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In this paper we define the ordered wreath product of a
chain of ordered permutation groups and characterize it by
certain completeness properties, We then use the construction
to prove a nonabelian analogue of Hahn’s theorem for totally
ordered abelian groups,

One of the fundamental tools in the theory of totally ordered
groups is Hahn’s theorem [4; a detailed discussion may be found in
Fuchs [3]], which asserts, roughly, that every abelian totally ordered
group can be embedded in a lexico-graphically ordered (unrestricted)
direct sum of copies of the ordered group of real numbers. Almost
any general question regarding the structure of abelian totally order-
ed groups can be answered by reference to Hahn’s theorem. Although
Conrad [2] has used the Schreier theory to describe the structure of
certain classes of nonabelian ordered groups, no tool like Hahn’s theo-
rem has been available for the general case.

The natural nonabelian analogue of the direct product of two
groups (at least for embedding problems) is the wreath product. Lloyd
[9] and Reilly [12] have shown that it is possible to lattice-order the
wreath product of two lattice-ordered groups. A definition has re-
cently been given [8] for the wreath product of an arbitrary set of
groups, and in this paper we shall investigate the consequences of
that construction for certain partially ordered groups. Although we
shall occasionally refer to theorems proved in [8], familiarity with
the material in [8] is not assumed.

One of our results will be an analogue of Hahn’s theorem: every
totally ordered group can be embedded in a lexicographically ordered
wreath product of copies of the ordered group of real numbers. This
theorem suffers by comparison with Hahn’s theorem in one critical
aspect; namely, the wreath product of totally ordered groups is not
totally ordered, but only lattice-ordered. Thus, we shall broaden our
interest to consider partially ordered groups which are transitive sub-
groups of the partially ordered group A(S) of all order-preserving
permutations of a chain S (ordered by f < ¢ if and only if sf < sg
for all se€S). This class includes every totally ordered group (per-
muting itself in the Cayley representation), and a large class of lattice-
ordered groups [6]. We shall define the wreath product of a collection
of such ordered permutation groups and show that the wreath pro-
duct is itself an ordered permutation group. If the factors are lattice-
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ordered, then so is the wreath product.

A transitive group G of order-preserving permutations of a chain
S determines a set of ‘‘ o-primitive components’’ which are themselves
ordered permutation groups, and G can be embedded in the ordered
wreath product of these components. One corollary of this is the
analogue of Hahn’s theorem mentioned before. We also characterize
ordered wreath products by certain completeness properties.

2. The ordered wreath product of two ordered permutation
groups. The set A(S) of all order-preserving permutations (o-permu-
tations) of a chain S becomes a lattice-ordered group when we define
f< g if and only if sf < sg for all se€S. The lattice operations are
s(g V h) = sg V sh, and dually. If G is a subgroup of A(S) with the
inherited partial order, we shall say that (G, S) is an ordered permu-
tation group (o-permutation group).

We want to motivate an investigation of generalized ordered
wreath products by a brief discussion of the ordered wreath product
of two ordered permutation groups. Most of these definitions and re-
sults can be found in [9] and [12]. We shall omit proofs because
we shall prove much more general theorems later.

Let (H, T) and (K, V) be o-permutation groups. The (unrestricted)
wreath product (H, T)Wr(K, V) = (W, R) is defined (see, e.g., M. Hall
[5]) to be the group of all permutations of R = T x V of the form
(t, v) — (th,, vk), where ke K and h,c H. If we order T x V lexi-
cographically by setting (¢, v)) < (¢, v,) if and only if v, < v, or v, =
v, and £, £ ¢, then T x V becomes a chain T(_xﬂV and each element
of the wreath product becomes an o-permutation of that chain. Thus
W is a subgroup of A(R). Moreover, if H and K are both lattice-
ordered (closed under the lattice operation defined above), so is W.

Now we describe a certain universal property possessed by the
ordered wreath product. If F' is any set of permutations of a chain
S, then a convex F-congruence on S is an equivalence relation ¢ on
S such that each Q-class is convex (x < y < 2z and zQz implies zQy)
and such that if xQz and f e F, then (zf)Q(zf). Now let (G, S) be
a transitive o-permutation group. If ge G and s¢ S, then ¢g|sQ is an
order isomorphism (o-isomorphism) of the chain s@ upon the chain
(s9)Q, so all Q-classes are o-isomorphic. Let T = sQ be any fixed Q-
class and let G, = {he G| Th = T}. There is a natural o-homomorphism
of G, into A(T), whereby each g e G, corresponds to its restriction to
T. The image of G, under this homomorphism is denoted by G| T.
Thus if H= G|T, (H, T) is an o-permutation group.

The set V = S/Q of all @-classes bears a natural total order in
which 2@ < yQ if and only if « < y and xQ # yQ. Moreover, each



WREATH PRODUCTS OF ORDERED PERMUTATION GROUPS 705

g € G induces a natural o-permutation g e A(V), given by (2Q)g = (29)Q.
The map g — g is an o-homomorphism of G into A(V). If the image
of G in A(V) is denoted by K = G/Q, then (K, V) is an o-permutation
group. Since G is transitive on S, so is H transitive on T and K
transitive on V; and all of the permutation groups (H, T') for various
Q-classes T are o-isomorphic. We shall call (H, T) and (K, V) the
local and global @-components, respectively, of (G, S).

There is a natural o-isomorphism between the chains S and T x V
which can be realized as follows. Fix some point Oe¢ S, let T = 0Q,
and for each @-class zQ, choose g,, € G such that Og,, € 2Q (by transi-

—

tivity of G). Then map S onto T'xX V by s— (¢, v), where v = sQ
and t = sg;;. Identifying S with 7 x V in this way, each geG is
an element of the ordered wreath product (W, R). Thus (G, S) is
embedded in the ordered wreath product of its local and global com-

ponents. Under the identification of S and R = T(_><—V, the convex
G-congruence @ is described by (¢, v)Q(t;, v,) if and only if v, = v,
Thus @ is also a convex W-congruence. Moreover, the local and global
components of (W, R) are just (H, T) and (K, V), respectively. Rough-
ly speaking, the wreath product of the @-components of G is gotten
by adding to G as many o-permutations of S as possible without
changing the @-components.

In the following sections, we shall develop a theory which is
more general than the one discussed here in that instead of a single
G-congruence @ on S, we shall have a more or less arbitrary collec-
tion of convex G-congruences on S, producing components which are
neither local nor global, but somewhere in between.

3. Construction of the general ordered wreath product. What
we define here is a special case of the general wreath product defined
for (nonordered) permutation groups in [8]. Let I" be a chain, and
for each vye ', let S, be a chain and (G,, S,) a transitive o-permu-
tation group. Let R = [[,., S, be the cartesian product, and choose
any point O ¢ B. Thinking of the elements of B as functions on I,
we define the support of veR to be {veI'|r(v) # 0(7)}). Now let
R = {re R|r has inversely well ordered support}, so that for »,se R,
{verI'|r(7) # s(7)} is inversely well ordered. For »,seR,r = s, we
define » < s if and only if »(a) < s(a) in S,, where « is the largest
element of the set {ve"|r(v) # s(v)}. This makes R a chain.

For each vc I, we define an equivalence relation K, on R by set-
ting rK,s if and only if r(a) = s(a) for all &« = v. Let K7 = N>, K;
(and K" = R x R if there is no B > v). Equivalently, rK's if and
only if »(a) = s(a) for all « > ~v. All K,-classes and all K7-classes
are convex.
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Let P(R) denote the set of all (not necessarily order-preserving)
permutations of B. Let W' ={feP(R)|K, is a (convex) {f, f~}-
congruence for each verl}, a subgroup of P(R). Then for every
feW’' and vel', K7 is also a (convex) {f}-congruence. Clearly K’
containg K, and the chain (OK7")/K, (ordered in the natural way) is
o-isomorphic to the chain S,.

Let ge W',vel', and ze R. ¢ induces a permutation g, , of S,,
defined in the following way. If aeS,, there exists #’ € R such that
2Kz and 2/(v) = a. (We need only alter the ¥® component of z to
obtain #’.) Now define ag,,, = (@'9)(7). ¢,,, is well defined, for if " K'x
and z''(v) = a, then 2”K,2’, whence (x"¢g)K,(x'g), and in particular,
x"g)(v) = (@'g)(v). Thus we have the rules

(1) (@g)() = (®(7))9;,., and

(2) ¢9,,=9,, if 2K'y.

Of course (2) states that g, , really depends only on v and the con-
gruence class «K'.

It is easy to see [8] that g, . is a permutation of S, and that
ge W’ is determined by the matrix {g,.|vel,xc R} of its com-
ponents.

THEOREM 1. Let ge W'. Then g preserves order +f and only
af all g,.’s preserve order.

Proof. First, suppose that ge A(R). Let a,bcS, with a <b
and let o’ KreK72” with «’(v) = ¢ and «’'(v) = b. It follows that o’ < a”,
so that 2’g < «”g. But as (¢’¢g)K'(x"g), we must have (2'¢)(v) < (x”9)(7),
i.e., ag,. < bg,,. Therefore g, ,ec A(S,).

Conversely, suppose that g is a permutation in W’ such that for
each vel,z2eR,g,,.€A(S,). If x,yeR with z <y, let v be the
largest element of I" such that x(v) = y(v). Then xz(v) < y(v); and
Ky, so (x9)K'(yg). Now (zg)(7) = (€(7))9r.. < W()Y;,. = WONGru =
(y9)(v). Hence xg < yg.

If {(G), S;)} is a collection of o-permutation groups indexed by a
chain I", we define the ordered wreath product *1[,.r(G;, S;) to be
(W, R), where R is as specified above and W is the set of all permu-
tations g€ W’ such that g,,€G, for all vyel',xeR.

The ordered wreath product we have defined here is the same as
the general wreath product defined in [8]. In [8] it is shown that
the general wreath product is a subgroup of P(R); that it is transi-
tive; and that, to within o-isomorphism, it is independent of which
element 0 is chosen from R’. By Theorem 1, each ge W preserves
order. Thus we have

THEOREM 2. The ordered wreath product (W, R) = *II.., (G, S;)
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of transitive ordered permutation groups (G,, S,),I" a chain, is a
transitive ordered permutation group.

In case /" is a two element chain, say 0 < 1, then R = B = S, x S,,
and the ordered wreath product we have constructed is the same as
the one developed by Lloyd and Reilly that was described in §2.

4. The o-primitive components of an ordered permutation
group. Let v = (Q,, Q) be a pair of convex G-congruences of a transi-
tive o-permutation group (G, S), with @, properly contained in Q.
Let O be any point in S. Let S, be the chain (0Q")/Q, and let Gyyr =
{ge G|(0QNg = 0Q7}). Let G, be the image in A(S,) of Gy under
the natural o-homomorphism g — g, where (xQ,)7 = (£¢9)Q,. Then (G,,S,;)
is called the ~v-component of (G,S). It is an easy consequence of
transitivity that, to within o-isomorphism, (G,, S,) is independent of
the choice of Oe S.

The following argument from [11] generalizes a theorem from [7].

THEOREM 3. If (G, S) is a transitive ordered permutation group,
the set of all convex G-congruences is a chain under inclusion.

Proof. Since G is transitive, it suffices to pick any O < S and to
show that for any convex G-congruences C and D, either OC < OD
or OD < OC. Suppose that nei- oc
ther of these two convex sets is . , L
contained in the other. By transi- } 0 d T
tivity, we may pick ge G such ‘
that Og = d € OD\OC. Since Og
lies in the G-congruence class OD, (OD)g = OD. But OCNOD is
either a left ray of OD(i.e., seOCNOD,tc0D, and t < s implies
teOCNOD) or a right ray of OD. Since g preserves order, (0OC)g
meets OC and thus (0OC)g = OC, contradicting the assumption that
Og = d ¢ OC.

We denote the chain of convex G-congruences by 4 = 4G, S).
An ordered pair (s, t) of elements of a chain T is a covering pair if
s < t and if there is no uwe T such that s < u < ¢; and we order the
set of covering pairs by (s, t) < (u, v) if ¢t < u. We denote by I' =
(G, S) the chain of covering pairs of 4. We shall find in §8 that
every chain occurs as I'(G, S) for some o-permutation group (G, S).
If we denote the ¥ covering pair by v = (C,, C7), then C" = C, if
and only if (v, %) is a covering pair of elements of /. Also, consider-
ing a G-congruence as a subset of S x S, we see that 4 is closed
under arbitrary intersection and union. Thus 4 is obtained from 7I°
by replacing by a pair of points any point vel” which is not the

0D
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first half of a covering pair of elements of /7, and then forming the
completion by Dedekind cuts (with end points). The chains which
occur as 4(G, S) for some (G, S) are those obtained in this way from
an arbitrary chain 7.

A transitive o-permutation group (G, S) is said to be o-primitive
if the only convex G-congruences are the two trivial ones. O-primi-
tivity is a quite strong condition, and a great deal of information
about o-primitive permutation groups is contained in [10] and [11].
Our aim in the rest of this paper is to show how an arbitrary transi-
tive o-permutation group can be built up from o-primitive ones.

If C and K are convex G-congruences with CcC K, it is easy to
check that K covers C if and only if the (C, K)-component (G,, S;) of
(G, S) is o-primitive. Thus the o-primitive components (G,, S,) of
(G, S) are precisely those components arising from covering pairs v =
(C,, C7) of convex G-congruences.

THEOREM 4. Let (G, S) be an ordered permutation group with
o-primitive components (G,, S,) arising from covering pairs (C,, C7)
of convex G-congruences. Then every convex G-congruence D is equal
to N{C,|D<C,}.

Proof. Since the chain 4 of all convex G-congruences is the
Dedekind completion of the subchain consisting of those convex G-con-
gruences which are (either first or second) members of covering pairs
of 4, we are finished unless C, D c C7 for some v; and this is im-
possible because (C,, C7) is a covering pair.

An o-permutation group (G,, S,) is trivial if S, contains only one
point. We now show that if the (G,, S;)’s are all o-primitive and
nontrivial, then I (W, R) and the o-primitive components of (W, R)
are what they ought to be.

THEOREM 5. Let (W, R) = *[I;., (G;, S;) be the ordered wreath
product of nontrivial o-primitive ordered permutation groups (G,, S;),
I' a chain. Then the chain I' (W, R) of all covering pairs of con-
vexr W-congruences is just {(K,, K")|vel'}, and the correspondence
(K., K7y >~ 1s an o-isomorphism between [ (W, R) and ['. The
(K., K")-component of (W, R) s just (G,, S,).

Proof. Always K, < K'. Since (G,, S,) is nontrivial, K, < K’.
Since (G,, S,) is o-primitive, (K,, K') is a covering pair of 4(W, R).
Now let (C, D) be any covering pair of 4(W, R). Pick =, ye R such
that (2, y) € D\C and let » be the greatest element of {v e I" | x(7) # y(V)}.
Then (x, y)e K"\K,. Since (C, D) and (K,, K”) are both covering
pairs, (C, D) = (K,, K”). The rest is clear.
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COROLLARY 6. Under the hypotheses of Theorem 5, every convex
W-congruence D is equal to N{K,|D< K,}.

5. Completeness of the ordered wreath product. The ordered
wreath product (W, R) has two completeness properties which we may
describe as ‘‘ completeness of the set R’ and ‘‘completeness of the
group W''. Although the intersection of a collection of convex con-
gruences is always a convex congruence, it may happen in an o-per-
mutation group (G, S) that there is a tower of convex (G-congruence
classes (from different congruences) whose intersection is empty. An
example is given in §8. The tower will be said to be complete if its
intersection is not empty. If all towers are complete, then S (actually
S together with the set of all G-congruences) is termed complete.
By Theorem 4, it suffices to consider towers {x;C;: )€ 4} in which
every congruence is the first half of a covering pair and in which 4
is a right ray of I. Henceforth we shall consider only towers of
this sort. We note that if /7 is well ordered, S is automatically com-
plete.

THEOREM 7. Let (W, R) = *[],.,(G,, S,) be the ordered wreath
product of o-primitive permutation groups (G,, S,). Then R is com-
plete,

Proof. Let {x;K;:ne 4} be a tower of the prescribed kind. (We
may use K,’s because by Theorem 5, the (K,, K7)’s constitute all
covering pairs in 4(W, R)). Define y by setting y(v) = x,(v) if v e 4,
and y(v) = 0(v) otherwise. If Ned, then y(n) = x,(n) for all » =
because y(n) = x,(n) and x,cx,K,. It follows that y has inversely
well ordered support, for if 2 is contained in the support of y and
cc X, then z,(r) = y(r) for all zeX such that 7 =0, so ¥ has a
greatest element. Since y(n) = x,(n) for » = ), ye 2, K, for all v e 4.

Regarding the completeness of the group, it can easily happen
that an o-permutation group (G, S) is a proper subgroup of an o-
permutation group (H, S) on the same set S, that each convex G-con-
gruence is also an H-congruence, and yet that the o-primitive com-
ponents of H are no larger than those of G. (It is clear that the
v-component (G,, S;) is a subgroup of the v-component (H,, S;)). If an
o-permutation group (G, S) is not properly contained in this manner
in any (H, S), we shall say that the group G is complete. In view
of Theorem 5, the definition of ordered wreath product yields.

THEOREM 8. Let (W, R) = *I1,., (G, S,) be the ordered wreath
product of o-primitive permutation groups (G,, S,). Then W is com-
plete.



710 W. CHARLES HOLLAND AND STEPHEN H. McCLEARY

Let (G, S) and (H, T) be transitive o-permutation groups on dif-
ferent sets. We wish to make precise the idea of (G, S) being con-
tained in (H, T') and having the same o-primitive components as (H, T').
Accordingly, we shall say that (H, T') is a c-extension of (G, S) if
the following hold

(i) S is a subchain of T.

(ii) G is the faithful restriction to S of some subgroup G of H
such that Sg = S for each geG.

(iii) Restriction to S is an isomorphism (and thus an o-isomorphism)
from I'(H, T') onto I'(G, S). We note that (iii) holds if and only if
restriction to S is an isomorphism from 4(H, T') onto 4(G, S), which
holds if and only if every convex G-congruence on S is the restriction
to S of a unique convex H-congruence on T.

(iv) If (D,,D")el'(H, T), and if se S, then every D,-class con-
tained in sD” meets S. (iv) provides a natural o-isomorphism from
S, onto T,.

(v) If (D,,D)el'(H, T), and if seS, then for every he H
such that (sD’)h = sD7, there exists ge G such that Eg = Eh for
every D,-class E contained in sD7. (v) provides a natural o-isomor-
phism from G, onto H, [8].

The concept of immediate extension in [8] specializes for ordered
wreath products to the present concept of c-extension. It is easy to
check that a c-extension of a c-extension of (G, S) is itself a c-
extension of (G, S). We shall call (G, S) c-closed if it has no proper
c-extensions.

THEOREM 9. Let (G, S) be a transitive ordered permutation
group such that S and G are both complete. Then (G, S) is c-closed.

Proof. Suppose that (H, T') is a c-extension of (G, S). Suppose
there exists te T\S. Let M be the intersection of all H-congruence
classes tB, Bec 4(H, T), such that tBmeets S. Then M NS =N {EBNS)
is not empty because S is complete. Let D be the convex H-con-
gruence of which M is a congruence class. Pick seMNS. Let C
be the union of all convex H-congruences E such that sE =+ tE. Then
C is a convex H-congruence, and D covers C. By (iv), every C-class
contained in the D-class M must meet S. In particular, ¢{C must
meet S, contradicting the fact that C < D. Therefore S = 7. Since
G is complete, G = H.

In the next section, we shall prove the converse of Theorem 9.
CorROLLARY 10. Let (W, R) = *[I,.r (G;, S,) be the ordered wreath

product of o-primitive permutation groups (G,, S,). Then (W, R) is
c-closed.
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6. The embedding theorem. It follows from results in [8}
that if (G, S) is a transitive o-permutation group with o-primitive
components (G,, S,), Y€ ', then (G, S) can be embedded as a permutation
group in the general wreath product of the groups (G,, S,). Here we
show that the embedding is into the ordered wreath product and pre-
serves order. To do so requires that we carefully describe the em-
bedding.

Pick any x,¢ S. Our first task is to embed the chain S in R,
the set of those elements of [],., S, with inversely well ordered sup-
port. The embedding will send x, onto 0.

LEmMMA 11 [8]. If H is any group, there exists a set {T(A)|A
a subgroup of H} such that T(A) is a set consisting of exactly one
element from each right coset Ah of A in H, T(A) N A s the identity,
and if AS B, then T(A) 2 T(B).

Now pick any ve " and let (G,, S,) be the o-primitive component
of (G,S) determined by v = (C,,C"). Let G,C" ={geG|(xC"g =
2,C’}.  The function ¢: S— JI,.; S, is defined in the following way.
Let se S. There exists exactly one g, T(G,,) such that (x,9,)C’s.
Let (sp)(7) = s97'C,e S, = (x,C7)/C,. In [8] it is shown that ¢ is a
one-to-one map of S into R and that (C,, C")p = (K,, K') | Sp, where
(K,, K') is the " covering pair of convex W-congruences (Theorem
5).

We show here that ¢ preserves order (and in the process prove
again that ¢ is one-to-one). If = < y are elements of S, let B be
the intersection of all convex G-congruences E such that zFEy, and
let A be the union of all convex G-congruences F' such that aF +# yF.
Then (A, B) is a covering pair (C,, C’) of convex G-congruences.
Since »C'y, g, = g,. Thus (vp)(7) = 29;'C; < ¥97'C; = (yp)(v). How-
ever, for all 8 > v, C7 = C,, so that zC,y, and hence (2@)(B) = (yp)(B).
Therefore zp < yp. Thus the chain S is o-embedded in the chain R.

Next we define an embedding (also denoted by ¢) of G in W.
Let geG,vel, and xe€ R. ¢ induces an o-permutation of S,, which
is formally denoted by (99),,,, as follows. If xK” meets Sp, then
for each a e S,, there exists se S such that spexzK’ and (sp)(7) = «.
Now define a(9p),,, = (sg)@)(v). If xzK" does not meet Sp, define
(99):,. to be the identity 1, on S,. In [8] it is shown that (gp), , is
well defined and is a permutation of S,. Here we show it preserves
order. Suppose we have a,be S, with ¢ <b, and s,teS with
(sp)K'xK7(tp) and (sp)(v) = a, (tp)(v) =b. Then sp < tp, s0 s < &,
so sg < tg, so (s9)p < (tg)p. Since (sp)K'(tp), we have sCit, so
(s9)C'(tg), and thus ((sg)p)K'((t9)p). Since also ((s9)p)K, # ((t9)p)K:,
we have a(99),,. = (s9)p)(7) < (tg)P)(7) = b(9P);,.. Thus (99),,. pre-
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serves order.

Now gp is defined as a function on R by setting (r(gp))(v) =
(rMNg®);,.. It is proved in [8] that ¢gp is a permutation of R, and
moreover is contained in the general wreath product; and that its
component (gp),,, defined in §3 coincides with the permutation which
is formally denoted above by (¢99),,. By Theorem 1, gp preserves
order on R. It was also shown in [8] that ¢ is an embedding of the
group G in W satisfying (sg)p = (sp)(gp) for all seS,geG. Thus g
is a positive o-permutation of S if and only if go is a positive o-permu-
tation of So.

To show that ¢: G— W is an o-embedding, it remains to show
that if g is positive on Sp, it is also positive on R. Thus suppose
that go is positive on Sp and let re R. Let v be the largest element
of I" such that »(v) # (r(gp))(v). We may assume that rK’™ meets
So (otherwise (r(gp))(7) = r(V)(9p);,» = (7)1, = r(7)) and thus that there
exists sperK,. Since gp is positive on Sp and since ((sp)K")(9p) =
(sp)K7, we have r(v) = (sp)(7) < ((sp)(gp)(¥) = (r(gp))(7). Therefore
gp 1s positive on R, and thus ¢: G— W is an o-embedding. It fol-
lows easily (and is essentially included in [8]) that (W, R) is a c-ex-
tension of (Gp, Sp). We recapitulate the foregoing discussion in the
following theorem.

THEOREM 12. Let (G, S) be a transitive ordered permutation
group with o-primitive components (G,, S,), veI'. Let (W, R) be the
ordered wreath product *I[,.,(G,, S;). Then there is an embedding
p: (G, S) — (W, R) of the following sort. First, p:S— R is an o-
embedding, and (C,, C"p = (K,, K")|Sp. Next, ¢:G— W 1is an o-
embedding of the partially ordered group G im the partially ordered
group W. Finally, (sp)(gp) = (sg)p for all se S, geC; and (W, R) is
a (c-closed) c-extension of (Gp, Sp).

COROLLARY 13. Let (G, S) be a transitive ordered permutation
group. Then the following are equivalent:

(1) (G, S) is o-isomorphic to the ordered wreath product (W, R)
of its o-primitive components.

(2) (G, S) is c-closed.

(8) S and G are both complete.

Proof. (1) implies (3) by Theorems 7 and 8. (3) implies (2) by
Theorem 9. (2) implies (1) by Theorem 12.

COROLLARY 14. Let (G, S) be a transitive ordered permutation
group and (W, R) = *[[,.r(G,, S,) the ordered wreath product of its
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o-primitive components. Then any other c-closed c-extension (H, T)
of (@, S) ts o-isomorphic to (W, R).

Proof. Since (H, T) is a c-extension of (G, S), the ordered wreath
product of its o-primitive components is also (W, R). Since (H, T') is
c-closed, (H, T') is o-isomorphic to (W, R).

We now identify (G, S) with (Gp, Sp) and describe the way in
which S has been filled out to obtain R. Let {x;,C;|N¢c 4} be an in-
complete tower of convex G-congruence classes in S. By Theorem 7,
M= Nn{x;K;|ned} S R\S is not empty. Thus M is a convex con-
gruence class of the W-congruence N {K,| e 4}; and consists of more
than one point if and only if 4 I". M has been inserted in the
Dedekind cut of S which corresponds to the left ray {sec S| there ex-
ists v = A, with s < y for all y e 2,C;}. Conversely, every » € R\S arises
in this way from the incomplete tower {x,C,|»c 4} defined by
x,erK, N S if rK, meets S;and x, undefined otherwise. Clearly «,C,
depends only on »;and N {x,C,|xe 4} is empty, for if se N {x,C,},
then rK, meets S for some v ¢ A.

In particular, S = R if and only if S is complete (as we had es-
sentially shown already); and S is order dense in R if and only if for
every incomplete tower {x,C,:\ned}, 4 =1I. Also, it is not hard to
show that for zeS,xK’ is the convex hull of zC’, i.e., for any
yexK’, there exist u, vexC7 such that uw < y < ».

7. Lattice-ordered permutation groups. If (G,, S;) is an order-
ed permutation group, so that G, is a subgroup of A(S,), then if G,
is closed under the lattice operations, G, is a lattice-ordered group (I-
group). In this case we shall call (G,, S,) a lattice-ordered permu-
tation group.

THEOREM 15. If (G, S) is a transitive lattice-ordered permutation
group and v =(Q;, Q") s a pair of convex G-congruences with @, C Q’,
then the component (G,, S;) is also a lattice-ordered permutation group.

Proof. Gy is an l-subgroup of G;and the map g — g from Gy
into A(S,) is an [-homomorphism since

@) VI) = (x(g V1)Q = (vg V 2)Q, = (29)Q; V 2Q, = (xQ,)(Fg V).
Thus the image G, is an Il-subgroup of A(S,).
THEOREM 16 [10]. If each (G,, S,) s a transitive lattice-ordered
permutation group, then the ordered wreath product (W, R) =

*yer (G, Sy) ts also a (transitive) lattice-ordered permutation group,
and conversely.
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Proof. The converse follows from the previous theorem. Sap-
pose now that each (G,, S,) is lattice-ordered. Let we W have as
components {w,,}. Define z by setting z,, equal to

(i) w,, if (xw)K"™ > zK,

(ii) 1, if (x2w)K" < zK7,

dii) w,, Vv 1, if (e2w)K" = K" (i.e., if (xw)K'x). z,, depends
only on K7, for if also y e 2K’, then zK'y, so (xw)K7(yw), and thus
the same one of the three cases applies. If ¢ is the greatest element
of I" at which sw differs from s, then sz = sw if (sw)(0) > s(6), while
sz = s if (sw)(9) < s(9), so that z = w Vv 1.

THEOREM 17. Let (G, S) be a transitive lattice-ordered permu-
tation group. Then the embedding o: G— W described in Theorem
12 s an l-tsomorphism.

Proof. Since ¢: G — G is an o-isomorphism, it is an [-isomorphism,
and thus for all se S, (sp)((g V 1)p) = (s@)(99) V sp. Now let re R,
vyeI'. If there exists se S such that (sp)K,r, then

[((g vV D)) = [s((g V D)@)I(7) = [(s9)(9p) V sp](7)
= [r(g9p) V 7](7) = [r(9p V 1)](V) .

If, on the other hand, there is no such s, then [r((g V L)p)](7) =
r(v) = [7(9p V 1)](7). Therfore »((g v 1)p) = r(gp VV 1), so that ¢ is
an [-isomorphism.

If (G, S) = (A(S), S), the situation is even nicer. The o-primitive
component (G, S;) is (A(S,), S;). It is shown in [9] that if (A(T), T)
is o-primitive, then it is either o-2-transitive (i.e., for ¢, < ¢, and
u, < U,, there exists ge A(T) such that ¢,g = u, and t,g = u,) or the
regular representation of a rather special subgroup of the reals. Also,
if S is complete, the embedding of Theorem 12 maps A(S) onto W
(as well as mapping S onto R).

8. Totally ordered groups. If G is a totally ordered group,
then the right regular representation (G, G) is an o-permutation group.
A convex G-congruence amounts to a partition of G by the right
cosets Lg of some convex subgroup L of G; and the ordering of the
convex G-congruences corresponds to the ordering by inclusion of the
convex subgroups of G.

Thus an o-primitive component of (G, G) arises from a covering
pair (C,,C") of convex subgroups of G. Hence in the o-primitive
component (G, S,), S, is just the chain C7/C,. It is well kown [3]
that C, is normal in C7 and that the quotient group C7/C, is o-isomor-
phic to a subgroup of the real numbers. The kernel of the natural
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map g — g from the group C7 into A(S,) is {ge C7|(C,x)g = C,x for
all x € C7}, which is just C, since C, is normal in C7. Hence G, is o-
isomorphic to the o-group C7/C,, a subgroup of the reals. Thus
(G, S,) is just the regular representation of a subgroup of the reals.
Using only the group embedding ¢: G— W of Theorem 12, we have
an analogue of Hahn’s theorem.

THEOREM 18. If G 1is a totally ordered group, then G can be o-
embedded im an ordered wreath product of subgroups of the real
numbers.

As mentioned before, this theorem is somewhat unsatisfactory
since the wreath product is not totally ordered, but by Theorem 16,
it is at least lattice-ordered.

We mention without proof that if the transversals of Lemma 11
can be chosen so that for each ve/’, G is the direct sum of G,
and T(C,,), then the embedding @ can be chosen so that for each
geG,vel, (99);,. = (99);,, for all z, y € S, i.e., all of the v-components
of g are the same. In this case, @ embeds G in the (unrestricted)
direct product I[,.,G,. According to the lemma of Banaschewski [1],
this hypothesis is satisfied if G is a divisible totally ordered abelian
group. Thus Hahn’s theorem is a corollary of the theory developed
here. However, a proof of Hahn’s theorem along these lines is es-
sentially the same as the proof in [1].

Hahn groups provide several examples which help to clarify the
theory of ordered wreath products. Let I be an arbitrary chain and
let G be a Hahn group on I". Then I'(G, G) = I', so every chain I"
occurs as I'(G, S) for some o-permutation group (G, S). Let H be a
restricted Hahn group on [ (containing only elements having finite
support). If I" is the chain N of negative integers, (H, H) has in-
complete towers, but at least every incomplete tower has 4 =I". If
I' is the ordinal sum N + N, (H, H) has imcomplete towers with
A=+=1T.
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