Vol. 31, No. 3, 1969

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 322: 1  2
Vol. 321: 1  2
Vol. 320: 1  2
Vol. 319: 1  2
Vol. 318: 1  2
Vol. 317: 1  2
Vol. 316: 1  2
Vol. 315: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
Noncommutative convolution measure algebras

Joseph L. Taylor

Vol. 31 (1969), No. 3, 809–826
Abstract

A convolution measure algebra is a partially ordered Banach algebra in which the norm, order, and algebraic operations are related in special ways. Examples include the group algebra L1(G) and measure algebra M(G) on a locally compact group G and, more generally, the measure algebra M(S) on any locally compact semigroup S.

This paper demonstrates several ways in which a convolution measure algebra can be realized as an algebra of measures on a compact semigroup. A relationship is established between such realizations and certain classes of Banach space representations of the algebra. These results give a partial extension to the noncommutative case of the structure theory of commutative semi-simple convolution measure algebras.

Mathematical Subject Classification
Primary: 46.80
Milestones
Received: 25 October 1966
Revised: 2 June 1969
Published: 1 December 1969
Authors
Joseph L. Taylor