SINGULARITY OF GAUSSIAN MEASURES IN FUNCTION SPACES WITH FACTORABLE COVARIANCE FUNCTIONS

JAMES JUEI-FHIN YEH
SINGULARITY OF GAUSSIAN MEASURES IN FUNCTION SPACES WITH FACTORABLE COVARIANCE FUNCTIONS

J. YEH

Singularity of Gaussian measures \(\mu_1 \) and \(\mu_2 \) on the function space \(R^D \) of real valued functions \(x(t) \) on an arbitrary interval \(D \) with factorable covariance functions \(r_i(s, t), \) i.e., \(r_i(s, t) = u_i(s)v_i(t) \) for \(s \leq t \) and \(r_i(s, t) = v_i(s)u_i(t) \) for \(s \geq t, i = 1, 2, \) is treated. Local conditions on the factor functions \(u_i(t) \) and \(v_i(t) \) which insure the singularity of \(\mu_1 \) and \(\mu_2 \) are given.

Consider the measurable space \((R^D, \mathcal{F})\) where \(R^D \) is the space of all real valued functions \(x(t) \) on a fixed but unspecified interval \(D \) of the real line and \(\mathcal{F} \) is the smallest \(\sigma \)-field of subsets of \(R^D \) with respect to which all real valued functions \(Y(t, x) = x(t) \) defined on \(R^D \) with parameter \(t \in D \) are measurable. A probability measure \(\mu \) on \((R^D, \mathcal{F})\) is called a Gaussian measure on the function space \(R^D \) if the stochastic process \(Y(t, x) = x(t) \) on the probability space \((R^D, \mathcal{F}, \mu)\) with the domain of definition \(D \) is a Gaussian process. From the viewpoint of stochastic processes if \(X(t, \omega) \) is a stochastic process on an arbitrary probability space \((\Omega, \mathcal{G}, P)\) with the domain of definition \(D \) then a probability measure \(\mu_X \) is induced on the measurable space \((R^D, \mathcal{F})\) by embedding the sample functions \(X(\cdot, \omega), \omega \in \Omega, \) in \(R^D \). The stochastic process \(Y(t, x) = x(t) \) defined on the probability space \((R^D, \mathcal{F}, \mu_X)\) with the domain of definition \(D \) is equivalent to the original process \(X(t, \omega) \) so that if \(X(t, \omega) \) is a Gaussian process so is \(Y(t, x) \). Thus a Gaussian measure on \((R^D, \mathcal{F})\) can be defined equivalently as the probability measure \(\mu_X \) induced on \((R^D, \mathcal{F})\) by a Gaussian process \(X(t, \omega) \).

J. Feldman [3] and J. Hájek [4], [5] showed independently that any two Gaussian measures are either equivalent or singular. In [7] we applied Hájek's criterion for equivalence or singularity to investigate the singularity of Gaussian measures induced by Brownian motion processes with nonstationary increments. In the present paper we consider the singularity of Gaussian measures \(\mu_1 \) and \(\mu_2 \) on \((R^D, \mathcal{F})\) for which the covariance functions \(r_i(s, t) \) of the stochastic process \(Y(t, x) = x(t) \) are factorable. Our main result is the following theorem

Theorem. Let \(\mu_1 \) and \(\mu_2 \) be Gaussian measures on \((R^D, \mathcal{F})\) with zero mean functions and factorable covariance functions \(r_i(s, t), i = 1, 2, \) given by

\[
(1.1) \quad r_i(s, t) = \begin{cases} u_i(s)v_i(t) & s \leq t, s, t \in D, i = 1, 2 \\ v_i(s)u_i(t) & s \geq t, s, t \in D, i = 1, 2 \end{cases}
\]
where $u_i(t)$ and $v_i(t)$ are nonnegative functions on D satisfying

$$(1.2) \quad u_i(t'')v_i(t') - u_i(t')v_i(t'') \geq 0 \quad t', t'' \in D, \quad t' < t'', \quad i = 1, 2.$$

If there exists $t_0 \in D$ such that $v_i(t_0) > 0$ and $u_i(t)[v_i(t)]^{-1}$ are strictly increasing on $(t_0, t_0 + \delta)$ for some $\delta > 0$, the right derivatives $D^+u_i(t_0)$ and $D^+v_i(t_0)$ of $u_i(t)$ and $v_i(t)$ at t_0 exist and

$$(1.3) \quad u_i(t_0) = 0, \quad D^+u_i(t_0) = \lambda_i > 0, \quad i = 1, 2$$

$$(1.4) \quad v_i(t_0) = r_i > 0, \quad i = 1, 2$$

then the condition

$$\lambda_1 r_1 \neq \lambda_2 r_2$$

implies the singularity of μ_1 and μ_2.

We remark that the above theorem can also be stated in terms of the left derivatives of $u_i(t)$ and $v_i(t)$. When $v_i(t)$ are positive on D the condition (1.2) is equivalent to the condition that $u_i(t)[v_i(t)]^{-1}$ be nondecreasing on D. For a symmetric function $r(s, t), s, t \in D$, defined as in (1.1) by means of two nonnegative functions $u(t)$ and $v(t)$ on D to be the covariance function of a Gaussian process it is necessary and sufficient that for any $t_1, \ldots, t_n \in D, t_1 < \cdots < t_n$, the $n \times n$ matrix $[r(t_k, t_l), k, l = 1, 2, \ldots, n]$ be nonnegative definite. The condition (1.2) is equivalent to this condition (see p. 525, [1]). In particular for every $n \times n$ matrix $[r(t_k, t_l), k, l = 1, 2, \ldots, n]$ to be positive definite it is necessary and sufficient that $u(t)$ and $v(t)$ be positive on D and the strict inequality in (1.2) hold. In connection with our theorems we mention an earlier result by G. Baxter, corollary [1], which showed that if $u_i(t)$ and $v_i(t)$ have bounded second derivatives on $D = [0, 1]$ then for the two subsets $E_i, i = 1, 2, \text{ of } R^o$ defined by

$$E_i = \left\{ x \in R^o; \lim_{n \to \infty} \sum_{k=1}^{2^n} \left[x \left(\frac{k}{2^n} \right) - x \left(\frac{k-1}{2^n} \right) \right]^2 \right\}$$

the equalities $\mu_i(E_i) = 1, \quad i = 1, 2$, hold so that the condition

$$\int_0^1 [u_i'(t)v_i(t) - u_i(t)v_i'(t)]dt \neq \int_0^1 [u_i'(t)v_i(t) - u_i(t)v_i'(t)]dt$$

implies $E_i \cap E_2 = \emptyset$ as well as $\mu_i(E_2) = \delta_{ij}$.

The proof of the theorem is given in § 3. For some examples of factorable covariance functions to which our theorem can be applied see J. A. Beekman, pp. 805-806, [2].
2. A lemma concerning the inversion of a class of symmetric matrices.

Lemma. Given real or complex numbers

\[a_1, a_2, \ldots, a_n \quad \text{and} \quad b_1, b_2, \ldots, b_n. \]

Let \(M = [m_{k,l}, k, l = 1, 2, \ldots, n] \) be an \(n \times n \) symmetric matrix with entries

\[m_{k,l} = a_kb_l \quad \text{for} \quad k \leq l, \quad k, l = 1, 2, \ldots, n. \]

Let

\[C_j = a_jb_{j-1} - a_{j-1}b_j \quad j = 2, 3, \ldots, n \]
\[D_j = a_jb_{j-2} - a_{j-2}b_j \quad j = 3, 4, \ldots, n \]

then

\[\det M = a_n b_n \prod_{j=2}^{n} C_j. \]

For the determinants \(M_{k,l} \) of the minor matrices corresponding to the entries \(m_{k,l} \) we have

\[M_{1,1} = a_n b_n \prod_{j=3}^{n} C_j, \quad M_{1,2} = a_n b_n \prod_{j=3}^{n} C_j, \]
\[M_{1,l} = 0 \quad \text{for} \quad l = 3, \ldots, n, \quad M_{k,k} = a_n b_n \prod_{j=k+1}^{n} C_j, \]
\[M_{k,k+1} = a_n b_{n-1} \prod_{j=k+2}^{n} C_j, \quad M_{k,l} = 0 \quad \text{for} \quad l = k + 2, \ldots, n, \]

for \(k = 2, \ldots, n-1 \), and finally

\[M_{n,n} = a_n b_{n-1} \prod_{j=2}^{n-1} C_j. \]

In particular, \(M \) is invertible if and only if \(a_n, b_n, C_j \neq 0 \) for \(j = 2, \ldots, n \). In this case

\[(2.1) \quad M^{-1} = \left[\frac{(-1)^{k+l}}{\det M} M_{k,l}, k, l = 1, 2, \ldots, n \right]. \]

The proof of this lemma is lengthy and will not be given here. We merely mention that the expression (2.1) for \(M^{-1} \) can be verified by direct multiplication with \(M \).

3. Proof of the theorem. The \(J \)-divergence of two probability measures \(P \) and \(Q \) on a measurable space \((\Omega, \mathcal{F}) \) is defined to be
(3.1) $J(P, Q) = \begin{cases} E_p \left[\log \frac{dP}{dQ}(\omega) \right] + E_q \left[\log \frac{dQ}{dP}(\omega) \right] & \text{when } P \text{ and } Q \text{ are equivalent} \\ \infty & \text{otherwise} \end{cases}$

where E_p and E_q denote integration with respect to the probability measures P and Q.

Let \mathcal{F} be the smallest σ-field of subsets of the function space R^p with respect to which the real valued function $Y(t, x) = x(t)$ on R^p is measurable for every $t \in D$. For $t_1, \cdots, t_n \in D$, $t_1 < \cdots < t_n$, let

$$p_{t_1, \cdots, t_n}(x) = [x(t_1), \cdots, x(t_n)] \quad x \in R^p$$

$$p_{t_1, \cdots, t_n}^{-1}(B) = \{x \in R^p; [x(t_1), \cdots, x(t_n)] \in B\} \quad B \in \mathcal{B}^n$$

where \mathcal{B}^n is the σ-field of Borel sets in the n-dimensional Euclidean space R^n, and let

(3.2) $\mathcal{F}_{t_1, \cdots, t_n} = \{p_{t_1, \cdots, t_n}^{-1}(B), B \in \mathcal{B}^n\}$.

Then $\mathcal{F}_{t_1, \cdots, t_n}$ is a σ-field of subsets of R^p and \mathcal{F} is the σ-field generated by the union of all the σ-fields $\mathcal{F}_{t_1, \cdots, t_n}$. Given two probability measures $\mu_i, i = 1, 2$, on (R^p, \mathcal{F}), let $\mu_{t_1, \cdots, t_n} = \mu_i|_{\mathcal{F}_{t_1, \cdots, t_n}}$, i.e., the restrictions of μ_i to the σ-field $\mathcal{F}_{t_1, \cdots, t_n}$. Let $J = J(\mu_1, \mu_2)$ and

$$J_{t_1, \cdots, t_n} = J(\mu_{t_1, t_1}, \cdots, \mu_{t_n, t_n})$$

According to J. Hájek [4], [5], $J = \sup J_{t_1, \cdots, t_n}$ where the supremum is taken over the collection of $\{t_1, \cdots, t_n\}$, i.e., over the collection of all the σ-fields $\mathcal{F}_{t_1, \cdots, t_n}$, and $J < \infty$ implies the equivalence of μ_1 and μ_2. Furthermore if μ_1 and μ_2 are Gaussian then $J = \infty$ implies the singularity of μ_1 and μ_2.

Let $t_1, \cdots, t_n \in D$, $t_0 < t_1 < \cdots < t_n < t_0 + \delta$. For the fixed $\{t_1, \cdots, t_n\}$ there is a one-to-one correspondence between the members of $\mathcal{F}_{t_1, \cdots, t_n}$ and the members of \mathcal{B}^n according to the definition (3.2). Since the measures $\mu_i, i = 1, 2$, are Gaussian, i.e., the stochastic process $Y(t, x) = x(t)$ is a Gaussian process on each of the two probability spaces $(R^p, \mathcal{F}, \mu_i)$, we have

(3.3) $\mu_i(p_{t_1, \cdots, t_n}^{-1}(B)) = \Phi_{t_1, \cdots, t_n}(B), \quad B \in \mathcal{B}^n, i = 1, 2$

where Φ_{t_1, \cdots, t_n} are n-dimensional (regular or degenerate) normal distributions on (R^n, \mathcal{B}^n).

Now since $w_i(t) > 0$ and $u_i(t)[v_i(t)]^{-1}$ are strictly increasing on $(t_0, t_0 + \delta)$ we have

$$u_i(t')w_i(t') - u_i(t)v_i(t'') > 0 \quad \text{for } t', t'' \in (t_0, t_0 + \delta), t' < t'', i = 1, 2$$

Then the covariance matrices $[r_{i}(t_k, t_l), k, l = 1, 2, \cdots, n], i = 1, 2$, of the n-dimensional normal distributions $\Phi_{i, t_1, \cdots, t_n}$ are positive definite and
consequently \(\Phi_{i_1, \ldots, i_n}(\xi) \) are regular with density functions given by

\[
\Phi_{i_1, \ldots, i_n}(\xi) = \frac{1}{(2\pi)^{n/2} \det W_{i_1, \ldots, i_n}^{1/2}} \exp \left\{ -\frac{1}{2} (W^{-1}_{i_1, \ldots, i_n} \xi, \xi) \right\}, \xi \in \mathbb{R}^n, i = 1, 2
\]

where \(W_{i_1, \ldots, i_n} = [w_{i_k, l}, k, l = 1, 2, \ldots, n] \) are \(n \times n \) symmetric and positive definite matrices with entries

\[
w_{i_k, l} = u_i(t_k)v_i(t_l) \quad \text{for} \quad k \leq l, k, l = 1, 2, \ldots, n, i = 1, 2.
\]

Now

\[
\Phi_{i_1, \ldots, i_n}(B) = \int_{\mathbb{R}^n} \Phi_{i_1, \ldots, i_n}(\xi) m_{l}(d\xi), \quad B \in \mathfrak{B}^n, i = 1, 2
\]

where \(m_{l} \) is the Lebesgue measure on \((\mathbb{R}^n, \mathfrak{B}^n) \). The regularity of \(\Phi_{i_1, \ldots, i_n} \) and \(\Phi_{i_1, \ldots, i_n} \) implies their equivalence. This in turn implies the equivalence of \(\mu_{i_1, \ldots, i_n} \) and \(\mu_{i_1, \ldots, i_n} \) on account of the one-to-one correspondence between the members of \(\mathfrak{T}_{i_1, \ldots, i_n} \) and the members of \(\mathfrak{B}^n \) and the relation (3.3) between \(\mu_{i_1, \ldots, i_n} \) and \(\Phi_{i_1, \ldots, i_n} \). From (3.6) and (3.4) we obtain the Radon-Nikodym derivatives

\[
\frac{d\mu_{i_1, \ldots, i_n}}{d\mu_{i_1, \ldots, i_n}}(x) = \frac{d\Phi_{i_1, \ldots, i_n}}{d\Phi_{i_1, \ldots, i_n}}(\xi) = \frac{\Phi_{i_1, \ldots, i_n}(\xi)}{\Phi_{i_1, \ldots, i_n}(\xi)}
\]

\[
= \left[\frac{\det W_{i_1, \ldots, i_n}}{\det W_{i_1, \ldots, i_n}} \right]^{1/2} \exp \left\{ \frac{1}{2} (W^{-1}_{i_1, \ldots, i_n} - W^{-1}_{i_1, \ldots, i_n}) \xi, \xi \right\}, i = 1, 2.
\]

According to (3.1), (3.3) and (3.7)

\[
J_{i_1, \ldots, i_n} = E_{\mathfrak{B}^n, \mathfrak{T}_{i_1, \ldots, i_n}} \left[\log \frac{d\mu_{i_1, \ldots, i_n}}{d\mu_{i_1, \ldots, i_n}}(x) \right] = E_{\mathfrak{B}^n, \mathfrak{T}_{i_1, \ldots, i_n}} \left[\log \frac{d\Phi_{i_1, \ldots, i_n}}{d\Phi_{i_1, \ldots, i_n}}(\xi) \right]
\]

\[
= \frac{\det W_{i_1, \ldots, i_n}}{\det W_{i_1, \ldots, i_n}} \exp \left\{ \frac{1}{2} (W^{-1}_{i_1, \ldots, i_n} - W^{-1}_{i_1, \ldots, i_n}) \xi, \xi \right\}
\]

In evaluating the integrals in (3.8) we quote the well known equality that for any \(n \times n \) matrices \(A \) and \(B \) where \(A \) is symmetric and \(B \) is positive definite

\[
\int_{\mathbb{R}^n} \left(A\xi, \xi \right) \exp \left\{ -\frac{1}{2} (B^{-1}\xi, \xi) \right\} m_{l}(d\xi) = Tr(C)
\]

where \(C = AB \) and \(Tr(C) = \sum_{k=1}^{n} c_{k,k} \) for \(C = [c_{k,l}, k, l = 1, 2, \ldots, n] \). Applying (3.9) to (3.8) remembering (3.7), (3.6) and (3.4)

\[
J_{i_1, \ldots, i_n} = \frac{1}{2} Tr \left[W^{-1}_{i_1, \ldots, i_n} W_{i_1, \ldots, i_n} + W^{-1}_{i_1, \ldots, i_n} W_{i_1, \ldots, i_n} - 2I \right].
\]

We proceed to evaluate the diagonal entries of the two product
matrices in (3.10). Let us consider \(W_{r_1, ... , r_n} W_{s_1, ... , s_n} \) for example. The entries of \(W_{r_1, ... , r_n} \) are given by (3.5). Let \(M_{i,k} \) be the determinant of the minor matrix corresponding to \(w_{i,k} \). According to our lemma, \(\S 2 \), the 1st diagonal entry of \(W_{r_1, ... , r_n} W_{s_1, ... , s_n} \) is given by

\[
\frac{M_{1,1} w_{1,1} - M_{1,2} w_{1,2}}{\det W_{r_1, ... , r_n}} = [u_i(t_2) v_i(t_n) u_i(t_2) v_i(t_2) - u_i(t_1) v_i(t_n) u_i(t_2) v_i(t_2)]
\cdot [u_i(t_1) v_i(t_n) u_i(t_2) v_i(t_1) - u_i(t_1) v_i(t_2)]^{-1}.
\]

The \(k \)-th diagonal entry, \(k \neq 1, n \), is given by

\[
\frac{-M_{1,k-1,k} w_{2,k-1,k} + M_{1,k,k} w_{2,k,k} - M_{1,k+1,k} w_{2,k+1,k}}{\det W_{r_1, ... , r_n}}
= u_i(t_2) v_i(t_n) [u_i(t_2) v_i(t_2) - u_i(t_1) v_i(t_2) u_i(t_k) v_i(t_k)]
+ [u_i(t_{k+1}) v_i(t_{k+1}) - u_i(t_{k-1}) v_i(t_{k+1})] u_i(t_k) v_i(t_k)
- \{u_i(t_{k-1}) v_i(t_{k-1}) - u_i(t_{k-1}) v_i(t_k)\}
\cdot [u_i(t_2) v_i(t_n) [u_i(t_2) v_i(t_n)] - u_i(t_2) v_i(t_n)]^{-1}.
\]

Finally, the \(n \)-th diagonal entry is given by

\[
\frac{-M_{1,n-1,n} w_{2,n-1,n} + M_{1,n,n} w_{2,n,n} - M_{1,n+1,n} w_{2,n+1,n}}{\det W_{r_1, ... , r_n}}
= u_i(t_2) v_i(t_n) [u_i(t_2) v_i(t_n)] - u_i(t_2) v_i(t_n) \cdot [u_i(t_2) v_i(t_n)]^{-1}.
\]

Now according to (1.3)\(\neq 1, 2 \). For fixed \(n \) let \(p \) be a sufficiently large positive integer so that \(t_k = t_0 + k/p \in (t_0, t_0 + \delta) \) for \(k = 1, 2, \ldots, n \). Then

\[
u_i(t_k) = \frac{k}{p} (\lambda_i + \epsilon_i) = \frac{k}{p} \lambda_i \{1 + o(1)\},
\]

\[
k = 1, 2, \ldots, n, p \to \infty, i = 1, 2.
\]

From (1.4), writing \(v_i \) for \(D^+ v_i(t_0) \),

\[
u_i(t_k) = r_i + \frac{k}{p} v_i \{1 + o(1)\} = r_i \{1 + O\left(\frac{n}{p}\right)\},
\]

\[
k = 1, 2, \ldots, n, p \to \infty, i = 1, 2.
\]

If we apply (3.14) and (3.15) to (3.11), the 1st diagonal entry of \(W_{r_1, ... , r_n} W_{r_1, ... , r_n} \) is reduced to
Similarly the k-th diagonal entry, $k \neq 1, n$, is reduced to

$$\frac{\lambda_i r_{i}^p r_{i}^{-2}\{2 - 1\}\{1 + o(1)\}\{1 + O\left(\frac{n}{p}\right)\}}{\lambda_i r_{i}^{-2}\{2 - 1\}\{1 + o(1)\}\{1 + O\left(\frac{n}{p}\right)\}} = \frac{\lambda_i r_{i}^p}{\lambda_i r_{1}^p} [1 + o(1)].$$

and finally the n-th diagonal entry is reduced to

$$\frac{\lambda_i r_{i}^p r_{i}^{-2}\{2 - 1\}\{1 + o(1)\}\{1 + O\left(\frac{n}{p}\right)\}}{\lambda_i r_{i}^{-2}\{2 - 1\}\{1 + o(1)\}\{1 + O\left(\frac{n}{p}\right)\}} = \frac{\lambda_i r_{i}^p}{\lambda_i r_{1}^p} [1 + o(1)].$$

From (3.16), (3.17) and (3.18)

$$T_r[W_{i_1, t_1 \ldots t_n}, W_{i_1, t_1 \ldots t_n}] = \frac{n}{\lambda_i r_{i_1}^p} [1 + o(1)], \quad p \to \infty.$$

Received April 3, 1969. This research was supported in part by the National Science Foundation Grant NSF GP-8291

UNIVERSITY OF CALIFORNIA, IRVINE
Pacific Journal of Mathematics
Vol. 31, No. 2
December, 1969

Efraim Pacillas Armendariz, Quasi-injective modules and stable torsion classes .. 277
J. Adrian (John) Bondy, On Ulam’s conjecture for separable graphs ... 281
Vasily Cateforis and Francis Louis Sandomierski, On commutative rings over which the singular submodule is a direct summand for every module .. 289
Rafael Van Severen Chacon, Approximation of transformations with continuous spectrum .. 293
Raymond Frank Dickman and Alan Zame, Functionally compact spaces ... 303
Ronald George Douglas and Walter Rudin, Approximation by inner functions .. 313
John Walter Duke, A note on the similarity of matrix and its conjugate transpose ... 321
Micheal Neal Dyer and Allan John Sieradski, Coverings of mapping spaces ... 325
Donald Campbell Dykes, Weakly hypercentral subgroups of finite groups .. 337
Nancy Dykes, Mappings and realcompact spaces .. 347
Edmund H. Feller and Richard Laham Gantos, Completely injective semigroups ... 359
Irving Leonard Glicksberg, Semi-square-summable Fourier-Stieltjes transforms .. 367
Samuel Irving Goldberg and Kentaro Yano, Integrability of almost cosymplectic structures 373
Seymour Haber and Charles Freeman Osgood, On the sum \(\sum (n\alpha)^{-t} \) and numerical integration 383
Sav Roman Harasymiv, Dilations of rapidly decreasing functions .. 395
William Leonard Harkness and R. Shantaram, Convergence of a sequence of transformations of distribution functions .. 403
Herbert Frederick Kreimer, Jr., A note on the outer Galois theory of rings ... 417
James Donald Kuelbs, Abstract Wiener spaces and applications to analysis .. 433
Roland Edwin Larson, Minimal \(T_0 \)-spaces and minimal \(T_D \)-spaces ... 451
A. Meir and Ambikeshwar Sharma, On Ilyeff’s conjecture .. 459
Isaac Namioka and Robert Ralph Phelps, Tensor products of compact convex sets .. 469
James L. Rovnyak, On the theory of unbounded Toeplitz operators .. 481
Benjamin L. Schwartz, Infinite self-interchange graphs .. 497
George Szeto, On the Brauer splitting theorem .. 505
Takayuki Tamura, Semigroups satisfying identity \(xy = f(x, y) \) ... 513
Kenneth Tolo, Factorizable semigroups ... 523
Mineko Watanabe, On a boundary property of principal functions .. 537
James Juei-Chin Yeh, Singularity of Gaussian measures in function spaces with factorable covariance functions ... 547