ON (m – n) PRODUCTS OF BOOLEAN ALGEBRAS

ROBERT HAMOR LA GRANGE, JR.
ON \((m - n)\) PRODUCTS OF BOOLEAN ALGEBRAS

R. H. LA GRANGE

This discussion begins with the problem of whether or not all \((m - n)\) products of an indexed set \(\{A_t\}_{t \in T}\) of Boolean algebras can be obtained as \(m\)-extensions of a particular algebra \(\mathcal{F}_n^*\). The construction of \(\mathcal{F}_n^*\) is similar to the construction of the Boolean product of \(\{A_t\}_{t \in T}\); however the \(A_t\) are embedded in \(\mathcal{F}_n^*\) in such a way that their images are \(n\)-independent. If there is a cardinal number \(n'\), satisfying \(n < n' \leq m\), then \((m - n')\) products are not obtainable in this manner. For the case \(n = m\) an example shows the answer to be negative. It is explained how the class of \(m\)-extensions of \(\mathcal{F}_n^*\) is situated in the class of all \((m - n)\) products of \(\{A_t\}_{t \in T}\).

A set of \(m\)-representable Boolean algebras is given for which the minimal \((m - n)\) product is not \(m\)-representable and for which there is no smallest \((m - n)\) product.

These problems have been proposed by R. Sikorski (see [2]). Concerning \(\{A_t\}_{t \in T}\), it is assumed throughout that each of these algebras has at least four elements. \(m\) and \(n\) will always denote infinite cardinals with \(n \leq m\). All definitions are taken from [2]. An \(m\)-homomorphism is a homomorphism that is conditionally \(m\)-complete.

We denote the class of \((m - n)\) products of \(\{A_t\}_{t \in T}\) by \(P_n\) and the class of \((m - 0)\) products by \(P\). Let \(\{\{i_t\}_{t \in T}, \mathcal{B}\}\) and \(\{\{j_t\}_{t \in T}, \mathcal{C}\}\) be elements of \(P\). We say that

\[
\{\{i_t\}_{t \in T}, \mathcal{B}\} \preceq \{\{j_t\}_{t \in T}, \mathcal{C}\}
\]

provided there is an \(m\)-homomorphism \(h\) from \(\mathcal{C}\) onto \(\mathcal{B}\) such that \(h \circ j_t = i_t\) for \(t \in T\). The relation \(\preceq\) is a quasi-ordering of \(P\). Two \((m - 0)\) products are isomorphic if each is \(\preceq\) to the other.

The particular product, \(\{\{g_t^*\}_{t \in T}, \mathcal{F}_n^*\}\) of \(\{A_t\}_{t \in T}\) mentioned above is defined as follows. For each \(t \in T\) let \(X_t\) be the Stone space of \(A_t\) and let \(g_t\) be an isomorphism from \(\mathcal{F}_t\) onto the field \(\mathcal{F}_t\) of all open and closed subsets of \(X_t\). Let \(X\) be the Cartesian product of the sets \(X_t\), and for each \(t \in T\) and each \(b \in A_t\), set

\[
g_t^*(b) = \{x \in X: x(t) \in g_t(b)\}.
\]

Let \(G_n\) be the set of all subsets \(a\) of \(X\) which satisfy the following condition:

\[
a = \bigcap_{t \in S} g_t^*(b_t) \quad \text{where } b_t \in A_t, S \subseteq T \text{ and } \bar{S} \leq n.
\]

Finally, let \(\mathcal{F}_n^*\) be the field of subsets of \(X\) which is generated by \(G_n\).
\(\mathcal{F}_n^* \) is a base for the \(n \)-topology on \(X \). \(g_t^* \) is a complete isomorphism from \(\mathcal{A}_t \) into \(\mathcal{F}_n^* \). The set \(\{ g_t^*(\mathcal{A}_t) \} \), of subalgebras, is \(n \)-independent.

A Boolean \((m - n)\) product \(\{ \{ i_t \}_{t \in T}, \mathcal{B} \} \) is said to belong to \(E_n \) if and only if there is an \(m \)-isomorphism \(h \) (from \(\mathcal{F}_n^* \) into \(\mathcal{B} \)) such that \(\{ h, \mathcal{B} \} \) is an \(m \)-extension of \(\mathcal{F}_n^* \) and for each \(t \in T \) \(h \circ g_t^* = i_t \).

For every \(m \)-extension \(\{ h, \mathcal{B} \} \) of \(\mathcal{F}_n^* \), \(\{ h \circ g_t^* \}_{t \in T}, \mathcal{B} \) \(\in E_n \). Clearly \(E_n \subseteq P_n \) and \(E_n \) is not empty. \(m \)-extensions of \(\mathcal{F}_n^* \) seem to provide the most natural examples of Boolean \((m - n)\) products.

1. **Lemma 1.1.** Let \(\{ A_t \}_{t \in T} \) be an \(n \)-independent set of subalgebras of a Boolean algebra \(\mathcal{A} \) and let \(S \) and \(S' \) be subsets of \(T \) with \(\bar{S} \leq n \) and \(\bar{S'} \leq n \). For each \(t \) let \(a_t \) and \(b_t \) be nonzero elements of \(A_t \). Then

\[
(1) \quad \prod_{t \in S} a_t \leq \prod_{t \in S} b_t \text{ if and only if } a_t \leq b_t \text{ for each } t \in S;
\]

\[
(2) \quad \prod_{t \in S} a_t = \prod_{t \in S} b_t \text{ implies that } a_t = b_t \text{ for } t \in S \cap S', \quad a_t = 1 \text{ for } t \in S - S', \text{ and } b_t = 1 \text{ for } t \in S' - S.
\]

Proof. (i) Assume that for some \(t_0 \in S \), \(a_{t_0} \not\leq b_{t_0} \). Define

\[
C_t = \begin{cases} a_t & \text{if } t \in S \text{ and } t \neq t_0, \\ a_t \cdot (-b_{t_0}) & \text{if } t = t_0. \end{cases}
\]

Set \(c = \prod_{t \in S} c_t \), and note that \(c \neq 0 \), \(c \leq \prod_{t \in S} a_t \), and \(c \cdot \prod_{t \in S} b_t = 0 \). The converse is clear.

To prove (ii) we define

\[
x_t = \begin{cases} a_t & \text{if } t \in S, \\ 1 & \text{if } t \in S' - S; \end{cases} \quad \text{and} \quad y_t = \begin{cases} b_t & \text{if } t \in S', \\ 1 & \text{if } t \in S - S'. \end{cases}
\]

Now

\[
\prod_{t \in S \cup S'} x_t = \prod_{t \in S} a_t = \prod_{t \in S} b_t = \prod_{t \in S \cup S'} y_t
\]

and (ii) follows from (i).

Lemma 1.2. Let \(\{ A_t \}_{t \in T} \) be an \(n \)-independent set of subalgebras of a Boolean algebra \(\mathcal{A} \). Let \(G \) be the set of all meets \(\prod_{t \in S} a_t \) such that \(S \subseteq T, \bar{S} \leq n \), and for each \(t \in S \) \(a_t \) is a nonzero element of \(A_t \). Assume further that \(G \) generates \(\mathcal{A} \). Then \(G \) is dense in \(\mathcal{A} \).

Proof. First note that for \(g, g' \in G \) either \(g \cdot g' = 0 \) or else \(g \cdot g' \in G \). Thus every nonzero element of \(\mathcal{A} \) is a finite join of elements of the form \(g \cdot \prod_{t \leq k} (-g_t) \) with \(g, g_t \in G \) and \(k \) finite. (This notation is intended
to include the special cases g and $-g$.) Now suppose $g \cdot \prod_{i<k} (-g_i) \neq 0$, so that $g \not= \sum_{i<k} g_i$. We write a common form $g = \prod_{t \in \mathcal{S}} a_t$, and for each $i < k$ $g_i = \prod_{t \in \mathcal{S}} a_{i,t}$ where $S \subseteq T$, $\tilde{S} \leq n$, and for each $t \in S a_t$ and $a_{i,t}$ are nonzero elements of \mathbb{B}_t. Since k is finite every Boolean algebra is $(k - n)$-distributive (see [2], p. 62). We have

$$\prod_{t \in \mathcal{S}} a_t \cong \sum_{i<k} \prod_{t \in \mathcal{S}} a_{i,t} = \prod_{\phi \in \mathcal{S}^k} \sum_{i<k} a_{i,\phi(i)}.$$

(Here \mathcal{S}^k denotes the set of all functions from $k = \{0, 1, \ldots, k - 1\}$ into \mathcal{S}.) Choose $\phi \in \mathcal{S}^k$ such that $\prod_{t \in \mathcal{S}} a_t \cong \sum_{i<k} a_{i,\phi(i)}$. We have, for each $s \in \{\phi(i): i < k\}$, $a_s \cong \sum_{\phi(i) = s} a_{i,\phi(i)}$. Define

$$b_t = \begin{cases} a_t & \text{if } t \in S - \{\phi(i): i < k\} \\ a_t - \sum_{\phi(i) = t} a_{i,\phi(i)} & \text{if } t \in \{\phi(i): i < k\}. \end{cases}$$

Finally let $b = \prod_{t \in \mathcal{S}} b_t$. Clearly $b \neq 0$, $b \in G$ and $b \leq g$. For each $t \in \{\phi(i): i < k\}$, $b \cdot \sum_{\phi(i) = t} a_{i,\phi(i)} = 0$, so that $b \cdot \sum_{i<k} a_{i,\phi(i)} = 0$. It follows that $b \cdot \sum_{i<k} g_i = 0$, hence $b \leq g \cdot \prod_{i<k} (-g_i)$.

Corollary 1.3. If $\tilde{S} > n$, and for each $t \in S, a_t \neq 1$, then $\prod_{t \in \mathcal{S}} a_t = 0$.

Theorem 1.4. Let $\{(i_t)_{t \in \mathcal{T}}, \mathcal{B}\} \in P_n$. There is one and only one isomorphism h_n from \mathcal{B}_n^\approx into \mathcal{B} which satisfies the following completeness condition:

$$h_n(\prod_{t \in \mathcal{S}} g_t^\approx(a_t)) = \prod_{t \in \mathcal{S}} i_t(a_t) \text{ whenever } S \subseteq T, \tilde{S} \leq n,$$

$$a_t \in \mathcal{A}_t \text{ and } a_t \neq 0.$$

Proof. Let G be the set of all meets $\prod_{t \in \mathcal{S}} i_t(a_t)$ such that $S \subseteq T$, $\tilde{S} \leq n$, each $a_t \in \mathcal{A}_t$, and $a_t \neq 0$. Let \mathcal{A} be the subalgebra of \mathcal{B} which is generated by G. For $\prod_{t \in \mathcal{S}} i_t(a_t) \in G$ it is clear that $\prod_{t \in \mathcal{S}} i_t(a_t) = \prod_{t \in \mathcal{S}} i_t(a_t)$. By Lemma 1.2 G is dense in \mathcal{A}. Also G_n is dense in \mathcal{B}_n^\approx. For $a \in G_n$ write $a = \bigcap_{t \in \mathcal{S}} g_t^\approx(a_t) = \prod_{t \in \mathcal{S}} i_t(a_t)$. Define $h(a) = \prod_{t \in \mathcal{S}} i_t(a_t)$. It is easily seen, using Lemma 1.1, that

(1) h is a one to one function from G_n onto G;

(ii) for $a, b \in G_n$, $a \leq b$ if and only if $h(a) \leq h(b)$.

It follows (see [2], p. 37) that h can be extended to an isomorphism h_n from \mathcal{B}_n^\approx onto \mathcal{A}. h_n is uniquely determined by condition (c) because G_n generates \mathcal{B}_n^\approx.

Corollary 1.5. The product $\{(i_t)_{t \in \mathcal{T}}, \mathcal{B}\} \in E_n$ if and only if h_n is m-complete.
Proof. Let \(\{i_t\}_{t \in T}, \mathcal{B} \} \in E_n. \) There is an \(m \)-isomorphism \(f \) from \(\mathcal{F}_n^* \) into \(\mathcal{B} \) such that for each \(t \in T, f \circ g_t^* = i_t \). \(f \) satisfies condition (c) so \(f = h_n. \)

COROLLARY 1.6. Assume \(T > n \) and that \(m \geq n' > n. \) Then \(P_{n'} \cap E_n \) is empty.

Proof. Let \(\{i_t\}_{t \in T}, \mathcal{B} \} \in P_{n'}. \) Consider the isomorphism \(h_n \) from \(\mathcal{F}_n^* \) into \(\mathcal{B}. \) Choose \(S \subseteq T, S = n^+, \) and for each \(t \in S \) choose \(a_t \in \mathcal{A}_t \) with \(a_t \neq 0, a_t \neq 1. \) By Corollary 1.3

\[
\prod_{t \in S} g_t^*(a_t) = 0.
\]

However \(0 \neq \prod_{t \in S} i_t(a_t) = \prod_{t \in S} h_n \circ g_t^*(a_t) \) so that \(h_n \) is not \(m \)-complete.

There is an interesting contrast between \(E_n \) and \(P_n. \) (under the hypotheses of Corollary 1.6). Let \(\{i_t\}_{t \in T}, \mathcal{B} \} \) and \(\{j_t\}_{t \in T}, \mathcal{C} \) be elements of \(P_n \) with \(\{i_t\}_{t \in T}, \mathcal{B} \} \subseteq \{j_t\}_{t \in T}, \mathcal{C} \). It is known (see [2], p. 179) that if \(\{i_t\}_{t \in T}, \mathcal{B} \} \in P_n, \) then \(\{j_t\}_{t \in T}, \mathcal{C} \} \in P_{n'}. \) On the other hand if \(\{j_t\}_{t \in T}, \mathcal{C} \} \in E_n \) then we have \(\{i_t\}_{t \in T}, \mathcal{B} \} \in E_n.

COROLLARY 1.7. Assume \(T > n \) and \(m > n. \) Then \(E_n \cup P_{n'} \neq P_{n}. \)

Proof. Let \(S \subseteq T \) with \(S = n^+. \) Choose, for each \(t \in S, d_t \in \mathcal{A}_t \) with \(d_t \neq 0, d_t \neq 1. \) Let \(d = \bigcap_{t \in S} g_t^*(d_t). \) Let \(\mathcal{F} \) be the field of subsets of \(X \) which is generated by \(\mathcal{F}_n \cup \{d\}. \) Note that \(g_t^* \) is a complete isomorphism from \(\mathcal{A}_t \) into \(\mathcal{F}. \) Let \(\{f, \mathcal{C}\} \) be any \(m \)-extension of \(\mathcal{F}. \) It is easily seen that \(\{f \circ g_t^*\}_{t \in T}, \mathcal{C} \} \in P_{m}. \)

Consider the isomorphism \(h_n \) from \(\mathcal{F}_n \) into \(\mathcal{C}. \) \(h_n \circ g_t^* = f \circ g_t^* \) for every \(t \in T. \) By Corollary 1.3 \(\prod_{t \in S} g_t^*(d_t) = 0. \) However \(\prod_{t \in S} h_n \circ g_t^*(d_t) = f(d) \neq 0. \) Thus \(h_n \) is not \(m \)-complete and \(\{f \circ g_t^*\}_{t \in T}, \mathcal{C} \} \in E_n. \)

In order to show that \(\{f \circ g_t^*\}_{t \in T}, \mathcal{C} \} \in P_{m} \) it suffices to show that \(\prod_{t \in S} f \circ g_t^*(-d_t) = 0. \) In particular suppose \(b = \prod_{t \in S} g_t^*(-d_t) \neq 0. \) Since \(b \cdot d = 0 \) the definition of \(\mathcal{F} \) enables us to write \(b = \bigcup_{t \in S} b_t \cdot g_t^*(-d_t) \) with \(b_t \in \mathcal{F}_n. \) Choose \(t_0 \in S \) such that \(0 \neq b_t \cdot g_t^*(-d_t) \leq b. \) By Lemma 1.2 there is a nonzero element \(a = \bigcap_{t \in S} g_t^*(a_t) \) of \(G_n \) such that \(a \subseteq b \cdot g_t^*(-d_t). \) Now \(S^t \subseteq n^+ \) and \(S = n^+ \) and it follows that \(a \not\subseteq b. \) Thus \(\prod_{t \in S} g_t^*(-d_t) = 0 \) and since \(f \) is \(m \)-complete, \(\prod_{t \in S} f \circ g_t^*(-d_t) = 0. \)

We now consider the case \(n = m. \) It is known that \(E_m \neq P_{m} \) if \(m = n^+ \) (see [2], p. 190, Example D). In this example \(T \) is the two element set \(\{1, 2\}, \mathcal{A}, \) and \(\mathcal{A}_2 \) are \(\sigma \)-complete Boolean algebras which satisfy the \(\sigma \)-chain condition. The Boolean \(\sigma \)-product \(\{i_t, i_t, \mathcal{B}\} \) is such that the subalgebra \(\mathcal{B}_t \) of \(\mathcal{B} \) which is generated by \(i_t(\mathcal{A}_t) \cup i_t(\mathcal{A}_t) \)
is not a σ-regular subalgebra of \mathcal{B}. Let $\{f, \mathcal{C}\}$ be any m-extension of \mathcal{B}. It follows, using the σ-chain condition on \mathcal{A} and \mathcal{A}^*, that $\{\{f \circ i_1, f \circ i_2\}, \mathcal{C}\} \in \mathcal{P}_m$. Since T is finite $\{\{g^*, g^*_2\}, \mathcal{F}_m^*\}$ is the Boolean product of $\{\mathcal{A}_1, \mathcal{A}_2\}$. Let h be the homomorphism from \mathcal{F}_m^* into \mathcal{B} such that $h \circ g^*_1 = i_1$ and $h \circ g^*_2 = i_2$. Then h is an isomorphism from \mathcal{F}_m^* onto \mathcal{B}. Consider the isomorphism h_m from \mathcal{F}_m^* into \mathcal{C}, given by Theorem 1.4. $h_m = f \circ h$ since they agree on $g^*_1(\mathcal{A}_1) \cup g^*_2(\mathcal{A}_2)$. h_m is not m-complete because $f(\mathcal{B})$ is not m-regular in \mathcal{C}. Thus $\{\{f \circ i_1, f \circ i_2\}, \mathcal{C}\} \in \mathcal{E}_m$. We give a simple for the case $m \geq 2^{\aleph_0}$.

Example 1.8. Assume $m \geq 2^{\aleph_0}$ and let T be a set of power \aleph_0. For each $t \in T$ let \mathcal{A}_t be a Boolean algebra having exactly four elements. Let \mathcal{C} be the free Boolean m-algebra on $\{\mathcal{A}_t: t \in T\}$. \mathcal{C} is not m-representable (see [2], p. 134). For each $t \in T$ choose d_t to be one of the atoms of \mathcal{A}_t. Let i_t be the isomorphism from \mathcal{A}_t into \mathcal{B} such that $i_t(d_t) = D_t$. Then $\{\{i_t\}_{t \in T}, \mathcal{B}\} \in \mathcal{P}_m$. By Lemma 1.2 \mathcal{F}_m^* is atomic, the atoms being all sets of the form $\bigcap_{t \in T} g^*_t(a_t)$, where for each $t \in T a_t$ is an atom of \mathcal{A}_t. Denote the set of atoms of \mathcal{F}_m^* by $\{C_r: r \in R\}$, then $R = 2^{\aleph_0}$. We consider the isomorphism h_m from \mathcal{F}_m^* into \mathcal{B}. For each $r \in R, h_m(c_r)$ is an atom of \mathcal{B}. To show this we define

$$\mathcal{B} = \{b \in \mathcal{B}: \text{for each } r \in R \text{ either } b \cdot h_m(c_r) = 0 \text{ or } h_m(c_r) \leq b\}.$$

It is easily seen that \mathcal{B} is an m-subalgebra of \mathcal{B} which includes $\{D_t: t \in T\}$. Hence $\mathcal{B} = \mathcal{B}$. Finally, h_m is not m-complete. For otherwise $\sum_{c_r \in R} h_m(c_r) = 1$, and \mathcal{B} would be atomic and hence isomorphic to an m-field of sets.

2. We now consider the problem of the existence of a smallest element of \mathcal{P}, relative to the quasi-ordering “\leq”. A minimal element of \mathcal{P} always exists and can be constructed as follows. Let $\{\{f_t\}_{t \in T}, \mathcal{C}\}$ be a Boolean product of $\{\mathcal{A}_t\}_{t \in T}$ and let $\{h, \mathcal{B}\}$ be an m-completion of \mathcal{C}. Then $\{\{h \circ f_t\}_{t \in T}, \mathcal{B}\}$ is a minimal element of \mathcal{P}. We shall show that this product need not be a smallest element of \mathcal{P}. Hence \mathcal{P} need not have a smallest element.

Example 2.1. Let m be any infinite cardinal. Let $\mathcal{T} = \aleph_0$ and suppose that for each $t \in T$ \mathcal{A}_t is a four element Boolean algebra. For each $t \in T$ choose a_t to be one of the atoms of \mathcal{A}_t. \mathcal{C} is a free Boolean algebra of power \aleph_0, one set of free generators being $\{f_t(a_t): t \in T\}$. \mathcal{B} has a countable dense subset, in particular \mathcal{B} satisfies the countable chain condition. Thus \mathcal{B} is complete. It follows that \mathcal{B} is isomorphic to the quotient algebra \mathcal{F}/Δ, where \mathcal{F} is the σ-field...
of Borel subsets of the unit interval \(I = \{ x: 0 < x \leq 1 \} \) of real numbers and \(\Delta \) is the ideal consisting of those Borel sets which are of the first category.

To show that \(\{ (h \circ f) \}_{t \in T}, \mathcal{B} \) is not a smallest element of \(P \) we construct another \((m-0)\) product as follows. Let \(G \) be the set of all halfopen intervals of the form \(\{ x: 0 < x \leq r \} \) such that \(r \) is rational and \(0 < r \leq 1 \). \(\mathcal{F} \) is \(\sigma \)-generated by \(G \). The subalgebra \(\mathcal{F}_0 \) of \(\mathcal{F} \) which is generated by \(G \) is denumerable and atomless. Hence \(\mathcal{F}_0 \) is isomorphic to \(\mathbb{C} \) (see [1], p. 54). Let \(g \) be an isomorphism from \(\mathbb{C} \) onto \(\mathcal{F}_0 \). Let \(\Delta \) be the ideal of \(\mathcal{F} \) consisting of those Borel sets having Lebesgue measure 0. We note that \(\mathcal{F}_0 \cap \Delta = \{ 0 \} \). Finally for each \(t \in T \) let \(h_t \) be the isomorphism from \(\mathcal{F}_0 \) onto \(\mathcal{F}_0 / \Delta \) defined by \(h_t(a) = (g \circ f_t)(a) \). It is easily seen that \(\{ (h_t)_{t \in T}, \mathcal{F}_0 / \Delta \} \in P \).

Now assume \(\{ (h \circ f) \}_{t \in T}, \mathcal{B} \} \leq \{ (h_t)_{t \in T}, \mathcal{F}_0 / \Delta \} \). Then there is an \(m \)-homomorphism \(p \) from \(\mathcal{F}_0 / \Delta \) onto \(\mathcal{F}_0 / \Delta_0 \). Since \(\mathcal{F}_0 / \Delta_0 \) satisfies the countable chain condition the kernel of \(p \) is a principal ideal. \(\mathcal{F}_0 / \Delta_0 \) is isomorphic to a principal ideal of \(\mathcal{F}_0 / \Delta_0 \). However \(\mathcal{F}_0 / \Delta_0 \) is homogeneous (see [2], p. 105). Thus \(\mathcal{F}_0 / \Delta_0 \) is isomorphic to \(\mathcal{F}_0 / \Delta_1 \), which is a contradiction.

Next we consider the problem of the existence of a smallest element of \(P_n \). Let \(\{ g, \mathcal{B} \} \) be an \(m \)-completion of \(\mathcal{F}_n^* \). Then \(\{ (g \circ g^*_t) \}_{t \in T}, \mathcal{B} \} \) is a minimal element of \(P_n \). Also it is known (see [2], p. 183) that if all the \(\mathcal{A}_t \) are \(m \)-representable then there is an \((m-n)\) product \(\{ (i_t)_{t \in T}, \mathbb{C} \} \) for which \(\mathbb{C} \) is \(m \)-representable. We give an example of \(\{ \mathcal{A}_t \}_{t \in T} \) for which \(\mathcal{B} \) is not \(m \)-representable and \(\{ (g \circ g^*_t) \}_{t \in T}, \mathcal{B} \} \) is not a smallest element of \(P_n \).

Example 2.2. Assume that \(m \geq 2^{n+1} \). Let \(T = n+1 \) and for each \(t \in T \) let \(\mathcal{A}_t \) be a four element Boolean algebra. We show that \(\mathcal{B} \) is not \(n^t \)-distributive. Choose, for each \(t \in T, a_t \) to be one of the atoms of \(\mathcal{A}_t \). Then

\[
\prod_{t \in T} (g \circ g^*_t(a_t) + g \circ g^*_t(a_t)) = 1.
\]

However for each function \(\eta \in H^T \) (here \(H = \{ +1, -1 \} \)) we have

\[
\prod_{t \in T} \eta(t) \cdot g \circ g^*_t(a_t) = 0.
\]

This follows from Corollary 1.3. Thus \(\prod_{t \in T} \eta(t) \cdot g \circ g^*_t(a_t) = 0 \). This proves \(\mathcal{B} \) is not \(n^t \)-distributive and hence not \(m \)-representable.

To show that \(\{ (g \circ g^*_t) \}_{t \in T}, \mathcal{B} \} \) is not a smallest element of \(P_n \), let \(\{ (i_t)_{t \in T}, \mathbb{C} \} \) be any \((m-n) \) product of \(\{ \mathcal{A}_t \}_{t \in T} \) such that \(\mathbb{C} \) is \(m \)-representable. \(\mathcal{B} \) is not an \(m \)-homomorphic image of \(\mathbb{C} \). Thus the inequality
\[
\{g \circ g_i^*\}_{i \in T}, \mathcal{B} \subseteq \{i_i\}_{i \in T}, \mathcal{C} \]
does not hold.

References

Received July 19, 1968.

University of Wyoming
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>George E. Andrews, On a calculus of partition functions</td>
<td>555</td>
</tr>
<tr>
<td>Silvio Aurora, A representation theorem for certain connected rings</td>
<td>563</td>
</tr>
<tr>
<td>Lawrence Wasson Baggett, A note on groups with finite dual spaces</td>
<td>569</td>
</tr>
<tr>
<td>Steven Barry Bank, On majorants for solutions of algebraic differential equations in regions of the complex plane</td>
<td>573</td>
</tr>
<tr>
<td>Klaus R. Bichteler, Locally compact topologies on a group and the corresponding continuous irreducible representations</td>
<td>583</td>
</tr>
<tr>
<td>Mario Borelli, Affine complements of divisors</td>
<td>595</td>
</tr>
<tr>
<td>Carlos Jorge Do Rego Borges, A study of absolute extensor spaces</td>
<td>609</td>
</tr>
<tr>
<td>Bruce Langworthy Chalmers, Subspace kernels and minimum problems in Hilbert spaces with kernel function</td>
<td>619</td>
</tr>
<tr>
<td>John Dauns, Representation of L-groups and F-rings</td>
<td>629</td>
</tr>
<tr>
<td>Spencer Ernest Dickson and Kent Ralph Fuller, Algebras for which every indecomposable right module is invariant in its injective envelope</td>
<td>655</td>
</tr>
<tr>
<td>Robert Fraser and Sam Bernard Nadler, Jr., Sequences of contractive maps and fixed points</td>
<td>659</td>
</tr>
<tr>
<td>Judith Lee Gersting, A rate of growth criterion for universality of regressive isols</td>
<td>669</td>
</tr>
<tr>
<td>Robert Fred Gordon, Rings in which minimal left ideals are projective</td>
<td>679</td>
</tr>
<tr>
<td>Fred Gross, Entire functions of several variables with algebraic derivatives at certain algebraic points</td>
<td>693</td>
</tr>
<tr>
<td>W. J. Kim, The Schwarzian derivative and multivalence</td>
<td>717</td>
</tr>
<tr>
<td>Robert Hamor La Grange, Jr., On (m − n) products of Boolean algebras</td>
<td>725</td>
</tr>
<tr>
<td>Charles D. Masiello, The average of a gauge</td>
<td>733</td>
</tr>
<tr>
<td>Stephen H. McCleary, The closed prime subgroups of certain ordered permutation groups</td>
<td>745</td>
</tr>
<tr>
<td>Richard Roy Miller, Gleason parts and Choquet boundary points in convolution measure algebras</td>
<td>755</td>
</tr>
<tr>
<td>Harold L. Peterson, Jr., On dyadic subspaces</td>
<td>773</td>
</tr>
<tr>
<td>Derek J. S. Robinson, Groups which are minimal with respect to normality being intransitive</td>
<td>777</td>
</tr>
<tr>
<td>Ralph Edwin Showalter, Partial differential equations of Sobolev-Galpern type</td>
<td>787</td>
</tr>
<tr>
<td>David Slepian, The content of some extreme simplexes</td>
<td>795</td>
</tr>
<tr>
<td>Joseph L. Taylor, Noncommutative convolution measure algebras</td>
<td>809</td>
</tr>
<tr>
<td>B. S. Yadav, Contractions of functions and their Fourier series</td>
<td>827</td>
</tr>
<tr>
<td>Lindsay Nathan Childs and Frank Rimi DeMeyer, Correction to: “On automorphisms of separable algebras”</td>
<td>833</td>
</tr>
<tr>
<td>Moses Glasner and Richard Emanuel Katz, Correction to: “Function-theoretic degeneracy criteria for Riemannian manifolds”</td>
<td>834</td>
</tr>
<tr>
<td>Benjamin Rigler Halpern, Addendum to: “Fixed points for iterates”</td>
<td>834</td>
</tr>
</tbody>
</table>