ON \((m - n) \) PRODUCTS OF BOOLEAN ALGEBRAS

ROBERT HAMOR LA GRANGE, JR.
ON \((m - n)\) PRODUCTS OF BOOLEAN ALGEBRAS

R. H. LA GRANGE

This discussion begins with the problem of whether or not all \((m - n)\) products of an indexed set \(\{\mathcal{A}_t\}_{t \in T}\) of Boolean algebras can be obtained as \(m\)-extensions of a particular algebra \(\mathcal{F}^*_{n}\). The construction of \(\mathcal{F}^*_{n}\) is similar to the construction of the Boolean product of \(\{\mathcal{A}_t\}_{t \in T}\); however the \(\mathcal{A}_t\) are embedded in \(\mathcal{F}^*_{n}\) in such a way that their images are \(n\)-independent. If there is a cardinal number \(n'\), satisfying \(n < n' \leq m\), then \((m - n')\) products are not obtainable in this manner. For the case \(n = m\) an example shows the answer to be negative. It is explained how the class of \(m\)-extensions of \(\mathcal{F}^*_{n}\) is situated in the class of all \((m - n)\) products of \(\{\mathcal{A}_t\}_{t \in T}\). A set of \(m\)-representable Boolean algebras is given for which the minimal \((m - n)\) product is not \(m\)-representable and for which there is no smallest \((m - n)\) product.

These problems have been proposed by R. Sikorski (see [2]). Concerning \(\{\mathcal{A}_t\}_{t \in T}\), it is assumed throughout that each of these algebras has at least four elements. \(m\) and \(n\) will always denote infinite cardinals with \(n \leq m\). All definitions are taken from [2]. An \(m\)-homomorphism is a homomorphism that is conditionally \(m\)-complete. We denote the class of \((m - n)\) products of \(\{\mathcal{A}_t\}_{t \in T}\) by \(P_n\) and the class of \((m - 0)\) products by \(P\). Let \(\{(i_t)_{t \in T}, \mathcal{B}\}\) and \(\{(j_t)_{t \in T}, \mathcal{C}\}\) be elements of \(P\). We say that

\[
\{(i_t)_{t \in T}, \mathcal{B}\} \leq \{(j_t)_{t \in T}, \mathcal{C}\}
\]

provided there is an \(m\)-homomorphism \(h\) from \(\mathcal{C}\) onto \(\mathcal{B}\) such that \(h \circ j_t = i_t\) for \(t \in T\). The relation \(\leq\) is a quasi-ordering of \(P\). Two \((m - 0)\) products are isomorphic if each is \(\leq\) to the other.

The particular product, \(\{(g^*_t)_{t \in T}, \mathcal{F}^*_{n}\}\) of \(\{\mathcal{A}_t\}_{t \in T}\) mentioned above is defined as follows. For each \(t \in T\) let \(X_t\) be the Stone space of \(\mathcal{A}_t\) and let \(g_t\) be an isomorphism from \(\mathcal{A}_t\) onto the field \(\mathcal{F}_t\) of all open and closed subsets of \(X_t\). Let \(X\) be the Cartesian product of the sets \(X_t\), and for each \(t \in T\) and each \(b \in \mathcal{A}_t\), set

\[
g^*_t(b) = \{x \in X: x(t) \in g_t(b)\}.
\]

Let \(G_n\) be the set of all subsets \(a\) of \(X\) which satisfy the following condition:

\[a = \bigcap_{t \in S} g^*_t(b_t)\] where \(b_t \in \mathcal{A}_t\), \(S \subseteq T\) and \(\tilde{S} \subseteq n\).

Finally, let \(\mathcal{F}^*_{n}\) be the field of subsets of \(X\) which is generated by \(G_n\).
\(\mathcal{F}_n^* \) is a base for the \(n \)-topology on \(X \). \(g_i^* \) is a complete isomorphism from \(\mathcal{A}_i \) into \(\mathcal{F}_n^* \). The set \(\{ g_i^*(\mathcal{A}_i) \} \), of subalgebras, is \(n \)-independent.

A Boolean (\(m - n \)) product \(\{ \{ i_t \}_{t \in T}, \mathcal{B} \} \) is said to belong to \(E_n \) if and only if there is an \(m \)-isomorphism \(h \) (from \(\mathcal{F}_n^* \) into \(\mathcal{B} \)) such that \(\{ h, \mathcal{B} \} \) is an \(m \)-extension of \(\mathcal{F}_n^* \) and for each \(t \in T \) \(h \circ g_i^* = i_t \).

For every \(m \)-extension \(\{ h, \mathcal{B} \} \) of \(\mathcal{F}_n^* \), \(\{ h \circ g_i^* \}_{t \in T}, \mathcal{B} \} \in E_n \). Clearly \(E_n \subseteq P_n \) and \(E_n \) is not empty. \(m \)-extensions of \(\mathcal{F}_n^* \) seem to provide the most natural examples of Boolean (\(m - n \)) products.

1. **Lemma 1.1.** Let \(\{ \mathcal{B}_t \}_{t \in T} \) be an \(n \)-independent set of subalgebras of a Boolean algebra \(\mathcal{A} \) and let \(S \) and \(S' \) be subsets of \(T \) with \(\overline{S} \leq n \) and \(\overline{S'} \leq n \). For each \(t \) let \(a_t \) and \(b_t \) be nonzero elements of \(\mathcal{B}_t \). Then

 (i) \(\prod_{t \in S} a_t \leq \prod_{t \in S'} b_t \) if and only if \(a_t \leq b_t \) for each \(t \in S \);

 (ii) \(\prod_{t \in S} a_t = \prod_{t \in S'} b_t \) implies that \(a_t = b_t \) for \(t \in S \cap S' \), \(a_t = 1 \) for \(t \in S - S' \), and \(b_t = 1 \) for \(t \in S' - S \).

Proof. (i) Assume that for some \(t_0 \in S, a_{t_0} \leq b_{t_0} \). Define

\[
C_t = \begin{cases}
 a_t & \text{if } t \in S \text{ and } t \neq t_0, \\
 a_{t_0} \cdot (-b_{t_0}) & \text{if } t = t_0.
\end{cases}
\]

Set \(c = \prod_{t \in S} c_t \), and note that \(c \neq 0, c \leq \prod_{t \in S} a_t \), and \(c \cdot \prod_{t \in S'} b_t = 0 \). The converse is clear.

To prove (ii) we define

\[
\chi_t = \begin{cases}
 a_t & \text{if } t \in S, \\
 1 & \text{if } t \in S' - S;
\end{cases} \quad \text{and} \quad \psi_t = \begin{cases}
 b_t & \text{if } t \in S', \\
 1 & \text{if } t \in S - S'.
\end{cases}
\]

Now

\[
\prod_{t \in S \cup S'} \chi_t = \prod_{t \in S} a_t = \prod_{t \in S} b_t = \prod_{t \in S \cup S'} \psi_t
\]

and (ii) follows from (i).

2. **Lemma 1.2.** Let \(\{ \mathcal{B}_t \}_{t \in T} \) be an \(n \)-independent set of subalgebras of a Boolean algebra \(\mathcal{A} \). Let \(G \) be the set of all meets \(\prod_{t \in S} a_t \) such that \(S \subseteq T, S \leq n \), and for each \(t \in S \) \(a_t \) is a nonzero element of \(\mathcal{B}_t \). Assume further that \(G \) generates \(\mathcal{A} \). Then \(G \) is dense in \(\mathcal{A} \).

Proof. First note that for \(g, g' \in G \) either \(g \cdot g' = 0 \) or else \(g \cdot g' \in G \). Thus every nonzero element of \(\mathcal{A} \) is a finite join of elements of the form \(g \cdot \prod_{i \in k} (-g_i) \) with \(g, g_i \in G \) and \(k \) finite. (This notation is intended
to include the special cases g and $-g$.) Now suppose $g \cdot \prod_{i<k} (-g_i) \neq 0$, so that $g \cong \sum_{i<k} g_i$. We write a common form $g = \prod_{i \in S} a_i$, and for each $i < k$ $g_i = \prod_{t \in S} a_{i,t}$ where $S \subseteq T$, $\bar{S} \subseteq \bar{n}$, and for each $t \in S$ a_i and $a_{i,t}$ are nonzero elements of \mathcal{B}. Since k is finite every Boolean algebra is $(k - n)$-distributive (see [2], p. 62). We have

$$\prod_{t \in S} a_t \cong \sum_{i<k} \prod_{t \in S} a_{i,t} = \prod_{\phi \in S^k} \sum_{i<k} a_{i,\phi(i)}.$$

(Here S^k denotes the set of all functions from $k = \{0, 1, \cdots, k-1\}$ into S.) Choose $\phi \in S^k$ such that $\prod_{t \in S} a_t = \sum_{i<k} a_{i,\phi(i)}$. We have, for each $s \in \{s(i) : i < k\}$, $a_s = \sum_{\phi(i) = s} a_{i,\phi(i)}$. Define

$$b_t = \begin{cases} a_t & \text{if } t \in S - \{\phi(i) : i < k\} \\ a_t - \sum_{\phi(i) = t} a_{i,\phi(i)} & \text{if } t \in \{\phi(i) : i < k\}. \end{cases}$$

Finally let $b = \prod_{t \in S} b_t$. Clearly $b \neq 0$, $b \in G$ and $b \leq g$. For each $t \in \{\phi(i) : i < k\}$, $b_t \cdot \sum_{\phi(i) = t} a_{i,\phi(i)} = 0$, so that $b \cdot \sum_{i<k} a_{i,\phi(i)} = 0$. It follows that $b \cdot \sum_{i<k} g_i = 0$, hence $b \leq g \cdot \prod_{i<k} (-g_i)$.

Corollary 1.3. If $\bar{S} > n$, and for each $t \in S$, $a_t \neq 1$, then $\prod_{i \in S} a_i = 0$.

Theorem 1.4. Let $\{\{i_t\}_{t \in T}, \mathcal{B}\} \in \mathcal{P}_n^*$. There is one and only one isomorphism $h_\mathcal{B}$ from \mathcal{F}_n^* into \mathcal{B} which satisfies the following completeness condition:

$$(c) \quad h_\mathcal{B}(\prod_{t \in S} g_t^*(a_t)) = \prod_{t \in S} i_t(a_t) \text{ whenever } S \subseteq T, \overline{S} \subseteq \overline{n}, a_t \in \mathcal{A}_t \text{ and } a_t \neq 0.$$

Proof. Let G be the set of all meets $\prod_{t \in S} i_t(a_t)$ such that $S \subseteq T$, $\overline{S} \subseteq \overline{n}$, each $a_t \in \mathcal{A}_t$ and $a_t \neq 0$. Let \mathcal{A} be the subalgebra of \mathcal{B} which is generated by G. For $\prod_{t \in S} i_t(a_t) \in G$ it is clear that $\prod_{t \in S} i_t(a_t) = \prod_{t \in S} g_t(a_t)$. By Lemma 1.2 G is dense in \mathcal{A}. Also G_n is dense in \mathcal{F}_n^*. For $a \in G_n$ write $a = \bigcap_{t \in S} g_t^*(a_t) = \prod_{t \in S} \overline{g_t}^*(a_t)$. Define $h_\mathcal{B}(a) = \prod_{t \in S} i_t(a_t)$. It is easily seen, using Lemma 1.1, that

(i) h is a one to one function from G_n onto G;

(ii) for $a, b \in G_n$, $a \leq b$ if and only if $h(a) \leq h(b)$.

It follows (see [2], p. 37) that h can be extended to an isomorphism $h_\mathcal{B}$ from \mathcal{F}_n^* onto \mathcal{A}. $h_\mathcal{B}$ is uniquely determined by condition (c) because G_n generates \mathcal{F}_n^*.

Corollary 1.5. The product $\{\{i_t\}_{t \in T}, \mathcal{B}\} \in \mathcal{E}_n$ if and only if $h_\mathcal{B}$ is n-complete.
Proof. Let \(\{\{i_t\}_{t \in T}, \mathcal{B}\} \in E_n \). There is an \(m \)-isomorphism \(f \) from \(\mathcal{F}_n^* \) into \(\mathcal{B} \) such that for each \(t \in T, f \circ g_t^* = i_t \). \(f \) satisfies condition (c) so \(f = h_n \).

Corollary 1.6. Assume \(\bar{T} > n \) and that \(m \geq n' > n \). Then \(P_n' \cap E_n \) is empty.

Proof. Let \(\{\{i_t\}_{t \in T}, \mathcal{B}\} \in P_n' \). Consider the isomorphism \(h_n \) from \(\mathcal{F}_n^* \) into \(\mathcal{B} \). Choose \(S \subseteq T, \bar{S} = n^+ \), and for each \(t \in S \) choose \(a_t \in \mathbb{A}_t \) with \(a_t \neq 0, a_t \neq 1 \). By Corollary 1.3

\[
\prod_{t \in S} g_t^*(a_t) = 0.
\]

However \(0 \neq \prod_{t \in S} i_t(a_t) = \prod_{t \in S} h_n \circ g_t^*(a_t) \) so that \(h_n \) is not \(m \)-complete.

There is an interesting contrast between \(E_n \) and \(P_n' \), (under the hypotheses of Corollary 1.6). Let \(\{\{i_t\}_{t \in T}, \mathcal{B}\} \) and \(\{\{j_t\}_{t \in T}, \mathcal{C}\} \) be elements of \(P_n \) with \(\{\{i_t\}_{t \in T}, \mathcal{B}\} \subseteq \{\{j_t\}_{t \in T}, \mathcal{C}\} \). It is known (see [2], p. 179) that if \(\{\{i_t\}_{t \in T}, \mathcal{B}\} \in P_n' \), then \(\{\{j_t\}_{t \in T}, \mathcal{C}\} \in P_n' \). On the other hand if \(\{\{j_t\}_{t \in T}, \mathcal{C}\} \in E_n \) then we have \(\{\{i_t\}_{t \in T}, \mathcal{B}\} \in E_n \).

Corollary 1.7. Assume \(\bar{T} > n \) and \(m > n \). Then \(E_n \cup P_{n'} \neq P_n \).

Proof. Let \(S \subseteq T \) with \(\bar{S} = n^+ \). Choose, for each \(t \in S, d_t \in \mathbb{A}_t \) with \(d_t \neq 0, d_t \neq 1 \). Let \(d = \bigcap_{t \in S} g_t^*(d_t) \). Let \(\mathcal{F} \) be the field of subsets of \(X \) which is generated by \(\mathcal{F}_n^* \cup \{d\} \). Note that \(g_t^* \) is a complete isomorphism from \(\mathbb{A}_t \) into \(\mathcal{F} \). Let \(\{f, \mathcal{C}\} \) be any \(m \)-extension of \(\mathcal{F} \). It is easily seen that \(\{\{f \circ g_t^*\}_{t \in T}, \mathcal{C}\} \in P_n \).

Consider the isomorphism \(h_n \) from \(\mathcal{F}_n^* \) into \(\mathcal{C} \). \(h_n \circ g_t^* = f \circ g_t^* \) for every \(t \in T \). By Corollary 1.3 \(\prod_{t \in S} g_t^*(d_t) = 0 \). However \(\prod_{t \in S} h_n \circ g_t^*(d_t) = f(d) \neq 0 \). Thus \(h_n \) is not \(m \)-complete and \(\{\{f \circ g_t^*\}_{t \in T}, \mathcal{C}\} \notin E_n \).

In order to show that \(\{\{f \circ g_t^*\}_{t \in T}, \mathcal{C}\} \notin P_{n'} \) it suffices to show that \(\prod_{t \in S} f \circ g_t^*(-d_t) = 0 \). In particular suppose \(b = \prod_{t \in S} g_t^*(-d_t) \neq 0 \). Since \(b \cdot d = 0 \) the definition of \(\mathcal{F} \) enables us to write \(b = \bigcup_{t \in S} b_t \cdot g_t^*(-d_t) \) with \(b_t \in \mathcal{F}_n^* \). Choose \(t_0 \in S \) such that \(0 \neq b_t \cdot g_t^*(d_t) \leq b \). By Lemma 1.2 there is a nonzero element \(a = \bigcap_{t \in S} g_t^*(a_t) \) of \(G_n \) such that \(a \subseteq b_t \cdot g_t^*(d_t) \). Now \(\bar{S}' = \bar{n} \) and \(\bar{S} = n^+ \) and it follows that \(a \not\subseteq b \). Thus \(\prod_{t \in S} g_t^*(-d_t) = 0 \) and since \(f \) is \(m \)-complete, \(\prod_{t \in S} f \circ g_t^*(-d_t) = 0 \).

We now consider the case \(n = m \). It is known that \(E_m \neq P_m \) if \(m = \aleph_0 \) (see [2], p. 190, Example D). In this example \(T \) is the two element set \(\{1, 2\} \), \(\mathbb{A}_1 \) and \(\mathbb{A}_2 \) are \(\sigma \)-complete Boolean algebras which satisfy the \(\sigma \)-chain condition. The Boolean \(\sigma \)-product \(\{\{i_1, i_2\}, \mathcal{B}\} \) is such that the subalgebra \(\mathcal{B}_0 \) of \(\mathcal{B} \) which is generated by \(i_1(\mathbb{A}_1) \cup i_2(\mathbb{A}_2) \)
is not a σ-regular subalgebra of \mathcal{B}. Let $\{f, \mathcal{C}\}$ be any m-extension of \mathcal{B}. It follows, using the σ-chain condition on \mathcal{U}_1 and \mathcal{U}_2, that $\{(f \circ i_1, f \circ i_2), \mathcal{C}\} \in P_m$. Since T is finite $\{(g_i^+, g_i^+), \mathcal{F}_m^\ast\}$ is the Boolean product of $\{(\mathcal{U}_1, \mathcal{U}_2)\}$. Let h be the homomorphism from \mathcal{F}_m^\ast into \mathcal{B} such that $h \circ g_i^+ = i_1$ and $h \circ g_i^+ = i_2$. Then h is an isomorphism from \mathcal{F}_m^\ast onto \mathcal{B}_0. Consider the isomorphism h_m, from \mathcal{F}_m^\ast into \mathcal{C}, given by Theorem 1.4. $h_m = f \circ h$ since they agree on $g_i^+(\mathcal{U}_1) \cup g_i^+(\mathcal{U}_2)$. h_m is not m-complete because $f(\mathcal{B}_0)$ is not m-regular in \mathcal{C}. Thus $\{(f \circ i_1, f \circ i_2), \mathcal{C}\} \in P_m$. We give a simple for the case $m \geq 2^{\aleph_0}$.

Example 1.8. Assume $m \geq 2^{\aleph_0}$ and let T be a set of power \aleph_0. For each $t \in T$ let \mathcal{U}_t be a Boolean algebra having exactly four elements. Let \mathcal{E} be the free Boolean m-algebra on $\{\mathcal{U}_t: t \in T\}$ with \mathcal{U}_t as m-generators, $(D_t: t \in T)$. \mathcal{B} is not m-representable (see [2], p. 134). For each $t \in T$ choose a_t to be one of the atoms of \mathcal{U}_t. Let i_t be the isomorphism from \mathcal{U}_t into \mathcal{B} such that $i_t(a_t) = D_t$. Then $\{i_t: t \in T, \mathcal{B}\} \in P_m$. By Lemma 1.2 \mathcal{F}_m^\ast is atomic, the atoms being all sets of the form $\bigcap_{t \in T} g_i^+(a_t)$, where for each $t \in T a_t$ is an atom of \mathcal{U}_t. Denote the set of atoms of \mathcal{F}_m^\ast by $\{C_r: r \in R\}$, then $|R| = 2^{\aleph_0}$. We consider the isomorphism h_m from \mathcal{F}_m^\ast into \mathcal{B}. For each $r \in R$, $h_m(c_r)$ is an atom of \mathcal{B}. To show this we define

$$\mathcal{A} = \{b \in \mathcal{B}: \text{for each } r \in R \text{ either } b \cdot h_m(c_r) = 0 \text{ or } h_m(c_r) \leq b\}.$$

It is easily seen that \mathcal{A} is an m-subalgebra of \mathcal{B} which includes $\{D_t: t \in T\}$. Hence $\mathcal{A} = \mathcal{B}$. Finally, h_m is not m-complete. For otherwise $\sum_{r \in R} h_m(c_r) = 1$, and \mathcal{B} would be atomic and hence isomorphic to an m-field of sets.

2. We now consider the problem of the existence of a smallest element of P, relative to the quasi-ordering "\leq". A minimal element of P always exists and can be constructed as follows. Let $\{(f_t)_{t \in T}, \mathcal{C}\}$ be a Boolean product of $\{(\mathcal{U}_t): t \in T\}$ and let $\{h, \mathcal{B}\}$ be an m-completion of \mathcal{C}. Then $\{(h \circ f_t)_{t \in T}, \mathcal{B}\}$ is a minimal element of P. We shall show that this product need not be a smallest element of P. Hence P need not have a smallest element.

Example 2.1. Let m be any infinite cardinal. Let $T = \aleph_0$ and suppose that for each $t \in T \mathcal{U}_t$ is a four element Boolean algebra. For each $t \in T$ choose a_t to be one of the atoms of \mathcal{U}_t. \mathcal{C} is a free Boolean algebra of power \aleph_0, one set of free generators being $\{f_t(a_t): t \in T\}$. \mathcal{B} has a countable dense subset, in particular \mathcal{B} satisfies the countable chain condition. Thus \mathcal{B} is complete. It follows that \mathcal{B} is isomorphic to the quotient algebra $\mathcal{F}/\mathcal{A}_0$ where \mathcal{F} is the σ-field
of Borel subsets of the unit interval \(I = \{ x : 0 < x \leq 1 \} \) of real numbers and \(\Delta_0 \) is the ideal consisting of those Borel sets which are of the first category.

To show that \(\{ h \circ f_t \}_{t \in T}, \mathcal{B} \) is not a smallest element of \(P \) we construct another \((m-0)\) product as follows. Let \(G \) be the set of all halfopen intervals of the form \(\{ x : 0 < x \leq r \} \) such that \(r \) is rational and \(0 < r \leq 1 \). \(\mathcal{F} \) is \(\sigma\)-generated by \(G \). The subalgebra \(\mathcal{F}_0 \) of \(\mathcal{F} \) which is generated by \(G \) is denumerable and atomless. Hence \(\mathcal{F}_0 \) is isomorphic to \(\mathbb{C} \) (see [1], p. 54). Let \(g \) be an isomorphism from \(\mathcal{C} \) onto \(\mathcal{F}_0 \). Let \(\Delta_1 \) be the ideal of \(\mathcal{F} \) consisting of those Borel sets having Lebesgue measure 0. We note that \(\mathcal{F}_0 \cap \Delta_1 = \{ 0 \} \). Finally for each \(t \in T \) let \(h_t \) be the isomorphism from \(\mathbb{N}_t \) into \(\mathcal{F} / \Delta_1 \) defined by
\[
h_t(a_t) = [g \circ f_t(a_t)] / \Delta_1.
\]
It is easily seen that \(\{ h_t \}_{t \in T}, \mathcal{F} / \Delta_1 \in P \).

Now assume \(\{ h_t \}_{t \in T}, \mathcal{F} / \Delta_1 \leq \{ h_t \}_{t \in T}, \mathcal{F} / \Delta_0 \). Then there is an \(m\)-homomorphism \(p \) from \(\mathcal{F} / \Delta_1 \) onto \(\mathcal{F} / \Delta_0 \). Since \(\mathcal{F} / \Delta_1 \) satisfies the countable chain condition the kernel of \(p \) is a principal ideal. \(\mathcal{F} / \Delta_0 \) is isomorphic to a principal ideal of \(\mathcal{F} / \Delta_1 \). However \(\mathcal{F} / \Delta_1 \) is homogeneous (see [2], p. 105). Thus \(\mathcal{F} / \Delta_0 \) is isomorphic to \(\mathcal{F} / \Delta_1 \), which is a contradiction.

Next we consider the problem of the existence of a smallest element of \(P_n \). Let \(\{ g, \mathcal{B} \} \) be an \(m\)-completion of \(\mathcal{F}_n^* \). Then \(\{ g \circ g^*_t \}_{t \in T}, \mathcal{B} \) is a minimal element of \(P_n \). Also it is known (see [2], p. 183) that if all the \(\mathbb{N}_t \) are \(m\)-representable then there is an \((m-n) \) product \(\{ i_t \}_{t \in T}, \mathbb{C} \) for which \(\mathbb{C} \) is \(m\)-representable. We give an example of \(\{ \mathbb{N}_t \}_{t \in T} \) for which \(\mathcal{B} \) is not \(m\)-representable and \(\{ g \circ g^*_t \}_{t \in T}, \mathcal{B} \) is not a smallest element of \(P_n \).

EXAMPLE 2.2. Assume that \(m \geq 2^{n^+} \). Let \(T^* = n^+ \) and for each \(t \in T \) let \(\mathbb{N}_t \) be a four element Boolean algebra. We show that \(\mathcal{B} \) is not \(n^+\)-distributive. Choose, for each \(t \in T, a_t \) to be one of the atoms of \(\mathbb{N}_t \). Then
\[
\prod_{t \in T} (g \circ g^*_t(a_t) + - g \circ g^*_t(a_t)) = 1 .
\]
However for each function \(\eta \in H^T \) (here \(H = \{ +1, -1 \} \)) we have
\[
\prod_{t \in T} \eta(t) \cdot g^*_t(a_t) = 0 .
\]
This follows from Corollary 1.3. Thus \(\prod_{t \in T} \eta(t) \cdot g \circ g^*_t(a_t) = 0 \). This proves \(\mathcal{B} \) is not \(n^+\)-distributive and hence not \(m\)-representable.

To show that \(\{ g \circ g^*_t \}_{t \in T}, \mathcal{B} \) is not a smallest element of \(P_n \), let \(\{ i_t \}_{t \in T}, \mathbb{C} \) be any \((m-n)\) product of \(\{ \mathbb{N}_t \}_{t \in T} \) such that \(\mathbb{C} \) is \(m\)-representable. \(\mathcal{B} \) is not an \(m\)-homomorphic image of \(\mathbb{C} \). Thus the inequality

\[
\prod_{t \in T} (g \circ g^*_t(a_t) + - g \circ g^*_t(a_t)) = 1 .
\]
\[\{\{g \circ g^*_i\}_{i \in T}, \mathcal{B}\} \leq \{\{i\}_{i \in T}, \mathcal{C}\} \]
does not hold.

REFERENCES

Received July 19, 1968.

UNIVERSITY OF WYOMING
George E. Andrews, On a calculus of partition functions 555
Silvio Aurora, A representation theorem for certain connected rings 563
Lawrence Wasson Baggett, A note on groups with finite dual spaces 569
Steven Barry Bank, On majorants for solutions of algebraic differential equations in regions of the complex plane ... 573
Klaus R. Bichteler, Locally compact topologies on a group and the corresponding continuous irreducible representations .. 583
Mario Borelli, Affine complements of divisors ... 595
Carlos Jorge Do Rego Borges, A study of absolute extensor spaces 609
Bruce Langworthy Chalmers, Subspace kernels and minimum problems in Hilbert spaces with kernel function ... 619
John Dauns, Representation of L-groups and F-rings 629
Spencer Ernest Dickson and Kent Ralph Fuller, Algebras for which every indecomposable right module is invariant in its injective envelope 655
Robert Fraser and Sam Bernard Nadler, Jr., Sequences of contractive maps and fixed points .. 659
Judith Lee Gersting, A rate of growth criterion for universality of regressive isols ... 669
Robert Fred Gordon, Rings in which minimal left ideals are projective 679
Fred Gross, Entire functions of several variables with algebraic derivatives at certain algebraic points ... 693
W. Charles (Wilbur) Holland Jr. and Stephen H. McCleary, Wreath products of ordered permutation groups ... 703
W. J. Kim, The Schwarzian derivative and multivalence 717
Robert Hamor La Grange, Jr., On (m − n) products of Boolean algebras 725
Charles D. Masiello, The average of a gauge ... 733
Stephen H. McCleary, The closed prime subgroups of certain ordered permutation groups ... 745
Richard Roy Miller, Gleason parts and Choquet boundary points in convolution measure algebras .. 755
Harold L. Peterson, Jr., On dyadic subspaces .. 773
Derek J. S. Robinson, Groups which are minimal with respect to normality being intransitive ... 777
Ralph Edwin Showalter, Partial differential equations of Sobolev-Galpern type ... 787
David Slepian, The content of some extreme simplexes 795
Joseph L. Taylor, Noncommutative convolution measure algebras 809
B. S. Yadav, Contractions of functions and their Fourier series 827
Lindsay Nathan Childs and Frank Rimi DeMeyer, Correction to: “On automorphisms of separable algebras” .. 833
Moses Glasner and Richard Emanuel Katz, Correction to: “Function-theoretic degeneracy criteria for Riemannian manifolds” 834
Satish Shirali, Correction to: “On the Jordan structure of complex Banach *algebras” ... 834
Benjamin Rigler Halpern, Addendum to: “Fixed points for iterates” 834