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In several recent papers a new approach has been developed
in the theory of approximation of automorphisms. Using this
approach, Katok and Stepin have developed a new method
which is very powerful and which has enabled them to solve
several problems which had remained open for some time.
Among the results they obtained is a characterization of auto-
morphisms which are not strongly mixing in terms of the
speed with which they can be approximated. Counter-examples
may be given to show that the speed of approximation cannot
be used to characterize those automorphisms which have con-
tinuous spectrum, In this paper certain related concepts are
developed which do make it possible to deal in general with
automorphisms which have continuous spectrum, and to dis-
tinguish those which are not strongly mixing from those which
are strongly mixing among them. Since it is well-known that
automorphisms have continuous spectrum if and only if they
are weakly mixing, the result serves to distinguish between
strong and weak mixing.

2. Notation and preliminaries. Let (X, &, 1) be the unit inter-
val, the Lebesgue sets and Lebesgue measure. A map T of X onto
X is an automorphism of X if it is invertible and measure preserving,
i.e., if AeF then T'A, TAcF and u(A) = ,(TA) = u(TA). If BeF
we say that a map T of B onto B is an automorphism of B if it is
an automorphism with B regarded as a measure space, that is with
respect to (B, & N B, pz) where p; is defined for measurable subsets
C of B by setting p(C) = p¢(C)/;(B). As usual all statements are
understood to hold almost everywhere, and we’ll omit this phrase.

LemmA 2.1. [3]. The set Z of automorphisms of X is a topo-
logical group with respect to the weak topology, that is, the topology
obtained by taking neighborhoods to be finite intersections of sets of
the form {S:Se z, (SE/N TE) < ¢}, E€g.

In what follows it will be convenient to let 0-B= @,1-B=B
for sets Be . In what follows also, the topological space we refer
to is %, equipped with the weak topology.

DEFINITION 2.1. We say that & is a tower if &={C, 1=
1, ---,q}, an ordered collection of pairwise disjoint measurable sets
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of the same measure whose union 4 = 4, < X. Note that we haven’t
assumed that A = X. If Be @ by B(¢) we mean a set of the form

g:la(i)ciy a(’&) =0 or 1: i = 17 e q

for which the measure p(B A UL, a()C;) is minimized. If &(n) =
{C.;y2=1, .-+, q(n)} is a sequence of towers, we write &(n) —e¢ as
n — co provided p(B A B(5(n)) — 0 as n— o for each set Be .

DerFINITION 2.2, Let ¢ ={C;,,i =1, ---, q} be a tower and let S
be an automorphism. We say that S maps the elements of the
tower almost cyclically if there exists an integer m, 1 < m < ¢ such
that the collection of sets {S*C,,k =0, ---,q} is the same as the
collection (without order) of sets which make up the tower &.

DEFINITION 2.3. Let {é(n)} be a sequence of towers. By _.2 ({(n)})
we mean the class of automorphisms S with the property that there
exists an integer N(S) such that for » = N(S), S maps the elements
of &(n) almost cyclically.

DEFINITION 2.4. Let &(1) and £(2) be towers, &) ={C,;,t=
1, ---,¢g1)} and £2) ={C,;i =1, ---,q(2)}. We write &1) < &2) if
each set of &(1) is the sum of some of the sets of £(2). We say that
a sequence of towers {£(n)} is nested if &(n) < &(n + 1),n =1,2,3, ---.

LEMMA 2.2, Let {&(n)} be a nested sequence of towers such that
E&n)y—e as m— co. Then the set of automorphisms _2 ({£(n)}) s
dense in Z.

Proof. Let TeZ/. We suppose first that T is antiperiodic, and
we need to show that in each neighborhood of 7 there is an auto-
morphism S’e 2. Let E, ---,E, €% and ¢, ---, ¢, define the neigh-
borhood, i.e., the neighborhood is given by

{S: /’C(SEl A TEI) < 61, ey ﬂ(SEk A TEk) < sk} .

It follows from [3 p.71] that for each ¢ > 0 there is a set £ and an
integer m such that the sets E, TE, ---. T™E are pairwise disjoint,
ME) < e and p(Ur, T*E) >1 — e. We next consider the partition
induced on E by the sets

{En T—lEly °t Y T—mEly EZy M Tmeyzy %y Ekr *t "y T—mEk}

and denote its elements {4, ---, A,}. It is clear that
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U T, = T*E, k=0,--,m
=1

and that each set E; N T*E can be written as the union of some of
the sets in .o = {T*A4,, ---, T*A}, k=0, ---, m. Since &n)— ¢ for
each ¢ > 0 there is an N such that each of the sets in the finite
collection .o = Ur., .%% can be written as the sum of some of the
sets in &(IN) using these sets at most once and, for each 7,1 <7 < s,
using the same number of sets to represent the sets T*4,, k=0, ---, m,
with a total error of ¢’ (in the sense of the measure of the symmetric
difference). We let &N)={C,;,?=1,---,q(N)} and define S’ on
{C,;;i =1, ---, ¢(N)} arbitrarily but so as to map C,, linearly onto
Cy,, provided C,, was used to represent T7A, and Cy,, was used to
represent T774,,j=0,---,m —1,1=1,.--,s. On the remaining
Cy.; S is defined arbitrarily but so as to have S’ map the intervals
of {Cy;t=1, .-+, qg(n)} almost cyclically onto each other. We next
extend S’ (so that it is defined on X) in stages, so as to have
S’'ec 7 ({&n)}). It is clear that by taking & and ¢’ sufficiently small,
S’ will be in the required neighborhood.

We next suppose that T is periodic of periodic m so that there
exists a set E such that the sets E, TE, ..., T™E are pairwise dis-
joint and have union equal to X. The automorphism S’ is defined as
in the anti-periodic case, so as to map Cj,, onto Cy,, provided Cy,,
was used to represent T7A4, and Cy,, to represent T7*'A4, for j =
0,.--.m—1,1=1,-.., 8. We also, however, define S’ so as to map
a set of the form C,,, onto a set of the form C,, , provided Cy,, was
used to represent T™A, and C,,, was used to represent A, also arbi-
trarily, but in such a way that S™C,, = Cy,,. It is clear that by
taking ¢ sufficiently small (¢’ is not present in this case), S’ will
again be in the required neighborhood.

To complete the proof, we consider an arbitrary automorphism T
and apply the arguments already given to its anti-periodic and peri-
odic components.

3. Principal definitions. We first give an extended version of
the type of approximation referred to in [4] as cyclic approximation
by periodic transformations with speed f(n). We have preferred to
call this type of approximation cyclic with speed f(n) since the de-
finition we give does not require that the T, be periodic.

DerFINITION 3.1. We say that the automorphism 7 admits of
(cyclic) approximation with speed f(n) if we can find towers &(n) with
Ay = A(n) © X composed of a finite number ¢(n) of measurable sets
C..CAm),i=1,---,9(n) and automorphisms 7T, defined on
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(A(n), § N A(n), 1,), for which

(1) é&n)— € as n— oo,

(2) T, maps the elements of &(n) cyelically, T.C,; = C,.iw, T =
1y M q(n - 1)) Tncn,q(n) = Cn,ly

(3) pT,#T)< flgn),
and where g, is defined for measurable subsets B of A(n) by setting
11.(B) = p(B)/( A(n)).

RemaArk 3.1. The automorphism 7, is not necessarily periodic on
A(n), although the transformation it defines on the factor space
A(n)/é(n) is and has period gq(n).

REMARK 3.2. A simple calculation shows that an automorphism
admits of cyeclic approximation by periodic transformations with speed
f(n) in the sense of Katok and Stepin if and only if it admits of
cyclic approximation with speed f(n)/2 in our sense, with A(n) = X.

DEFINITION 3.2. A sequence {n(k)} is called an m-pair sequence
if

n2k) =1+ mn@k —-1),k=1,2,3, .--.

We say that an automorphism 7T admits of approximation in m-pairs
with speed f(n) if it admits of cyclic approximation with speed f(n),
and if the sequence {q(n)}, where ¢q(n) is the number of elements in
&(n), has a subsequence which is an m-pair sequence.

We next state several results obtained by Katok and Stepin in
[4]. Since only minor modifications are needed in their proofs to ac-
count for our more general definition we refrain from giving the
proofs.

THEOREM 3.1 [4]. The set of automorphisms admitting of ap-
provimation with o fized speed f(n) contains a G; set which is every-
where dense in 7.

THEOREM 3.2 [4]. If an automorphism T admits of approxi-
mation with speed 0/n, 8 < 2, then T is ergodic.

THEOREM 3.3 [4]. If an automorphism T admits of approxi-
mation with speed 6/n, 8 < 1, then T is not strongly mizing.

THEOREM 3.4 [4]. Strongly mizing automorphisms form a set
of the first category in the group % .
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REMARK 3.3. Theorem 3.4 was originally obtained by Rokhlin
using a different method. It follows directly from Theorems 3.1 and
3.3.

REMARK 3.4. Theorem 3.2 is obtained in [4] as a consequence
of a more general result. Since we have no occasion to use it here,
we chose not to state the more general result for simplicity, although
it is also valid. Theorem 3.3 is obtained in [4] in a somewhat more
general form, using a slightly different type of approximation which
can also be put into our form. Since we make no use of the added
generality we have stated the result in this way for the sake of sim-
plicity also.

4. Main results. In this section we obtain results analogous
to Theorems 3.1, 3.3, and 3.4, for automorphisms with continuous
spectrum or what is the same thing as we have remarked, for auto-
morphisms which are weakly mixing. Theorem 4.2 is a key result,
as it implies that the theory is not vacuous and is used in the proofs
of the remaining results.

THEOREM 4.1. If the automorphism T admits of approximation
m m-pairs with speed 0/n, 0 < 1, then T is weakly mixing.

Proof. For any integer & we have that g (T*=TH=<lkp (T+T,)
so that (T = Ti™) < 6. To see this for %k =2, note that

2u(T? = T2 = p (T =T, T*+# T2) + p(T = T,, T* + T2)
=pT=7,TT,+TT,)+T+T, T+ T3)
= p(TT,+ T,T,)+ p(T+T,)
=pT# T,) + p.(T+T,) .

This implies that
(1) T = T5w) = (1 — 6)(L — 6(n))
since
(T = Ty =1 — p(T* = T3™) =1 -0,

and since ,(C) = u(C)/p(A(n)) where A(n) = U C,,;, so that we
obtain equation (1), where d(n) = p¢(D(n)), and D(n) = cA(n). The

sets of the tower &(n),C,; %=1, ---,9(n) and the complement of
their union D(n) form a partition of X we therefore have, for f(x)
a fixed eigenfunction with | f| = |»| = 1, where \ is the eigenvalue

of f(xz), that
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Fl) = z F@ e, (@) + F@om@)

where y. is the characteristic function of C. Further, since &(n) —
e, given ¢ > 0 there exists a set E = E(n)C A(n) of measure less
than ¢, g(n) constants f,, ---, f,,, and a function &(x) such that

(2) £@) = 5 (F5 + e@te, @) + SO ow(@

where |e(x)| < ¢, xeck.
Since f(x) is an eigenfunction with eigenvalue » we have that

q(n)
(3) N fx) = ;L(fj + €@)Ae;, (@) + L@ (@),
where
§(@) = o(T~"2), Cl; = T™C,.,, f@) = AT"w)

and D'(n) = T*"D(n). If we let B(n) = Ui T*"C,, ;N C,,;, equation
(1) implies that p(B(n)) = (1 — 6)(1 — d(n)) and it follows from equation
(2) that for x e cE N B(n) we have

q(n)
(4) f®) = ;l(fa + 5(37))%('%,,00;,](95) .
Further, equation (3) implies that for x e c¢T*"E N B(n) we have
qin)
(5) A f(x) = ]Z_l(fj + E@Ne, e, (@) -
Equations (4) and (5) in turn imply that
v (S e®) .
6 AN = 22 T 2 Ny e (%),
(6) ]§<f] n 8'(:{)))/&”’]“("’7(%)

on F(n) = Bn)NcENcT"E. By choosing & > 0 sufficiently small
we can make the measure of F(n) as close to 1 — @ as we like, and
we also have that |e(@)| < ¢, |€¢'(x)| <e. Since |f(x)| =1 we may
assume that |f;| =1 (T is ergodic by Theorem 3.2) and (6) implies
that on F(n)

(7) M — 1< |

where p(F(n)) > 0.

Since we have assumed that {g(n)} contains an m-pair sequence
we may apply (7) with ¢(n) = k and with ¢(n) =1 + mk to obtain in
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the first case that (|A| = 1)

|)\ll+mk - li — l)\:)\f'nk . )\'mk + ka — 1]
= ])\lmko\‘ — 1) + (xmk — )\’(m—l)k)

(8)
bk D2 - 1] - 2
1—¢

and in the second that

(9) e 1)< 2
1—¢
There two inequalities imply that
v —1] < 2(m + 1)e ,
1—-¢

from which it follows that » =1

DEFINITION 4.1. A 1-tower is a tower & (see Definition 2.1) com-
posed of subintervals of the unit interval, so that & is a 1l-tower if
E={l;,j=1,---,q} where the I,,j =1, ..., ¢ are pairwise disjoint
intervals of the same length whose union is contained in the unit
interval. The transformation T(£) induced by the 1-tower & is defined
as the linear map of I; onto I,,,,7 =1, ---,q — 1 so that the domain
of T() is Uizl I; and the range is U?-,I;, The geometric figure
which we associate with T(¢) is an ordered stack of the intervals I,
j=1,+--,q with I, on the bottom and I, on the top, so that each
point lies below its image. This enables us to regard the action of
T() as an upward flow through the stack, the flow stopping at I,
where T(&) is undefined.

A k-tower £ is an ordered collection of k& 1-towers &, -.-, &, such
that all intervals are pairwise disjoint. The transformation 7(¢)
induced by the k-tower & is defined as T(¢;) on the domain of T(&;),
j=1,+.., k. Since all intervals are pairwise disjoint, these domains
are pairwise disjoint.

DEFINITION 4.2. Let & and & be l-towers having all intervals
pairwise disjoint and of equal length, and let & ={I,, ---, I,u.},
&y ={L, -+, I,u,.. By &'& we mean the 1-tower defined by &7¢, =
{L,, +++y Ly, Lisy <+, Iywy s} SO that the stack associated with &}, is
obtained by placing the stack associated with &, on the top of the
stack associated with &. Note also that &¢, = £7¢,.

DEFINITION 4.3. Let & be a l-tower, & = {[, ---,I,} and write
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each interval I;,7 =1, ---, ¢ as the sum of % consecutive intervals of
the same length (and therefore of length 1/k, the common length of
the I;,5=1,---,9), ;=1 + --- +I%535=1,.---,q. By vk, & we
mean the l-tower obtained by setting v(k, &) = &F&} ... *&, where &, =
{It, -+, I}, 1 =1, -, k. The stack associated with v(k, &) is obtained
by splitting the stack associated with & into k consecutive and equal
substacks, and placing the second over the first and then the third
over the second until finally we place the kth substack over the first
k — 1 substacks arranged one over the other.

DEFINITION 4.4. Fix the positive integer m and define R, = R,(m)
as the interval (0,1/2m — 1), D,, = D, ,(m) as the interval (1/2m — 1,
m/2m — 1) and D,, = D, ,(m) as the interval (m/2m — 1, 1) so that D,,,
and D,, have the same length, and consequently 7(1) = (1, m) =
{D,(m), © = 1,2} is a 1-tower. We next suppose that E, and n(n) are
given and define R,., and n(n + 1) inductively as follows. We first
form v(m, n(n)) (see Definition 4.3) and then remove from the right
gide of R, an interval I(n) of length equal to the length of the inter-
vals in v(m, 7(n)), and then define

Ruyp =R, —In), 7+ 1) =v(m,nn)*oMx),

where p(n) is the 1-tower consisting of the single interval I(n) (so
that o(n) = {I(n)}).

REMARK 4.1. Definition 4.4 gives us a sequence of intervals {R,(m)}
such that for each fixed m, y(R,(m))—0 as n-— o and a sequence
of 1-towers {n(n, m)} such that for each fixed m, {n(n, m)} is a nested
sequence of towers with n(n, m) —» € as n— oo,

REMARK 4.2. The geometric interpretation of Definition 4.4 is
the following. We start with three consecutive intervals, the last
two of which have the same length. The lengths of the three inter-
vals are chosen so that they add to one and so that the length of
the first is just enough to permit the following sequence of operations.
At the outset we suppose that the last two intervals are stacked,
with the third over the second. This stack is split into m equal sub-
stacks which are stacked in order, and an extra interval is extracted
from the right hand side of the first interval. This yields an interval
and a stack (composed of 2m + 1 intervals). We then repeat, ob-
taining an interval and a stack (composed of m(2m + 1) + 1 intervals),
and so on.

REMARK 4.3. If we let g(n) be the number of elements in 7(n),
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then we have that ¢(1) = 2, ¢(2) = m-q(1) + 1, and in general that
g(n + 1) = mg(n) + 1.

THEOREM 4.2. Let m be a positive integer and let 6 > l/m.
Then there exists an automorphism T(m) admitting of approximation
i m-pairs with speed 6/n.

Proof. We define T = T(m) by setting
T = lim T(p(n, m))

where {n(n, m)} is the sequence of towers of Definition 4.4. It follows
easily from Remark 4.1 that T is an automorphism which is well de-
fined. We next define 7, on % D,,;, where

77(%) = {Dn,iy 1=1, -, Q(n)}

as T(m(n + 1)) on the domain of T(p(n + 1)) (which is contained in

i D, ), and as the linear map of D, iy Onto D,y .. If we de-
fine T, in this way, then T, maps the sets D, ;, ¢ = 1, -+, g(n) cyclic-
ally in order and we also have that

1

n T Tn = .
LT = T,) a )

Since the other conditions are satisfied by Remarks 4.1 and 4.3, we
see that T admits of approximation in m-pairs with speed 6/n, 6 =
1/m.

THEOREM 4.3. The set of automorphisms admitting of approxi-
mation in m-pairs with speed 6/n, 0 > 1/m contains an everywhere
dense G, set (tn 7 with respect to the weak topology).

Proof. Let n(n,m)=nn)={D,;t=1,---,q(n)} be as in De-
finition 4.4. Let %7, be the set of automorphisms which permute the

D,.,,t=1, .-, q(n), cyclically in any order. Define .57 by setting
7 0
%—_— {T' nT:r&Un <"—"‘—‘y n+1T7eUn1<"—'—}’
U,LLEJ//,, #al ) q(n) P ) q(n + 1)

Un+1€ #p+1

where u, and g,,, are the measures obtained when g is restricted to
U D, ; and to Ui D,.,; and normalized. A simple calculation
shows that .54 is open in the weak topology (note that the Z7, are
not assumed linear), and so &= N, U &7, is a G, set. The
automorphism 7T(m) of Theorem 4.2 is in .&¥, for all n. We know
by Lemma 2.2 that .# ({(n)}) is dense in % and since Se _7Z {n(n)}
implies that there exists an N = N(S) such that for » = N, S maps
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the intervals D, ;. .,om—, almost cyclically onto each other, it
follows that Se.&”,, n > N(S), and therefore .7 {n(n)} c .&.

THEOREM 4.4. The automorphisms admitting of approximation
in m-pairs with speed 6/n,0 = 1/m are weakly mixing, but not
strongly mixing and they contain an everywhere dense G; set (in %
with respect to the weak topology).

Proof. Follows immediately from Theorems 4.1, 3.3, and 4.3.

REMARK 4.4. Theorem 4.4 implies a result due to Halmos [2]
that the weakly mixing automorphisms contain an everywhere dense
G, set.
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