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Let ‘““{x)’’ denote the distance of the real number x from
the nearest integer. If « is an irrational number, the growth
of the sum

> Lna)t

KE<ngAK

(A is a fixed number, > 1) as K — oo depends on the nature
of the rational approximations to «. We shall find estimates
of this sum, for certain classes of irrational numbers. Part
of the motivation for these estimates is an application to
Korobov’s theory of numerical evaluation of multiple integrals,

A few years ago N.M. Korobov [8],[9] (and independently E.
Hlawka [4]) invented a number-theoretical method for the numerical
integration of periodic functions of several variables. Let E?(C),
n > 1, be the set of all functions f of s real variables having period
1 in each variable, and whose Fourier expansion

(1) fx) = 3 Clmpe=
(here x and m are s-tuples, of real numbers and of integers respec-
tively, and the sum is over all possible m) satisfies the condition

(2) |Cm) | < C(T1 max @, |mi))" .

We shall denote the product inside the parentheses in (2) by ““||m]| .
(It is not a norm in the usual sense.)
Let G, be the unit cube in s-space. Korobov considered the ap-

proximation of

I=If) = S Flx)do

@

by the sum
(3) Q) = QF Ny a@) = £ 3 fra) ;

the problem is to choose a = a(N) = (a,(N), ---, a,(N)) so that
|Q — I| will go to zero rapidly as N increases. He made the follow-
ing definition: ([9], p. 96; we have modified the form slightly).

DEFINITION. Let N, N,, --- be an increasing sequence of positive
integers. Then a sequence a(N)), a(N,), --- of s-tuples of integers is
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called an ‘‘s-dimensional optimal coefficient sequence’’ (and each a(N,;)
is called a ‘‘set of optimal coefficients mod N, ”’) if:

(1) fori=1,2, ..., each component of a(N,) is relatively prime
to N;

Vit o(m-a(N;), N;) _ Hflog’ N;
(4) (2) P VI Tm || ~O< N, )

as N;— oo, for some fixed number B; where d(p, ¢) =1 if ¢ divides
p, and is 0 otherwise. (The prime on the sum indicates that the
term with m = (0, --., 0) is omitted.)

The lowest 8 for which (4) holds is called the ‘index’’ of the
optimal coefficient sequence.
Korobov then proves ([9], p. 101):

THEOREM A. Let a(N,), a(N,), --+- be an optimal coefficient se-
quence of index 8. Then for any fe E*(C),

(5) |I(f) — QUf, N, a@V)) | < C'c 1087 N

N;
N:

where C' 1s a constant depending on s, n, and the sequence.

He further proved that if N,, N,, --- is the sequence of prime
numbers, then there does in fact exist an optimal coefficient sequence,
of index at most equal to s; thus quadrature formulas @ of the form
(8) exist for which

(6) Q- 1| = o2 X)

for the function class E*(C).

N. S. Bahvalov [1] showed that the exponent ns in (6) can be
improved to n(s — 1); L.F. Sharygin [10] showed that it cannot be
lowered beyond s — 1. The gap between n(s — 1) and s — 1 has been
closed only in the case s = 2 (and the case s = 1, which is trivial):

Using the expansion (1) in (3), we obtain

(7) Q(f) = C(0, ---, 0) + >/ C(m)i(m-a, N) .
Since C(0, -++,0) = I(f), we have, for fe E”

o(m-a, N)
lmj*

(8) 1@ —I|=3"[Cm)|d(m-a, N) < C3

It’s easy to show that
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, 0(m-a, N) _ , O(m-a, N) log** N
R E T G Sy Py o =5)
so that only the finite sum in (9) need be considered. Furthermore,
if we let b be the integer such that ba, = 1(mod N), it is clear from
(3) that @ is unchanged if a is multiplied by b and then each of its
components is reduced mod N. Thus we may take a, = 1.
Thus in the case s = 2, we have to estimate the sum

(10) SV o(m, + a;m,, N) .

Imls gl S (N —1/2) f{m]|

Now N divides m, + a,m, if and only if (m,/N) and (m.,a,/N) sum to
an integer; and then (since each m is smaller than N/2),

ng) -

(where ““{x)>’’ denotes the distance from x to the nearest integer).
For each m, 5= 0 there is exactly one m, such that é(m, + a,m,, N) = 1.
Thus (10) can be rewritten as

. N—1 az —n
b N= 5 (mm )
To estimate this we use the following result of Hardy and Littlewood

([2] - [3D:

THEOREM. If a is an irrational number, or a rational number
whose denominator (when a is expressed in lowest terms) is greater
than K, and the partial quotients of the continued fraction expan-
sion of « are bounded by a fived number M, then

CKlogK,t=1) =« CKlogK,t =1
(12) g <% 1 g

C.K* yt>1 »=1 | sin 27 na |* C.K* yE>1

where the C’s depend only on M and on t.

The left-hand inequality is stated without proof by Hardy and
Littlewood, and is in fact true without any hypothesis on the partial
quotients of a. For completeness we include a proof here (the
scheme of this proof will be used again in this paper):

Since |sin 27 |/[{x)> is bounded away from zero and from infinity,
the sum in (12) may be replaced by

(13) }i} (>t .
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Let Be(0,1) be a real number to be specified later. Partition
[0, 1] into [BK] equal subintervals (where ‘[x]’’ is the greatest
integer less than or equal to ). Some one subinterval must contain
{an} -the fractional part of an- for at least [1/B] distinet values of =
between 1 and K. It follows by substraction that for at least
[1/B] — 1 values of =,

{nay < 1/[BK] .
Choose [1/B] — 1 such values, and note that each of them contributes
at least [BK]' to the sum in (13). Now partition [0, 1] into [BK/2]
equal subintervals. We see, as before, that there are at least [2/B] — 1
values of » for which

{nay < 2/[BK],

and that at least [2/B] — [1/B] = [1/B] of them are distinct from the
n’s previously chosen. We now choose [1/B] of these new »’s;the
resulting set contributes least

1/B1(LBE1Y

2

to the sum in (13).
Repeating this process with [BK/4] subintervals, we find a second
group of n’s, distinct from the previous ones, which contributes at

least
m(E5)

Continuing in this manner for [log BK] steps, we see that
og B

> <any~ = [BK]" S, [2/Bj2".

Taking B = 1/2, the sum on the right becomes

[log K/2] 1 s
5 (3=)

which is bounded below for any ¢ > 1, and is of the order of log K
for ¢t = 1 and the inequality follows.
Returning to (11), we rewrite the sum as

(14) SESES 4+ S

m=1 m=3 m=5 m=p+1

where p is the highest power of 2 below N — 1. If we now assume
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that a, = a,(N) is such that the partial quotients of the continued
fraction expansion of a,/N are bounded by some number M inde-
pendent of N, we can apply (12) to these sums and conclude that
each one is

- {203 log N, n=1
= l2rc, , mn>1"

Since the number of these sums is < 2log N, we conclude that

N=1 —n C’ log® N n=1
15 ) < , ’ .
(15) m=1< <mN>> _{C”log N, n>1
By (8)-(11), the case n > 1 implies:

THEOREM B. (N.S. Bahvalov; L.K. Hua and Y. Wang [5]). If
N, N,, --- 18 an increasing sequence of positive integers, and a(N,),
a(N,), «+- are integers relatively prime to N, N,, --- respectively
and such that the partial quotients of the simple continued fraction
of a(N;)/N; are bounded uniformly for all ¢, then there 1s a constant
C’ such that tf fe E3(C),

(16) 1) = QU Niy (1, V) | = €10 1B
In particular, if a is an trrational number having bounded partial

quotients and p;/q; is the i’th convergent to «, then (16) holds with
N; = ¢;, a(N;) = p..

Although Sharygin’s theorem shows that (16) is best possible, it
is desirable to have a direct proof that (15) cannot be improved.
This will have implications for the ‘“index’’ of optimal coefficient
sequences. To do this it is sufficient to get lower bounds on sums
of the form occurring in (14). We thus show

THEOREM 1. Ift=1 and A > 1, and M and r are fixed positive
numbers, then

[4K] _ CKlog K, t=1
17 5y > | cRren 1ot
if the convergents p,/q,, D./q., +++ of a satisfy

(18) ¢in < Mq;

and « 1s either irrational or is a rational number whose denominator
(when « is expressed in lowest terms) is greater than AK. C =
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C(t, A, M, r) is independent of o and of K.

Proof. Set D = (4 — 1)/2. Following the proof of the left half
of (12), we see that

{DK] {log BDK] 23—-1
S, (nay~ = [BDKY 3. 2—”[ - ]

The s’th term in the sum on the right arose from the consideration
of [2¢/B]n’s-all between 1 and DK-each of which satisfies the condition

{nay <

[BDK]

we shall show that to each such » there corresponds a distinet #/,
with K < n’ £ AK, such that

19) oy < 2nay;
and it will follow that

(20) (a’n}“ BDK]‘ ’ gﬁf“z [ ];] .

To define n’, we let ¢; be the greatest denominator of a convergent
of a which is less than DK. Then

1 _ 1

W< —=7g

and by our hypothesis on the ¢’s, there is a constant E such that
q¢; > EK'". There is therefore a number N < E—'K'-Y" such that for
every one of the »n’s under consideration n + Ng; is between K + 1
and [AK]. We set #' = n + Ng;; then
28 1

n'o> < {nay + N{q,a> < .

(way 5 (nay + Moty S B +
If we now choose B to satisfy BDK = EDK'Y7, (19) will hold, and
(20) becomes

[4AK] 1 M Q81
2 <cm —t > _Z_(ED)th/r Z z—st[_E__] ,

n=K+1 s=1

where M = [1/rlog K + log ED]. Since

$o (2] S (5 +om.

the theorem follows.
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COROLLARY. If N, N, --- and a(N), a(N,), --+- are sequences
satisfying the hypotheses of Theorem B, then (1, a(N,)), (1, a(N,), «--
is an optimal coefficient sequence of index 2.

Proof. By (9), and the equality of (10) and (11),

m1’:zzz_N o(m, + ’lﬁ/f@(ﬁvz)y N)) ]l\]::i (m <ma_gvl\%z_>>ﬂl

(1)

If b, is the j’th partial quotient in the continued fraction of a(N;)/N,,
and p,/q; the r’th convergent, then

Qi = b;q; + q;-, < (b; + 1)g; < Mg;

for some constant M, by the assumptions on the a(N;). Thus the
a(N;)/N; satisfy the hypothesis of Theorem 1., with » = 1. Breaking
up the sum on the right of (21) as in (14) and using (17) (with ¢ = 1),
we see that

> C, log® N,

for some C, independent of 7. Thus

5 4(m + ma(Ny), (N)

[

log® N,

(23) N,

C,
oy

The case n = 1 of (15) is a reverse of (22), and (23) can similarly be
reversed by using (15) in place of (22); so that (1, a(N,), (1, a(Ny)), +--
is an optimal coefficient sequence of index < 2. By (23), its index is
also = 2.

It follows that for these sequences, Korobov’s Theorem A proves
much less than Theorem B. Xorobov’s proof of Theorem A seems to
leave no opening for reducing the exponent on the right side of (5)
below B. It thus seems that the concept of ‘‘index’’ for optimal
coefficients does not seem helpful for indicating the accuracy of the
optimal coefficient sequence in evaluation of integrals.

(It appears likely that any 2-dimensional optimal coefficient se-
quence is of index 2 or higher.)

Theorem 1 suggests further consideration of sums of the form

[4K]

> Lna>t,

n=K-+1
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In the following theorems A is any fixed number greater than 1.

THEOREM 2. If « is any irrational number, then

1 [4x1 1

K " {nay
as K — oco; but of f is any (however slowly) increasing function such
that lim,_., f(x) = oo, then there is an « such that

L. 1 [4XK] 1
lim inf =
k- Kf(K) n=k+1 <na>

0.

Proof. For the 1’st part, let p,/¢; be the i’th convergent of «,
and let g be a monotonic increasing function such that ¢,., < g9(g;), 7 =
1,2, ---. Then the proof of Theorem 1 (in the case ¢ = 1) can be
carried through with s~(K) in place of K" until

[AK] 1 N g 23—-1
S Can>-' > LED ¢ (K) S, 2~s[ ]
n=K+1 2 s=1 B

is obtained, with M = [ED log ¢~'(K)]; and it follows that
iz:l lan>™' > CKlog g7'(K)

for some constant C.

For the second part, we first specify that «; the 7’th partial
quotient of the simple continued fraction of &, be = 1000A,7 =1,2.--.
For large 7 we can then choose K so that ¢,../10 < AK < q;../5.
Let

— SD: + Dis Oy
s¢; + -~ 104

<s < Aia

be any “‘intermmediate fraction’ (see, e.g., [6], p. 22) whose denomi-
nator lies between K and [AK] + ¢;. Then

1
8¢; + q:.,. < 'g(ai+lqi +q;n) + g

so that
s+gi"—‘—-1<.é_(ai+1+$—_l>

and therefore (since s > 100)

s -+ h<,l_<ai+1 +_‘lz;:1_> .
q; 4 q;
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Now
I — DPits | = _1_ai+§1:_l 1
qi+1 q; 7= (,,.+ qi )(,,.+1+ Qi——1>
— _}_ 1 _ 1
Glg 4 T 4, + D
q; i
> 3/4 1 S 3/4 .
¢ g4 9 (s+Dgt’
q;
and since
p’H—l _ a’ < 1 < 1 < 1 ,
i1 Qi+19;+2 @3 14205 100sq3
we have
1
I, — « .
l [ > S5 g’

Now if m/n is any rational number with

8¢; + i =n < (s+ 1)qg; + q;y

then either |m/n —a| = |1, — a| or |m/n — a| = |p;/q; — «|.

first case
1 1
nay =<8q; + q;)ay > — > ______
<nay = $8g; + ¢;)a) 50, = BOAG,
and in the second
ey = m | pfg — o) > > L1041

29:q;11 29:9;+ 20Aq; |

We therefore have

[4K] 1

20A(A — 1)Kq; ;
w2 TS < 204( )Kq

and we now specify that a;,, be also sufficiently large that

0. < 1 () < 2w,

and the construction is complete.

391

In the

We conclude by showing that the results of Theorem 1 cannot be
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improved. If ¢ =1 or » = 1, this is clear from the theorem of Hardy
and Littlewood. In the remaining case we have:

THEOREM 3. If t and r are any real numbers greater than 1,
then there 1is a constant C and an irrational number « whose con-
vergents p;/q; satisfy

Qi < Mq;
(for some fixed M) such that

[AR]
Z <’n6¥>~l < C K+

n=K4+1

for arbitrarily large values of K.

Proof. As before, we specify that each partial quotient of «a be
= 10004, and for each of a sequence of numbers m,, m,, --- (which
we shall later construct inductively), we choose K to satisfy

QMﬁ-l/lO < AK < qmi+1/5 .

Then by the previous argument,

for all » between K + 1 and [AK].
Now if %, and n,, n, > #n,, both satisfy

(24) (nay = L
4qm,
then
{n, ~ nyay = =2

m,—1

This implies that n, —n, > ¢,,, — 2; for otherwise {(n, — 1,)&)> = {qu,~:0,
and {g,,,.a> > (1/2)q,, ., since

pmi——2 - pmi—l _ 1
Qmi—z qmi—-l qm,:—-zq'm,i—‘l
while
pmi—l —«a < 1 1 .
m;—1 QM,;——IQm,; ZQm,;~2qm,;—-l

Therefore there are at most (A4 — 1)K/q,,. n’s satisfying (24); and
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their contribution to the sum in (17) is at most

(A - 1K

m;—2

(204g,,)" .

Similarly, the n’s between K + 1 and [AK] which satisfy

1 1
<<Llna> <
4qmi"‘1 < > 4qmi_2
contribute at most
~1 ) _ t
(A_E(z;qmi_i) <(_‘f1__._1.)5(2014qm_1) ’

m;—3 m;—3

ete.; therefore

[AK] 3 t
(25) 5:3 (na>—t = (204)/(A — 1) K(ﬂ. 4 D ) ,
n=K+1

Qm;—2 qm;—3

Now we suppose that the ¢’s have been determined through
Qm,_,+1- For some constant C, > 10004, we determine

Qmi_l—'rz) *t 0y qmi_1+L+1 - Qmi
so that
ooty = Am= (0<s<L-—1)
’ C’0 + ﬁs

where —1 < 6, <1 and L is the least positive integer satisfying
(Co = 1)F > (ga) .

Then the sum of the first L + 1 terms in the sum on the right
of (25) is no greater than

. Cot+ 17 vy (G 1" 1
(Co + rgu;’ + (Co_l)uqﬂr(c )mqﬂr T

and the sum of the remaining terms is no greater than
3¢ 1og g, = 0(¢57)
(since there are less than 3log ¢, terms). Therefore

<M>‘ < C.Kgh';

we finally specify that ¢}, < ¢.,. < 2¢;, and m;_, < m; — L and con-
clude that
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qmi < C3K1/T ’

so that

[AK]

S, (nay~t < C K

N=K+L
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