.13), (2.12) and (2.14) re-
spectively, we conclude that a(ζx, yy) ^ h(e, <a?, i/», that is a(n) ^ h(e, n),
contrary to hypothesis.

3* A cohesive set Λvith recursively enumerable lower cut* An
infinite set C is cohesive if there is no r.e. set We such that We Π C
and We Π C are both infinite. An r.e. set M is maximal if M is
cohesive. Although the construction of a maximal set requires a
priority argument, it is easy to give a noneffective construction of a
cohesive set (which is not co-r.e.). (The following in substance is the
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construction of Dekker and Myhill which appears in Rogers [6], p.
232.) Define a sequence of indices, e0, e1 , as follows:

e0 = μe[We is infinite]

ei+ι = (μe)>e.[We Π S, is infinite], where S< = Π {Wej\j ^ i} .

Now define C — (J; {xι} where x{ is some element of Sif then C is
clearly cohesive since

(e)[ WeΓ\C infinite => C c * We] .

(Recall that 4 c * β denotes that B — A is finite.)
This procedure is so noneffective, however, that it has rarely been

used in an effective construction of some r.e. set. (For instance, the
usual co-maximal cohesive sets C given by the Yates construction
(see Rogers [6]) do not satisfy the property that C c *S( for every i.)
We will construct a cohesive set A such that L(A) is r.e., and such
that for every ί, Aa*Si. The latter property guarantees that A is
cohesive because if A Π We is infinite, then e = e{ for some i, but
then Acz*Sif and hence A c * Wβ.. (Throughout the proof we will refer
to the indices {ej and the sets {SJ defined above.)

THEOREM 3.1.1 There is an infinite set A such that L(A) is r.e.,
and A a* Si for every i (and hence A is cohesive).

(Again our proof will be an attempt to satisfy certain "require-
ments". Requirement x, denoted Rx1 states that,

Aa*n{W3 \jeDx}.

Naturally, it will be impossible to simultaneously satisfy all require-
ments, but we will prove (Lemma 3.8) that if*Dx = {e0, e19 •••, βj for
some i, then Rx is satisfied, i.e., that

Aa*f){Wj\jeDx} = Si.

We say Rx has higher priority than Ry just if Φ(DX) > Φ(Dy). To
aid intuition one may imagine that a "marker" Λx corresponds to Rx

for every x, and that v(s, x) denotes the integer occupied by Λx at stage s.
Ideally, we would like to reflect the priority of requirements as in
(2.2) by defining v(s, x) so that for all s, v(s, x) < v(s, y) *=> Φ(DX) > Φ(Dy),
because the leftmost markers (i.e., markers occupying smaller integers)
will exercise greatest control over elements eventually admitted to
A. Naturally, this is impossible since markers would have an infinite
number of predecessors. We must therefore begin more modestly with
JThis question was suggested to us by T.G. McLaughlin.



COHESIVE SETS AND RECURSIVELY ENUMERABLE DEDEKIND SETS 225

a recursive well ordering of type ω, W{x, y), and then allow markers
to change their relative positions so as to more closely approximate
the priority ordering when desirable in order to attempt to satisfy a
certain requirement.)

Proof. From now on we adopt the convention that max Dx denotes
m a x f ^ l ^ e Z y , and max 0 = 0 . Define the recursive predicate,

W(x, y) = {maxΰ, < max Dυ) V [maxDx = maxDx&Φ(Dx)>Φ(Dy)] .

We define a canonically r.e. sequence of finite sets, {As}, and a
recursive function v(s, x) as follows. Set A0 = 0 , v(0, 0) = 0, and for
x > 1, define

v(0, x) = μn{y)[W{y, x) => v(0, y) < n] .

Stage s ;> 0. Define the function /,

f(s, x) = max {U Dy | all y such that v(s9 y) ^ v(s, x)} .

(That / is recursive will follow because v will be recursive and be-
cause Xy v(s, y) will be a one-one function.) We define x to be eligible
at stage s, denoted E(s, x), as follows:

•/{a,sE(s, x) = card {n\n> v(s, x)&ne Π {Wi \ i e Dx}} > 2

Case 1. There is no eligible x at stage s. Then set As+ι = A%
and v(s + 1, x) = v(s, x) for all x, and go to stage s + 1. (Note that
(2x)E(s, x) is decidable given Xx v(s, x) since one need only examine
those x such that v(s, x) < s, because (i)(^)^s[^ e W$] by the Gδdel
numbering.)

Case 2. Otherwise. Let α;β be the unique eligible x which satisfies
the predicate

L(s, x) = E(s, x)&~ (ly)[E(s, y) & v(s, y) < v(s, x)] .

(That is, xs is the unique eligible x whose marker Λx is leftmost
among all the markers Λy such that y is eligible at $.)

Now let ms = /(s, xs) + 1, and define the sets,

X; = {x I v(s, x) < v(s, xs)}

Xi = {̂  I v(s, α?) S v(β, α?.) & Z)β C I [0, ms]}

Xi - {x I v(8, x) ^ v(8, a?.) & J9,

Note that card Xi <£ 2/(8»**)+E. (Viewing the following definition of
v(s + 1, x) as a description of how the markers move, notice that only



226 ROBERT I. SOARE

the markers Λx for x e Xi are allowed to change their relative order,
and they move only so as to more closely approximate our priority
ranking. Furthermore, since the elements v(s + 1, x) are potential
elements of A* for some t > s + 1, the first conjunct of the case
xeXi attempts to partially satisfy requirement RXa). Define,

As+1 = [As Π J[0, v(s, x.)] U Ms, xa)}, and

v(s, x) if x e X;

μn[ne Π {W-\ ί e DXs}&n> v(s, x) if x e Xi

v(s &(y)[[yeXi&Φ(Dy)>Φ(Dx)]=*v(s + l,

μn(y)[[y e Xί V [ye Xi & v(s, y) < v(s, x)]] if x e Xi

==» v(s + 1, y) < n] .

(It is clear by recursion on s that the function v(s, x) is recursive
since Xxv(s + l,x) is uniformly recursive in \xf(s,x),E(s,x), and
X!, 1 ^ i <S 3, which in turn are uniformly recursive in Xxv(s, x).)

By the definition of v(s + 1, x) we have for all s, x, y and z,

(3.1) v(s, x) Φ v(s, y)=*x Φ y

(3.3) v(β, x) < v(s, y) & v(s + l,x)> v(s + 1, y) => x e Xi & y e Xi

(3.4) xeXi=*v(s + l,x)e Γ\{Wi\ieDX8) .

To see (3.2), suppose xeX' and yeX2% then v(s + 1, y) > v(s, y) ^
v(s, xs) > v(s, x) = v(s + 1, x). The rest of (3.2) is clear, while (3.3)
follows from (3.2) and the fact that if x,ye Xΐ or x,ye Xi then
v(s, x) < v(s, y) if and only if v(s + 1, x) < v(s + 1, y). Finally, (3.4)
follows by the definition of v(s + 1, x).

By the definitions of v and /, we have for all s that if (3x)L(s, x),
i.e., if xs is defined, then

(3.5) /(* , xs) < f(s + 1, xs)

because if Dy — Dx$ U {mβ} then y e X£, and so by the second clause
in the definition of v, v(s + 1, y) < v(s + 1, xs) because Φ(Dy) > Φ(DXs).
But then f(8 + l,x8)^m8 = l+ f(s, xs).

Furthermore, it is clear that for all x, n and s,

(3.6) n e As+1 - As <=>n = v(s, xs)

(3.7) v(s, α;) ^ v(s + 1, x) => (3m)[m < v(s, x) &me As+1 — As]

(3.8) n e As - As+1 =* (3m)[m <n&me As+1 - As] .

Using (3.6) and the fact that v(s + 1, xs) > v(s, xs) (because xs e Xi),
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it is easily seen by induction on s that

(3.9) (s)(x)[v(8, x) e As] .

Now by (3.9) and the definition of As+\ we have Φ(AS+1) ^ Φ(AS)
for all s. Thus lims As must exist, and will be denoted by A. Since
the canonically r.e. sequence, {A8}, of finite sets satisfies (1.1) and
(1.2), we have proved.

LEMMA 3.2. L(A) is r.e.

(Of course, unlike the sequence in Theorem 2.1, we know that
{A"} cannot satisfy (1.3) because no cohesive set may contain an infinite
retraceable subset.)

For future reference we will define the nonrecursive function s,

(3.10) s(n) = μt(m)<n+i[m eA<=>me At+1] .

By (3.8) and the definition of s(n) we have,

(3.11) (t)>s{n)(m)<n+1[m e i - m e i ' ] .

Finally, by the minimality of s(n) we see that if neA, then
neAs{n)+ί - As{n\ so that by (3.6),

(3.12) (n)[n eA*=>n = v(s(n), x8ln))] .

LEMMA 3.3. A is an infinite set.

Proof. If A is finite, let m = max {n \ n e A}. Then by (3.11)
and (3.7),

(x)(t)>s{m)[Λ = A*& v(t, x) = v(s(m) + 1, x)] .

But since there are an infinite number of x such that 0 {Wi\ie Dx}
is infinite, there must exist some t > s(m) and some x such that x is
eligible at stage t. But then v(t, xt) e At+1 — A\ contradicting At+1 =
A = A* for t > s(m).

LEMMA 3.4. For all x Φ 0, if Π{Wi\ieDx} is finite, then
{s\(^y)[Dy^Dx&>L(s,y)]} is finite also.

Proof. Fix x Φ 0. Let m = max {n \ n e {W4 \ i e Dx}}. (Recall that
max 0 = 0.) Then

because if v(t, y) g m and L(t, y) then v(t, y) e At+ί — A1 contradicting
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(3.11). But if v(t, y) > m, then ~ L(t, y) because ~E(t, y) since

n{Wϊ\ieDy}Sl[O,m,].
Now define a (nonrecursive) function d as follows:

where β0, eu is the sequence of indices defined in the beginning of
§3. (Note that S, = ΓΊ {W, \j e Z)d(ί)}.)

LEMMA 3.5. (w)[w e i = > ^ ^

Proof. Suppose that n > v(s(τ&), d(ί)). Now by (3.7) and (3.11),
v(t, d(ί)) = v(s(n), d{i)) for all t > s(n). Now since Π {Wό \j e Dd{i)} is
infinite, there must be some t > s(n) such that d(i) is eligible at stage
t. But then L(t, y) holds for some y such that v(ί, ?/) ̂  v(ί, ώ(i)), and
hence meAt+1 — A* for some m < v(s(w), d(i)), contradicting (3.11).

LEMMA 3.6. For all s, x, and y,

v(s, x) < v(s, y) => [max Dx < max Dy V Φ(DX) > Φ(Dy)\ .

Proof. This is clearly true for s = 0 by definition of Xx v(Q, x).
Assume true for some fixed s, and suppose v(s + 1, x) < v(s + 1, y).
Now if v(s, x) < v(s, i/) then the conclusion follows by inductive
hypothesis. But by (3.3) if v(s, x) > v(s, y), then x, y e Xi, and thus
v(s + 1, x)< v(s + 1, y) only if Φ(I>β) > Φ(Dy).

LEMMA 3.7. For every i, there exists t{ such that

(8)>t.(x)[L(s, x) & v(s, x) £ v(s, d(i)) =*DX^Dd{i)] .

Proof. The proof is by induction on i.

Case i = 0. Define

ί0 = max {ί I (3i)(3i/)[i < eQ & {j} ̂ Dy& L(t, y)]} ,

which is at most a finite set by Lemma 3.4. Now by Lemma 3.6,
for all s and x,

v(s, x) < v(s, d(0)) -> [max Dx < d(0) V Φ(DX) > Φ(Dd{0))]

.-. (s)>tQ(x)[L(s, x) &v(s, x) ^ v(s, d(0)) =~DX^Dd(0)] .

Case i + 1. By induction, assume that for all j ίg i, t3- is defined
so that the above statement holds. Define

(3.13) w = max {s \ (3i)(3τ/)[^ < j < e i + 1 & A, 2 DdW U
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which is at most a finite set by Lemma 3.4, and the definition of
ei+1. Define r = max {̂ , w). Thus,

(3.14) {s)>r{x)[[L{s, x) & v(8, x) < v(8, d(i))] => 2>β a D d { i + ι ) ]

because by inductive hypothesis and (3.1), Dx^Dd{i), and by (3.13),
Dx£Dd{ί) U {j} for any j < ei+ι. (That Dx^DdH) U {j} for j < ei and
j g Dd{ί) follows of course by inductive hypothesis.)

Subcase 1. (ls)>r[v(s, d(i + 1)) < v(s, d(ί))]. If u is the least such
s, then a second induction on s for s ^ u proves simultaneously that,

(3.15) ( s ) , t t [φ + 1, d(i + 1)) < v(s + 1, d(i))], and

(3.16) (s)z%(x)[L(8, x) & v(8, x) ^ v(8, d(i + 1)) - Dx 2 £>d( i+1)] .

By the definition of w, we have v(u, d(i + 1)) < v(u, d(i)). Choose
t ^ u, and assume (3.15) and (3.16) for all β such that u ^ s < t. We
may assume that,

(3α;)[L(ί, «) & v(t, x) ^ v(ί, ί ( i + 1))]

because otherwise v(t + 1, y) — v(t, y) for all y, such that v(t, y) ^
v[ί, d(i)), and (3.15) and (3.16) hold trivially for s = έ. Now by (3.14),
£>,. 3 J3 ί ( i + 1 ) thus establishing (3.16) for s = t.

To prove (3.15) for s = ί, note that /(ί, a;t) ^ e ί+1 by the definition
of / since Dxt^Dd{i+1). But then d(i),d(i + 1) e JSΓ2* because Dd{i+1)ξi
I[O,f(t, xt) + 1], and v(t, xt) ^ v(t, d(ί + 1)) < v(t, d(i)). Hence,
v(ί + 1, d(i + 1)) < v(t + 1, d(i)) by the second clause in the definition
of v because Φ(Dd{i+1)) > Φ(Dd{ί)).

Subcase 2. (s)>r[v(s, d(i)) < v(s, d(i + 1))]. This assumption will
lead to a contradiction. Define

u(l) = (μ8)>r(ly)[L(8, y) & v(s, y) ^ v(s, d(ί))] .

(Such an s exists by Lemma 3.5 and (3.12) since A is infinite and Ar

is finite.) Now by (3.1) and (3.14), DXu{1)^Dd(ί+1) or xuil) = d(i). But
if the former then d(i),d(ί + 1 ) G I 2

M ( 1 ) , because

v(u(l), xuω) £ v(u(l), d(i)) < v(u(L), d(i + 1)) .

But then since Φ(Dd{i+ί)) > Φ(Dd{i)) we have by the definition of v that

v(u(l) + 1, d(i + 1)) < v(u(l) + 1, d(i))

contrary to the hypothesis.

We conclude that xu{1) = d(i). But then by (3.5),

Now define,
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iι(2) = (μs)>u(ι)(ly)[L(s, y) & v(s, y) ^ v(s, d(i))] .

By the same argument as above, xu{2) = d(i), and

f(u(2) + 1, d(i)) > f(u(2), d(i))

Continuing in this manner, after at most k = ei+1 — e{ steps, we must
have f(u(k), d(i)) i> ei+1 — 1. But then Dd{i+ί) Q /[0, mu{k)\ so that
d(ί), d(i + 1) e X?{k\ Thus by the definition of v,

v(u(k) + 1, d(i + 1)) < v(u(k) +

contradicting the assumption of subcase 2.
Thus if we define

(i + 1)) < v(8, d(i))]

then Lemma 3.7 follows.

LEMMA 3.8. For every i,Aa*Si.

Proof. Fix ΐ, and let tt be defined as in Lemma 3.7. Let n —
μm[m eA — AH], By (3.12), n = v(s(n), #e ( w )), and s(ri) > t{ since n ί Au.
By Lemma 3.5, n < v(s(ri), d(i)). Now v(s(w), a?β(n)) < v(s(ri), d(i)) implies
by Lemma 3.7 that fli<(n)2Dd(j). Hence, d(i)eXi{n). But then by
(3.2) and the definition of v we have for all y,

n < v(s(n) + l,y)^ v(s(n) + 1, d(i)) =^ye Xi{n) .

Thus, by the second clause in the definition of v, we have for all y
and for t — s(n) + 1,

n < v(t, y) ^ v(t, d(i)) - v(t, y)eΠ{Wi\je DXsJ .

But since ΰ , s 3 ΰ d ( i ) , we have for all y, and for t = s(n) + 1,

(3.17) n < v(t, y) £ v(t, d(i)) => v(t, y)eSt.

Now we will prove by induction on t that (3.17) holds for all t ^ s(n) + 1.
This will prove that

(m)>n[meA=> me Si]

because iίmeA then by (3.12) m = v(s(m), xs{m)). But m > n implies
s(m) ^ s(n) + 1. Now by Lemma 3.5,

v(s(m), xs{m)) = m < v(s(m), d(i)) .

Hence, v(s(m), xs{m)) e Si by (3.17).
It remains to prove (3.17) by induction on ί ^ s(n) + 1. Since
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(3.17) clearly holds for t = s(n) + 1, choose u ^ s(n) + 1 and assume
by induction that (3.17) holds for all t <; u. Now (3.17) follows
trivially for t — u + 1 by inductive hypothesis and the definition of
v unless,

(ly)[L(u, y) & v(u, y) <: v(u, d{i))] .

In this case by Lemma 3.7, DXu 3 Dd[i) since u > s(n) > tit But
DXu a i?d ( i ) implies d(i) e X2\ Thus *by (3.2) for all y,

v(u + 1, y)< v{u + 1, d(i)) =>[yeX?V ye X2

M] .

Now if ye X?, then v(% + 1, y) — v(u, y) and so if n <
then ^(^ + 1, y) e Si by inductive hypothesis. But y e X? implies
v(u + l,y)e Π{Wd\je DXJ by (3.4). Hence, since DXu 3 J5rf(ί), v(% +
1, V) e iSί.

BIBLIOGRAPHY

1. J. C. E. Dekker and J. Myhill, Retraceable sets, Canad. J. Math. 10 (1958), 357-373.
2. D. A. Martin, A theorem on hyperhypersimple sets, J. Qf Symbolic Logic 28 (1963),
273-278.
3. , Classes of recursively enumerable sets and degrees of unsolvability, Zeitschr.
F. Math Logik und Grundl. Math. 12 (1966), 295-310.
4. H. G. Rice, Recursive real numbers, Proc. Amer. Math. Soc. 5 (1954), 784-791.
5. , Recursive and recursively enumerable orders, Trans. Amer. Math. Soc.
8 3 (1956), 277-300.
6. H. Rogers, Jr., Theory of recursive functions and effective computability, McGraw-
Hill, New York, 1967.
7. G. E. Sacks, Degrees of unsolvability, Ann. of Math. Study 55, Princeton, 1963.
8. R. I. Soare, Recursion theory and Dedekind cuts, (to appear in Trans. Amer.
Math. Soc.)
9. C. E. M. Yates, Recursively enumerable sets and retracing functions, Zeitschr. f.
math. Logik und Grundl. Math. 8 (1962), 331-345.

Received June 27, 1967, and in revised form February 18, 1969. These results
are part of the author's doctoral dissertation written at Cornell University under
the direction of Professor Anil Nerode, and with helpful criticism by Professor T. G.
McLaughlΐn. The results were presented to the American Mathematical Society in
April, 1967.

UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE





PACIFIC JOURNAL OF MATHEMATICS
Vol. 31, No. 1, 1969

ISOMETRIES OF CERTAIN FUNCTION SPACES

K. W. TAM

Let X be a discrete symmetric Banach function space with
absolutely continuous norm. We prove by the method of ge-
neralized hermitian operator that an operator U on X is an
onto isometry if and only if it is of the form:

Uf(.)=u(.)f(T.) all feX,

where % is a unimodular function and T is a set isomorphism
of the underlying measure space. That other types of isome-
tries occur if the symmetry condition is not present is illus-
trated by an example. We completely describe the isometries
of a reflexive Orlicz space LMΦ(Γ^LZ) provided the atoms have
equal mass (the atom-free case has been treated by G. Lumer);
similarly for the case that no Hubert subspace occurs.

We shall reproduce some definitions and results from [4] which
will be needed in the sequel.

DEFINITION. Let X be a vector space. A semi-inner-product on X
is a mapping [, ] of XxX into the field of numbers (real or complex)
such that

[x + y,z] = [x, z] + [y, z]

X[x, z] = [Xx, z] for all x, y, ze X and λ sealer .

[x, x] > 0 for all x φ 0

[x, y] |2 ^ [x, x][y, y] .

We call X a semi-inner-product space (in short, s.i.p.s.). If X is
a s.i.p.s., one shows easily that [x, x]ιβ is a norm on X. On the other
hand, let X be a normed space and X* its dual. For each xe X,
there exists by the Hahn-Banach theorem, at least one (and we shall
choose one) functional WxeX* such that ζx, WV> — \\x\\2. Given any
such mapping W from X into X* (ank in general, there are infinite-
ly many such mappings), it is at once verified that [x, y] = (x, Wy)
defines a semi-inner-product (s.i.p.).

DEFINITION. Given a linear transformation T on a s.i.p.s., we call
the set W(T) = {[Tx, x]: [x, x] = 1} the numerical range of T.

An important fact concerning the notion of numerical range is
the following [4, Th. 14]:

Let X be a complex Banach space, and T an operator on X.
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Although there may be many different s.i.p. consistent with the
original norm of X, in the sense that [x, x] — || x ||2, nonetheless, the
convex hulls of numerical range of T relative to all such s.i.p. are
equal. It has real numerical range with respect to one s.i.p., then it
has real numerical range with respect to any other s.i.p. inducing the
same norm.

DEFINITION. Let T be an operator on a complex Banach space
X, then T is called hermitian if its numerical range is real, relative
to any s.i.p. consistent with the norm.

1* A general setting* We shall call an algebra A over the com-
plex field C a *-algebra if there is a mapping * defined on A satisfying:

( i ) aeA implies α* e A.
(ii) (α + 6)* = a* + 6* and (λα)* = λα*.
(iii) (a*)* = a and (αδ)* = δ*α* for all a,beA and λ e C . An

element a such that α* = a is said to be self-adjoint (s.a.). Every
element a of a *-algebra can be written in a unique way: a = u + ίv
where u and v are s.a. A *-algebra-isomorphism p is an algebra iso-
morphism on a *-algebra A with the condition that (ρ(a))* = p{a*) for
all a in A.

Let X be a complex s.i.p.s. and A be a *-algebra with a topology.
Assume that X is a two-sided module over A. Suppose that there is
a net {ea} in A such that limα fea = / for all / in X. For a *-subal-
gebra Ao of A such that Ao is a subset of X, and {eα} is contained
in AQ, the following holds:

THEOREM 1. Suppose that for any s.a. h in A, Hhf' = hf for all
f in X defines a bounded hermitian operator on X; and that con-
versely every bounded hermitian operator is of this form. Then any
onto isometry U of X when restricted to Ao is given by

Uf = Urn p(f)Uea
a

where p is a *-algebra-isomorphism on A.

Proof. Let h in A be s.a., then Hh is a bounded hermitian
operator on X. On the other hand, let a s.i.p. [,] on X be given,
then [f,g]' = [ί/"1/, U~~ιg] defines another s.i.p. on X inducing the
same norm. It follows that

[UHhU-ιf,f]' = [H.C7-1/, U~ιf] is real for all / .

Thus UHhU~ι is another hermitian operator on X, and by hypothesis
there is a s.a. h in A such that
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VHhV~lf = H\f for all / in X .

Clearly the mapping h—*h is linear. If h = 0, then for all feX,
UHhU-ιf= 0; in particular UHhU~ιUea = U(hea) = 0. Since U is one
to one, hea — 0 and limft hea = h = 0. Hence this mapping is one to
one. We shall set p(h) — h. With s.a. h and h' in A,

Hp{hhn = UHhh,U~ι = UHhU-*UHh.U-1 = Hpih)Hp{hn .

Thus p(hhf) = p(h)p(h'). Extending p on A trivially by letting

p(h + ih') -

it can easily be shown that p is a *-algebra-isomorphism on A. For
all / in Λ, U(fea) - UHfU^Uea = p(f)Uea, so that

2* Function spaces. Let X be a Banach function space with
absolutely continuous norm [6] over a σ-fϊnite measure space (Ω, Σ, μ).

LEMMA 1. Assume that ω is a measurable subset of Ω and let
P be the projection of X onto the subspace E of functions in X
vanishing outside a). Then for any hermίtian operator H on X,
PHP is a hermitian operator on E.

Proof. Since X has absolutely continuous norm X* = X', the
associated space of X. Let IF be a mapping as before. Then a con-
sistent s.i.p. on X is given by: with each g e X,

[/, g] = <f, Wgy = j fWg for all / e X .

Without loss of generality we can take Wg to be χ Wg if g e E where
χ is the characteristic function of co. Then for all g e E such that
|| g || = 1, we obtain

[Hg, g] - ^HgχWg - \χHgχWg = [(PHP)g, g]

which is real valued. Thus PHP is hermitian on E.

LEMMA 2. [5, Lemma 7]. // h e Lw is a real function, the oper-
ator Hh, defined by Hhf'= hf for all feX, is a bounded hermitian
operator on X; and \\Hh\\ = ||A||oo.

We shall use the following fact several times later.
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LEMMA 3. For a, β, 7 complex numbers such that ezθa -j- e~iθβ + 7
is real for all 0 ̂  θ < 2ττ, £/&e% a = β and 7 is reαZ.

Let E be a two-dimensional Banach space. Denote the element

/ of E as a function defined on the set Ω — {x, y). We shall assume

that the norm in E has the following properties:

(1) 11/11 = 111/111.
(2) I / I ^ I g I implies that \\f\\^\\g\\ with all f,geE.

The real functions in E can be considered as points in the two-
dimensional Euclidean plane; let 7 be the convex curve of the boun-
dary of its real unit ball. At each point pey there is a supporting
hyperplane, and suppose that the normal vector at p to the hyper-
plane is given by {a, β). We shall define sgn g as the function

sgng =

0 if flf = 0

otherwise
9

LEMMA 4. For any nonzero geE

[f,g] = \\g\\ A(g){f(x) sgn g(x)a(g) + f(y) sgn g(y)β(g)}

where

A(g) = \ψήia(g) + ' f ̂  [ βig)}" and (a(g), β(g))
[ \\g\\ \\g\\ J
\ψήia(g) + f ̂
[ \\g\\ \\g\\

is a normal vector at (| g(x) |/|| g ||, | g(y) |/|| g ||) for all feE, defines a
consistent s.i.p. on E.

Proof. Clearly it is linear in / and [g, g] = | | # | | 2 . Firs t we as-
sume t h a t / and g are real valued. The fact t h a t \\g\\ = | | | # | | | im-
plies t h a t the curve 7 is symmetric with respect to both axes. The
function A(g){sa(g) + tβ(g)} has absolute value no greater than one
on the region between the two lines L x and L2 where they are two
chosen supporting hyperplanes a t (| g(x) \/\\ g ||, | g(y) \l\\g\\) and
(-\g{x)\l\\g\\, ~\g{y)\l\\g\\) with normal vectors (a(g),β(g)) and
(-a(g), -β(g)) respectively. So t h a t A(g) \\ g \\ {| sa(g) \ + | tβ(g) \}^\\g \\
f o r a l l ( β , t ) 6 7 . F o r a l l n o n z e r o fe E, (\f(x) \/\\ f \\,\f(y) \/\\ f | | ) e 7 , w e
o b t a i n

A(g) \\g\\{\f(x) sgn g(x)a(g) \ + | f(y) sgn g(y)β(g) 1} ̂  11 / 11 11 flr 11 .

Now in the above inequality, only the absolute values are involved,
it holds for all complex functions / and g as well.
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Let Xn be a ^-dimensional real Banach space (n ^ 2) and S its
unit ball. We shall fix a basis for Xn and denote every element x as
a point in the w-dimensional Euclidean space En. Define a function
F on En as F(xλ, x2, , xn) — \\ (xL, x2, , a J || — 1. For each i —
1, 2, - - - M, let β?" = (0, , 0, 1, 0, 0) (1 at the ΐ-th position).

LEMMA 5. Let S' be an open set of E,Λ consisting of smooth
points of XnJ then the function F has continuous first partial deriva-
tives at every point of S'.

Proof. If x is a point of S\ then the norm function is Gateaux
differentiable at x [7]. Therefore with i = 1, 2, ., n

t-+t t 0Xi

Suppose W is as before, then from [5, Lemma 1]

\\x\\^-(x) = <e\ Wx>= [e\x] .

Since the norm topology of Xn and that of En are equivalent, the
weak star compactness of the unit ball of X* and the smoothness of
S' implies that this mapping W is weak star continuous on £'. Thus
3F/dXi(x) is continuous on S'.

LEMMA 6. Let H be a hermitian operator on E and

'a 6Ί

a}'
Then either b ~ c = 0 or else b/c > 0 and E is a Hilbert space; in
either case a and d are real numbers.

Proof. We shall start by proving that the set S' — {(s, t): s Φ
0 Φ t) consists of smooth points if 6 and c are not both zero. For
0 S 0 ^ 2ττ, let / = (e*θs, t) be such that (s, t) e S' and || / || = 1, then
by Lemma 4 [Hf, f] = A(f)(asa + dtβ + e~iebta + eiθcs β) is real,
where (a, β) is the normal vector of a supporting hyperplane to the
real unit ball S at (s, t). We have by Lemma 3 that

bt a - cs β = 0 .

We assume that c Φ 0. If b = 0 then β = 0 for all such / and 7 is
a rectangle. As β = 0 cannot occur on all four sides of a rectangle,
b and c are not zero, (a, β) is uniquely determined up to a sealer
multiple. Therefore the hyperplane is unique and every point of S'
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is smooth. Now for b and c being nonzero, the function F(s, t) =
|| (s, ί) | | — 1 is differentiate at (s,t)eS' The hyperplane is thus
given by the tangent plane. So that for all g e E such that g(x) Φ
0 Φ g(y)9 the linear functional in Lemma 4 can be replaced by

[/, g] = A(g) \\g\\ lf(x) sgn g(x) — — + f(y) sgn g(y) — — 1
I ds ot )

and we obtain the equation

s Q
c ds dt

Now (bjc)t2 + s2 satisfies the partial differential equation. By the uni-
queness of solution, the curve y is given by the equation s2 + (bjc)t2 =
K. Since the unit ball is bounded, b/c and K must be positive. Then
an inner-product on E can be defined by

, 9) γ~ +

Thus i? is a Hubert space.
For nonzero g e E such that g(y) = 0, by Lemma 4 [/,#] =

Hffll2/(»)/^(») for all / in E. As [Hg, g] = a\\g\\2 is real, α is real;
similarly cί is real.

3* Discrete symmetric Banach function spaces* Let X be a
Banach function space with absolutely continuous norm and the mea-
sure is purely atomic; so that X is a sequence space. Assume that
X is symmetric, i.e., if / in X and φ is an isomorphism of the atoms,
then 11/11 = \\f(Φ)\\. Choose the set of all characteristic functions of
atoms to be a fixed basis for X. Let H be a hermitian operator on
X and be represented as an infinite matrix (a{j), then Lemmas 1 and
6 imply that aiS = aH.

LEMMA 7. // there is a hermitian operator H on X such that
its matrix representation is not diagonal, then there is a hermitian
operator Hr on X with all nonzero off diagonal entries.

Proof. We write H = (α^ ). Assume that without loss of genera-
lity that α12 Φ 0; then α21 Φ 0. Suppose that it is the smallest positive
integer such that alit = 0. Define TJ1 on X as operator obtained from
the identity I by interchanging its 2nd and v t h row. Then Ux is
isometric and Hι = ΌJELUί is hermitian. Choose ax > 0 such that
11 a1H111 ^ 1/2 and the matrix entries of al5 of H + aYHx are nonzero
for all 2 ^ j ^ ix. Assume that this has been done for in steps and
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let iΛ+1 be the smallest integer greater than in such that aιin+1 = 0.
Again let Hn+ι = Un+1Hn+1Un+1 where Un+1 is the isometric operator
obtained from / by interchanging the 2nd and iw+1-th row. Take
an+j > 0 with \\aH+1Hn+11| ^ l/2%+1 and the matrix entries aiά of
H + Σissfc^+i #*•#* a r e not zero for j = 2, , in+1. Then the operator
Gi = H + Σfc !̂ akHk is a bounded hermitian on X. Its entries atj Φ 0
for all j ^ 2. With i = 2, 3, let Vi be the operator by interchang-
ing first and i-th row of L Then (?; = ViG^Vi is hermitian and its
entries aiό φ 0 for j = 1, 2, , i — 1, i + 1, . Choose a sequence
{/9J of positive numbers such that X^. < °° and for each k = 2, 3,
the first fc rows of ΣnsizkβjGj a r e n o ^ z e r o except may be at the
(j, j) position. Then Hr = Σ /Ŝ Gy is the required hermitian operator.

Let Xn = {/G X:/(&) = 0 all & > n}. Suppose that S is the real
unit ball in Xn as represented in the ^-dimensional Euclidean space
En and 7 its boundary. For aey there exists at least one supporting
hyperplane to S at a with a normal vector (α ,̂ a2, , αΛ).

LEMMA 8. For nonzero g e Xn,

[f,g] = A(g) 110 11 { Σ /(i) sgn flr(i)αΛ all / e l , ,

where A(g) = {Σ?=i I ^(i) I/I I ^ II ̂ il"1 α ^ (αi> ̂ 2, , «») is ί/̂ β normal

vector to a hyperplane at ( ' ^ ' , ^ ' ' v " ; IffWI \ defines a
v I k l l \\g\\ \\g\\ J

consistent s.i.p. on Xn.

The proof is similar to that as in Lemma 4.

LEMMA 9. // there is a H' as in Lemma 7, then the set S' =
{feXn:f(j) Φ 0 all j} consists of smooth points.

Proof. Let (xu x2, , xn) e S' and k = 1, 2, , n — 1, #& =
(a?!, a?2, , β ί θ ^, , xn) in X% is of unit norm where 0 ^ θ < 2τr. The
restriction of £P to Xn, Hn = (αϋ)<,i=i,2,...n is hermitian by Lemma 1
and

[Hngk, gk] = Aig^ϋa^, + + ei0alkxk + + alnxn)a, + •

x, + + eiθakkxk + + aknxn)ak +

+ + β ^ Λ + + αΛnajw)α:n}

α ^ α ! + + α^^^α^ + ak+lkxkak+1 + •
») + e-^dtoXi + + αω-i^-i

+i + + aknxn)ak + •}
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is real valued. By Lemma 3 we obtain the system of equations:

In \ n

V L ) 2-ι akjX3 \ a k — 2-ι Cίjk%kaj — V
\j=l I 5-1

for k = 1, 2, ••-, n — 1.
For every real number β, let U be a diagonal matrix whose first

diagonal element is e~ίβ and the rest is one. In place of Hr we sub-
stitute UH'U~\ Then the resulting matrix elements are changed only
for the first row and first column; and the subsequent form of equa-
tions (1) are:

/ n \ n

( Σ ^ije~iβxj)a1 - γkajιe~ifixιaj = 0
\j=2 / j=2

ttibiβ^a?! + Σ a*;&;W ~~ (^ikeiβxk^i + Σ ^ fcx^ ] = 0
5 = 2 5 = 2

for fc = 2, 3, , n — 1. With any fixed (xl9 xi9 , xn) where xά Φ 0, j =
1, 2, •••,%, we shall show that this system is linearly independent for
some /S; equivalently we show that the following matrix is rank n — 1:

2-x ai3e X:

— a12e
ίβx2

-aίke
ίβxk akιe

iβx1 Σ
5=2

β

If we take the first w — 1 columns, we obtain a square matrix
and its determinant is a polynomial P(eί/5) of degree n — 2. The coef-
ficient of the ei{n~2)β term is obtained by finding the determinant of
the following matrix:

5=2

— aί2e
iβx2 a2le

ίβx1 0
xk

0
For k = 2, 3, , n — 1, we add akle~ίβ/akl multiple of k-th row to the
first row. We obtain by the condition that aιk = akl a matrix of non-
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zero diagonal elements and whose entries above diagonal are zero.
Thus the polynomial P is not identically zero and the original matrix
has rank n — 1 for some β. Thus we may assume that the system
(1) is linearly independent. This implies that the normal vector
(a19 a2, , an) is uniquely determined up to a multiple of constant.
The proof is complete.

THEOREM 2. Suppose that H is a hermitian operator on X, then
either there is real valued function hel^ such that

Hf= hf for all feX

and \\H\\ = ||&||oo or else X is a Hilbert space. Conversely for every
real valued function hel^ the above formula defines a hermitian
operator on X.

Proof. The converse is the content of Lemma 2. Assume that
there is a hermitian operator H on X which is not diagonal, then
Lemmas 7 and 9 imply that the function F defined on En, given by
F(xί9 x2, , xn) = || (x19 x2, , xn) || — 1, is differentiate at points of
S'. So that the supporting hyperplane at geS' is given by tangent
place and the system (1) can be replaced by

k = 1, 2, , n — 1. Observe that the function Σ?= 1 x\ satisfies this
system. Let x° — (x°u x°2f , x°n) be a point on the unit ball and
Σ?=i(&S)2 = K for some K> 0. For all other xeS' which is on this
sphere we have

F(x) = F(x°) + ( grad F = \ ± ^ds
i as

where T = (dxjds, dxjds, , dxjds) is the unit tangent vector. If
F(x) Φ 0, since grad F. T is continous, then there is a sQ such that
x(so)eΓ and grad F(so).T(so) Φ 0. But T(s0) at x(s0) is on the tangent
plane to the sphere at x(s0) and grad F(s0) is normal to this plane,
this is a contradiction. Therefore F(x) — 0 and all xe S' such that
Σ?=i %l = K are on the real unit ball. As the surface T is continuous,
this equation gives the set of points on T.

This will suffice to imply that Xn is a Hilbert space, since an
inner-product on it can be found to give the original norm. The ab-
solute continuity of the norm thus implies that X is a Hilbert space.
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If X is not a Hubert space, then every H on X is real diagonal and
the rest is clear.

THEOREM 3. Suppose U is an isometry from X onto itself and
assume that X is not a Hilbert space. Then there is a fixed uni-
modular function u and an isomorphism T of atoms such that

Uf(.) = u(.)f(T.) for all feX.

Conversely such a transformation always defines as isometry on X.

Proof. The line of argument follows that of Theorem 5 below.
u is unimodular because of the symmetry condition on X.

4. Reflexive Orlicz spaces* Let LMΦ be a reflexive Orlicz space
defined by the convex function Φ. We assume that Φ is everywhere
finite. Suppose that the measure is finite.

LEMMA 10. [5, Lemma 6]. Let H be a bounded hermitian opera-
tor on LMΦ. If Ωf, Ω" are a.e. disjoint, i.e., μ(Ωf Π Ω") = 0, let χ' and

χ" be their characteristic functions; then \ Hχ'r = 0 if and only if

L
LEMMA 11. [5, Th. 9]. Suppose H is as above, and μ is purely

nonatomic, then either there exists a real valued function hel^ such
that Hf'= hf for all feLM and \\H\\ = ||/&|U o r e^se LMΦ — L2.

Let (Ω, Σ, μ) be a general measure space and decompose LMΦ —
L'MΦ + 1>MΦ where L'MΦ are functions on nonatomic part and lMΦ are
functions on purely atomic part.

LEMMA 12. Suppose H is as above, then either LMΦ is L2 or else
L'MΦ and lMΦ are both invariant under H.

Proof. Assume that LMΦ is not a L2 space. Let Ωf be a nonzero
atom and χ' its characteristic function. Suppose that Hχ' is not zero

on a nonatomic set Ω", and \ Hy' Φ 0. Take χ" to be the charac-
Ji2"

teristic function of Ω". Then for a ^ 0 we obtain the equality as in
the proof of Lemma 11 [see 5]:

ψ( 2 ) = aψ) =

where Ψ — 1/2(Φ+ + Φ~) and Φ+, Φ~ are the right and left hand de-
rivatives of Φ respectively. Since Ω" is nonatomic, we may replace



ISOMETRIES OF CERTAIN FUNCTION SPACES 243

Ω" by subset of Ω" with arbitrarily small measure, so that

Then Φ(t) — ct2 and LMΦ is actually a L2 space. This contradict our
hypothesis, Hχf e lMΦ.

Conversely, if Ωtr is nonatomic and χ" its characteristic function,

then by Lemma 10, ί Hχ" = 0 if and only if \ Hχ' = 0 where Ωr is
JΩ' }Ω"

any atom. The previous result shows that Hχ' e lMΦ for every atom

Ω'. Hence [ Hχ" = 0. Therefore Hχ" e L'MΦ. Since the step func-
tions are dense in their respective subspaces, both UMΦ and lMΦ are
invariant under H.

THEOREM 4. Suppose H is a bounded hermitian operator on LMΦ

which is not a L2 space, then one of the following three cases holds:
(1) lMΦ is a Hilbert space.
(2) lMΦ contains a two-dimensional Hilbert space but is not a

Hilbert space.
(3) There is a fixed real valued function hel^ such that Hf=

hf for all fe LMΦ and \\H\\ = \\h ||TO.

Proof. By Lemma 12 and Lemma 11 it is enough to consider the
restriction Hf of H on lMΦ. If lMΦ does not have a two-dimensional
Hilbert subspace, the H' is real diagonal by Lemma 6 and case (3)
follows.

REMARK. Let μ be a σ-ίinite measure and Ω — U?=i ®n where
{Ωn} is a fixed increasing sequence of measurable sets with finite mass.
Suppose that for each n, Pn is the projection onto the subspace Xn

of functions restricted to Ωn. Hn = PnHPn is hermitian. As LMΦ has
absolutely continuous norm, we have for g e LMΦ \\ Hg — HP%g \\ —• 0 as
n-+ oo, and \\Hg - Hng \\ ̂ \\Hg- HPng \\ + || HPng - H%g ||, so that
Hg — lim% Hng. Thus we show that Theorem 4 holds for ^-finite
measure as well.

Let Lb

MΦ be the set of all feLMΦf]Loo. L^ forms a *-algebra
under the ordinary conjugation with the set of elements {χ%: χn charac-
teristic functions of Ωn} satisfying \imnfχn — f for all feLMΦ. L\IΦ

contains this sequence. Suppose that lMΦ is not a Hilbert space and
contains no Hilbert subspace. Then the following is true.

LEMMA 13. Suppose that U is an isometry of LMΦ. Then there
is a ""-isomorphism p on L^ such that Ug = uρ(g) for all g e Lb

MΦ,
where u Φ 0 a.e.
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Proof. By Theorem 1 and Theorem 4 we have for all g e Lb

MΦf

limn p(g)Uχn = Ug. It is enough to show that Uχn converges a.e. to
a nonzero function u. Since p is an isomorphism, it sends characteris-
tic functions onto themselves. Define Tω = ω', where p(χω) = χω,.
For every n ^ 1,' UHXnU~l - HHχ%) = Hzτo%, so that U(χn) = χTΩnUχn.
That is Uχn = 0 on £? — T£?%. Similarly U(χΩn_Ωm) vanishes on
J2 - T(Ωn ~ΩJ = Ω-(TΩn- TΩm) for 1 ̂  m ̂  n; therefore E7χn = C/χm

on T ^ and lim% Z7χw = % exists a.e.

Assume that ω is a measurable subset of TΩ such that 0<μ(ω)<
oo and 16 — 0 on ω. For every Λ e Lh

MΦ, Uh — up(h) = 0 on ω. L5/Φ is
dense in L^φ, so that with every feLMΦ, there is a sequence {/J in
L5/α> such that /»--*/ as ^ - ^ o o . Since the norm is absolutely con-
tinuous, there is a subsequence {fnk} such that ϊ//nΛ —> Uf a.e. Thus
Uf=0 on ω. But Z7 is onto and χω is in the range of U. Hence u
is nonzero a.e.

DEFINITION. A regular set isomorphism of a measure space (Ω, Σ, μ)
will mean a mapping S of Σ into J? defined modulo set of measure
zero, satisfying: (i) S(Ω - ω) = SΩ - Sω. (ii) S(U?=i <o%) - Uϊ=i Sα>,
for disjoint sets {ωn}. (iii) μ(ω) = 0 if and only if μ(Sω) = 0.

LEMMA 14. T, defined as in the proof above, is a regular set
isomorphism of the underlying measure space; and it induces a linear
transformation on LMΦ{f{.)~+f{T~1.)).

Proof. It is routine to show that T is regular. Let feLMΦ be
a ^ / < b on a measurable set ω and zero elsewhere. Assume that
{fn} is a sequence of step functions whose values lying between a and
b on ω and zero elsewhere, such that fn—+f as w--» oo. Then Ufn =
up(fn) converges to 17/ = w/0(/) as n —• oo. There is a subsequence
up(fnk) converging to up(f) a.e. Since w Φ 0, p(/njfc) —• /0(/) a.e. We
denote the step function p(fnj) as fnk{T-\). Then a ^f%k{T-1.) < b
on Tω; p(f), the a.e. limit of fnk(T~\), has the same property. We
shall let this function be g. For any nonnegative function / of LMΦ1

let ωn = {x: n ^ f(x) < n + 1} and /w be the restriction of / to ωn.
Then gn is n^ gn < n + 1 on !Yow and zero elsewhere. Since T is re-
gular, we can compose these functions to be a function g; and denote
it by f(T~~1.). Extend this definition to negative and then complex
functions. The mapping so defined is clearly linear.

Combining the results, we obtain the following isometry theorem:

THEOREM 5. Let U be an isometry from a reflexive Orlicz space
LMΦ = UMΦ + 1MΦ onto itself. Suppose that LMΦ Φ L2, then U can be
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decomposed into UΊ + U2 where Uι and U2 are isometric on UMΦ and
lMΦ respectively. Moreover one of the following three cases holds.

(1) lMΦ is a Hilbert space.
(2) lMΦ is not a Hilbert space but contains a two-dimensional

Hilbert subspace.
(3) There is a regular set isomorphism T of the underlying

measre space and a fixed a.e. nonzero function u such that

Uf(.) = u(.)f(T~\) for all fe LMΦ .

Proof. We first show that U decomposes. For all real function
h e L», U~ιHh UL'MΦ s L'MΦ by Lemma 12. Hence Hh UL'MΦ S UΠMΦ. If
UUMΦ §£ L'MΦ, then there is a characteristic function χ of some atom
{a} such that Ug = χ with some g in L'MΦ. Without loss of generality
we may assume that g is a characteristic function of a nonatomic set
ω. For two disjoint sets ω', ω" and χ', χ" their characteristic func-
tions, || U(χ' + aχ") || = || Uχ' + aUχ" || = || χ' + χ" || where | a \ = 1 and
o) — ωf U <o". Thus C7χ' and Uχ" cannot be both nonzero at {a}. Since
ω is nonatomic, we may replace it by subset of arbitrarily small
measure; Ug = 0. This contradicts the fact that χ Φ 0. Hence UL'MΦ £Ξ
L'¥Φ; simiarly U~ιUMΦ S I # ^ . U{L'MΦ) = L\ίΦ. It follows that U 7 ^ S Zi¥ί>

with an application of Lemma 12.

Now if lMΦ is not a Hilbert space and does not contain a two-
dimensional Hilbert subspace, then Lemma 2 and Theorem 4 imply
that H is a hermitian operator on LMΦ if and only if it is of the form
as stated in case (3) of Theorem 4. Hence case (3) holds for all g in
Lh

yiΦ by Lemma 13 and Lemma 14. Since L\IΦ is dense, the proof is
thus complete.

As a special case of the theorem, we record the following result
as a corollary.

COROLLARY. With the conditions as before and assume that the
atoms in the measure space have equal mass, either

(1) There is a regular set isomorphism T and a fixed a.e. non-
zero function u such that Uf(.) = u(.)f(T~\) all f in LMφ, or else

(2) Uι is of the form as stated in (1) (T and u in this case
are defined only on the nonatomic part) and U2 is unitary on lMΦ

which is a Hilbert space.

REMARK. UX is always characterized in (3) of the Theorem 5 if
LMφ is not a L2 space.

5* An example* The following example shows that the Theorem
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3 does not hold if the symmetry condition is not present. It also
shows that isometries other than the type in Theorem 5 occur if the
atoms in the underlying measure space have unequal mass.

Let (£?, Σ, μ) be a measure space with contains two atomic sets
mι and m2 each with measure 16 and at least one other measurable

ψ(t)dt where
o

(2ί 0 < t < 1/2
ψ(t) = ^~

the obtained LMΦ is not a Hubert space. Specifically the two dimen-
sional subspace on {m2, m3} is not a Hubert space, because the convex
curve {(y, z): 16Φ(\y\) + Φ(\z\) = 1} is not an ellipse. Now write LMΦ =
lλ + l2 where l2 is the two dimensional space of functions vanishing
on Ω-im^ m2) and l1 of those being zero on {m19 m2}. Define U= UΊ+ U2

where U2 on l2 in matrix form is

1/2

1 1

and UΊ is identity on llm Then for any LMΦ such that | | / | | = 1, we
have 0 rg {/(mj |, |/(m2) | g 1/4, so that

,) |) + Φ(\ Uf(m2) |)} + ( Φ(\ Uf\)
JO—{m1.m2}

I /(m2) |2} + [ Φ
JΩ—[m1,m2}

Therefore || Uf\\ = || / || = 1. C/ is isometric.
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INJECTIVE HULLS OF SEMI-SIMPLE MODULES
OVER REGULAR RINGS

A. K. TlWARY

The object of this paper is to provide an explicit construc-
tion of the injective hull of a semi-simple module over a
commutative regular ring.

The existence of injective hulls of an arbitrary module M and
their uniqueness upto isomorphism over M was shown by B. Eckmann
and A. Schopf in 1953 [6]. But only in few cases these hulls have
been described explicitly [1, 2].

In the special case when the ring is regular as well as Noetherian,
the problem is already solved since over such a ring every module is
known to be semi-simple [9] and hence is its own injective hull [11,
10]. To begin with we show that every monotypic component of the
module is injective and then prove a topological lemma about 7\-spaces.
The Zariski topology of the maximal ideal space of the basic ring being
T19 we make use of the lemma to obtain the desired construction of
an injective hull of the module. We show by an example that a semi-
simple module over a regular ring need not always be injective and
obtain finally a necessary and sufficient condition for the injectivity
of the module.

DEFINITION 1. A ring R is called (von Neumann) regular if for
every ae R, there exists an element x e R such that axa = α. This
condition reduces to a2x = a if R is commutative. A Boolean ring is
an example of a commutative regular ring. It is well known that a
commutative ring R with unit is regular if and only if every simple
lϋ-module is injective [11],

Throughout this paper we shall consider R to be a commutative
regular ring with unit 1. Let Ω denote the set of maximal ideals of
R. For each aeR define Ωa by Ωa = {Pe Ω\ a$ P}. It follows that
Ωa Π Ωb = Ωab. Thus Ω can be made into a topological space with
{Ωa I a e R} as the system of basic open sets. This topology of Ω is
known as the Zariski topology. Ω is clearly a TVspace since if P
and Q are any two distinct points in Ω, there exists aeP — Q which
implies that Ωa is a neighbourhood of Q not containing P.

DEFINITION 2. Let M be a semi-simple ϋ?-module. For any simple
submodule S of M, there exists exactly one PeΩ with S = R/P. The
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sum of all those simple submodules of M which are isomorphic to
R/P, will be denoted by MP and will be called the R/P-monotypίc
componet of M. The support of M, to be denoted by Supp (M) is
the set of all those maximal ideals P in Ω for which MP is nonzero.

In our discussion M will always denote a semi-simple i?-module
with supp (M) = S. As usual for any function /, the symbol supp (/)
will mean the set of all those elements in domain (/) for which
f(x) φ 0. We shall write E = H(M) to express the fact that E is an
injective hull of M. Where no ambiguity can arise, we let H(M)
stand for an arbitrary injective hull of M. If a is any cardinal num-
ber and L any module, the sombol a (•) L will stand for the external
sum of a copies of L.

THEOREM 1. For any PeS, the associated monotypic component
MP is an injective module.

Proof. Let a be the length of MP and T a set with | T | = a.
Then MP ~ a ® RIP = E. Let π be the set of all functions from T
into R/P. Now each factor R/P of π being injective [11], π is in-
jective; hence there exists an H(E) £ π. Without loss of generality
we can take a to be an infinite cardinal. Assume E is not injective.
Then EaH(E) S π. Take any element / e H(E) - E. Since H(E)
is an essential extension of E, one has Rf Π E Φ 0 which implies
0 Φ rfeE for some reR - P. As R/P is a field and f(t) Φ 0 for
infinitely many teT, we have 0 Φ (r + P)f(t) = rf(t) for infinitely
many t e T. But this contradicts the fact that rfeE. Hence E is
injective.

REMARK 1. ΐ[Pes Mp is injective since each factor MP is injective.

DEFINITION 3. Let X be any topological space and A any subset
of X. An element x e A is called an isolated point of A if there
exists a neighbourhood U oί x such that ί/Π A = {x}, i.e., if {#} is
an open set in the relative topology of A. A subset A of X is said
to be discrete if every element x in A is an isolated point of A.

LEMMA 1. Let fe ΐ[Pes MP and aeR such that 0 Φ afe ®PeS MPi

then every element in supp (af) is an isolated point of supp (/).

Proof. Let supp (af) = {P19 P2, , Pn) where Pt Φ P3 if i Φ j .
This implies t h a t there exist elements aiβPi — Pλ (i = 2, 3, •••, w).

P u t 6 = aa2az - - an. Then 6 g P1 and 6 e P for each Pe supp(/) with

P Φ Px. Hence Ωb f] supp(/) = {PJ showing t h a t Px is an isolated
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point of supp(/). Similar argument will prove that P2, * -,Pn are
also isolated points of supp(/).

REMARK 2. It follows from the lemma that the support of any
nonzero element in an essential extension of 0 P e S J l ί ? contains an iso-
lated point.

LEMMA 2. Let E be a proper essential extension of φ P £ 5 J l ί P .
Then for any fe E — (BPQSMP, supp (/) contains infinitely many
isolated points.

Proof. Since E is an essential extension of ®PeS MP and 0 Φ fe E,
we can find an element aeR such that 0 Φ afeφPeS MP. Let
supp (af) = {Plf P2, , Pn). By Lemma 1, each Pγ is an isolated point
of supp (/). Choose an element Q e supp (/) — supp (af). As Pt g Q,
there exist elements r̂  e P^ ~ Q(i — 1, 2, , n). Then

r = r,r2 . . . rn e (P1ΓΊ P 2 Π Π Pn) - Q .

It follows that 0 Φ rfeE. Since for some se R, 0 Φ srfeφPesMPi

we can apply Lemma 1 to show that the elements in supp (srf) are
isolated points of supp (/) and they are all distinct from P19 P2, , Pn.
Now supp (/) being infinite, we can find an element in

supp (/) - (supp (af) U supp (srf))

which will give rise to another set of finitely many elements isolated
points of supp (/) each being different from the ones obtained before.
Proceeding thus we get infinitely many isolated points of supp (/).
This proves the lemma.

We now prove the following topological fact about Γrspaces:

LEMMA 3. In any T^space X, if A and B are nonvoid subsets
such that A as well as every nonvoid subset of B has an isolated
point, then there exists an isolated point in A U B.

Proof. Let the complement of a subset C of X be denoted by
C. Since A is given to have an isolated point p, there exists an
open neighbourhood U of p such that U Π A = {p}. From

UΠ(Au(Bf) U'))= UΠA

we conclude t h a t p is also an isolated point of A[j (B f] Uf). IfBΠU

is empty, then p is an isolated point of A U B and so the lemma holds.

We have therefore to consider only the case when B Π U is nonvoid.
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By hypothesis B f) U contains an isolated point q which can be assumed
to be distinct from p without any loss in generality. This assump-
tion, together with the fact that X is ϊ\ implies that {p}' is an open
set containing q. Now q being an isolated point of B Π U, we have
V Π B Π U = {q} for some neighbourhood V of q. Thus we obtain

unvf) {PY n(AuB)=unvn {py n δ - M n {PY = {q}.

Since U Π V Π {PY is a neighbourhood of g, the above relation implies
that q is an isolated point of A (J B.

REMARK 3. From Lemma 3 we immediately have the following
( i ) Let B be a discrete subset of a Γrspace X and A any sub-

set of X with an isolated point, then A U B has an isolated point.
(ii) If A and B are nonvoid subsets of a TV-space X with the

property that each of their nonvoid subsets has an isolated point then
A U B has the same property.

LEMMA 4. Let A = [JieiAt where each Ai is without an isolated
point. Then A has no isolated point.

Proof. Suppose A has an isolated point p. Then peAi for some
i e I and {p} = U Π A for some neighbourhood U of p. Hence {p} —
U Π A{ contrary to the hypothesis that At is without an isolated
point. Thus A has no isolated point.

LEMMA 5. If A has no isolated point, then A, the closure of A
also has no isolated point.

Proof. Assume p is an isolated point in A with V f] A = {p} for
some neighbourhood V of p, then peAf) A' implies the existence of
an element qe Vf] AQVΠ A with q distinct from p, a contradiction.
Hence A has no isolated point.

REMARK 4. We know that the semi-simple module M = ΣpesMp
(direct) hence M ~ ®P6ls MP. Since the injective module Y[PeS MP con-
tains φP6<s MP as a submodule, it also contains an H(φPeS MP). Thus
to find an injective hull of M, it is sufficient to obtain one of (&PesMP

inside Y[PesMP. This is done in the following:

THEOREM 2. Let H = {/ eY[PeSMP\ Every nonvoid subset of
supp (/) has an isolated point}. Then H is an injective hull of

Proof. Let /, g be any two elements in H, then since
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supp (/ + g) C Supp (/) U supp (g)9 we have / + g e H by Remark 3 (ii)
following Lemma 3. Now if a e R, fe H, then supp (af) = Ωa Π supp (/)
implies that afeH. Hence H is an iϋ-submodule of T[PesMP and
it contains ®PeSMP since every nonvoid subset of a finite set is dis-
crete. Now let 0 ΦfeH, then supp(/) is nonempty and hence con-
tains an isolated point P so that for some

aeR, supp (af) = Ωa Π supp (/) = {p} .

Thus 0 Φ afe QPeS MP. Hence H is an essential extension of
®PesMP.

As to the injectivity of H assume by way of contradiction that
H has a proper essential extension E. Then Ha E gΞ Y[P£S MP.
Take feE,f$H. Then there exists a nonvoid subset of supp (/)
without isolated points. Denote by X, the union of all those subsets
of supp (/) which have no isolated points. By Lemma 4, X has no
isolated point. Let Y — supp (/) Π Xf where Xf is the complement
of X in S. Then Y is nonvoid since by Remark 2, Lemma 1, supp (/)
contains an isolated point which cannot belong to X. Thus supp (/) =
X U Y is a decomposition of supp (/) into disjoint nonempty subsets
X and Y. Moreover every nonvoid subset of Y contains an isolated
point for otherwise it will have to be contained in X which is not
possible. Now for any subset A £ supp(/), define fA to be the func-
tion such that

UP)=\f{P) i ΐ P e A

( 0 if PeS - A

we can then write / = FA + / r . Since supp(/Γ) = Y, one has fγ e H
and hence from fx=f — fγ, it follows that fx e E. The fact that
fx is a nonzero element in an essential extension E of (&PesMP, then
implies that X — supp (fx) has an isolated point. We thus arrive at
a contradiction. Hence H is injective. This completes the proof.

COROLLARY 1. ΐ[PesMP is an injective hull of (BpesMP if and
only if every nonvoid subset of S has an isolated point. In particular
if S is discrete in Ω, then T[PesMP = H(M).

Proof. If S has the property that each of its nonvoid subsets
has an isolated point, then for every fe ΐ[Pes MP, supp (/) has the same
property. Hence by Theorem 2, ΐlPeS MP = H(®PeS MP). On the other
hand let ΐlPeS MP = H(®PeS MP). Suppose that some non-empty subset
A of S has no isolated point. Then A must be an infinite set. We can
find a function fe ΐlPeS MP with supp (/) = A. Then /g φPeS MP and
hence fφO. Since ΐ[PesMP is an essential extension of ®FesMP, by
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Remark 2, supp(/) has an isolated point contrary to the assumption
that A has no isolated point. Hence every nonvoid subset of S has an
isolated point. The last part of the corollary follows immediately from
the fact that every element in a discrete set is an isolated point.

COROLLARY 2. // S contains only principal ideals, then

Proof. Let Ra be any maximal ideal in S. If P in S is dif-
ferent from Ra, then α g P since aeP would mean Ra £ P, hence
Ra = P, a contradiction. Regularity of R implies that a = a2x for
some xeR. Since 0 = α(l — ax) belongs to every P in S, 1 — ax be-
longs to every element in S different from Ra. Also 1 — ax g Ra
since other wise 1 e Ra. It follows that Ω1^ax ί l S = {Ra}. Thus every
element in S is an isolated point. By Corollary 1, we have JJPes MP —
H(φPeSMP).

REMARK 5. For any module M over a regular and Noetherian
ring R, ΐ[PesMP = H(@PeSMP) = ®PeSMP since every ideal of R is
a principal ideal [9] and every i?-module is injective [10, 11].

COROLLARY 3. There exist semi-simple modules over a regular
ring which are not injective.

Proof. Let RQ be the two-element Boolean ring {0, e0), I an in-
finite index set and R, the set of all functions f:I-^>R0. Then R is
a complete Boolean ring and hence a commutative regular ring. For
each a el, define Pa by Pa — {/ 6 R \ f{ά) = 0}. It is easily seen that
Pa is a maximal ideal of R[Ί]. Let M — ®aBIRjPa. Then M is a
semi-simple module with Supp (M) — {Pa \ a e I). Take any Pao e Supp(M)
and define / by

if a = a0

if a Φ a,

then feR - Pao and fePβ for all βel with β Φ a,. Thus

which implies that Supp(M) is discrete. Hence by Corollary 1,
Uaei(R/Pa) = H(@aQτ (R/Pa). The fact that / is infinite then shows
that (Baei(R/Pa) is not injective.

COROLLARY 4. // S = A u A U D2 U U Dn where A has an
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isolated point and D^i = 1,2, , n) are discrete sets, then JJPeS MP =
H(M).

Proof. It follows immediately from Lemma 3 and Corollary 1.

In Corollary 3 we have a concrete example showing that not every
semi-simple 12-module is injective. It is therefore worthwhile to ask
under what conditions a semi-simple iί-module is injective. The fol-
lowing theorem gives a characterisation for the injectivity of a semi-
simple module.

THEOREM 3. M is injective if and only if S has only finite dis-
crete subsets.

Proof. Let M be injective. Assume that D £Ξ S is an infinite
discrete subset. We can find fe]JPes MP with supp(/) = D. Since
D is infinite, f£(&PeSMP. The fact that supp(/) is discrete implies
by Theorem 2, that fe H(φPeS MP) = 0 P e S M P and so we get a con-
tradiction. Hence S contains only finite discrete subsets.

Conversely suppose that S has only finite discrete subsets. Assume
that If is not injective. Then (&PeSMP has a proper essential ex-
tension E inside ΐ[PeSMP. Hence for any feE — φ P e s M P , supp(/)
contains an infinite discrete subset by Lemma 2. This contradiction
then proves that M is injective.

Added in Proof.

REMARK 6. Under the assumptions of Theorem 3, S is a compact
subset of Ω.

Proof. Let S^Ui&IΩH so that S = Ui&I(S Γ\ Ωa.) where we
assume without loss of generality that each S Π Ωa. is nonvoid. For
each ί in /, pick one P{ from S Π Ωa. and let A be the set of all such
P^ Then Ωa. Π A = {PJ for each i in /. This implies that A is a
discrete subset of S and hence by Theorem 3, A is finite. Consequently
S is compact.

As a consequence of the above remark, we obtain as a corollary
of Theorem 3, the following result of J. Levine, announced in an
abstract in the Notices:

COROLLARY. (Levine) If an injective module M over a com-
mutative regular ring R is a direct sum of simple submodules, then
there are only finitely many nonisomorphic simples in the sum.

Proof. Let M* — Σ P Xp be the sum of nonisomorphic simple
submodules in the direct sum decomposition of M. Then for each XP1
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there exists exactly one P in S with XP isomorphic to RjP and hence
the iί/P-monotypic component of M* is XP. Moreover, M* being a
direct summand of M, is injective and, therefore, by Remark 6, its
support S* is compact. Any nonvoid subset of S* also has this pro-
perty since it is injective. We propose to show that S* is discrete.
Take any P in S* and let {P}' be the complement of {P} in S*. Then
{Py being open and compact, we have {P}' = U*elSei, where Sc. =
Ωe. Π S*. Now, Ci in R implies that there exists x4 in R with c{ = c\x{

i = 1,2, * ,n. Put di = 1 — c ^ . Then from c ^ = 0, it follows that
d = d ^ dn belongs to every Q in S*, different from P and does
not belong to P. Hence {P} = Sd. Thus every point in S* is an
isolated point as was required. By Theorem 3 we have S* finite.

REMARK 7. Theorem 1 is a special case of a more general Pro-
position of C. Faith [Proposition 3, Rings with ascending condition on
annihilators, Nagoya Math. J. 27 (1966), 179-181]. Let a module M
be called Σ-ίnjectίve if it is injective and every direct sum of copies
of M is also injective. Then Proposition 3 of Faith has the following
corollaries:

COROLLARY 1. Let R be any ring, and let M be any injective
simple module. Then if M is finite dimensional over the field K =
End MR, then M is Σ-injective.

COROLLARY 2. // R is any commutative ring, and M is an
injective simple module, then M is Σ-injective.

Theorem 1 is a special case of Corollary 2 when R is a regular
ring.

REMARK 8. Corollary 3 of Theorem 2 provides an example of a
semisimple module over a commutative regular ring which is not in-
jective. C. Faith has sketched an example of a simple module over
a noncommutative regular ring which is not injective [Chapter 15,
"Lectures on Injective Modules and Quotient Rings" Springer Verlag,
New York 1967].

I should like to express my grateful thanks to the referee for
suggesting the addition of Remarks 6, 7 and 8 in proof.

This paper is a part of a doctoral dissertation submitted to
McMaster University in 1966. I should like to express my indebted-
ness and grateful thanks to Professor B. Banaschewski under whose
guidance this work was done.
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CONCERNING CONTINUA NOT SEPARATED BY ANY
NONAPOSYNDETIC SUBCONTINUUM

ELDON J. VOUGHT

Certain theorems that apply to compact, metric continua
that are separated by none of their subcontinua can be gene-
ralized and strengthened in those continua that are separated
by none of their nonaposyndetic subcontinua. For those of
the former type, if the continuum is aposyndetic at a point,
it is locally connected at the point. The same conclusion is
possible if the continuum is not separated by any nonaposyndetic
subcontinuum. Also, if a continuum is separated by no sub-
continuum and cut by no point, it is a simple closed curve.
A second result of this paper is to prove that if no non-
aposyndetic subcontinuum separates and no point cuts the
continuum, then it is a cyclically connected continuous curve
in fact this yields a characterization of hereditarily locally
connected, cyclically connected continua.

A third theorem characterizes an hereditarily locally
connected continuum as an aposyndetic continuum that is
separated by no nonaposyndetic subcontinuum. This is a
somewhat stronger result than the known equivalence of
hereditary local connectedness and hereditary aposyndesis.

A continuum is a closed, connected point set and the theorems
of this paper are true for those continua that are compact and metric.
If x is a point in the continuum M, then the continuum is aposyndetic
at x if for every point y in M — x, there exists an open set U and
continuum H such that xe UaHcM — y. Ifikfis aposyndetic at
x for each point x in M, then M is aposyndetic, and M is nonaposyndetic
if there is a point x in M such that M is not aposyndetic at x. By
this definition a degenerate continuum is an aposyndetic continuum.
The set S in M is said to separate M if M — S is not connected and
is said to cut M if for some pair of points x,yeM — S, every sub-
continuum of M intersecting both x and y must also intersect S. If
every pair of points in M is contained in some simple closed curve
lying in M, then M is cyclically connected. The continuum M is
hereditarily locally connected if M is locally connected and every
subcontinuum of M is locally connected, and M is hereditarily apo-
syndetic if it as well as each of its subcontinua is aposyndetic. In
what follows, a subcontinuum of M is aposyndetic or nonaposyndetic if,
with the relative topology from M, it is aposyndetic or nonaposyndetic
respectively.

Bing has proved that if a continuum that is separated by no
subcontinuum is aposyndetic at a point, it is locally connected at the
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point [1, Th. 2]. The next theorem shows that the same conclusion
follows if the continuum is separated by no nonaposyndetic sub-
continuum.

THEOREM 1. Suppose the compact, metric continuum M is sepa-
rated by no nonaposyndetic subcontinuum. If M is aposyndetic at
x, then M is locally connected at x.

Proof. The continuum M is aposyndetic at each point of M — x
with respect to x. To see this let y be any point in M — x. Since
M is aposyndetic at x there exists a continuum H such that
xeH°(z Ha M- y. If M- H is connected then y e M- Ha M-Ha M- x
and M is aposyndetic at y with respect to x. Suppose that M — H —
A + B, a separation, with y in B. Now H + B is a continuum and
if B is connected, then yeBaBaM — x and again Mis aposyndetic
at y with respect to x. So let B = C + D, a separation, with y in
D. Now D + i ϊ is a continuum separating M into A and C. Hence
D + if is aposyndetic at 7/ with respect to x and therefore so is M.

In the proof that M is locally connected at x no generality will
be lost by assuming x to be a nonseparating point of M. For if x
separates Λf, then each component C of M — x is an open set, C + x
is a continuum with x a nonseparating point, and the proof would
be complete by showing that C + x is locally connected at x.

First let us show that M is connected im kleinen at x. Let K
be a closed set in M such that # ί K. Because M is aposyndetic at
each point of K with respect to x, every point of K is in the interior
of a continuum that does not intersect x, and by compactness K is in
the interior of the sum of a finite number of these continua. For
each pair of this finite collection of continua, there exists a continuum
in M — x intersecting both, due to the fact that x does not separate
and hence does not cut M. Therefore, K lies in the interior of a
continuum L that does not contain x.

We need to show that there is a continuum H such that
xeH° a HczM — K. Assume such a continuum does not exist.
Then M — L is not connected and is the sum of separated sets A and
B with x in A. The point x is not in the interior of the component
C of A containing it, so there exists a sequence of points xlf x2,
converging to x each point of which belongs to a different component
d of A. Let Kι be an irreducible subcontinuum of C* + L from x{

to L. Now Ki + L separates M and Kt + L is therefore aposyndetic.
Because iSΓ* is irreducible from â  to L, K^L is degenerate and i^ is
an aposyndetic continuum. Since every point in K{ — (xt + L) is a
cut point of ϋΓ{, everyone of these points must be a separating point
of Ki and hence Ki is an arc. Let K' = lim sup i^ (it is possible
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to construct the K s so that ϋΓ' Σ ^ ί — 0) . Now let us show that
the continuum K' + Σ Γ̂* + I* 1B n o t aposyndetic at x. Let yt = K{-L
and let y be a limit point of ^ #2, in K' L. If in If' + Σ ^ + L
there were a continuum JBΓ with x in its interior that did not contain
y, then there would exist an integer n such that

(H-KΛ) + (H-[(K' + ΣKi + L)- Kn])

is a separation of H. So If' + Σ %i + ^ ^s n °t aposyndetic at a? with
respect to ?/. Hence this continuum does not separate M and there-
fore A + L = K' + ̂ Kt + L. So A + L is a continuum not aposyndetic
at x with respect to y. But this means that M is a continuum that
is not aposyndetic at x with respect to y. For if, on the contrary,
H is a continuum in Msuch that xe H° cz Ha M — y, then H J5 =£ 0
or else A + L is aposyndetic at a? with respect to y. Due to the fact
that L is an aposyndetic contiuum (it separates M), H L is contained
in the sum S of a finite number of continua of L each of which
misses y. Now H — S — P + Q, a separation, with xePczA and
QaB. But P + S has a finite number of components since S does
and therefore x lies in the interior of the component of P + S con-
taining x. This means that A + L is aposyndetic at a? with respect
to y which is false. Thus M cannot be aposyndetic at x and this
contradiction shows that M is connected im kleinen at x.

Finally, let us show that M is locally connected at x. Let C be
a subcontinuum such that M — C = A + B, a separation of M (if no
such subcontinuum exists, then M is locally connected at x as re-
marked earlier). If xeC, then because M is connected im kleinen at
x, there exists a continuum iJ such that xe H° c H and C + H
separates ikf. So C + J3Γ is aposyndetic and so is M at each interior
point of C + H. Therefore M is connected im kleinen at each interior
point of C + H which means that M is locally connected at x. If
xeA and A + C is not irreducible about x + C, then by the above
argument, ikf is locally connected at x. On the other hand, if A + C
is irreducible about x + C, then it is well known that M is locally con-
nected at x. This completes the proof of the theorem.

In [4, Th. 5] it is shown that the notions of hereditary aposyndesis
and hereditary local connectedness are equivalent. The next theorem
uses the result of Theorem 1 to establish a stronger characterization
of hereditarily locally connected continua.

THEOREM 2. A compact, metric continuum M is hereditarily
locally connected if and only if M is an aposyndetic continuum that
is separated by no nonaposyndetic subcontinuum.

Proof. Let us prove the sufficiency. The necessity is trivial.
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Since a continuum is hereditarily locally connected if and only if it
is hereditarily aposyndetic, it is sufficient for us to prove that M
contains no nonaposyndetic subcontinuum. Assume that M contains
the nonaposyndetic subcontinuum N. The continuum M is aposyndetic
and hence, by Theorem 1, is locally connected. Let y be any point
in M — N, let U be an open set such that ye £7c UczM — N, and
let C be the component of M — y containing N. Let Vly V29 •••, Vm

be connected open sets of C such that (U — U) C is a subset of
Σ Vi and Vr(y + N) = 0 , 1 ^ i <: m. Denote by A*, 1 ^ i ^ m, an
arc that intersects Vi9 does not contain y, and has only an end point
in common with N.

Because N is not an aposyndetic continuum, there exist points p
and q in N such that N is not aposyndetic at p with respect to q.
Now in the continuum N' = N + Σ F<; + Σ A , the set Σ V{ + Σ Λ
has only a finite number of points in common with N and therefore
N' cannot be aposyndetic at p with respect to q. Furthermore the
set (U — U)-C separates Minto sets E and F with yeE and NcF.
Since the continuum N' contains (U — U)-C but not y, then Fc:N'
because Nr is nonaposyndetic and cannot separate M. But Λί is locally
connected at p; consequently there is a connected open set V in M
containing p and lying in F such that q g V. This means that N' is
aposyndetic at p with respect to q and this contradiction establishes
the theorem.

Another result due to Bing [1, Th. 10] is that a continuum is a
simple closed curve if it is separated by no subcontinuum and cut by
no point. Next this is generalized to continua not separated by any
nonaposyndetic subcontinuum.

THEOREM 3. A compact, metric continuum M is both hereditarily
locally connected and cyclically connected if and only if M is separat-
ed by no nonaposyndetic subcontinuum and cut by no one of its
points.

Proof. Again the proof of necessity is trivial so let us turn to
the sufficiency. All we need to prove is that the continuum is aposynde-
tic because then, by Theorem 2, M will be hereditarily locally connected
and since no point cuts M, then no point separates M and continua
of this type are cyclically connected [3, p. 138].

Let us suppose that M is not aposyndetic at a point x in M.
According to a theorem of Jones' [2, Th. 18] if no point cuts M, then
M is aposyndetic on a dense subset of M. Let y, z be two points at
which M is aposyndetic. By Theorem 1 there exist continua H and
K neither of which contains x such that y e H° c H, ze K° c K, and
H-K= 0. If M — (H + K) is connected, then x is in the interior
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of the continuum M — (H + K) that separates y from z in M. So
this continuum and therefore M itself is aposyndetic at x. Thus we
can assume that M — (H + K) = A + B, a separation of M. One of
the sets, H + A + K or H + B + K, must be a continuum. Let us
show that the other is also a continuum. Let H + A + K be a con-
tinuum and suppose that H+B + K=P + Q, a separation, with
HdP and KaQ. Now If + A + ϋΓ is not irreducible about H + K
or else points in A will cut points in P from points in Q. Let Γ be
a proper subcontinuum of £Γ + A + K containing H + K. If P — H Φ
0 ΦQ- K, then the continua H + A + K, P+ T and Q + Γ all separate
Λf and hence are aposyndetic continua. This means that M is aposyndetic
at each point of A + B. But this is impossible since x lies in A + B.

Suppose P — H — 0 so that P — H, Q — K + J3, and assume that
the point of nonaposyndesis x is in 2?. The continuum Q is not irreducible
about x + K or else in M a point of 5 will cut x from a point of
K. Let T be a proper subcontinuum of Q containing x + K. By the
above argument Q — T is connected. Let the decomposable continuum
Q — T be written as the sum of continua X and F. Both X and F
must intersect T or else as is in the interior of a continuum X + T
or F + T that separates Λf, and hence M is aposyndetic at x. So
X. T Φ 0 Φ Y- T and therefore each continuum X + T and F + T
separates M. Thus each is aposyndetic, so is the sum Q, and this
means that M is aposyndetic at x. Hence x cannot lie in B and must
be in A. If A is connected, then A separates M and M is aposyndetic
at x. On the other hand, if A is not connected, then each point of
A is in the interior of some continuum that separates M and hence
is in the interior of an aposyndetic continuum. This shows then that
M is aposyndetic at each point of A + B and means that the supposition
that H + B + K is not connected is false. So H + B + K as well as
H + A + K is a continuum.

If jff + A + X" and H + J5 + K are both irreducible about H + K,
then let us show that the upper semi-continuous decomposition iJ',
whose elements are points of A together with the sets H and K, is
an arc. To do this let us use the result that if the compact, metric
continuum M is irreducible about two of its points a and b such that
no point of M (including a and 6) cuts any other point of M from
a + 6, then M is an arc [1, Th. 6]. In our case because M contains
no cut points, no point of A cuts any other point of A from H H- K
in H + A + K. In addition neither H nor iΓ cuts the other from a
point of A in if + A + K. This means that the decomposition Hf is
an arc and since H + B + K is also irreducible about H + K, then it
can be similarly decomposed into an arc K'. But then M would be
aposyndetic at each point of A + B which is impossible. So we can
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assume that H + A + K or H + B + K is not an irreducible continuum
about H + K.

Let N be an irreducible subcontinuum of H + A + K about H + K
and let p be a point of A — iV at which M is aposyndetic. Let q be
any point of B at which M is aposyndetic. Now M is connected im
kleinen at both p and q. Therefore there exist continua P and Q such
that p e P° c P, g e Q° c Q, P c A - (AT + x) and Q c B - x. By the
above argument M — (P + Q) = C + D, a separation of M, where
P + C + Q and P + Z> + Q are continua. Since iV-(P + Q) = 0 , AT
lies in C. So (P + D + Q) iV = 0 and therefore P + D + Q c A + ΰ .
This is impossible since peP-A and qeQ B. Thus the assumption
that M contains a point at which M is not aposyndetic has led to a
contradiction and the proof is complete.

COROLLARY (Bίng). If the compact, metric continuum M is
separated by no subcontinuum and cut by no point, then M is a simple
closed curve.

This follows easily as an application of Theorem 3.

BIBLIOGRAPHY

1. R. H. Bing, Some characterizations of arcs and simple closed curves, Amer. J. Math.
70 (1948), 497-506.
2. F. B. Jones, Concerning nonaposyndetic continua, Amer. J. Math. 70 (1948), 403-413.
3. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloquium
Publications, vol. 13, New York, Amer. Math. Society, 1932.
4. E. J. Vought, A classification scheme and characterization of certain curves, Colloq.
Math. 20 (1968), 91-98.

Received January 9, 1969.

CALIFORNIA STATE POLYTECHNIC COLLEGE

POMONA, CALIFORNIA



PACIFIC JOURNAL OF MATHEMATICS
Vol. 31, No. 1, 1969

DECOMPOSITIONS OF INJECTIVE MODULES

R. B. WARFIELD, JR.

The main results of this paper concern decompositions of
an injective module, either as a direct sum of submodules or
as the injective envelope of a direct sum of injective sub-
modules. This second kind of decomposition can be regarded
as an ordinary direct sum (coproduct) in a suitable Abelian
category—the spectral category of the ring. The results are
therefore put in the context of Abelian categories, and the
main result is that in an Abelian category satisfying axiom
Ab-5 and with infinite direct sums, any two direct sum decom-
positions of an injective object have isomorphic refinements.

This is particularly strong if decompositions into indecomposable
injectives exist, and it enables one to classify the injective modules
over a valuation ring. Such strong results as this are not available
for more general classes of modules, but in § 3 the methods of Crawley
and Jόnsson are exploited to obtain results in certain cases; for ex-
ample, for modules which are direct sums of countably generated
modules. The Crawley-Jόnsson results are put into the context of
category theory and an example is given (involving relatively injec-
tive modules) to show how the hypotheses can be weakened by work-
ing in a subcategory of the category of jβ-modules.

A remark should be made on the types of decompositions we con-
sider for injective modules in § 2. For injective modules over Noetherian
rings, ordinary direct sums yield excellent results, due primarily to
Matlis [7]. In contrast, Faith and Walker [2] have shown that if R
is a non-Noetherian ring, there does not exist any set of injective
modules such that any injective module can be imbedded in a direct
sum of modules isomorphic to members of this set. In the spectral
category, however, reasonable decompositions always exist (Theorem
2 below). The spectral category was introduced by Gabriel and Oberst
in [4] and exploited in [10]. The author is indebted to Professor J.
E. Roos for pointing out the connection between these two papers and
the work reported here.

We do not consider Cartesian product decompositions of injective
modules, since product decompositions simply do not have the neces-
sary uniqueness properties. For an example let Q and Z denote the
additive groups of rationale and integers, respectively, and (Q/Z)p the
^-primary component of Q/Z. Then

IL (Q/Z)p -QxTl, (Q/Z)p

so that we have two product decompositions of an injective Z-module

263
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into indecomposables, and these decompositions are in no sense
equivalent.

1* Decompositions in Abelian categories* We will work in
Abelian categories satisfying the usual axioms (as in MacLane [6, pp.
248-257]) together with the following three conditions:

(i) The set-theoretic axiom [6, p. 253] that for each object A
there is a set of subobjects, such that any subobject is equivalent to
a member of this set.

(ii) We assume that arbitrary direct sums (coproducts, cocar-
tesian products) exist.

(iii) We assume the axiom Ab-5 in the following form: if A{ is
direct family of subobjects of an object C, and B is a subobject of C,
then

(UΛ)ns-U & n B).

In clarification of condition (iii), we should remark that if A{(i e I)
is a family of subobjects of an object C then their injection homomor-
phisms induce a unique homomorphism from their direct sum (coproduct)
into C, and the image of this homomorphism is the union (or join)
of the A{, and is denoted (J A{. Similarly, if A and B are subobjects,
then A Π B is the kernel of the natural homomorphism C —+ C/A © C/B.

DEFINITION. An Abelian category satisfying the conditions (i),
(ii), (iii) above will be called a reasonable Abelian category.

In general one can work with direct sums in a reasonable Abelian
category just as one would with direct sums of modules. The notion
of a decomposition of an object into a direct sum of subobjects, A =
(BieiAif has the obvious interpretation, and two decompositions are
isomorphίc if the summands are isomorphic in pairs. If also A —
φ i e t 7 Bd, we say the second decomposition is a refinement of the first
if there is a surjective map φ: J—+I such that Bό^Aφ{j), from which
it follows that the induced morphism

is an isomorphism. The direct sum of two objects A and B will be
written A © B , and if A and B are subobjects of C with A Π B = 0,
then their join is isomorphic to 4 0 5 and will be denoted 4 © β .

Two more remarks should be made: First, if C = A@B, and
D S C, then C = D φ B if and only if πΛ o ψD is an isomorphism.
(Here πA is the natural projection C —> A, and φD the natural injection
D -* C.) Secondly, if C = A 0 B and AQD (another subobject), then
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A is a summand of D and D = A@(DΓ\B).
We recall that a subobject L g i is essential if for any subobject

SQ Ay if S Φ 0, then S ί l i ^ O . If Z> is an injective subobject of A
and JD is essential, then Ώ — A.

LEMMA 1. // A = 0 { e z i t (in any reasonable Abelian category)
and S is a subobject of A, then S is essential in A if and only if
S Γ) At is essential in each At.

Proof. That the condition is necessary is clear. Conversely,
suppose that B Φ 0 is a subobject of A. By (iii), there is a finite
subset I* SI with B Γ) (0 ί e/*^;) Φ 0. Therefore, to show that our
condition implies S is essential, we need only show that S is essential
in finite subsums. By iteration, we need only show that if S g Cι 0 C2

and S Π Ci is essential in Ci9 then S is essential in Cι@C%. Let B Φ 0
be a subobject of d 0 C2 and let T^ and π2 be the projections to CΊ
and C2. Let ψ:B-*Cι be the restriction of ^ to B. If BQC2 then
clearly β ίl S ^ 0, so we assume this is not the case, in which case
im (φ) Φ 0. Hence im (ψ) Π S Φ 0, so we let

B' = Φ~ι (im (φ) Π S) .

Since B1 Φ 0, we need only show B' Π S Φ 0. Let -f be the restriction
of 7Γ2 to J3\ By the same argument as before, we may assume that
Bf is not contained in Clf so that im (ψ) Φ 0. We let

B" - ψ-1 (im Or) Π S)

and it is clear that B" Φ 0, £ " s S, so that B Π S Φ 0 as desired.

LEMMA 2. (The exchange property) If M is an object in a reason-
able Abelian category and D is an injective subobject, and M =
(BieiMt, then there subobjects M-SMif so that M = 2 ) 0 (© ίe/M/).

Proof. Let S g t f be a subobject chosen maximal with respect
to the following properties:

(i) s^φ^ SnMt
(2) SΓ\D = 0.

To show such an S exists note that (i) enables us to apply Zorn's
lemma and (iii) guarantees that an ascending union of subobjects satis-
fying (2) still satisfies (2). Let Ml = S Π Mt. Then we claim M =

Let φ be the natural map from M to M/S, and let ψ be the
restriction of φ to D. Condition (2) above implies that ψ is a mono-
morphism, so im (ψ) is an injective subobject of M/S. We need only
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show that im(τ/r) is essential, which is an easy consequence of Lemma 1.

LEMMA 3. Let D be an injective object in a reasonable Abelian
category, and A a subobject of D. Then there is an injective sub-
object E of D with AQE, and A essential in E.

Proof. By axiom (i), we can choose subobjects E and S of D
such that E is maximal with respect to the property that A is
essential in E, and S is maximal with respect to the property that
S Π A — 0. Let φ:D—>D/S be the natural homomorphism. If <ρ' is
the restriction of φ to E, then φ' is a monomorphism. We therefore
have a homomorphism carrying im (φ') back to E, and since D is in-
jective, this extends to a homomorphism ψ: D/S —• D. Since EQ im (ψ)
and A is essential in im (ψ), we have E = im (ψ). E is therefore a
summand of D, with projection ψoφ, and hence E is injective.

THEOREM 1. If D is an injective object in a reasonable Abelian
category, then any two direct sum decompositions of D have isomor-
phic refinements.

Proof. We will consider two decompositions of D and we assume
the summands are well ordered, so that we can take ordinal numbers
as our indices and write

T) __ /TN Λ _ /TN T>

We will construct subobjects Ciό{i < N,j < M) of D, such that D —
φ ί y dj, Ai = (BJ<M Cij9 B3 ~ φi<N dj. The construction will be carried
out by induction on pairs of indices (n,j). For each pair (n, j) we
will want the following statements to hold:

l(n,j). For i < n there are subobjects A^ Sί A* and for i < n,
k < j , the subobjects Cik have been constructed.

, 3) ®i<n Ai = \®i<% Aij) © (φi<% ®k<j ^ik)'

, j). (®k<j Bk) n (®i<n ®k<3 Cik) is essential in both ((Bk<j Bk) Π
\®i<n Ai) and φ^<w φ^<y C^

Suppose that the C^ have been constructed so that all of the
statements l(w, j), 2(n, j), 3(n, j) hold for n^NJ^M. Then 2(JV, M)
and 3(JV, M) together imply that

and hence by 2(n, M) and 2(w + 1, M)
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and comparing these two statements, we conclude that

since two complements to the same summand are isomorphic.
We now need to note that if D is injective and A, B are sum-

mands of D with Af] B essential in both A and B, and if D = A 0 C ,
then D — B@C also, and in particular, A = B. To apply this, we
note that for any index j ,

(Φfc<i Bk) Π (®fc<i ®i<Λ- Cifc)

is essential in both, so that the first summand may be replaced by
the second. Doing this, and then applying the same remark for the
index j + 1, we obtain the following expressions

D = (©fc<j φ 4 <^ Cijc) 0 B

~ (φt<i φi<JV (^ik) φ (φi

Comparing middle terms, we obtain as before

as desired.
We now complete the proof by carrying out the construction of

the subobjects Ci3 in the required way. We first use induction on the
index j . The construction is completed for the index j if subobjects
Ai3- have been constructed for all i < N, and subobjects Cik for i < N,
k < j , so that the statements l(ί, k), 2(i, fc), 3(i, A;) holds for all i ^ N,
k ^ j . Suppose, now, that the construction has been completed for
all indices k, k < j , and that j is a limit ordinal. Conditions 3(iV, &)
and 3(iV, fc + 1) show that Cik is isomorphic to a summand of β^, so
®k<j Cik is isomorphic to a summand of Z), and hence is injective.
2(i, A:) and 2(i + 1, A:) imply that the projection of @k<j Cik into A{ is
a monomorphism, so φ f c < J C{A; is isomorphic to a summand of A€. Summ-
ing over i, we find that φ ί < w ®k<3 Cίk is isomorphic to a summand of
D (for all n < ΛΓ) and hence is also injective. We can therefore apply
the exchange property (Lemma 2) for this subobject and obtain sub-
objects Ai3 (i < N) such that

D — (Φ ί < Λ r φfe<i Cik) φ (Φi<Λτ Aij) .

This is not quite good enough, but if we do this inductively for each
index n in turn, we can also guarantee that

®i<n Ai — (φΐ< % φfc<y 0{ft) φ (φi<w Aij)

for all n < N, so that for all n < N, 2(n, j) will hold. Condition
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S(n, j) is immediate (since if K{ is an ascending family of subobjects
of an object K and L; is an ascending family of subobjects with
LiQKijLi essential in Ki9 then axiom (iii) implies that \J L{ is es-
sential in U Ki). This completes the induction at a limit ordinal.

To complete the proof, we must show that if the constuction has
been completed for an index i, it can be completed for j + 1. We
do this by induction on n, establishing l(n, j + 1), 2(n, j + 1),
3(w, j + 1). Suppose that n is a limit ordinal, so that the Aifi+1 are
constructed for all i < n and Cίk for i < n, k < j + 1. Applying
2(i, i + 1) for all i < w and taking an ascending union we see that
2(w, i + 1) is immediate, and 3(%, j" + 1) is also immediate because (as
we saw at the end of the previous paragraph) ascending unions pre-
serve "essentialness".

We must show, finally, that if we can carry out our construction
so that l(n,j + 1), 2(n,j + 1), 3(n,j + 1) (and also l(n + l,j), 2(n + 1,jf),
S(n + l,i)) hold, then we can construct An>j+11Cn>j so that l(n + 1,̂  + 1),
2(n + 1,3 + 1), 3(^ + l,j + 1) also hold. We have

and the equation remains true if we add An on the left and

Anj 0 (©*<; Cnk)

on the right. We choose Cnj in φ i < n + 1 A{ to be maximal with respect
to the properties that

(i) cnj n [(φ i < n Aj e (φ f c < i cnfc)] = o
(2) (φj<n4-i φ&<y+i Cίfc) Π (φ&<i+i βft)

is essential in ®i<n+ι φ f c < J +i Cifc. It is clear from Lemma 3 that Cnj

is injective. 3(w -f 1, j>* + 1) is clearly satisfied, and applying the ex-
change property (for the summand ( φ ί < % A{) 0 (φfe<J+i Cnifc) in φ ί < w + 1 Λ)
we can find a complement ΛΛfi+1 so that 2(n + 1, 3' + 1) also holds,
thus completing the induction.

2* Applications*

COROLLARY 1.1. Any two direct sum decompositions of an in-
jective R-module have isomorphic refinements.

To obtain more useful results, we consider another sort of decom-
position.

THEOREM 2. Let R be an associative ring with 1. Then any
injective R-module is the injective envelope of a direct sum of in-
jective suhmodules isomorphic to E(R/I) (for varying I) where R/I
is a cyclic left R-module and E(R/I) denotes the injective envelope
of R/I.
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Proof. For injective envelopes see [6, p. 102]. We choose a sub-
set S of D such that

(1) the elements of S are nonzero,

(2) the elements of S are independent (that is, the submodule
generated by S is the direct sum of the cyclic modules [x], generated
by the elements x in S),

(3) S is maximal with respect to properties (1) and (2). We now
let B be an injective envelope in D of the submodule generated by S.
B is the injective envelope of a direct sum of cyclic modules, and also,
by breaking the process into two stages, the injective envelope of a
direct sum of injective submodules of the form E(R/I). It is easy to
see that B = D.

THEOREM 3. The following conditions on an associative ring R
with 1 are equivalent:

( i ) If I is a left ideal of R, then either I is irreducible or
there are left ideals A, B, different from I, such that A is irreducihe
and I = Af) B.

(ii) Any injective left R-module has a nonzero indecomposable
summand.

(iii) Any injective left R-module is the injective envelope of a
direct sum of indecomposable injective R-modules.

Proof. Much of this is due to Matlis [7]. Suppose that E is the
injective envelope of a cyclic submodule [x] and E = £Ί 0 E2 where
both Ex and E2 are nonzero. If in this decomposition x = x1 + xif

then it is easy to see that E€ is the injective envelope of [x{] and
o(χ) — o(xλ) Π o(x2), where o(x), and o(Xi) are the order ideals of x and
Xi respectively. Further, we see that o(x) Φ O(^) for either i. We
conclude that E(R/I) is indecomposable if and only if / is an irredu-
cible ideal, and E(R/I) has an indecomposable summand if and only if
/ satisfies the conclusion of condition (i) above. Since any injective
iϋ-module has a summand of the form E(R/I) for some left ideal I,
the equivalence of (i) and (ii) is now clear. Clearly (iii) implies (ii)
and the proof of the converse is essentially the same as the proof of
Theorem 2.

DEFINITION. Let R be an associative ring with unit. J?(R) is

the category whose objects are injective JS-modules with morphisms

defined by

(A, B) = Horn (A, £)/Hom0 (A, B)
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where Hom0 (A, B) is the subgroup of i?-homomorphisms whose kernel
is essential in A.

THEOREM 4. ^(R) is a reasonable Abelian category in which
all short exact sequences split. Elements of κJ^(R) are isomorphic in
κJ^(R) if and only if they are isomorphic as modules, and if A{(i e I)
is a family of injective modules, then their direct sum in the category
κJ^(R) can be identified with the injective envelope of their module
direct sum.

Proof. Most of the proof consists of trivial verifications which
will be omitted. We take it as obvious that <J^(R) is an additive
category satisfying the set theoretic axiom (i). The direct sum of
two objects in <J^{R) in just their direct sum as lϋ-modules. If
f: A~+B, g: B—> A establish an isomorphism in ^(R) between A and
B then gof restricts to the identity function on some essential sub-
module of A so gof is an automorphism of A, and similarly fog is
an automorphism of B, so A and B are isomorphic as modules.

Let us identify the kernels and cokernels. Let fe Horn (A, B) and
let [/] denote the correspoding element of Mor^ (A, B). If K is the
kernel of /, and E is an injective envelope of K in A, then E is a
kernel for [/]. We can write A = E@ F (in ^(R) or as iu-modules).
Let π be the projection of A onto F and / ' the element of Horn (F, B)
induced by /. Then [/] = [/'] © [π] since / and f °π agree on the
essential submodule K + F. This is the factorization of [/] into the
product of an epimorphism and a monomorphism required in an Abelian
category. Finally, f'(F) is a summand of B so B/fr(F) is injective,
and if φ is the natural homomorphism from B to B/ff(F) then [φ] is
a cokernel for [/]. This shows that ^(R) is an Abelian category,
so all that remains is to check conditions (ii) and (iii).

The statement on direct sums is a consequence of Lemma 1. For
(iii), note that if we have a directed family of ^^(iί)-subobjects of
an injective module C, we can choose representative submodules A^i e I)
for these subobjects so that the family A{ is a directed family in the
usual sense. \JAi (in the category <J^(R)) can be identified with any
injective envelope of the ordinary union of the A{. Similarly, Af]B
(in the category ^(R)) can be identified with any injective envelope
of the ordinary intersection. Both of these are well defined in J?(R).
To prove that

in the category ^(R), note that the term on the left is any injective
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envelope of B D K K where is an injective envelope of the ordinary
union of the A{. If this ordinary union is denoted by A, then since
A is essential in K, the term on the left represents an injective enve-
lope of A Π B. Similarly, the term on the right represents an injec-
tive envelope of A Π B, from which the result follows.

We should remark that this theorem carries over to any reason-
able Abelian category in which injective envelopes exist.

COROLLARY 4.1. Any two representations of an injective module
as the injective envelope of a direct sum of injective submodules
have isomorphic refinements.

COROLLARY 4.2. Let M be an injective module which is the in-
jective envelope of a direct sum of indecomposable injective submodules
Ei(iel). Then any two such decompositions are isomorphic, and
furthermore, if N is an injective submodule of M, there is a subset
J^I such that M=

The second half of this corollary follows from Lemma 2, in the
category ^(R). Theorem 3 gives conditions to which this corollary
applies. Another such condition, in terms of transfinite Krull dimen-
sion, is given by Gabriel [3, pp. 382, 386], A similar result in [10].

We recall that a commutative ring R is a valuation ring if it is
an integral domain and for any two nonzero elements r and s of R,
either r divides s or s divides r. It follows that if / and J are ideals,
either IQJ or JξΞ=I. Hence any ideal is irreducible, and it follows
that the injective envelope of a cyclic module, E(R/I), is always in-
decomposable. One can show further [8] that E(R/I) ~ E(R/J) if and
only if there are nonzero elements r, s of R such that rl = sJ, (or
equivalently, I and / are isomorphic as modules). Applying Theorem
2 and Corollary 4.2, we obtain the following.

COROLLARY 4.3. An injective module over a valuation ring is
the injective envelope of a direct sum, of indecomposable injective
modules, and any two such decompositions are isomorphic. An in-
jective module is indecomposable if and only if it is of the form
E(R/I), and E(R/I) s E(R/J) if and only if I = J.

Other consequences, not directly involving injective modules, also
follow from these results. For the following, let R be a commutative
integral domain. We recall that a torsion-free module is reduced if
it has no nonzero injective summand, or equivalently if no nonzero
element is divisible by all elements of R. If A is a submodule of a
module B, A is RD-pure in B if for all r e R, rA = A n rB. (RD here
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tands for"relatively divisible".) A module M is J?Z)-injective if it is a
summand of any module which contains it as an i?D-pure submodule.
By [12, Corollary 2] the functor Horn (Q/R, •) gives a category isomor-
phism between the category of torsion, injective J?-modules and the
category of reduced, torsion-free i?i>injective β-modules. (Here, Q is
the quotient field of R. This result is a corollary of the category iso-
morphism theorem of Matlis [9, Th. 3.4].) We also have a notion of
jβJD-injective envelope for this theory, and we can actually write down
an explicit formula. If A is a reduced torsion-free module, its RD-
injective envelope is Horn (Q/R, E(A (g) (Q/R))), where E(M) is the
ordinary injective envelope of M. All of the previous results for
injective modules now carry over because of the category isomorphism
theorem mentioned above, but we content ourselves with a version of
Corollaries 4.2 and 4.3.

COROLLARY 4.4. If M is a reduced torsion-free RD-injective
module over an integral domain, and if M is the RD-injective
envelope of a direct sum of indecomposable RD-injective modules,
then any two such decompositions of M are isomorphic. If the domain
is a valuation ring, any reduced torsion-free RD-injective module
is the RD-injective envelope of a direct sum of ideals, and any two
such representations are isomorphic.

The only additional remark needed to complete the proof of this
is that if R is a valuation ring, the i?J9-injective envelope of an ideal
I,IΦR, is Horn (Q/R, E(R/I)) since R/I is essential in Q/I, and there
is a natural isomorphism Q/I = (Q/R) ® I.

3* The Crawley-Jόnsson theorems* We wish to review here
some important results on direct sum decompositions due to Crawley
and Jόnsson [1] and to place them in the context of Abelian categories.
We should remark that Crawley and Jόnsson work with general
algebraic systems, and their results are valid in many categories that
are not even additive, so that our results do not contain theirs. Our
proofs are valid in somewhat more general categories than reasonable
Abelian categories, however—in particular in any full subcategory
which is closed under summands and direct sums (for example, in the
category of torsion-free Abelian groups), and the hypotheses are often
weakened by restricting to a subcategory.

DEFINITION. An object D in an Abelian category has the exchange
property if for any object A, if we have

A = D'®B = ®ieIA{
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with Π = D, then there are subobjects A g A{ such that

Similarly, D has the finite exchange property if this conditions holds
whenever the set I is finite.

THEOREM 5. [1, Th. 4.2]. If M is an object in a reasonable Abelian
category and M = @iQI Ai — 0 i e j B3 where the sets I and J are count-
able and the subobjects A{ and B5 have the exchange property, then
these two decompositions have isomorphic refinements.

The proof is a diagonal argument and we refer to [1, pp. 817-818]
for details. The countability hypothesis seems to be essential. It can
be removed, however, by placing a countability hypothesis on the
summands. Crawley and Jόnsson therefore assume their summands
are countably generated, and the following definition provides a sub-
stitute for this in a general setting.

DEFINITION. An object D in an additive category is small if for
any direct sum A = φ ΐ € I Ai% with projections πi9 and any morphism
f:D-+A, we have 7^0/= 0 for all but a finite number of indices i.
D is σ-small if it is a countable ascending union of small subjects.
D is countably small if for any direct sum A = ®ieiAίy and f:D—>
A, we have π{of= 0 for all but a countable number of indices i.

LEMMA 4. Let N be a summand of an object M in a reasonable
Abelian category such that M is the direct sum of countably small
subobjects. Then N is also a direct sum of countably small subobjects.

This is essentially equivalent to [5, Th. 1]. σ-small can be sub-
stituted for countably small, and suitable versions for larger cardinals
also are valid.

LEMMA 5. Let M be an object in a reasonable Abelian category
and M = φieIA{ — (BjejB3, where each of the summands is countably
small. Then we can decompose I and J into disjoint, countable sub-
sets Iλ, Jλ(XeΛ), such that

Proof. We outline the proof, which is a straightforward
elementary argument. One proceeds by transfinite induction, and the
resulting set A is a set of ordinal numbers. One first proceeds by in-
duction on ordinals λ, the induction hypothesis being that for n < λ,
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the following holds: for each k < n, the sets Ik, Jk are defined, so
that

and the sets Ik, Jk are disjoint, countable subsets of / and J respec-
tively. We conclude that there is an ordinal λ such that I is the
union of the sets Ik for k < λ, and J is the union of sets Jk for
k < λ. For any k < λ, we apply the induction formula for n — k and
n = k + 1 and obtain

as desired, since both are complementary summads to φTO<& (φieik A^

THEOREM 6. // Λf is an object in a reasonable Abelian category
and M is the direct sum of countably small subobjects, then any two
direct sum decompositions of M into summands having the exchange
property have isomorphic refinements.

Proof. By Lemma 4, any decomposition refines into one in which
the summands are countably small. Since a summand of an object
with the exchange property again has the exchange property, one
may assume that all summands involved are countably small. By
Lemma 5, we may then assume that the index set is countable, and
in this case the result follows from Theorem 5.

THEOREM 7. [1, Th. 7.1]. Let M be an object in a reasonable
Abelian category which is the direct sum of σ-small subobjects having
the exchange property. Then any two direct sum decompositions of
M have isomorphic refinements.

Proof. By Theorem 6, it suffices to show that if N is a sum-
mand of M, then N is also a direct sum of tf-small subobjects having
the exchange property. By Lemma 5, it suffices to prove this in the
case where M = φf=i A{ and each A{ is σ-small, in which case N is
also σ-small. We can therefore find subobjects Si(i = 0,1, •) of N
with Si small, So = 0, Si+12 Si9 and such that N is the union of the
S^ We proceed by induction on k, choosing for each k a subobject
Nk, beginning with No = 0. We assume by induction that the Ni are
independent, that φίU Ni is a summand of N, that Sk C (BΪ=iN%f and
that each Nk has the exchange property. Clearly if we can carry out
this construction, the theorem is proved, since N = φΓ=* N^

By the exchange property for φ ^ 1 Ni9 there are submodules
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Al^Ai such that

M = (0frί Nύ 0 (θ~ ^ ) .

Choose n(k) such that

Applying the exchange property to the object on the right, assuming
that M = iV0 B, we obtain complementary subobjects iV? C iV, Bk S 5.
Let iV' be the intersection of JV with

(θfcί Ή) θ (0?=? A ) θ 5, .

Clearly, Sk S i\^. Let JV* be a complement to φfif Nt in N*'. Since
JVjfe is isomorphic to a summand of ®£ff A', JV/: has the exchange
property, and since N — NίQNί, the induction is completed.

COROLLARY 7.1. Le£ M be an R-module which is a direct sum
of countably generated injective modules. Then any summand of M
is a direct sum of injective modules and any two direct sum decom-
positions of M have isomorphic refinements.

In the case where M is a direct sum of countably generated in-
decomposable injective modules, this is contained in results of Faith
and Walker [2].

To give another example, we return to our earlier remark that
the above proofs are valid in any full subcategory of a reasonable
Abelian category which is closed under summands and direct sums.
We apply this to the category of torsion-free reduced modules over
an integral domain.

COROLLARY 7.2. If a reduced torsion-free module M over an
integral domain is a direct sum of RD-injective modules, then any
two direct sum decompositions of M have isomorphic refinements.

Proof. It is clear that a torsion-free i?D-injeetive module is
algebraically compact in the sense of [11]. Algebraically compact
modules have very strong completeness properties which make it easy
to check that a reduced torsion-free i?J9-injective module is small in
the category of reduced torsion-free modules. The result will follow
if we can prove the exchage property for such modules. By [1, Th. 8.2]
(or by an elementary argument) we may assume that all of the sum-
mands involved are torsion-free and reduced, and using the smallness
of the lϋD-injective modules, we may assume that the total number of
summands involved is finite. Since the operation of taking iϊZMnjective
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envelopes preserves finite direct sums, we may assume that all of the
modules involved are Z?Z)-injective. Using the category isomorphism
theorem mentioned in connection with Corollary 4.4, the result now
follows since injective modules have the exchange property.

4* Some unsolved problems. It would be nice to weaken or
remove the countability requirements in §3. In particular, it would
be nice to weaken the hypotheses of Theorem 7 and make them agree
with those of Theorem 6. By analogy with Theorem 1, one might
hope to remove all such hypotheses by assuming that the object being
decomposed also has the exchange property.

One would like to prove theorems similar to Corollary 4.4 for
other classes of modules defined by relative injectivity properties
similar to that defining i?ZMnjective modules. One theorem in this
direction which does not follow from our methods is the classification
theorem for complete Abelian groups. A reduced Abelian group is
i?.D-injective (or algebraically compact) if and only if it is complete and
Hausdorff in its Z-adic topology. Any such group is the completion
of a direct sum of indecomposable complete groups, and any two such
decompositions are isomorphic. The indecomposable complete groups
are just the cyclic groups of prime power order and the additive
groups of p-adic integers. A suitable generalization of the results of § 3
might include similar theorems for modules over other rings.
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