SUBSPACE KERNELS AND MINIMUM PROBLEMS IN HILBERT SPACES WITH KERNEL FUNCTION

Bruce Langworthy Chalmers
SUBSPACE KERNELS AND MINIMUM PROBLEMS IN HILBERT SPACES WITH KERNEL FUNCTION

BRUCE L. CHALMERS

The purpose of this paper is to extend the theory of Hilbert spaces with kernel function to obtain first the kernel function of any subspace described as the intersection of the nullspaces of countably many continuous linear functionals, and secondly the solution of minimum norm to interpolation problems involving countably many linear side conditions. The results are then applied to obtain in §1 a class of pseudoconformally invariant functions in C^n and in §2 further results on the classical interpolation problem involving pointwise evaluation.

Any closed subspace of a Hilbert space with (reproducing) kernel function has itself a reproducing kernel. In §1 (see also [8]) it is shown that the Riesz representation of any bounded linear functional in a Hilbert space with kernel function is obtained by operating with the linear functional on the kernel function itself (see Theorem 1.1). Using this representation, one can display, in terms of the kernel function of the original space, the kernel function of any closed subspace defined as the intersection of the null spaces of at most countably many bounded linear functionals (see Theorems 1.2 and 1.3). By applying this representation to the Bergman space H^n_β of all analytic square integrable functions defined on a domain $B \subset C^n$, one obtains a large class of pseudoconformally invariant functions (see Theorem 1.7 and Note 1.8). As an example are obtained important invariant functions introduced and used by Bergman ([2]—[6]) and others (e.g., [13]).

The solution of minimum problems of the type requiring the infimum of the norm of functions under a finite number of bounded linear side conditions in Hilbert space with kernel function was obtained in [7], by use of the Riesz representation of Theorem 1.1. In §2 of this paper is obtained a necessary and sufficient condition for the existence of the solution to such minimum problems under countably many bounded linear side conditions. When the solution exists, it can be displayed in terms of the kernel function again by use of the Riesz representation of Theorem 1.1 (see Theorem 2.1 and Corollary 2.2). Applying these results one obtains necessary and sufficient conditions for the existence of solutions to a large family of interpolation problems, examples of which are given in the spaces $H^n_{1|z|<1}$ and the Hardy space $H^2_{1|z|<1}$ (see Corollary 2.3—Corollary 2.8).
1. Kernel functions of subspaces. Let H denote a general Hilbert space with inner product denoted by (f, g) and norm $\| f \| = (f, f)^{1/2}$ where $f, g \in H$. Let H° denote the space of all bounded linear functionals on H. If $\mathcal{L} \in H^\circ$ has the Riesz representation $L \in H$, we denote this correspondence by $\mathcal{L} \sim L$.

Suppose further that H is a Hilbert space of functions $\{f(x)\}$ defined on a base set E and that H has a (reproducing) kernel function $K(x, y)$. Then we denote such a Hilbert space by HK or $HK(E)$.

For fixed y the kernel function $K(x, y)$ is the function providing the Riesz representation in HK of the bounded linear functional \mathcal{L} given by $\mathcal{L}(f) = f(y)$ for $f \in HK$. The following theorem (see [8]) shows that not only pointwise evaluation but all bounded linear functionals on HK have a simple representation in HK in terms of the kernel function $K(x, y)$. In fact the representation is obtained by simply applying such a functional to $K(x, y)$ itself:

Theorem 1.1. If $\mathcal{L} \in HK^\circ$, then $\mathcal{L} \sim L(x) = \mathcal{L}(K(y, x))$. (Here the y subscript emphasizes that \mathcal{L} is operating on $K(y, x)$ in HK as a function of y.)

Proof. $L(x) = (L(y), K(y, x)) = (K(y, x), L(y)) = \mathcal{L}(K(y, x))$.

Example. In the case of evaluation of the derivative at z in H_B^1, $\mathcal{L}: f \rightarrow f'(z)$, then

$$\frac{\partial K(y, x)}{\partial y} = \frac{\partial K(x, y)}{\partial y} |_{y=z} = \mathcal{L}(K(y, x))$$

Notation. Suppose $\mathcal{L}^m \in H^\circ$, $m = 1, 2, \ldots, n$ are linearly independent and that $\mathcal{L}^m \sim L_m$, $m = 1, 2, \ldots, n$. Then denote by D the determinant of the $n \times n$ matrix $Q = (L_m, L_m^*)$. Denote by $D^w(R)$ the determinant of the $(n+1) \times (n+1)$ matrix $\begin{pmatrix} R & v \\ w & Q \end{pmatrix}$, where $v = (v_1, \ldots, v_n)$ is a row vector and $w = (w_1, \ldots, w_n)^T$ is a column vector. Note also that in the case of HK, $(L_k, L_m) = \mathcal{L}^M(\mathcal{L}^M(K(y, x)))$.

Theorem 1.2. Suppose $\mathcal{L}^m \in HK^\circ$, $m = 1, 2, \ldots, n$ are linearly independent. Then, letting $\mathcal{L}^r(t) = (\mathcal{L}^r K(z, t), \ldots, \mathcal{L}^r K(z, t))$, we have that $D_{\mathcal{L}^r}^w(K(x, y)) = D$ is the kernel function $k_n(x, y)$ of the subspace $H_n = \{f \in HK; \mathcal{L}^r f = 0, r = 1, \ldots, n\}$.

Proof. Let $k_n^r(x, y) = D_{\mathcal{L}^r}^w(K(x, y))/D$. For each fixed y, $k_n^r(x, y) = K(x, y) + \sum_{r=1}^n c_r \mathcal{L}^r K(z, x)$ for some constants c_1, \ldots, c_n and
thus belongs to HK. For each r, $L^r_k(x, y) = 0$, since
\[L^r(D_{x,y}^{[r]}(K(x, y))) \]
is a determinant of a matrix with the 1^{st} and r^{th} rows equal. Finally if $f \in H_n$, then $(f(x), k_n^*(x, y)) = f(y) + \sum_{r=1}^{n} c_r L^r f = f(y)$. So $k_n^*(x, y) \equiv k_n(x, y)$.

Theorem 1.3. Suppose $L^m \in HK$, $m = 1, 2, \ldots$ are linearly independent. Let $k_n(x, y)$ denote the kernel function of the subspace $H_n = \{ f \in HK; L^r f = 0, \ r = 1, \ldots, n \}$. Then $\lim_{n \to \infty} k_n(x, y)$ gives the kernel function $k(x, y)$ of the subspace $H_\infty = \{ f \in HK; L^r f = 0, \ r = 1, 2, \ldots \}$, where in each variable the convergence is both in the norm and pointwise uniform on each set E^1 on which $K(z, z)$ is bounded.

Proof. Let $L^r \sim L_r$, $r = 1, 2, \ldots$. If S is the subspace of HK spanned by the $\{L_r\}$, then S is the orthogonal complement of H_∞ in HK. Now orthogonalize $\{L_1, L_2, \ldots\}$ by the Gram-Schmidt process to get $\{M_1, M_2, \ldots\}$. Thus $K(x, y) = k(x, y) + \sum_{r=1}^{\infty} M_r(x)M_r(y)$, and $k_n(x, y) = k(x, y) + \sum_{r=n+1}^{\infty} M_r(x)M_r(y)$, as is easily checked. Thus,

\[\frac{1}{\sum_{r=n+1}^{\infty} |M_r(y)|^2} \to 0 \]

for each fixed $y \in E$. Furthermore, we have

\[\frac{1}{\sum_{r=n+1}^{\infty} |M_r(y)|^2} \to 0 \]

Hence for y fixed $k_n(x, y) \to k(x, y)$ pointwise uniformly on each set E^1 on which $K(z, z)$ is bounded. Since

\[k_n(x, y) - k(x, y) = k_n(y, x) - k(y, x) \]

the same statements hold for fixed x.

Note 1.4. If HK is separable then any closed subspace of HK is of the form H_∞ in Theorem 1.3.

Example 1.5. If B is a bounded domain in C, let

\[K = K_{B(u_0, \infty)}(z, \bar{w}) \]
denote the kernel function of $H_B^n \cap [f_{r^\nu}(u^\nu) = 0, u^\nu \in B, \nu = 1, 2, \ldots, m]$, where

$$f_{r^\nu}(z) = \frac{\partial_{r^\nu} f(z)}{\partial z_{r^\nu}} = \frac{\partial_{r^\nu} f(z)}{\partial z_{r^\nu}^1 \cdots \partial z_{p^\nu}^m}$$

with $r^\nu_1 + \cdots + r^\nu_m = r^\nu \geq 0$. Then by Theorem 1.2,

$$K_B(z, w) = \begin{vmatrix} K(z, w) & K_{r^1}(z, w) & \cdots & K_{r^m}(z, w) \\ K_{r^1}(u, w) & K_{r^1 r^1}(u, w) & \cdots & K_{r^1 r^m}(u, w) \\ \vdots & \vdots & \ddots & \vdots \\ K_{r^m r^1}(u, w) & \cdots & \cdots & K_{r^m r^m}(u, w) \end{vmatrix}$$

If $K_B(z, w) = \lim_{m \to \infty} K_B(z, w)$, by Theorem 1.3.

Lemma 1.6. Let $z^* = z^*(z)$ be a pseudoconformal transformation of a domain B onto a domain B^* in C^*. Then any closed subspace HK of H_B^n is taken onto a closed subspace H^*K^* of $H_{B^*}^n$ by the isometry T given by $Tf(z^*) = f(z(z^*))((\partial z)/(\partial z^*))$ and $K^*(z^*, w^*) = K(z, w)((\partial z)/(\partial z^*))((\partial w)/(\partial w^*))$.

Proof. In [7] it was shown that if $T: H_{K_i}(E_z) \to H_{z^*K_z}(E_{z^*})$ is a (surjective) isometry, then $K_z(w, z) = T_z(T_y(K_y(y, z)))_{z^*}$. As an immediate consequence of Lemma 1.6, we have

Theorem 1.7. If H_{K_1} and H_{K_2} are any two closed subspaces of H_B^m, then $I(K_1; K_2; z, w) = K_1(z, w)/K_2(z, w)$ is a pseudoconformally invariant function. (That is, if $H_{K_i}^n = T_i H_{K_i}$, $i = 1, 2$, where the isometry T_i is induced by a pseudoconformal transformation from B onto B^*, then $K_i^*(z^*, w^*)/K_i^*(z^*, w^*) = K_i(z, w)/K_i(z, w)$).

Note 1.8. If H_i is given as the intersection of the nullspaces of the linearly independent bounded linear functionals \mathcal{L}^i_m, $m = 1, 2, \cdots,$
If $i = 1, 2$, then we can write $I(\mathcal{L}^1, \mathcal{L}^2, \ldots; \mathcal{L}^1, \mathcal{L}^2, \ldots; z, \bar{w})$ for $I(K_i, K_\Lambda; z, \bar{w})$, where $\mathcal{L} \in HK^0 \rightarrow \mathcal{L}^* \in (H^*K^*)^0$ under the isometry T.

Corollary 1.9. If K denotes the Bergman kernel function of the space H_b^1, then

$$J_b(z) = \frac{|K(z, \bar{z}) K_z(z, \bar{z})|}{|K^3(z, \bar{z})|}$$

is a scalar-valued conformal invariant.

Proof. By Theorem 1.7 and Note 1.8, $I(D_z; z, \bar{z})$, where $D_zf = f'(z)$ in H_b^1, is a conformal invariant. But by Theorem 1.2,

$$I(D_z; z, \bar{z}) = \frac{|K(z, \bar{z}) K_z(z, \bar{z})|}{|K_z(z, \bar{z}) K(z, \bar{z})|}.$$

Now $D_z \in (H_b^1)^0 \rightarrow D_z^* \in (H_{b*})^0$, where $z \rightarrow z^*$ and

$$D_z^*(g) = g'(z^*)\left(\frac{dz^*}{dz}\right)^2 + g(z^*)\frac{d^2z^*}{dz^2}.$$

This follows from the fact that if $g(z^*) = f(z(z^*))dz/dz^*$, then $f(z) = g(z^*)(dz^*)/dz$ and $f'(z) = g'(z^*)((dz^*)/(dz))^2 + g(z^*)(d^2z^*)/(dz^2)$. So $K(z, \bar{z}) = K^*(z^*, \bar{z}^*)(dz^*)/(dz)(dz^*)/(dz)$,

$$K_z(z, \bar{z}) = D_z^*K^*(z^*, \bar{z}^*)\frac{dz^*}{dz},$$

and $K_{zz}(z, \bar{z}) = D_z^*D_z^*K^*(z^*, \bar{z}^*)$. But

$$\left|\begin{array}{c}
K^*(z^*, \bar{z}^*) \left|\frac{dz^*}{dz}\right|^2 D_z^*K^*(z^*, \bar{z}^*) \frac{dz^*}{dz} \\
D_z^*K^*(z^*, \bar{z}^*) \frac{dz^*}{dz} D_z^*D_z^*K^*(z^*, \bar{z}^*)
\end{array}\right| = \left|\begin{array}{c}
K^*(z^*, \bar{z}^*) K_z(z^*, \bar{z}^*) \\
K^*_z(z^*, \bar{z}^*) K^*_z(z^*, \bar{z}^*)
\end{array}\right| \left|\frac{dz^*}{dz}\right|^6.$$

Hence $I'(D_z; z, \bar{z}) = I(D_z; z, \bar{z})K_{zz}(z, \bar{z})/K^3(z, \bar{z})$ is a conformal invariant. Shows that $J_b(z) = J_b(z^*)$, i.e., $J_b(z)$ is a conformal invariant.

Similarly one obtains the following generalization of Corollary 1.9.

Corollary 1.10. If K denotes the Bergman kernel function of the space H_b^*, then
is a scalar-valued conformal invariant.

2. Minimum problems involving infinitely many side conditions.

Theorem 2.1. If \(\mathcal{L}^m \in H^\circ \), \(m = 1, 2, \ldots \), are linearly independent, consider \(\mu = \inf \| f \| \) under the side conditions \(\mathcal{L}^m(f) = a_m, m = 1, 2, \ldots \). Then the problem has a solution if and only if \(\lim_{n \to \infty} \| f_n \| = M < \infty \), where \(f_n \) yields \(\inf \| f \| \) under the side conditions \(\mathcal{L}^m(f) = a_m, m = 1, 2, \ldots \). Moreover, if a solution \(f \) exists it is unique and is given by \(f = \lim_{n \to \infty} f_n \), where \(\| f \| = M \).

Proof. In [7] we showed that if \(\mathcal{L}^m \sim L_m, m = 1, 2, \ldots, n \), then \(f_n = -D^*_u(0)/D \), where \(L = (L_1, \ldots, L_n) \) and \(a = (a_1, \ldots, a_n)^T \).

If \(\lim_{n \to \infty} \| f_n \| = M < \infty \), then

\[
\| f_n - f_m \|^2 = \| f_n \|^2 + \| f_m \|^2 - 2Re(f_n, f_m).
\]

But if \(m \geq n \), we have that \((f_n, f_m) = \| f_n \|^2 \), since \((f_n, f_m) \) is obtained by replacing the first row in the determinant form of \(f_n \) by

\[
0(L_1, L_m) \cdots (L_n, L_m) = 0 \mathcal{L} f_m \cdots \mathcal{L}^m f_m = 0a_1 \cdots a_n.
\]

Thus \(\| f_n - f_m \|^2 = \| f_m \|^2 - \| f_n \|^2 \). So \(\{f_n\} \) is a Cauchy sequence converging to \(f \in H \) and \(\| f \| = \lim_{n \to \infty} \| f_n \| = M \). Clearly \(\mathcal{L}_m f = \lim_{n \to \infty} \mathcal{L}^m f_n = a_m \). Suppose \(\mathcal{L}^m(g) = a_m, m = 1, 2, \ldots \). Consider \(u = g - f \). Then \(\mathcal{L}^m(u) = 0, m = 1, 2, \ldots, \) and thus

\[
(u, f) = (u, \lim f_n) = \lim (u, f_n) = \lim (u, \sum_{k=1}^m c_k^{(n)} L_k) = \lim \sum_{k=1}^m c_k^{(n)} \mathcal{L}_k u = 0.
\]

Then \(\| g \|^2 = \| f \|^2 + \| u \|^2 \) and \(\| g \| \geq \| f \| \), while \(\| g \| = \| f \| \Leftrightarrow u = g - f = 0 \).

On the other hand if the problem has a solution \(f \), then

\[
\| f_1 \| \leq \cdots \leq \| f_n \| \leq \cdots \leq \| f \| < \infty,
\]

which implies that \(\lim_{n \to \infty} \| f_n \| = M < \infty \). Then the argument above applies to show that in fact \(f = \lim_{n \to \infty} f_n \) and so \(\| f \| = M \).
Corollary 2.2. If $H = HK$ in Theorem 2.1, then the solution is given by

$$f(x) = - \lim_{n \to \infty} \frac{a_1 \cdots a_n}{|Q_n|},$$

and

$$\|f\|^2 = - \lim_{n \to \infty} \frac{a_1 \cdots a_n}{|Q_n|},$$

where $Q_n = \{L_z(L_z(K(z, x)))_{n \times n}\}$. Here the convergence is in the norm as well as being pointwise uniform on every set on which $K(x, x)$ is bounded.

Proof. Again, as in [7], if $L^m \in HK^c$, $m = 1, \cdots, n$, are linearly independent then $\mu = \inf \|f\|$ under the side conditions $L^m(f) = a_m$, $m = 1, \cdots, n$, has the unique solution $f(x) = -D_x(K(z, x))D$ with $\mu^2 = -D_x(0)D$, where $L(x) = (L_z(K(z, x)), \cdots, L_z(K(z, x)))$. The corollary then follows from Theorem 2.1.

Corollary 2.3. If $L^m \in HK^c$, $m = 1, 2, \cdots$ are linearly independent, then there exists an f in HK such that $L^m(f) = a_m$, $m = 1, 2, \cdots$, if and only if

$$\lim_{n \to \infty} \frac{a_1 \cdots a_n}{|Q_n|} < \infty.$$

If a solution exists, the one of minimum norm is then given by formula (1).

Proof. There exists such a function f if and only if there exists one of minimum finite norm in HK, and the statement follows from Corollary 2.2.
Corollary 2.4. Let \(\{z_n\} \) be any sequence of points in the ball \(B = \{ |z| < 1 \} \subset C^k \), and let \(\{w_n\} \) be any sequence of complex numbers. Then a necessary and sufficient condition that there exist a square-integrable analytic function \(f \) on \(B \) such that \(f(z_n) = w_n \), \(n = 1, 2, \ldots \), is that

\[
a_z(w) = a_{z_1, z_2, \ldots} (w_1, w_2, \ldots) = \lim_{n \to \infty} \begin{vmatrix} 0 & \overline{w_1} & \cdots & \overline{w_n} \\ w_1 & (1 - \overline{z_1} \cdot z_1)^{k+1} & \cdots & (1 - \overline{z_1} \cdot z_n)^{k+1} \\ \vdots & \vdots & \ddots & \vdots \\ w_n & (1 - \overline{z_n} \cdot z_1)^{k+1} & \cdots & (1 - \overline{z_n} \cdot z_n)^{k+1} \end{vmatrix} < \infty,
\]

where \(z_j = (z_j, \ldots, z_j) \), \(z_1 \cdot z_j = \sum_{r=1}^{k} \overline{z_r} z_j^r \). If a solution exists, the solution \(f(z) \) of minimum norm is obtained by replacing \(\overline{w_j} \) by \(k!/(\pi^k(1 - z \cdot z_j)^{k+1}) \) in formula (2), and this convergence is in the norm and pointwise uniform on compact subsets of \(B \).

Proof. The Hilbert space \(H^k_B \) of all square-integrable analytic functions on \(B \) has the Bergman kernel function \(K(z, t) = k!/(\pi^k(1 - z \cdot t)^{k+1}) \). Then \(\mathcal{L}_z(\mathcal{L}_z^*(K(z, x))) = K(z_r, z_s) = k!/(\pi^k(1 - z_r \cdot z_s)^{k+1}) \), and the corollary follows from Corollary 2.3, and the fact that \(K(z, z) \) is continuous on \(B \).

Definition 2.5. A sequence of points \(\{z_n\} \) in the ball \(B = \{ |z| < 1 \} \subset C^k \) is called an \(H-S \) interpolating sequence if for each sequence of complex numbers \(w = \{w_n\} \in S \), there exists an \(f \in H \) such that \(f(z_n) = w_n \).

Corollary 2.6. \(\{z_n\} \) is an \(H^k_B \)-S interpolating sequence if and only if \(a_z(w) \) is finite for each \(w \in S \).

Corollary 2.7. Let \(\{z_n\} \) be any sequence of points in the unit disk \(\{ |z| < 1 \} \), and let \(\{w_n\} \) be any sequence of complex numbers. Then a necessary and sufficient condition that there exist an analytic function \(f \), with square integrable boundary values on the circle, such that \(f(z_n) = w_n \), \(n = 1, 2, \ldots \), is that
If a solution exists, the solution of minimum norm is obtained by replacing \(w_i \) by \(1/(2\pi(1 - z_iz_j)) \) in formula (3), and this convergence is in the norm and pointwise uniform on compact subsets of \(|z| < 1 \).

Proof. The kernel function of \(H_z \) is the Szegö kernel \(K(z, t) = 1/(2\pi(1 - z\bar{t})) \) and the same argument applies as in Corollary 2.4.

Corollary 2.8. \(\{z_n\} \) is an \(H_z-S \) interpolating sequence if and only if \(b_z(w) \) is finite for each \(w \in S \).

Bibliography

7. B. Chalmers, *Linear transformations in Hilbert Spaces with kernel function* (to appear)

Received April 3, 1969.

University of California, Riverside
George E. Andrews, *On a calculus of partition functions* .. 555
Silvio Aurora, *A representation theorem for certain connected rings* 563
Lawrence Wasson Baggett, *A note on groups with finite dual spaces* 569
Steven Barry Bank, *On majorants for solutions of algebraic differential equations in regions of the complex plane* ... 573
Klaus R. Bichteler, *Locally compact topologies on a group and the corresponding continuous irreducible representations* ... 583
Mario Borelli, *Affine complements of divisors* ... 595
Carlos Jorge Do Rego Borges, *A study of absolute extensor spaces* 609
Bruce Langworthy Chalmers, *Subspace kernels and minimum problems in Hilbert spaces with kernel function* ... 619
John Dauns, *Representation of L-groups and F-rings* ... 629
Spencer Ernest Dickson and Kent Ralph Fuller, *Algebras for which every indecomposable right module is invariant in its injective envelope* .. 655
Robert Fraser and Sam Bernard Nadler, Jr., *Sequences of contractive maps and fixed points* .. 659
Judith Lee Gersting, *A rate of growth criterion for universality of regressive isols* 669
Robert Fred Gordon, *Rings in which minimal left ideals are projective* 679
Fred Gross, *Entire functions of several variables with algebraic derivatives at certain algebraic points* ... 693
W. J. Kim, *The Schwarzian derivative and multivalence* .. 717
Robert Hamor La Grange, Jr., *On (m − n) products of Boolean algebras* 725
Charles D. Masiello, *The average of a gauge* ... 733
Stephen H. McCleary, *The closed prime subgroups of certain ordered permutation groups* 745
Richard Roy Miller, *Gleason parts and Choquet boundary points in convolution measure algebras* ... 755
Harold L. Peterson, Jr., *On dyadic subspaces* .. 773
Derek J. S. Robinson, *Groups which are minimal with respect to normality being intransitive* .. 777
Ralph Edwin Showalter, *Partial differential equations of Sobolev-Galpern type* 787
David Slepian, *The content of some extreme simplexes* .. 795
Joseph L. Taylor, *Noncommutative convolution measure algebras* 809
B. S. Yadav, *Contractions of functions and their Fourier series* .. 827
Lindsay Nathan Childs and Frank Rimi DeMeyer, *Correction to “On automorphisms of separable algebras”* .. 833
Moses Glasner and Richard Emanuel Katz, *Correction to “Function-theoretic degeneracy criteria for Riemannian manifolds”* .. 834
Satish Shirali, *Correction to “On the Jordan structure of complex Banach *algebras”* 834
Benjamin Rigler Halpern, *Addendum to “Fixed points for iterates”* 834