Vol. 31, No. 2, 1969

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 307: 1  2
Vol. 306: 1  2
Vol. 305: 1  2
Vol. 304: 1  2
Vol. 303: 1  2
Vol. 302: 1  2
Vol. 301: 1  2
Vol. 300: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
On commutative rings over which the singular submodule is a direct summand for every module

Vasily Cateforis and Francis Louis Sandomierski

Vol. 31 (1969), No. 2, 289–292
Abstract

A commutative ring R with 1 over which the singular submodule is a direct summand for every module, is a semihereditary ring with finitely many large ideals. A commutative semi-simple (with d.c.c.) ring is characterized by the property that every semi-simple module is injective.

Mathematical Subject Classification
Primary: 13.50
Milestones
Received: 18 February 1969
Published: 1 November 1969
Authors
Vasily Cateforis
Francis Louis Sandomierski