PARTIAL DIFFERENTIAL EQUATIONS OF
SOBOLEV-GALPERN TYPE

R. E. Showalter

A mixed initial and boundary value problem is considered for a partial differential equation of the form \(Mu_t(x, t) + Lu(x, t) = 0 \), where \(M \) and \(L \) are elliptic differential operators of orders \(2m \) and \(2l \), respectively, with \(m \leq l \). The existence and uniqueness of a strong solution of this equation in \(H^0(G) \) is proved by semigroup methods.

We are concerned here with a mixed initial boundary value problem for the equation

\[
(1) \quad Mu_t + Lu = 0
\]

in which \(M \) and \(L \) are elliptic differential operators. Equations of this type have been studied using various methods in [2, 3, 4, 6, 7, 10, 11, 13, 14, 15, 17, 18]. We will make use of the \(L^2 \)-estimates and related results on elliptic operators to obtain a generalized solution to this problem similar to that obtained for the parabolic equation

\[
u_t + Lu = 0
\]
as in [7].

Let \(G \) be a bounded open domain in \(\mathbb{R}^n \) whose boundary \(\partial G \) is an \((n - 1)\)-dimensional manifold with \(G \) lying on one side of \(\partial G \). By \(H^k(G) \equiv H^k \) we mean the Hilbert space (of equivalence classes) of functions in \(L^2(G) \) whose distributional derivatives through order \(k \) belong to \(L^2(G) \) with the inner product and norm given, respectively, by

\[
(f, g)_k = \sum \left\{ \int_G D^\alpha f \overline{D^\alpha g} \, dx : |\alpha| \leq k \right\}
\]

and

\[
\| f \|_k = \sqrt{(f, f)_k}.
\]

\(H^k_0 \equiv H^k_0(G) \) will denote the closure in \(H^k \) of \(C^\infty_0(G) \), the space of infinitely differentiable functions with compact support in \(G \).

The operators are of the form

\[
M = \sum \{ (-1)^\rho \partial^\rho m^\sigma(x) \partial^\sigma : |\rho|, |\sigma| \leq m \}
\]

and

\[
L = \sum \{ (-1)^\rho \partial^\rho l^\sigma(x) \partial^\sigma : |\rho|, |\sigma| \leq l \}.
\]
and they are uniformly strongly elliptic in G. We shall investigate the existence and uniqueness of solutions to (1) which coincide with the initial function u_0 in H^1_0 where $t = 0$ and vanish on ∂G together with all derivatives of order less than or equal to $l - 1$.

If the order of M is as high as that of $L (2m \geq 2l)$, then this problem can be handled as in [10] by forming the exponential of the bounded extension of $M^{-1}L$ on H^m_0 and thus obtaining a group of operators on H^m_0 and a corresponding solution for all t in R. The case we shall consider is that of $m \leq l$, and this will include the parabolic equation as a special case. We obtain a semi-group of operators on H^m_0 and, hence, a solution for all $t \geq 0$.

2. In this section we shall formulate the problem. Assume temporarily the following.

P'_1: The coefficients $m^{\rho \sigma}$ in M belong to $H^{\lfloor \rho \rfloor}$, and $D^\rho m^{\rho \sigma}$ is in $L^\omega (G)$ whenever $|\rho| \leq m$. A similar statement is true for the coefficients in L. From P'_1 it follows that the sesqui-linear forms defined on $C_0^\omega (G)$ by

$$B_M (\varphi, \psi) = \sum \{ (m^{\rho \sigma} D^\rho \varphi, D^\sigma \psi)_0; \ |\rho|, |\sigma| \leq m \}$$

and

$$B_L (\varphi, \psi) = \sum \{ (l^{\rho \sigma} D^\rho \varphi, D^\sigma \psi)_0; \ |\rho|, |\sigma| \leq l \}$$

satisfy the identities

$$(2) \quad B_M (\varphi, \psi) = (M\varphi, \psi)_0$$

and

$$(2') \quad B_L (\varphi, \psi) = (L\varphi, \psi)_0$$

for all φ, ψ in $C_0^\omega (G)$. Since P'_1 implies that

$$K_m = \sup \{ ||m^{\rho \sigma}||_\omega; \ |\rho|, |\sigma| \leq m \}$$

and

$$K_l = \sup \{ ||l^{\rho \sigma}||_\omega; \ |\rho|, |\sigma| \leq l \}$$

are finite, we see that

$$|B_M (\varphi, \psi)| \leq K_m ||\varphi||_m ||\psi||_m$$

and

$$|B_L (\varphi, \psi)| \leq K_l ||\varphi||_l ||\psi||_l$$

for all φ, ψ in $C_0^\omega (G)$. Hence these sesqui-linear forms may be extended by continuity to all of H^m_0 and H^l_0, respectively.
The final properties which we shall assume are the following. For any \(\varphi, \psi \) in \(C^o(G) \) we have
\[
P_2: \Re B_M(\varphi, \varphi) \geq k_m \| \varphi \|_m^2, k_m > 0,
\]
\[
\Re B_L(\varphi, \varphi) \geq k_i \| \varphi \|_i^2, k_i > 0,
\]
and
\[
P_3: |B_M(\varphi, \psi)|^2 \leq (\Re B_M(\varphi, \varphi))(\Re B_M(\psi, \psi)) .
\]
These inequalities are valid for the respective extensions to \(H_o^m \) and \(H_i^l \). The assumptions of \(P_2 \) are inequalities of the Garding type which imply that \(M \) and \(L \) are uniformly strongly elliptic. Only the first of these is essential in applications, for the usual change of dependent variable \(u = ve^{it} \) changes our equation to one with \(L \) replaced by \(L + \lambda M \), and the Garding inequality is true for \(B_{L+\lambda M} \) if \(\lambda \) is sufficiently large and if the coefficients \(l^{\rho \sigma}(x), |\rho| = |\sigma| = l \) are uniformly continuous in \(G \). See [3, 8] for sufficient conditions that \(P_2 \) be true.

The assumption \(P_3 \) is a Cauchy-Schwarz inequality for the form \(B_M \). In view of the positivity of \(B_M \), a necessary and sufficient condition for \(P_3 \) is that \(M \) be symmetric, that is, \(m^{\rho \sigma} = \overline{m^{\rho \sigma}} \) for all \(\rho, \sigma \). Such is the case for the examples

(i) \(ku_t - \Delta u = 0 (m = 0) \) and
(ii) \(-\gamma \Delta u_t + ku_t - \Delta u = 0, \)

where \(\Delta \) is the Laplacian and \(\gamma \) and \(k \) are positive. Example (i) is a parabolic equation, and examples like (ii) appear in various problems of fluid mechanics and soil mechanics, where a solution is sought which satisfies an initial condition \(u(x, 0) = u_0(x) \) on \(G \) and the Dirichlet condition \(u(x, t) = 0 \) on the boundary of \(G \). See [1, 11, 12, 13].

We shall not need the full strength of \(P_3 \) so we replace it with the following weaker assumption.

\(P_3' \): The coefficients \(m^{\rho \sigma} \) and \(l^{\sigma} \) belong to \(L^\infty(G) \) for all \(\rho, \sigma \).

We shall proceed under the assumptions \(P_1, P_2 \) and \(P_3 \) and remark that \(P_3' \) is needed only when we wish to interpret our weak solutions by means of (2) and (2').

Under the hypotheses above there is by the theorem of Lax and Milgram [7] a closed linear operator \(M_0 \) with domain \(D_m \) dense in \(H_o^m \) and range equal to \(H_o^0 = L^2(G) \) such that
\[
(3) \quad B_M(\varphi, \psi) = (M_0\varphi, \psi)_0
\]
whenever \(\varphi \) belongs to \(D_m \) and \(\psi \) to \(H_o^m \). Furthermore, \(M_0^{-1} \) is a bounded operator from \(H_o^0 \) into \(H_o^m \). Similarly, there is a closed linear operator \(L_0 \) with domain \(D_l \) dense in \(H_i^l \) and range equal to \(H_i^0 \) with
\[
(3') \quad B_L(\varphi, \psi) = (L_0\varphi, \psi)_0
\]
whenever φ belongs to D_t and ψ to H^n_0. Also, L_0^{-1} is bounded from H^0 into H^n_0.

Consider the bijection $A = -M^{-1}_0L_0$ from D_t onto D_m. For any φ in D_m we have

$$k_i \| A^{-1} \varphi \|_i^2 = k_i \| L_0^{-1} M_0 \varphi \|_i^2 \leq \text{Re} B_L(L_0^{-1} M_0 \varphi, L_0^{-1} M_0 \varphi) = \text{Re} (M_0 \varphi, L_0^{-1} M_0 \varphi)_0$$

$$= \text{Re} B_M(\varphi, L_0^{-1} M_0 \varphi) \leq K_m \| \varphi \|_m \| A^{-1} \varphi \|_m \leq K_m \| \varphi \|_m \| A^{-1} \varphi \|_i,$$

which yields

$$(4) \quad \| A^{-1} \varphi \|_i \leq (K_m/k_i) \| \varphi \|_m$$

for all φ in D_m. But D_m is dense in H^0_0 so A^{-1} has a unique extension by continuity from H^m_0 onto the set $D = A^{-1}(H^m_0)$ in H^n_0, the domain of the closed extension of A. The continuity of the injection of H^n_0 into H^m_0 implies that A^{-1} is a bounded operator on H^m_0, and this is the space in which we formulate the Generalized Problem:

For a given initial function u_0 in D, find a differentiable map $u(t)$ of R^+ into H^m_0 for which $u(t)$ belongs to H^n_0 for all $t \geq 0$, $u(0) = u_0$, and

$$(5) \quad B_M(u'(t), \varphi) + B_L(u(t), \varphi) = 0$$

for all φ in $C_0^\infty(G)$ and $t \geq 0$.

Sufficient conditions for a solution of this generalized problem to be a classical solution will be discussed in [9].

3. The objective of this section is to prove the following results.

Theorem. There exists a unique solution of the generalized problem. If $u(t)$ is in D, then $u'(t)$ is in D_m and

$$(6) \quad M_0 u'(t) + L_0 u(t) = 0$$

in H^0. The mapping of u_0 to $u(t)$ is continuous from H^m_0 into itself for each $t \geq 0$ and furthermore satisfies

$$(7) \quad \| u(t) \|_m \leq \sqrt{(K_m/k_i)} \| u_0 \|_m \exp(-k_i t/K_m).$$

We first show that the operator A is the infinitesimal generator of a semi-group of bounded operators on H^m_0; this semi-group will provide a means of constructing a solution to the problem. From the assumptions on B_M, it follows that the function defined by

$$| \varphi |_M = \sqrt{(\text{Re} B_M(\varphi, \varphi))}$$

is a norm on H^m_0 that is equivalent to the norm $\| \cdot \|_m$. In the following we shall use $| \cdot |_M$ as the norm on H^m_0, noting further that
for \(\varphi \) in \(H^m_0 \).

To obtain the necessary estimates we let \(\lambda \) be a nonnegative number and consider the operator \(\lambda M_0 + L_0 = N \) from the domain \(D_m \cap D_t \) into \(H^0 \). We can define a sesqui-linear form on \(D_m \cap D_t \) by

\[
B_N(\varphi, \psi) = ((\lambda M_0 + L_0)\varphi, \psi) = \lambda B_M(\varphi, \psi) + B_L(\varphi, \psi)
\]

and then note that \(B_N \) is bounded as well as positive-definite with respect to the norm of \(H^1_0 \). We extend \(B_N \) by continuity to all of \(H^1_0 \), and then by the theorem of Lax and Milgram there is a closed linear operator \(N_0 \) from a domain \(D_n \) in \(H^1_0 \) onto \(H^0 \) for which

\[
B_N(\varphi, \psi) = (N_0 \varphi, \psi)_0
\]

whenever \(\varphi \) is in \(D_n \) and \(\psi \) in \(H^1_0 \). Clearly \(N_0 \) is an extension of \(N \) whose domain is \(D_m \cap D_t \).

For all \(\varphi \) in \(D_m \) we have

\[
\text{Re} \left(N_0 \varphi, \varphi \right)_0 = \lambda \text{Re} B_M(\varphi, \varphi) + \text{Re} B_L(\varphi, \varphi)
\]

\[
\geq (\lambda + k_i/K_m) \text{Re} B_M(\varphi, \varphi)
\]

\[
= (\lambda + k_i/K_m) |\varphi|^2_M.
\]

Thus, for any \(\psi \) in \(D_m \) we see that \(N_0^{-1}M_0\psi \) belongs to \(D_n \) and from above

\[
(\lambda + k_i/K_m) \left| N_0^{-1}M_0\psi \right|_M^2 \leq \text{Re} \left(M_0\psi, N_0^{-1}M_0\psi \right)_0
\]

\[
= \text{Re} B_M(\psi, N_0^{-1}M_0\psi) \leq |\psi|^2_M \left| (N_0^{-1}M_0\psi) \right|_M
\]

by \(P_3 \), so we have obtained the estimate

\[
\left| N_0^{-1}M_0\psi \right|_M \leq (\lambda + k_i/K_m)^{-1} |\psi|^2_M
\]

for all \(\psi \) in \(D_m \).

Letting \(\varphi \) be an element of \(D_t \cap D_m \) we see

\[
(N_0^{-1}M_0)(\lambda + M_0^{-1}L_0)\varphi = N_0^{-1}(\lambda M_0\varphi + L_0\varphi)
\]

\[
= N_0^{-1} \cdot N\varphi = \varphi,
\]

so \(\lambda + M_0^{-1}L_0 \) is injective and satisfies

\[
(\lambda + M_0^{-1}L_0)^{-1} = N_0^{-1}M_0
\]

on \(D_m \cap D_t \). Combining this with the estimate above we see that

\[
\left| (\lambda + M_0^{-1}L_0)^{-1}\psi \right|_M \leq (\lambda + k_i/K_m)^{-1} |\psi|^2_M
\]

for all \(\psi \) in \(D_t \cap D_m \). It follows by continuity that \(\lambda - A \) is invertible on \(H^m_0 \) and satisfies the estimate

\[
\left| (\lambda - A)^{-1} \right|_M \leq (\lambda + k_i/K_m)^{-1}.
\]
By the theorem of Hille and Yoshida [5, 16] on the characterization of the infinitesimal generators of semi-groups of class C_0 we have the following results: there exists a unique family of bounded operators \[\{S(t) : t \geq 0\} \] on H_0^m for which

(i) $S(t_1 + t_2) = S(t_1)S(t_2)$,
(ii) $S(t)x$ is strongly continuous for each x in H_0^m,
(iii) $S(0) = I$ and $|S(t)|_M \leq \exp \left(-h_0 t/K_m\right)$ for all $t \geq 0$,
(iv) $\lim_{h \to 0} h^{-1}(S(h) - I)x_0 = Ax_0$ for each x_0 in D, and
(v) $S(t)$ commutes with $(\lambda - A)^{-1}$ for all $\lambda \geq 0$.

The statement (v) implies in particular that D is invariant under each $S(t)$.

Having been given the initial function u_0 in D, we define

\[u(t) = S(t)u_0, \quad t \geq 0 \]

and show that $u(t)$ is a solution of the generalized problem. Clearly we see $u(t)$ belongs to H^m_0 and $u(0) = u_0$. Furthermore, since $S(t)$ leaves D invariant and u_0 is in D, it follows that $u(t)$ belongs to D and thus to H^1. The function $u(t)$ is differentiable with

\[u'(t) = Au(t) \]

for all $t \geq 0$ by (i) and (iv), and hence $u'(t)$ is in H^m_0.

We shall verify that $u(t)$ satisfies the equation (5). Since D_m is dense in H^m_0 there is a sequence $\{\varphi_n\}$ in D_m for which $||\varphi_n - u'(t)||_m \to 0$ as $n \to \infty$. Now $\{\varphi_n\}$ is a Cauchy sequence in H^m_0 and it follows by (4) that $\psi_n = A^{-1}\varphi_n$ is a Cauchy sequence in the complete space H^1, so there is a ψ in H^1 such that $||\psi_n - \psi||_1 \to 0$ as $n \to \infty$. Since A^{-1} is continuous we have $\psi = u(t)$. Each ψ_n belongs to D_1, since φ_n is in D_m, and furthermore $M_0\varphi_n + L_0\psi_n = 0$. Now for each φ in $C^0_c(G)$ we have by the continuity of B_M and B_L

\[
B_M(u'(t), \varphi) + B_L(u(t), \varphi)
= \lim_{n \to \infty} B_M(\varphi_n, \varphi) + B_L(\psi_n, \varphi)
= \lim_{n \to \infty} \{B_M(\varphi_n, \varphi) + B_L(\psi_n, \varphi)\} = \lim_{n \to \infty} \{(M_0\varphi_n, \varphi)_0 + (L_0\psi_n, \varphi)_0\} = 0,
\]

so the generalized problem does have a solution.

If $u(t)$ is in D_1 then by (9) $u'(t)$ is in D_m. It follows from (5) that for every φ in $C^0_c(G)$

\[(M_0u'(t) + L_0u(t), \varphi)_0 = 0, \]

and this implies (6). The estimate (7) is a consequence of (iii) and (8).

To show that the generalized problem has at most one solution, we let $u(t)$ be a solution of the problem with $u_0 = 0$. By linearity it suffices to show that $u(t) \equiv 0$. The differentiability of $u(t)$ in H^m_0
implies that the real valued function
\[\alpha(t) = \text{Re} \, B(u(t), u(t)) \]
is differentiable and
\[\alpha'(t) = 2 \text{Re} \, B(u'(t), u(t)) . \]
Since (5) is true also for all \(\varphi \) in \(H_0^1 \) by continuity, we have from \(P_2 \)
\[\alpha'(t) = -2 \text{Re} \, B_L(u(t), u(t)) \leq 0 . \]
But \(\alpha(0) = \text{Re} \, B(u(0), u(0)) = 0 \), so \(\alpha(t) = 0 \) for all \(t \geq 0 \). From \(P_2 \),
it follows that \(u(t) = 0 \) for \(t \geq 0 \).

REFERENCES

Received February 14, 1969.

UNIVERSITY OF TEXAS
AUSTIN, TEXAS
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>George E. Andrews</td>
<td>On a calculus of partition functions</td>
<td>555</td>
</tr>
<tr>
<td>Silvio Aurora</td>
<td>A representation theorem for certain connected rings</td>
<td>563</td>
</tr>
<tr>
<td>Lawrence Wasson Baggett</td>
<td>A note on groups with finite dual spaces</td>
<td>569</td>
</tr>
<tr>
<td>Steven Barry Bank</td>
<td>On majorants for solutions of algebraic differential equations in regions of the complex plane</td>
<td>573</td>
</tr>
<tr>
<td>Klaus R. Bichteler</td>
<td>Locally compact topologies on a group and the corresponding continuous irreducible representations</td>
<td>583</td>
</tr>
<tr>
<td>Mario Borelli</td>
<td>Affine complements of divisors</td>
<td>595</td>
</tr>
<tr>
<td>Carlos Jorge Do Rego Borges</td>
<td>A study of absolute extensor spaces</td>
<td>609</td>
</tr>
<tr>
<td>Bruce Langworthy Chalmers</td>
<td>Subspace kernels and minimum problems in Hilbert spaces with kernel function</td>
<td>619</td>
</tr>
<tr>
<td>John Dauns</td>
<td>Representation of L-groups and F-rings</td>
<td>629</td>
</tr>
<tr>
<td>Spencer Ernest Dickson and Kent Ralph Fuller</td>
<td>Algebras for which every indecomposable right module is invariant in its injective envelope</td>
<td>655</td>
</tr>
<tr>
<td>Robert Fraser and Sam Bernard Nadler, Jr.</td>
<td>Sequences of contractive maps and fixed points</td>
<td>659</td>
</tr>
<tr>
<td>Judith Lee Gersting</td>
<td>A rate of growth criterion for universality of regressive isols</td>
<td>669</td>
</tr>
<tr>
<td>Robert Fred Gordon</td>
<td>Rings in which minimal left ideals are projective</td>
<td>679</td>
</tr>
<tr>
<td>Fred Gross</td>
<td>Entire functions of several variables with algebraic derivatives at certain algebraic points</td>
<td>693</td>
</tr>
<tr>
<td>W. Charles (Wilbur) Holland Jr. and Stephen H. McCleary</td>
<td>Wreath products of ordered permutation groups</td>
<td>703</td>
</tr>
<tr>
<td>W. J. Kim</td>
<td>The Schwarzian derivative and multivalence</td>
<td>717</td>
</tr>
<tr>
<td>Robert Hamor La Grange, Jr.</td>
<td>(m − n) products of Boolean algebras</td>
<td>725</td>
</tr>
<tr>
<td>Charles D. Masiello</td>
<td>The average of a gauge</td>
<td>733</td>
</tr>
<tr>
<td>Stephen H. McCleary</td>
<td>The closed prime subgroups of certain ordered permutation groups</td>
<td>745</td>
</tr>
<tr>
<td>Richard Roy Miller</td>
<td>Gleason parts and Choquet boundary points in convolution measure algebras</td>
<td>755</td>
</tr>
<tr>
<td>Harold L. Peterson, Jr.</td>
<td>On dyadic subspaces</td>
<td>773</td>
</tr>
<tr>
<td>Derek J. S. Robinson</td>
<td>Groups which are minimal with respect to normality being intransitive</td>
<td>777</td>
</tr>
<tr>
<td>Ralph Edwin Showalter</td>
<td>Partial differential equations of Sobolev-Galpern type</td>
<td>787</td>
</tr>
<tr>
<td>David Slepian</td>
<td>The content of some extreme simplexes</td>
<td>795</td>
</tr>
<tr>
<td>Joseph L. Taylor</td>
<td>Noncommutative convolution measure algebras</td>
<td>809</td>
</tr>
<tr>
<td>B. S. Yadav</td>
<td>Contractions of functions and their Fourier series</td>
<td>827</td>
</tr>
<tr>
<td>Lindsay Nathan Childs and Frank Rimi DeMeyer</td>
<td>Correction to: “On automorphisms of separable algebras”</td>
<td>833</td>
</tr>
<tr>
<td>Moses Glasner and Richard Emanuel Katz</td>
<td>Correction to: “Function-theoretic degeneracy criteria for Riemannian manifolds”</td>
<td>834</td>
</tr>
<tr>
<td>Satish Shirali</td>
<td>Correction to: “On the Jordan structure of complex Banach *algebras”</td>
<td>834</td>
</tr>
<tr>
<td>Benjamin Rigler Halpern</td>
<td>Addendum to: “Fixed points for iterates”</td>
<td>834</td>
</tr>
</tbody>
</table>