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COMPACT SOBOLEV IMBEDDINGS FOR
UNBOUNDED DOMAINS

ROBERT A. ADAMS

A condition on an open set G c E, which is both necessary
and sufficient for the compactness of the (Sobolev) imbedding
H»(G) — H™@G) is not yet known. C, Clark has given a nec-
essary condition (quasiboundedness) and a much stronger suf-
ficient condition. We show here that (unless n = 1) quasibound-
edness is not sufficient, and answer in the negative a question
raised by Clark on whether the imbedding can be compact if
0G consists of isolated points, We also substantially weaken
Clark’s sufficient condition so as to include a wide class of
domains with null exterior. The gap between necessary and
sufficient conditions is thus considerably narrowed.

Let G be an open set in Euclidean n-space, E,. Let H™(G) for
each nonnegative integer m denote the Sobolev space obtained by com-
pleting with respect to the norm

1/2
Ve ={ = |, 1 D@ s}
the space C;°(G) of all infinitely differentiable complex valued functions
having compact support in G. Here, as usual, « = (@, -+, @,) is an
n-tuple of nonnegative integers; |a|=«a, + --- + ,, and D* = D ...
Di» where D; = 0/0x;, 5 =1, «++, n.

We shall say that G has the Rellich property if for each integer
m >0 the imbedding mapping H*(G) — H(G) is compact. It is well
known that any bounded G has this property. An unbounded domain
G is called quasibounded if dist (x, 0G) — 0 whenever 2 tends to infinity
in G. If G is unbounded and not quasibounded then it contains an
infinite number of mutually disjoint, congruent balls. If ¢ is infinitely
differentiable, has support in one of these balls, and has nonzero L*G)
norm then the set of its translates with supports in the other balls
provides a counterexample showing the imbedding H(G) — H{(G) = L¥G)
is not compact. Thus for an unbounded domain gquasiboundedness is
necessary for the Rellich property.

In [2] Clark showed that the following Condition 1 is sufficient to
guarantee that G has the Rellich property.

ConDITION 1. To each R=0 there correspond positive numbers d(R)
and o(R) satisfying
(a) d(R)+ o0(R)—0 as R— o,

1



2 ROBERT A. ADAMS

(b) dR)/IR) <M<  for all R,
(¢) foreachx e G with |2]|> R there exists y such that |z —y|<d(R)
and GN{z: |z —y| <R} = @.

This condition is considerably stronger than quasiboundedness. It
implies, for example, that G has nonnull exterior. In [3] Clark gave
an example of an unbounded domain having the Rellich property but
not satisfying Condition 1. His example was the “spiny urchin,” an
open connected set in E, obtained by removing from the plane all
points whose polar coordinates (», ) satisfy for any £ = 1,2, --- the
two restrictions r =k and 6 = 2 *mzw, m = 1, 2, .- ., 28+,

In this paper the gap between quasiboundedness as a necessary
condition and Condition 1 as a sufficient condition for a domain to have
the Rellich property is narrowed from both ends. On the one hand
we show that if » = 2 then no open set whose boundary consists only
of isolated points with no finite accumulation point can have the Rellich
property. This settles a question raised by Clark in [3]. On the other
hand we show that Condition 1 can be replaced by the following weaker
Condition 2, which is still sufficient to guarantee that G has the Rellich
property. In the statement B,(x) denotes the open ball of radius
about x.

CONDITION 2. There exists B, = 0 such that to each R = R, there
correspond numbers d(R), 6(R) > 0 such that

(a) d(R) + 8(R)—0 as B —s oo,

(b) d(R)/6(R) < M < - for all R = R,

(c) for each xe@G such that x| > R = R, the ball B, () is
disconnected into two open components C, and C, by an » — 1 dimen-
sional manifold forming part of the boundary of G in such a way that
each of the two open sets C, N Byr(x), © = 1, 2, contains a ball of
radius o(R).

Roughly speaking if the % — 1 dimensional manifolds in the bound-
ary of G are reasonably smooth and unbroken, and bound a quasi-
bounded domain (containing G) then G will satisfy Condition 2. Clark’s
“spiny urchin” is an example of such a domain. If » = 1 any quasi-
bounded domain satisfies Condition 2, (but not necessarily Condition 1)
and so in this case quasiboundedness is necessary and sufficient for the
Rellich property.

Our principal results are as follows

THEOREM 1. If G is open tn E,, n = 2, and the boundary of G
consists only of isolated points with mo finite accumulation point,
then the imbedding H{(G)— L*G) is not compact. Thus quasibounded-
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ness 1s not sufficient to guarantee the Rellich property.

THEOREM 2. If G is open in E, and satisfies Condition 2 then
1t has the Rellich property.

For the proof of Theorem 1 we require the following

LeMMA 1. Given p,0 >0, x,€ E, (n=2), there exists a function
ue C=(E,) with the following properties

(1) u(x) =0 in a netghbourhood of x,

(2) 0=2u(x) <1 for all x

(3) u(x) =1 outside the ball B,(x,)

(4) L | Vu(e) |2 do® < 6%

Proof. Let fcC=(R) satisfy 0 < f(®) = 1, f(t) = 1 for t =1 and
Sf(t) = 0 in a neighbourhood of ¢ = 0. Let m be a positive integer, put
r=|x — x,| and define

w(@) = v(r) = f[r/e]'™) .
Clearly ue C=(FE,) and satisfies (1), (2) and (3). Also

V@) = 33| Dae) | = V@)

Denoting by w, the surface area of the unit sphere in E, and making
the change of variables ¢ = (/)™ we obtain

SM | Vu(z) P de = o, SO) '—C%l;f<[_:;-]um>

o (] d [2 ot
— n—2 1 t tl-,—m(n )dt
WP So] dt £

2
r*dr

< 0,0MPm 2 + m(n — 2)]sup | £(¢) P

which, for # = 2, can be made less than 4° for a suitably large choice
of m.

REMARK., If peCy(E,) and u is constructed as above, then
pueCr(HE, — {@)) C Hi(E, — {x}).

Proof of Theorem 1. Let @ be a fixed open ball in E,. Let
p € C(Q) be extended to all of E, so that ¢(x) =0 in E, — Q. Sup-
pose @(x) = 0 for all » and

I|@Ho,En:C>Oy H@H;,EnZK>0.
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There exists M > 0 such that for all « in E,
lp@) | <M, |Dip@)| <M, j=1 -, n.

If @ contains no boundary points of G put ¥ = . Otherwise @ con-
tains only a finite number of boundary points of G, say z,, «--, ,.
For 1 =1,.--,k let B;= B,(x;) where p;, is small enough that
vol. B; < (C/2kM)*. Let 6 = K/Mk and let u; be the function const-
ructed as in Lemma 1 corresponding to the point x; and the constants
0;and 6. Put = p-u,---u,. Clearly v € H(Q — {w;, - - -, x,}) € HI(G).
We have

k
([ o, = ”‘P”orn - g; H@”O,Bi
= C— 3 M(vol. By = 1C.

Also

1D llos < | Dy, + 3| @t =+ Dt =+ 0,
<K+ kMo = 2?{
Since || ¥ |lo,¢ = [|@lo,e = C we have
9 lhe < (C* + 4nK? = C, .

Now let {@;}), be a family of mutually disjoint open balls in E~»
all congruent to Q. Let ¢; be a translate of ¢ with support in @; and
let +; € H{(G) be constructed from ¢, as above, so that

lilhoz S0 llvlho =G
Then the sequence {v-}, is bounded in H}(G) but contains no sub-
sequence convergent in L*G) since for 4 = j|[v; — ¥, llee = CHV 2.
Thus the imbedding H}G) — L*G) is not compact.

The proof of Theorem 2 is based on the following generalization
of Poincaré’s inequality which is a variant on those forms appearing in
Agmon [1] and Clark [2].

LEMMA 2. Let G be open in E, and satisfy Condition 2. Let
G, denote G N {x: |x| > R}. Then there exists a constant ¢ depending
only on n and M (the constant of Condition 2 (b)) such that for all
R = R, and every uc HNG)

LR u(@) [ do < o(dB)Y || Vu@) do.
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Proof. Fix R=R, and let d=d(R),0=0(R). If = (a, -+, ,)
is an n-tuple of integers let Q, = {x e E,: a,n~*d < z,, < (a0, + L)n~'d}.
Then E, = J.Q.. Let peCy(G). Fix xe G Then x €@, for some
«a. Let B, = B,(x), Bsy = By(x). There exists an n — 1 dimensional
manifold forming part of éG which disconnects B,, into open components
C, and C, and there exist points y; € C; (1 = 1, 2) such that B;(y;) < C,.
Thus ¢ can be written as ¢ = ¢, + @, where ¢; € C;°(G) and ¢, = 0 in
C, while ¢, =0 in C,. Since @, B, we have

oo lp@rar =] e rd |

1!

ey

2

If (r, 0) and S denote respectively spherical coordinates in F, centered
at y, and the surface of the unit sphere about ¥, we have

2d

gcde ) [ dy = Ssdo' Sa | pu(r, @) Fr ~'dr

< 2d S | pu(t, 0) [ t—do
N

where t = t(0o) satisfies 6 <t < 2d. Since ¢,(d, 0) = 0 it follows that

¢ d
adr

2
tn—l

@,(r, o)dr

oty oyt | = | |

d
ar @1(7'3 U)
N 2d ‘ d 2
< @dyar g (0, 0)‘ i
s L dr

2d7'

< )" |

2d
é

Thus, since d/0 < M,

2d

)

[, o) Py = @iy | do |

d P
ET—@I(T, o)f r*'dr

< 2T Md? S | veu(y) I dy
osly—~ygl=2d
é 27L+1M7L—ld2 S l V@l(y) IZ dy .
By
Combining this with a similar expression for ¢, we obtain
[ le@rdyszomd | |Vew)dy
QuNGR B3g

= 2| (Vo) dy
Qa

where @', is the union of all the sets @, which intersect B,;,. There
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is a number N depending only on 7 such that any N + 1 of the sets
@’ have null intersection. Summing the above inequality over all «
for which Q, intersects G, we obtain

[, o) dy = 2 NM- @) | Vo) Fdy .

This inequality extends by completion to HXG).

The remaining part of the proof of Theorem 2 is similar to Clark’s
proof [2, Th. 8] and is included here for completeness. First, how-
ever, let H™(G, R) be the completion in the norm || - ||, ¢nx, of the
space C°(G, R) of all C= functions whose support is a compact subset
of G N K, where K, = B,(0). Since the imbedding H+*(K,) — H"(Ky)
is known to be compact [4, Chapter XIV] and since an element of
H™(G, R) can be extended to be zero outside its support so as to be-
long to H*(K,) it follows that the imbeddings H"'(G, R) — H™(G, R),
m=20,1,2, --. are compact.

Proof of Theorem 2. It suffices, by an inductive argument, to
prove only that the imbedding H;(G) — L*G) is compact. We make use
of the following well known compactness criterion for sets in L*G):
if G E, and the sequence {w,};-, is bounded in L*G) then it is com-
pact in L*G) provided

(a) for every bounded G’ < G the sequence {u,|G’} is compact
in L*G’), and

(b) for each ¢ > 0 there exists R > 0 such that for all %

S lup(x) Pde < e
Gr

Now let {u,} be a sequence bounded in HXG), say ||u.|l,c < K. By
Lemma 2, for R = R, we have || u;|lo,¢, = C(d(R))’K —0 as R— c so
condition (b) of the criterion is satisfied. To establish (a) let G’ be a
bounded subset of G, so that G’ K, for some R. Since {u,| Ky} is
bounded in HY(G, R) it is compact in HYG, R) = LXK, N G) and so
{u, | G’} is compact in L*(G’). Thus {u,} is compact in L*(G), whence
the theorem.
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GROUPS WITH MAXIMUM CONDITIONS

BERNHARD AMBERG

It still seems to be unknown whether there exist Noetherian
groups (= groups with maximum condition on subgroups) that
are not almost polycyclic, i.e., possess a soluble normal subgroup
of finite index, However, the existence of even finitely gen-
erated infinite simple groups shows that in general a group
whose subnormal subgroups satisfy the maximum condition need
not be almost polycyclic. The following theorem gives a num-
ber of criteria for a group satisfying a weak form of the
maximum condition to be almost polycyclic,

THEOREM. The following conditions of the group G are equiva-

lent:

(I) @G s almost polycyclic.

(1I) 4

(I11)

av)«

(V)

(VD)

(a) If C is a characteristic subgroup of G, then C 1s
finitely generated.

(b) Ewvery infinite epimorphic image H of G possesses
a locally almost soluble characteristic subgroup N = 1.
(a) If C is a characteristic subgroup of G, them C is
finitely generated.

(b) Ewvery infinite epimorphic image H of G possesses a
locally almost polycyclic accessible subgroup E #+ 1.

(a) If the characteristic subgroup C of G is not finitely
generated, then the maximum condition is satisfied by
the normal subgroups of C.

(b) Ewvery infinite epimorphic image H of G possesses
an almost radical accessible subgroup E + 1.

(a) If the normal subgroup N of G is not finitely gener-
ated, then the maximum condition 1s satisfied by the
normal subgroups of N.

(b) Ewvery infinite epimorphic H of G possesses a nor-
mal subgroup N == 1 with ¢, N == 1.

(a) If the characteristic subgroup C of G is not finitely

‘generated, them the maximum condition s satisfied by

the mormal subgroups of C.

(b) Every infinite epimorphic image H of G possesses
a characteristic subgroup N #= 1 with c;N # 1.

(al) If the characteristic subgroup C of G is not finitely
generated, then the maximum condition is satisfied by the
normal subgroups of C.

9



10 BERNHARD AMBERG

(VID) { (a2) The maximum condition is satisfied by the normal
subgroups of G.

(b) Ewery infinite epimorphic image H of G possesses
a normal subgroup N # 1 with ¢, N == 1.

(al) If G is not finitely generated, then the maximum
condition 1s satisfied by the normal subgroups of G.
(VIII) | (a2) Abelian normal subgroups of epimorphic images of
G are finitely generated.

(b) Ewvery infinite epimorphic image H of G possesses a
normal subgroup N # 1 with ¢;N # 1.

REMARKS. G. Higman [9] has constructed an infinite finitely
generated simple group. This group satisfies part (a) of every condition
(II) to (VIII) of the theorem without being almost polycyclic. Hence
part (b) of the conditions (II) to (VIII) is indispensable. Every group
C,. of Priifer’s type satisfies part (b) of every condition (II) to (VIII)
of the theorem without being almost polycyclic. Hence part (a) of
the conditions (II) to (VIII) is likewise indispensable. It is well known
that a group G generated by two elements a and b with the relation
b~'ab = a* is metabelian and satisfies the maximum condition for
normal subgroups without being almost polycyclic. This group satis-
fies conditions (VII. a2) and (VII. b) as well as (VIII. al) and (VIIL. b)
so that (VIIL. al) and (VIII. a2) are indispensable. The existence of
infinite locally finite simple groups shows that conditions (II. a) and
(IIL. a) cannot be replaced by (IV.a) or (V.a). We have been unable
to decide whether or not conditions (VII. a2) and (VIII. al) are indispen-
sable. From the proof of the equivalence of (I) and (II) it may easily
be seen that one gets a similar criteria if the word ‘characteristic
subgroup’ in (II) is replaced by the word ‘normal subgroup’.

NOTATIONS.
{---} = subgroup generated by the elements enclosed in braces.
4G = center of the group G.
ceX = centralizer of the subset X of G in G.
G” = G.
GVt = GY = commutator subgroup of G‘.
Factor = epimorphic image of a subgroup.
A subgroup U of the group G is I"-admissible for the automorphism
group I” of G if every element in /" maps U onto U.
Two subgroups A and B of G are automorphic if there exists an
automorphism of G mapping A onto B.
A normal series is a well ordered set of subgroups X, of the group G
with 0 < v < 7 such that X, is a normal subgroup of X,., foryv < z and
X, = U.,«; X, for limit ordinals » < 7; X,,,/X, is a factor of the series
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A subgroup U is accessible if there exists a normal series from
U to G.

Soluble group = group with G = 1 for almost all <.

Noetherian group = group with maximum condition on subgroups.

Polyeyclic group = Noetherian and soluble group.

Nilpotent group = group G with a finite central series from 1 to G.

Let ¢ be any group theoretical property.

A group is an e-group if it has the property e.

A group G is almost-e if there exists a normal e-subgroup N of
G with finite G/N.

A group G is locally-e if every finitely generated subgroup of G
is an e-group.

A group G is radical if every epimorphic image H # 1 of G pos-
sesses a locally nilpotent accessible subgroup E = 1.

In the proof of the theorem we need several lemmas most of
which slightly extend known results. We recall that a group G is finitely
presented if there exists a free group F of finite rank and a normal
subgroup R of F' generated by finitely many classes of elements con-
jugate in F' such that F/R = G. Every almost polycyclic group is
finitely presented; see R. Baer [3], p. 276, Folgerung 3.

LEMMA 1. If e is any class of finitely presented groups, if
the finitely generated group G s not an e-group and if I' is a group
of automorphisms of G, then there exists a I'-admissible normal sub-
group N of G such that G/N 1is not an e-group, but G/M is an e-
group, for every [-admaissible mormal subgroup M of G containing
N properly.

Proof. The set M of all I"-admissible normal subgroups X of G such
that G/X is not an e-group is not empty, since it contains 1. Let < be
any nonempty subset of I such that X S Y or Y < X for every pair
X, Y of ['-admissible normal subgroups in £. If V denotes the union of
the elements in ¥, then V is likewise a /"-admissible normal subgroup of
G. If V is not contained in I, then G/V is an e-group and hence finitely
presented. Since G is finitely generated, there exists a finite subset T
of V such that V = {T°; see R. Baer [3], p. 270, Satz 1. Since V is
the union of the elements of T, for every « in T there exists a ['-
admissible normal subgroup X* in T containing . Since the subgroups
in T are comparable and since 7T is finite, there exists a /-admissible
normal subgroup Y in T such that X* & Y for every « in 7. Thus
T is a subset of the normal subgroup Y of G such that V = {T° <
Y < V so that V = Y belongs to M. This contradiction shows that
V is an element of M. We have shown that the maximum principle
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of set theory is applicable and that there exists therefore a maximal
I'-admissible normal subgroup N in 9%. Since N is contained in IR,
the epimorphic image H = G/N of G is not an e-group. However, if
M is a I'-admissible normal subgroup of G with N cC M, then the
maximality of N implies that G/M is an e-group.

COROLLARY 2. If the finitely generated group G s mot almost
polycyclic, then there exists an epimorphic tmage H of G which s
not almost polycyclic, but every proper epimorphic image of H 1is
almost polycyclic. Furthermore, there exists a characteristic sub-
group C of G such that G/C is mot almost polycyclic, but G/D 1is
almost polycyclic for every characteristic subgroup D of G containing
C properly.

Proof. The class ¢ of almost polycyclic groups is finitely presented.
Therefore the two statements follow immediately from Lemma 1 if I”
is the group of all inner automorphisms of the group G or the group
of all automorphism of G respectively.

A set I of normal subgroups of the group G is independent, if
their product is direct.

LEMMA 3. If 1 is the only finite characteristic subgroup of the
group G, if 1 is the only finite Abelian accessible subgroup of G, and
if independent sets of finite simple isomorphic normal subgroups of
characteristic subgroups of G are finite, then 1 ts the only finite
accessible subgroup of G.

Proof. If this statement is false, then there exists a finite acces-
sible subgroup M = 1 of G, and we can assume that M is minimal.
Qur hypotheses imply that M is non-Abelian. If B is an automorphism
of G, then the image M? of M is automorphic to M and is likewise
a finite simple non-Abelian accessible subgroup of G. Thus the sub-
group M* of G generated by all the subgroups of G which are auto-
morphic to M is a characteristic subgroup of G which possesses a
normal series with finite factors leading from 1 to G. It follows that
M* is locally finite; see for instance R. Baer [5], p.53, bottom. If
A and B are two different subgroups of G which are automorphic to
M, then V = {A, B} is finite, since it is a finitely generated subgroup
of M*. A and B are also accessible subgroups of the finite group V,
so that 4 and B are subnormal subgroups of V. Application of H.
Wielandt, [12], p. 463 (1. a), shows that A and B normalize each other.
Thus A, B and A N B are normal subgroups of V. Since A = B and A
and B are simple, we have ANB =1. It follows that A and B centralize
each other. Since all subgroups of G automorphic to M are finite
and centralize each other pairwise, M* is a direct product of finite
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simple groups automorphic to M. The hypotheses of our lemma now
imply that M* is a finite characteristic subgroup of G, which is im-
possible. Thus the lemma is proved.

COROLLARY 4. If 1 is the only Abelian accesible subgroup of the
group G and if independent sets of finite normal subgroups of
characteristic subgroups are finite, then the product P of all finite
normal subgroups of G s finite and 1 is the only almost Abelian
accessible subgroup of H = G/P.

Proof. Clearly the product P of all finite normal subgroups of G
is a characteristic subgroup of G, so that independent sets of finite
normal subgroups of P are finite. Application of R. Baer [7], p. 26,
Lemma 5.1, now yields that P is finite.

If E is a finite normal subgroup of H =G/P, then there exists a
normal subgroup X of G with P< X and E = X/P. Since P and E
are finite, X is also finite, thus, X must be contained in P. This im-
plies £ =1, and we have shown:

(1) 1 is the only finite normal subgroup of H.

Now let == 1 be an element of H which generates an accessible
subgroup {k} of H. It follows from K. Griinberg, [8], p. 158, Th. 2,
or R. Baer [5], p. 57, Satz 3.3, that the set T of all elements of H
which generate accessible subgroups of H is a locally nilpotent
characteristic subgroup of H. Since & %= 1, we have T s 1, so that T
is infinite by (1).

Let @ be the uniquely defined characteristic subgroup of G such
that PCQ and T = Q/P. Since 1 is the only Abelian accessible sub-
group of G, we have 1 = 3P = ¢,P N P. The finiteness of P implies.
the finiteness of G/c;P. If Q@ Nc¢,P =1, then

Q = Q/(Q N ¢xP) = QcxPlc,P = G/c,P

is also finite. But T = Q/P infinite implies that @ is infinite. Hence
QNcP=+1. If a=++11is an element in Q N ¢;P, then Pa is an element
in T and therefore {Pa} is an accessible subgroup of T and H; see R.
Baer [5], p. 59, Zusatz 3.6. It follows that {P, a}/P is an accessible
subgroup of the locally nilpotent group T; see K. Griinberg, [8], p.
158, Lemma 7, or R. Baer [5], p. 48, Lemma 1.4. Hence {P, a} is an
accessible subgroup of Q and G, and this implies that {P, a} N ;P is
an accessible subgroup of ¢;,P and G. Since {a} S ¢;P the application
of Dedekind’s Modular Law yields

{P,a} N c¢,P = Pla} N ceP = {a}(PNceP) = {a) = 1.
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Thus there exists a cyclic accessible subgroup of G, which contradicts
our hypotheses, and we have shown:

(2) 1 is the only Abelian accessible subgroup of H.

If U is any almost Abelian accessible subgroup of H, then (2)
implies that U is finite. The statements (1) and (2) show that the
hypotheses of Lemma 3 are satisfied by H. Thus U =1, and our
assertion is proved.

PROPOSITION 5. Let N %1 be a mnormal subgroup of the group
G such that G/c;N is almost polycyclic. Then there exists an almost
Abelian normal subgroup A + 1 of G. If N is a characteristic sub-
group of G, then A is a characteristic subgroup of G.

Proof. If NNc,N %= 1, then 3N is an Abelian normal subgroup
of G, and clearly 3N is even characteristic in G whenever N is
characteristic in G. If NNc,N #= 1, then

N = N/(NN¢N) = NegNjeeN S G/egN ,

so that N is isomorphic to a subgroup of the almost polycyclic group
G/czN. It follows that N is likewise almost polycyclic, and there
exists a soluble characteristic subgroup S of N with finite N/S; see
R. Baer [3], p. 276, Satz 3. If S =1, then N is a nontrivial finite
normal subgroup of G. If S = 1, there exists an Abelian characteristic
subgroup A4 # 1 of N, which is a nontrivial Abelian normal subgroup
of G. Clearly, A is also characteristic in S, N and G whenever N is
a characteristic subgroup of C.

REMARK. The above proposition may be generalized easily.

LEMMA 6. If 1 is the only almost Abelian mormal subgroup of
the group G, and if every infinite epimorphic tmage H of G posses-
ses a normal subgroup N #+ 1 such that c,N #= 1, then every mnon-
trivial mormal subgroup of G possesses an infinite independent set
of normal subgroups of G.

Proof. If X =1 is a normal subgroup of G, then our hypotheses
imply that X is infinite. Since 1 is the only Abelian normal subgroup
of G, we have X Nc¢;X =3X =1. This implies that XcX/c;X =
X/(X NecgX) =X and therefore G/c;X are infinite. As in the proof
of R. Baer [6], p. 177, Folgerung 5.2, one shows by using Lemma 5.1
of this paper that every nontrivial normal subgroup of G possesses
an infinite set of independent normal subgroups of G.
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COROLLARY 7. If every independent set of infinite mormal sub-
groups of any epimorphic image of the group G is finite, then the
following two properties of G are equivalent:

(I) Ewvery infinite epimorphic image H of G possesses an al-
most Abelian normal subgroup N =+ 1.

(II) Ewvery infinite epimorphic image H of G possesses a normal
subgroup N # 1 such that c,N # 1.

Proof. Let G be a group satisfying (I) and let H be an infinite
epimorphic image of G. Then there exists an almost Abelian normal
subgroup N # 1 of H. If N is finite, then H/c,N is finite, so that
¢z N is infinite. If N is infinite, then there exists an Abelian charac-
teristic subgroup A of N with finite N/A;see R. Baer [2], p. 152,
Lemma 2. Clearly A is an infinite normal subgroup of H with ¢4 =+ 1.
Thus (I) implies (II).

Conversely, let condition (II) be satisfied by G, and let H be an
infinite epimorphic image of G. Then every independent set of infinite
normal subgroups of H is finite, and Lemma 6 shows the existence of
an almost Abelian normal subgroup N == 1 of H. Thus (II) implies (I),
and our assertion is proved.

LEMMA 8. Let G be a group satisfying the following condition:
(M) If the characteristic subgroup C of G is not finitely generated,

then the maximum condition is satisfied by the normal subgroups

of C.
Then the following conditions hold:

(a) If A and B are characteristic subgroups of G with A< B,
then BJ/A likewise satisfies (IN).

(b) Products of independent finite normal subgroups of charac-
teristic subgroups of G are finite.

(¢) The product RG of all almost polycyclic characteristic sub-
groups of G is an almost polycyclic characteristic subgroup of G.

(d) 1 is the only almost radical accessible subgroup of G/RG.

(e) RG contains every almost radical accessible subgroup of G.

(f) If G is not almost polycyclic, then there exists an epimorphic
image H of G such that H/C is almost polycyclic for every charac-
teristic subgroup C %=1 and 1 is the only almost radical accessible
subgroup of H; H satisfies (MN).

Proof. It is easy to see that every characteristic subgroup and
every factor group modulo a characteristic subgroup of a group with
property (M) likewise satisfies (M). This implies (a).

Let C be a characteristic subgroup of G and let & be an inde-
pendent set of nontrivial finite normal subgroups of C. Then the
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product P of all finite normal subgroups of C is a locally finite charac-
teristic subgroup of C different from 1. Thus P is finite, if it is
finitely generated. If P is not finitely generated, then by (%) the
normal subgroups of P satisfy the maximal condition. Then P is the
product of finitely many finite groups and hence finite. The finiteness
of P implies the finiteness of &, since every element of & is contained
in P. This proves (b).

Clearly the product RG of all almost polycyclic characteristic sub-
groups of G is a characteristic subgroup of G which satisfies (IN).
Assume RG is not almost polycyclic. If RG is not finitely generated,
then by (M) the normal subgroups of RG satisfy the maximum con-
dition. It follows that RG is the product of finitely many almost
polycyclic characteristic subgroups of G. This implies that RG is
likewise almost polycyeclic, since every extension of an almost polycyclic
group by an almost polyeyclic group is almost polycyclic; see for in-
stance W.R. Scott, [11], p. 150, 7. 1. 2. Hence RG is finitely generated.
Since RG is not almost polycyclic, Corollary 2 shows the existence of
an epimorphic image K of RG with the following properties:

(1) K is not almost polycyclic, but every proper epimorphic image
of K is almost polycyclic.

Clearly K is infinite. Since RG is the product of almost polycyclic
normal subgroups, K is likewise the product of almost polycyclic
normal subgroups. Hence there exists an almost polycyclic normal
subgroup N = 1 of K. By (1) K/N is almost polycyclic, and this im-
plies that K is almost polycyclic, since every extension of an almost
polycyclic group by an almost polycyclic group is almost polycyeclic.
Since this contradicts (1), we have proved (c).

If C =1 is an almost polycyclic characteristic subgroup of G/RG,
then there exists a characteristic subgroup D of G such that RG c D
and C = D/RG is almost polycyclic. Since RG and D are almost
polyeyclic, D is an almost polycyclic characteristic subgroup of G and
thus contained in RG. This contradiction shows:

(2) 1 is the only almost polycyclic characteristic subgroup of G/RG.

Assume there exists a nontrivial radical accessible subgroup of
G/RG. Then there exists also a nontrivial locally nilpotent accessible
subgroup of G/RG, and the subgroup S generated by all locally
nilpotent accessible subgroups of G/RG is a nontrivial locally nilpotent
characteristic subgroup of G/RG;see R. Baer [5], p. 57, Lemma 3.
If S is finitely generated, then S is a finitely generated nilpotent
group and therefore Noetherian and polycyclic; see R. Baer [1], p. 299,
Satz B. This contradicts (2) so that S is not finitely generated. Since
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RG is a characteristic subgroup of G, by (a) G/RG satisfies condition
(M), and the normal subgroups of S fulfill the maximum condition.
This implies that S is Noetherian and polycyclic, since S is locally
nilpotent; see D.H. McLain, [10], Theorem 3.2, p. 10. This contradicts
(1), and we have shown:

(3) 1 is the only radical accessible subgroup of G/RG .

By (b) independent sets of finite normal subgroups of characteristic
subgroups of G/RG are finite. Application of Corollary 4 yields that
the product P of all finite normal subgroups of G/RG is finite and
that 1 is the only almost Abelian accessible subgroup of (G/RG)/P.
It is a consequence of (2) that P = 1. This together with (3) implies
that 1 is the only almost radical accessible subgroup of G/RG. We
have proved (d).

If the almost radical accessible subgroup E of G is not contained
in RG, then ERG/RG = E/(E N RG) is a nontrivial almost radical ac-
cessible subgroup of G/RG. This contradicts (d), and thus (e) is proved.

Let G be not almost polyecyclic. By condition (IM)G is finitely
generated or the normal subgroups of G satisfy the maximum condition.
By Corollary 2 there exists a characteristic subgroup C of G such
that G/C is not almost polycyclic, but G/D is almost polycyclic for
every characteristic subgroup D of G containing C properly. By (a)
H = G/C satisfies (). By (c) the product RH of all almost polyeyelic
characteristic subgroups of H is an almost polycyclic characteristic
subgroup of H. If RH == 1 then H/RH is almost polycyclic, and this
implies that H is almost polycyclic. Thus RH =1, and by (d) 1 is
the only almost radical accessible subgroup of H.

Proof of the theorem. If G is almost polycyclic, then G is es-
pecially Noetherian and every infinite epimorphic image of G possesses
a finitely generated Abelian normal subgroup, not 1. These properties
imply that the conditions (II) to (VIII) are consequences of (I).

Assume now that the group G is not almost polycyclic, but that
at least one of the conditions (II) to (VIII) is satisfied. Then especially
G is finitely generated or the maximum condition is satisfied by the
normal subgroups of G. By Corollary 2 this implies the existence of
a characteristic subgroup C of G with the following properties:

(1) H = G/C is not almost polycyclic, but H/D is almost polycyclic
for every characteristic subgroup D = 1 of H.

If (II) is satisfied, then H possesses a locally almost soluble
characteristic subgoup N = 1 of H. Clearly H likewise satisfies con-
dition (II. a), so that N is finitely generated. Since N is a finitely
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generated almost soluble group, there exists a soluble characteristic
subgroup S of N and H; see for instance W.R. Scott, [11], p. 152, 7.7.
If S+ 1, then there exists an Abelian characteristic subgroup A =1
of S, N and H. As a characteristic subgroup of H the group A is
finitely generated and therefore Noetherian. This implies that there
exists an almost polycyclic characteristic subgroup D =1 of H. By
(1) H/D is almost polycyclic, so that H is almost polycyclic. This
contradicts (1), and G does not satisfy condition (II).

If (III) is satisfied, then H possesses a locally almost polycyclic
accessible subgroup E # 1. Hence the subgroup R generated by all
locally almost polyeyclic accessible subgroup of H is a locally almost
polycyclic characteristic subgroup, not 1, of H, since the product of
two normal almost polycyclic subgroups is almost polycyclic; see R.
Baer [4], p. 360, Folgerung 1. Since R is a characteristic subgroup
of H, it is finitely generated by (III.a). Thus H is an extension of
the almost polyeyclic group R by H/R which is almost polycyclic by
(1). But then H must be almost polycyclic, which contradicts (1).
Hence G does not satisfy (III). \

If one of the conditions (IV) to (VII) is satisfied, then by Lemma
8 (f) we may assume that the epimorphic image H of G satisfies, in
addition to (1), the following condition:

(2) 1 is the only almost radical accessible subgroup of H.

Clearly (2) implies that G does not satify (IV).

If (V) is satisfied, (V.b) and (2) imply the existence of an infinite
independent set & of normal subgroups of H;see Lemma 6. Then
the product P of all normal subgroups in & is a normal subgroup of
H, and (V.a) implies that P is finitely generated or the maximum
condition is satisfied by the normal subgroups of P. In both cases &
must be a finite set. This contradiction shows that G does not satisfy (V).

If (VI) is satisfied, then there exists a characteristic subgroup
N =1 of H such that ¢, N %= 1. Since c;N is likewise a characteristic
subgroup of H, H/c,N is almost polycyclic by (1). Now Proposition 5
yields the existence of an almost Abelian characteristic subgroup 4 # 1
of H. This contradicts (2), and G does not satisfy (VI).

If (VII) is satisfied, (VIL. b) and (2) imply the existence of an in-
finite independent set & of normal subgroups of H; see Lemma 6. But
by (VII. a2) the normal subgroups of H satisfy the maximum condition.
Hence & must be finite, and G does not fulfill (VII).

Thus (VIII) must be satisfied. By (VIII.al) and Lemma 2 there
exists an epimorphic image H of G with the following properties:

(3) H is not almost polycyclic, but every proper epimorphic image
of H is almost polycyclic.
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By (VIII. b) there exists a normal subgroup N == 1 of H such that
¢z N # 1. Condition (3) yields that H/c,N is almost polycyclic. Ap-
plication of Proposition 5 shows the existence of an almost Abelian
normal subgroup B = 1 of H. If B is infinite, then there exists an
Abelian characteristic subgroup C # 1 of B which is an Abelian normal
subgroup of H;see R. Baer [2], p. 152, Lemma 2. By (VIIL a2) C is
finitely generated and therefore Noetherian. Thus there exists a
Noetherian almost Abelian normal subgroup A4 =1 of H. Since H/A
is almost polycyclic by (3), H must be almost polycyclic also. This
contradiction finally proves our theorem.
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MOBIUS FUNCTIONS OF ORDER %

Tom M. APOSTOL

Let & denote a fixed positive integer., We define an
arithmetical function 2., the Mobius function of order %, as
follows:

m(l)y=1,

ti(n) = 0 if p**|n for some prime p ,

mm)y=(—1y if n=pt-- - piTIpY, O0=a:i<k,
>

te(n) =1 otherwise .

In other words, #.(n) vanishes if 7 is divisible by the (k + 1)st
power of some prime; otherwise, £(n) is 1 unless the prime
factorization of n contains the kth powers of exactly r distinct
primes, in which case p.(n) = (—1). When &k =1, yi(n) is the
usual Mébius function, p(n) = u(n).

This paper discusses some of the relations that hold among
the functions g, for various values of k. We use these to
derive an asymptotic formula for the summatory function

Mlc(x> = ZS #Ic(%)

for each k = 2. Unfortunately, the analysis sheds no light on
the behavior of the function M,(») = >, _, #(n).

It is clear that |, | is the characteristic function of the set Q,.,
of (k + 1)-free integers (positive integers whose prime factors are all
of multiplicity less than &£ + 1). Further relations with Q,,, are given
in §s4 and 5.

The asymptotic formula for M,(x) is given in the following theorem.

THEOREM 1. If k= 2 we have

(1) 2 p(n) = Ao + O(z"'* log ) ,
where
(2) 4, =L s g l-p

k) i3t mk win L — pE

Note. In (2),{(k) is the Riemann zeta function. The formula
for A, can also be expressed in the form

=1 3 o)
(3) A c<k>n§ nJ,(n)

21
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where @(n) and J,(n) are the totient functions of Euler and Jordan,
given by
p(n) =n ﬂ L —=p7),Jimn) =n" 111 —-p").

Pl

We also have the Euler product representation

(4) Ak:1;[<1——;7+}%;>.

2. Lemmas. The proof of Theorem 1 is based on a number of
lemmas.

LEMMA 1. If k=1 we have p,(n*) = p(n).
LEMMA 2. FEach function p, is multiplicative. That is,
te(mn) = pw(m)p(n) whenever (m,n) =1.

LEMMA 3. Let f and g be multiplicative arithmetical functions
and let a and b be positive integers, with a = b. Then the function
h defined by the equation

v = 2 5ol )

1s also multiplicative. (The sum is extended over those divisors d of
n for which d* divides n.)

The first two lemmas follow easily from the definition of the fune-
tion p,. The proof of Lemma 3 is a straightforward exercise.
The next lemma relates p, to p,_,.

LEMMA 4. If k = 2 we have

te(n) = > #k~1< " >ﬂk~x(‘g‘> .

dkin dk

- Proof. By Lemmas 2 and 3, the sum on the right is a multipli-
cative function of ». To complete the proof we simply verify that
the sum agrees with ,(n) when 7 is a prime power.

LEemmA 5. If k=1 we have

)| = 5 p(d) .
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Proof. Again we note that both members are multiplicative
functions of n which agree when n is a prime power.

LEMMA 6. If k=2 and r =1, let
F,(x) = g‘ Lo (M) g (F7'0)

Then we have the asymptotic formula

_ & pn)er)rt! 1k
F.(2) = G + O@"o_,(r)) ,

where a,(r) is the sum of the ath powers of the divisors of », and
s 18 any number satisfying 0 < s < 1/k. (The constant implied by
the O-symbol is independent of r.)

Proof. In the sum defining F.(x) the factor g, _,(»*'n) =0 if »
and » have a prime factor in common. Therefore we need consider
only those n relatively prime to ». But if (r, #) = 1 the multiplicative
property of p,_, gives us

L (M) (P 7'0) = () p (1577 = | prus(m) | p2(7)
where in the last step we used Lemma 1. Therefore we have

F@) = ) 3 ||

(n,r)=1

Using Lemma 5 we rewrite this in the form

Fow) = pr) > > p(d) = p(r) Z wd) > 1

BT d in qu/dk
(n,r;= (d u 1 (g,7)=

= ) % )3 o] |

(d ’/'—“ 1

) o) 3 )] 2]

dk S:c
(dyr)=

At this point we use the relation [#] = « + O(z), valid for any fixed
s satisfying 0 < s < 1, to obtain

P = i) S0 5 {5 + 0{s )]

td*
(d 7)
_ pO) < d) L e
= @) 2 b d O< ; ¢ dg‘/k d"s)'

(d,r=1

If we choose s so that 0 < ks < 1 we have
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<o) -0

aszi/k dks tlcs

and the O-term in the last formula for F,.(x) is O(z"*0_,(r)). To com-
plete the proof of Lemma 6 we use the relations

20 _ o)

tir r

and

/’C(d) — hd #(d) .
<d%1:1 dr +O<d>§/k >

1
- + Ou-bl
T OO
1 rk
— O(z!i=*1%y
ww T e

3. Proof of Theorem 1. In the sum defining M,(x) we use
Lemma 4 to write

M) = 3 ) = 33 e )a(2)

n=z gkin

= 2 2L tha(m)t (dFm)

dk<x m<z/d
= 2, Fu@/d") = > F,(z/r").

PLES rsallk

Using Lemma 6 we obtain

- _* 1(r)p(r) 1k T_.(7)
(5) M) C(k)@%/k rdJ (1) +O<x Tg%“/k r )

‘The sum in the first term is equal to

2(r) i 1—p :i#(r)n 1—-p! +0< = i)

rsatle PR B 1 — p_k =1 1rF pir 1 — p“" rozilk TE

— 3 HDe(r) ik
—S:‘l T () + Oz ).

S

The sum in the O-term in (5) is equal to

g_(r) =3 rSdr= 3 6t S g

r<zllk r r<allk di=r ssxllk dszl/kls

- o( S, 97) = Oflog z) .

ssailk
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Therefore (5) becomes

_ & pne(r) Uk
M, () = C(k)g T ) + O(''* log ) ,

which completes the proof of Theorem 1.
To deduce (4) from (2) we note that (2) has the form

=_L3
A = 5 S50

where f(n) is multiplicative and f(p®) = 0 for ¢ = 2. Hence we have
the Euler product decomposition: [see 3, Th. 286]

A= g 0+ F@) =TT A -2 {1 - 2 =2
B e e R U R

4. Relations to k-free integers. Let @, denote the set of k-
free integers (positive integers whose prime factors are all of multiplicity
less than k), and let ¢, denote the characteristic function of Q,:

1 if ne@,
0 otherwise.

q.(n) = i

Gegenbauer [2, p. 47] has proved that the number of k-free integers < x
is given by

” X 1k
(6) %qk(%)—m%-o(w’), (k=2).

From the definition of g, it follows that ¢,.,(n) = | z.(n)|, so Gegen-
bauer’s theorem implies the asymptotic formula

_ X 1/ (k+1)
(7) é|ﬂk(n)|—m+0(xl ) k=1).

From our Theorem 1 we have
(8) ; t(n) = Ae + O(@'* log ) (k>1).

The two formulas (7) and (8) show that among the (k + 1)-free integers,
k > 1, those for which p,(n) = 1 occur asymptotically more frequently
than those for which ,(n) = —1;in particular, these two sets of
integers have, respectively, the densities

%(C(k—i-ﬁ +4,) and %(ﬁ - 4).
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This is in contrast to the case ¥ = 1 for which it is known that

Zlﬂ()l“

), but 3 pn) = o(x) ,

so the square-free integers with t¢(n) =1 occur with the same asymptotic
frequency as those with p(n) = —1 [see 3, p. 270].

Our Theorem 1 can also be derived very simply from an asymptotic
formula of Cohen [1, Th. 4.2]. Following the notation of Cohen, let
Qi denote the set of positive integers n with the property that the
multiplicity of each prime divisor of % is not a multiple of k. Let
gi¥ denote the characteristic function of Q. Then ¢j(1) = 1, and for
7 > 1 we have

) 1 if n= ﬁ p%, with each a, # 0 (mod k) ,
gi(n) =
0 otherwise.

The functions ¢ and g, are related by the following identity:

(9) aim) = 3 ().

dk|n

This is easily verified by noting that both members are multiplicative
functions of » that agree when = is a prime power, or by equating
coefficients in the Dirichlet series identity (14) given below in §5.
Inversion of (9) gives us

10) n) = 3 ()

dkin
Cohen’s asymptotic formula states that for k= 2 we have
(11) ,; qi(n) = A, C(k)x + Oy,

where A, is the same constant that appears in our Theorem 1. To
deduce Theorem 1 from (11) we use (10) to obtain

Smm=3 3 ;z(d)qk< )= S ) 3 ai(m)

It

3 pa{ AL + o(% /)}

= Ade 5 D 4 o 3, 1)

asaiik  dF dbsz d

= AkC(k)xg—%? + 0( > d- ) + O(x''* log x)

d>xllk

= A2 + O®x'*log x) .
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Conversely, if we start with equation (9) and use Theorem 1 we
can deduce Cohen’s asymptotic formula (11) but with an error term
O(x'* log x) in place of O(x'*) .

5. Generating functions. The generating function for the #k-
free integers is known to be given by the Dirichlet series

192 > gx(m) . C(s) 1

(12) S LBl 6>

[see 3, Th. 303, p. 255]. It is not difficult to determine the generating
functions for the functions g, and ¢} as well. Straightforward calcu-
lations with Euler products show that we have

(13) 20 ot - 2+ —Lf
n=1 n° » D s p(’CTl)b
and
(14) i q’f(?@) = U(ks) i i(n)
n=t N’ = n

for s > 1. Equation (14) is also equivalent to equations (9) and (10).
From (12) and (14) we obtain the following identity relating (e, q,
and q;j:

Z(s) i ((n) _ (i Qk(n)><i qg(”)) .
rn=i n° n=t n° n=1 N°
This shows [see 3, §17.1] that the numerical integral of g, is the
Dirichlet convolution of ¢, and ¢}:

5 = S ao(2).
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ON AN INITIAL VALUE PROBLEM IN THE THEORY
OF TWO-DIMENSIONAL TRANSONIC
FLOW PATTERNS

STEFAN BERGMAN

In the case of the differential equation

_ 0% 0*¢ oy _ -
L) = ok + 54 + N3 =0,N=N@,0),

where N is an analytic function, the integral operator of the
first kind

P(f) = Sl EQ, 6, )fC1 — )2dtVT — &
t=—1

transforms analytic functions of a complex variable { = 1 + ¢
into solutions of L(¢) =0, Here F is a fixed function which
depends only on L, while f({) is an arbitrary analytic function
of the complex variable (; f is assumed to be regular at { =0,
Using this operator, one shows that many theorems valid for
analytic functions of the complex variable can be generalized
for the solutions ¢ of L{¢) = 0. Continuing ¢(4, §) to complex
values U= 2+ 74 and setting 1= 0, one shows that many
theorems in the theorems in the theory of functions of a real
variable can be generalized to the case of solutions of

_»g o9 0
MO =~ T g~ Noa =0

By change of the variables,

Mg) = 22 4 1)

ox? =0

0%
o0y? ’

l(x) > 0 for z < 0, (x) < 0 for x > 0, {(0) = 0, when considered
for © < 0 can be reduced to the equation L(¢) = 0. The vari-
ables can be chosen so that U = 0 corresponds to x = 0. How-
ever, in this case the function N(2) becomes singular at 1 =0,
Nevertheless, one can apply the theory of the so-called integral
operators of the second kind, If ¢(0, #) = x,(#) and

lim gu(M, 6) = 2%:(0)

are given, one can determine the function f, Here M is the
Mach number, In this way one can determine from %, and
% the location and character of singularities of ¢ in the sub-
sonic region. When considering ¢ in the supersonic region,
one can show that some theorems on functions of one real
variable can be generalized to the case of certain sets of
particular solutions ¢,(4,0),v =1,2, ---, of H(¢) =0,

29
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Suppose the streamfunction + of a transonic two-dimensional com-
pressible fluid flow is given by the values of + and of +, on a seg-
ment of the sonic line. Here 4, is the derivative with respect to
the Mach number M.

One of the problems which arises is to determine the regularity
domain, say .2, and the location and properties of the singularities
of « in the subsonic region. Finally, it is of interest to determine +r
in a given domain &, & ¢ <. This problem complex will be called
the wnitial value problem in the large.

s, when considered in the physical plane is a solution of a non-
linear partial differential equation. However, by introducing con-
veniently chosen new variables (instead of the coordinates x, ¥ of the
physical plane), we obtain for + a linear partial differential equation
(see Chaplygin [12] and Molenbroek [23]).

The linear equation which we obtain in this way, see (1.4), is of
mixed type. However, it is possible to use the theory of integral
operators in the study of the behavior of + in the subsonic region.

The theory of integral operators investigates the solutions of linear
partial differentiation equations of the form

(L.1) 4+ BT 4 =0,
v=1 [0} v
4 = S, 0%ox? is the Laplace differential operator and a, are analytic

functions of x,, ---, x, regular in a sufficiently large domain.’ Suppose
the solution +(x,, ---, x,) is given in the small, say in the neighbor-
hood of the origin in the form of a series development

1.2) Y (&g o0y ®,) = S Oy pony, XL 2o s T

ul,yz,n-,vnto
Then this approach reduces the study whether + is regular in a
domain <7 to the investigation whether or not an analytic function
Az, -, Z,) of m complex variables Z, = x, + 1y,, k =1,2, -+, m,
given by its power series development

B

(1.3) fZ, -, 2,) = S A L Zym
Yrvgstt Yy =0
is regular in a domain <. (See [1], [2], [9], [13], [20], [15], [16], [17].)
In the case of one variable, i.e., if f(Z) = >, A, Z* is given, two
methods can be used to determine the regularity domain and the

1 In the case of differential equations of the form (1.1) and for m =2 one uses
integral operators of the first kind, see [9], pp. 9-27. If the coefficient 4F of the
equation (see (1.9)) has the singularity indicated in (1.9a), we use the integral operator
of the second kind (see [5], p. 869, and [6], p. 452 ff.).
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location and character of the singularities of f from given A,,y =
1,2, --.. (I) the Hadamard-Polya-Mandelbrojt approach, (II) the theory
of Hilbert spaces possessing a kernel function. Two possibilities should
be mentioned proceeding along the lines of (II): (a) the use of funec-
tions which are simultaneously orthogonal in two domains <# and <7,
ZF < =7, see [8], (b) some results by Schiffer, Siciak and the author
which give conditions for the coefficients A, in order that an analytic
function given by its series development 3., A,Z* is regular and
square integrable in a given domain <7 (possessing a kernel function),
see [11], [30].

The streamfunction + of a two-dimensional compressible fluid
flow satisfies an equation of mixed type, namely

_ 62,1# az’l!/‘ _ _
(1.4) M) = =2+ UL =0, U0 =0,

where [(H) is an analytic function of H, which is real for real H
and such that

(1.52) (H) >0 for H< 0,
(1.5b) (H)< 0 for H>0.

I(H) is supposed to be regular in a sufficiently large domain including
H = 0. Further we assume that, if we reduce (1.4) to the normal
form (1.7), I(H) is chosen in such a way that N considered as a
function of \, see (1.6), has a development of the type indicated in
(1.7a). The study of (1.4) can be reduced to the study of the equation
(1.1) with singular coefficient a,.,. By the transformation

(1.6) = S—j)[l(—r)]”?df ,

the equation (1.4) in the region H < 0 is transformed into

1.7 L) = gy 4 abrgg + 4Ny = 0,
1 1
. = -], =-——1I1 (=2 4 e ], 8, >0, <0,
(1.7a) N 3 P 12K[ + BN A e ], B> <
(See (2.4), p. 860 of [5].)
Introducing
(1.8) wi=2,

H*
H* = exp [—S“ 2N(z-)dz']
= SU(— 2V - S~ 20 4 S~ 2 o],

(1.8a)
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(1.7) becomes

(1.9) L*(p*) = ¥l + ¥i + 4Fy* =0,

(1.9a) F = %(—M*Z + A (=N 4 Ay A+ AN A -

see [4], [5], [6], [9, p. 106 fi.]

In the next section we shall discuss an integral representation for
the solution + of (1.7) in terms of a function of one variable.

In the previous papers [5], [6] the conditions for the associate
AZ) = Z" 3¢, Z*, Z = » + 10, in order that 4 satisfies the relations
(4.2), (4.3) on the segment of the sonic line, have been determined.
However, the proof which shows that the relation (4.1’) is a sufficient
condition that « satisfies (4.2) and (4.3) can be simplified. (see §§3
and 4 of this paper.)

REMARK. Formula (7.15) of [6] has been obtained in replacing ¢,
by (4.1a) of the present paper and applying some further transfor-
mations. It should be noted that in formula (7.15) of [6] (as well as
in (4) of [9], p. 121) J/® should be replaced by

J exp[—ﬂ—g—&’fﬁ—], k=12,

A representation of 4 In the supersonic region is derived in §7
by the use of integral operators.

2. An integral representation for the analytic solution of
(1.4) in terms of functions of several complex variables. In this
section we shall derive an integral representation for the solution +
of equation (1.4). This representation is valid in a subdomain of the
subsonic region.

DEFINITION. & (7) = U (%) where 5(2) = (| |~ 2| {_gl

In the following we assume that <7 is a stardomain with respect to
the origin.

THEOREM 2.1. Let E(Z, Z*,t) be a function of three complex
variables Z, Z*,t, Z =\ + 40, Z* =\ — 10, which is defined for t € N(¥")
and (Z, Z*)e €. Here N(&') 1s a domain which includes the recti-
Jfiable (oriented) curve &, with initial point t =1 and end point
t = —1, and & denotes a sufficiently small neighborhood of the origin
O=[Z=2*=0]. & is a curve of the complex t-plane, namely

(2.1) & ={t| =1}.
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We assume that E satisfies the following conditions:
(1) E possesses continuous partial derivatives with respect to all
three of its arguments up the second order for (Z, Z*,t)e & X N(%).
(2) E satisfies the partial differential equation

(2.2) (1 — &)(Ey, + NE,) — t"'E,. + 2tZL(E) =0,

concerning L see (1.7).
If Q) = (O)Y*p/2), where p((/2) is an analytic function of (
which 1s defined in a simply connected domain P, P D L (F), then

@3) v, 0 =P =Im| Bz 20 0520 - )L

Im = 1maginary part , Z=\N+10,Z* =\ —10,

18 a solution of L(y) = 0.
The function + is defined in <7~ N Z,

(2.4) W =\ 0)|3NF< 62,0 >0, —siF < A< 0}

The proof of the above theorem is given in [5, p. 878 ff.] and [6]
see also [1] and [9], Chapters I and V].

DEFINITION. FE(Z, Z*,t) and f are denoted as the generating and
assoctate functions, respectively, of the integral operator P..

After certain auxiliary lemmas are obtained in §3, we shall prove
Theorem 4.1. The latter theorem will enable us to solve the problem
mentioned in the introduction.

3. Auxiliary lemma . In this section we shall at first evaluate
certain integrals which we shall need in §4.

LEMMA 3.1.2
IJ” = S t—1/3(1 _ tZ)y+1/6 dt
. v1—#¢
3.1)
_ 1 (1 — eih) I'(1/3) (v + 2/3)
2 oI+l ’
dt
Iy(2) = S t~5/3 1 _ tz v+5/6
B VG -
(3.2)
_ L(l _ iy L(=13) (v + 4/3)
2 ! 'y +1)

2 The counterclockwise orientation of & yields the negative sign in (3.1).
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In accordance with our assumptions, = is a rectifiable (oriented)
curve connecting the points 1 and —1 and lying in [|¢] = 1].

Proof. Applying Cauchy’s theorem to the integral of (3.1), we
can reduce the curve % to the segment (1, —1) of the real t-axis.®
Thus

Iu“) — I 11) + Iy(lZ) ,

(
’ dit
L(m — S (1 — g2)rHs ,
(3.3) : R s g
- dt
Iy(12) — S t—1/3 1 _ tz v+1/6 .
0 ( ) V1i-¢

Introducing = = ¢}, we obtain

“ 2 I+

When considering I/, we note that for —1 <t <0,t = re~, r >0,
and therefore

1 2
L sy + %
(3_5) I,,“Z) — 6_47.1'/35 7._1/3(1 _ ,r.2)u—1/3d,r — —}—6—4"‘“3 <3> ( 3) .
0 2 I'v +1)

Thus (3.1) is obtained. (I = Gamma function.)

When evaluating (3.2), we assume at first that ¢ = 0 does not
belong to the integration curve denoted by z’. Integrating by parts
yields

-3

1 . tz y+1/3d t—z[s
2| @ - ey

(3.6)

_ _?_ —2/3(1 __ 42\v1/8)e=—1 __ lg 13(1 __ 42\v—2/3
- <2>[t (1 — g3+ 3<p+ 3)%; (1 — 22t .

The first term on the right-hand side of (3.6) vanishes. In the second
term we replace & by the segment (1, —1) of the real ¢-axis. In-
troducing © = ¢, we obtain

—3(v + D)ot - ey = 2o+ ) - o
1 0

()

'y +1)

3 We replace & at first by the sum of segments [1 > Ret > ¢], [t =cei?,0< 0 < =],
{—¢>Ret > —1],e > 0. Then we consider the limit of the integrals for ¢ —0.
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When integrating from 0 to —1, we introduce ¢ = re** and thus obtain

1 4
' —= F(v + —>
(3.8) I® = i(l _ griny ( 3) 3)
2 I +1)

The generating function E yielding the representation (2.3) has
been determined in [5], [6], [7], [10]. In particular, it has been shown
that two functions

(3.9) EW = H*E*® Fxb = 3 g™\ k=12,

n:o(— tzz)n_(1/2)+(2/3)k’

(310) q{"””()\l) — Z Cin,k}(_)\’)n—(l/2)+(2/3)(k+y)7 Cin,k) = const. ,
V=0
Co(on = 28 O = 2818

(see (1.8a) and [6], p. 453) are solutions of (2.2) for (A, 0) e 97~ (see
{2.4)). Let + be equal to the right-hand side of (2.3) where

~ def . (1 . tZ) 2/3 )
@G.11) E=E) 0,1 = AED + Az[Z~——2——] A,E®

then obviously L(y) = 0. Here A, and A, are two complex numbers
such that

(8.12) Im (4,4,) <0 .

In the following considerations we need Lemma 3.2 yielding the
limit relations for the generating function & introduced in (3.11).

LEMMA 3.2.

(3.13) lim E(\, 0, 1) = —d =100

A0

(3.14) Tim (=) PEi(n, 0, 8) = [d70 + dit (L — )]0

where

3.15)  dy = — 2554, d, = — 2 (18,84, d, = — i
. 0——_51 0412, 1—_T’L Sid,, d, = —i°S,A,

Sy, S, positive.

Proof. By (1.8), (3.9),
AED = A[S(—2\)0 (S (—20)12 e g " (\) e
(=207 + 88,2 + ) e ]

_ ASC27 + A S S, CPM2 (=N A+ .-
(= + wo)°

(3.16)

b
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AE® = A(S(—20)0 + S,Si(— 2y 4 +-e][ L) L
B2+ SS (-2 -l LN ]

_ A2Cl(]02)S02—1/6(_7\l)2l3 + A2S0S10é02)21/2(__7\,)8/6 __|_ oo
[~ + )"

(3.17)

+...,

(3.18) [iza - t2)]2/3A2E<2) AL 82N = ) (i) -
2 [—tz(?\, + ?;0)]5/6
Thus
5= ASCr2 + ASS, G2 (=N A .-
[_tz()\' + ,1:0)]1/6
[%Z(l — tz)]2/3AzCé°”S<>2‘l’6(—W” o
[—&(\ + )]

(3.19)
+

+...,

C* have been introduced in (3.10). (see also [6] p. 4563.) From (3.19)
the limit relations (3.13) and (3.14) follow. The justifications of the
above operations follow from considerations in [5], p. 882, and [10],
p. 336. To derive (3.14), we note that after differentiation of (3.18)
with respect to X, the only terms of E; which contribute to
lim,_,- (—\)'°E; are the coefficients of (—\)~*. Hence

lim (—\) "5, = — %i”zS(,Azt—m(l — geyegie
A=07
(3.20)

203
— S8 AL

which implies (3.14).

4. The determination of the associate f in (2.3) from given
values of ¥ and +, on the sonic line.

THEOREM 4.1. Let x,(0) = >, a0, k =1, 2, (al¥ real) be two
power series wfaich converge uniformly for 0 <0 <6,,0, >0. Suppose
Surther that E(Z, Z*,t) is given by (3.11), and let

(4.1) AZ) =213, e, 2,

, . Jf(m + ij“)af,“ + {j T(t)afz)
4.1 L, = _2 v+1/6( [l 1 Waad 24 v v ,
(4.1 o= (=21 Tm [dod. TV 1"

where f(Z) is the associate function of the integral operator Py(f) in

(2.8). Then + given by (2.3) is a solution of (1.7) satisfying the
conditions

(4.2) lim v\ 0) = 3 a9”
A—07 y=0
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(4.3) Hm (—0)y(0n 0) = S5 a® 6"
207 y=0

Proof. In order to prove the theorem, it is sufficient to show that

1 v+1/6 dt
4.4 O, 0) =1 SEZ,Z*,t Lza ¢ 0t
@y n0n 0 =Im| BZ 20 0(520 - ) et
satisfies the relations (4.2), (4.3) with the right-hand side replaced by

a®6*, k = 1, 2, respectively. Using Lemma 3.2, we obtain the general
term

(4 5) ”‘{Jodz-[»mfx@ + g1d2Iv(1)Tyil)}a9) _ dzgzI»m_y“)a'Lz)

il 6.
Im [dd.1 " 17]

Since d.d, is real, from (4.4), (3.12) and (4.5) we infer (4.2). It is easy
to see that Im [dd,[,"I®] 0 in the case under consideration.
We now consider the second condition. We note that

: 1 a“,V S : 13 3 dt
)3 — W)Y - at
@s IV = ) I VR T
since
(4.7) lim (—\)"Ef; = 0.
Concerning the interchange of lim; - and | compare [10, pp. 336,

339], and [5, (5.28), p. 882 ff]. Using Lemmas 3.1 and 3.2, we obtain
the general term

[dd L1 + |d3 | L2 + |d P | LV + dd, LV LP]ay g,
Im [dyd.I." 1]
o 104 | IVF 4 dd IO Mar g
Im [dodzlv(l)l,,m]

4.8)

Noting (4.6), we infer (4.3) from (4.8). This completes the proof of
Theorem 4.1.

5. The conditions imposed on the coefficients a!” in order
that + has singularities of specific types. In §4 we expresed the
associate function f(Z) in terms of values o/, k =1,2,v=10,1,2, -.-
(see (4.2) and (4.3)), which appear in the initial value problem con-
sidered here. Suppose f(Z) is regular, say in some simply connected
domain <&, & C 97", the stream function + will be regular there.
As mentioned in the introduction, there exist various procedures for
the determination of the location of singularities of a function Z'°f(Z)
given by its series development Z'®Y ¢,Z* at the origin.
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In the following we shall discuss a procedure using the approach
indicated by (I), see [18], [21].

THEOREM 5.1. Suppose that the solution +(\, 0) ts defined in a
sufficiently small neighborhood of the origin and on a segment
AN=0,—-06,0<50),0, >0, and satisfies the conditions (4.2) and (4.3).

Here D7, aP0" are power series converging absolutely and uni-

2 __ _ —_
0’ S A T + 0L

formly for |6]| < 6,. Let
:ll/y
k=1 co
Im [dd, 1" 1*] <

where d,, I'”, k =1,2, have been introduced in (3.15), (3.1), (3.2),
and let

(5.2) cos @ = lim &2‘—1 o(h) = T [1d, () [ ,

h—0T

y—oo

(5.1) 1 2%[
0

., 260N (=20)" 0 3 TE P+ oI
5.3 d,(h) = T .
6:3) " 7‘22“0 Im [dod, IV '] o

(Cy are binomial coefficients.) Suppose
1

. . o) —1
&4 T <%
Let us denote by <* the domain
(5.5) {(V 0) [BE N <O, —siF < N0, + 6 < 0%}

and let

(5.6) st = {(x, 0) N = pcosp,d = psinp,
lim o) —1
h—0+ h/

<cos<p<0,>&’+02:p2}.

Then (N, 0) is regular in <s* Us'. Concerning s, see [5], p. 878.

Proof. Since K(Z, Z*, t) is regular in 977, see (2.4), the solution
v is regular in every subdomain of 7~ which does not include 4 = 0
in which f(Z)/Z'* is regular. Here f(Z)= Z'°"3>,¢,Z*. By the
theorems of Hadamard and Mandelbrojt, the function ¢(Z) = 3=, ¢, Z" is
regular in the circle |[Z|<p,0 = 1/lim,_.|c,|'*>0 and on the
arc[(0,9), | Z| = p where

(5.7) cos @ = lim { =L, () T 14,0 1" -

a—0™"
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6. The representation of 4 in a simply connected domain
o, &7 C 9. Asindicated in [2], [9], the integral operators enable us
to translate many theorems in the theory of analytic functions of com-
plex variables into theorems on functions + satisfying a linear partial
differential equation of elliptic type. As an example of an application
of this method, we shall determine for the domain < systems {y.(\, 6)}
of solutions of (1.7) such that every solution + regular in &,, &, =
«(Z), can be represented in & in the form

(6.1) H0u 0) = 33 A0 0)

Given a simply connected domain <7,, there exist various systems
{p.(Z)} of analytic functions of one complex variable such that a function
9(Z) regular in &7, can be developed in <, in the form

(6.2) 0(2) = 3 0.9.2) .

For instance, one can choose for {p,(Z)},v =1, 2, --., the system
of functions which are orthogonal in <7, or functions {[§(Z)]'}, v = 0,
1,23, -, [(G(Z)) = const], where §(Z) maps <, onto the unit circle.
Suppose now that < is a star domain with respect to Z = 0, & c o7~
and ¢(Z/2) is regular in &, = € (&), every solution + regular for
N\, 8 € &F, can be represented in <& in the form (6.1), where

63 vut ) = Im| B 20209 a0 - )

and v,,_,(\, ) are the real parts of the above integral.

Proof. Since we assumed that Z-'°f(Z/2) is regular in &, the
representation

Z Z
—1/6 il — A
(6.4 zf(Z) = Sap (L)
converges for (Z/2) e &2, uniformly and absolutely.
In the development

v\, 0) = ImS E(Z, Z*, t)(Z(1 — )" x
(6.5) - z p
t
N 2, g )_.=
2@ 90( 5 ¢ T—o
we can interchange the order of summation and integration, and we
obtain the development (6.1), where +,(\, ) are given by the real and
imaginary parts of | --. in (6.3).

%
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7. A representation of a stream function + in the supersonic
region. As indicated in [10], the approach of the present paper can
be generalized to the case where \ is replaced by the complex variable

(7.1) U=x+1i4,
and under some assumptions about
2.(0) = lim (U, 6) and  x(6) = lim u» 9%, 9).
U0 U0 oU

one can determine the associate f in terms of ¥, and y,. Consequently,
the method of integral operators can also be used to consider the in-
itial value problem in the supersonic region. Replacing » by U, see
(7.1), and setting A = 0, we obtain

A = h~tarctan [h(M* — 1)"*] — arctan [(M* — 1)'7],

B 1\
7.2 h:(————>,k>1.
(7.2) E+ 1

Here M is the Mach number and p = c¢p* is the pressure density
relation, k, ¢ are constants. (See [22] and [5], p. 861). Equation (1.7)
assumes the form

H(v) = Yrag — VYoo + 4N, =0,

(1.3) .
N, = k;—l (MZJ%1)3/2’M>1'
In the supersonic case it is convenient to introduce the variable
(7.32) To=M —1.
If we write in analogy to (1.8)
(7.3Db) V4, 0) = H(D)F*4,0),  F*(4,0) = v*(id, 0) ,
where
(7.3¢) H4) = exp [—ZSjONI(T)dr]
and

A= AM), A, = 427,
then +* satisfies
(7.4) H*(y*) = ¥l — Vg — 4Fyp* =0,

_ (k+ DM'T —(Bk — HM* — 48 — 2k)M* + 16]
64 L (1 — M??

(7.4 F,
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(see [5], p. 861). A formal computation yields that

" = = 1 r ok L/2(k—1) =
(1.4"y  H(T) = = = } = H(A(M)) .
Tl b+ 1) + (b — 1)7°

In general, we use in the following the same notations as in [5]
and [6]. As a rule we write B(4) = p(id), e.g., §"0(4) = q™°(i4).
Further, instead of H(T) (see [5] (4.3), p. 870) we introduced here
H(T) (see (7.4”) and (7.3a)). Consequently the generating function E
differs from E(id, i4, 6).

In defining the operation®

P(f) =1 [f{AS Bz, 0, 0F( 4 + o)1 — ¢ __it____],
() € Im| B Bad, 0, 0F( 34 + 01 — )L

(7.5) HA) = BAT), 4> 0,24 < |4+ 0],

it was assumed that % is a curve connecting ¢ = 1 with ¢ = —1 and
lying in |t| = 1 (see [5], p. 872). As in the subsonic case (see [6]
(7.12) p. 468), we set

Ex4,0,t) = A E*(id, 0, t)

(7.6) + [(i4 + i0))(L — )2 AE* = (i, 0, t)
Im (Azfil) #0.
(1.6") En(4, 6, t) = H(NELA4, 0, 1) .

We shall show that by imposing some additional restrictions on
the domain of definition of E(4, 0, t) we can use for & the curve

(77) KJ*Z%LU%ZU%‘&:
%L:(_1§t§ _to)y
(1.7) Gu=({=1te"%t >0, —T<p=s0),

Cun=E=t=1).
Analogously to [5, (5.5), p. 878], or [6, (4.7), p. 453],

E9(U, 6, t) = H(U)E*=(U, 6, 1) ,

(7.8) o s (g
Exm U, ﬁ,t = q’ ( ) ’
( ) 7% ( _ t2Z)nH1/2+2‘I3

where ¢ (U),k =1,2, n = 0,1,2, ..., are solutions of the equations

4+ Both the real and imaginary parts of fIl(/I)S,, ... are solutions of (7.3). In ac-
cordance with the previous definition we choose here “Im”. In view of definition (2.4)
it is sufficient to assume that [¢|{=1. If 0 <t = |t|, where £ <1, then » has to
be replaced by {2|4]| < |Z|t}.
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(7.8) afs' + AF(U)" =0,

@8)  2fn+ (B | + qne + aF@)gre = 0

(see [6, p. 453, (4.4)])°. These solutions can be written in the form
(7.9) q(n,/c) — i Cin,rz)(__ U)n——1/2+2/3(;c+v)

where

(B3
(7.10) Civ = 21/6y Csm) 6/, 3/, o 1’ Cl(m) =0,n=0,

i)

(_5_> (i) Qn+5[6
CéO,E) f— 25/6’ C(’)n,2,\ — 6 n n , n 2 1 ,
(7.11) ,( 5 =

@,=ala+1) - (a+n—1)

(see [6, (4.4), (4.5), (4.6a), (4.6b), (4.6¢), (3.11), (3.12)] or [9, p. 113, (la),
(1b), (2), (3a), (3b), 3c)].)

REMARK. One initial value condition determines uniquely ¢‘*(U).
Indeed, the general solution of (7.8’) and (7.8”) can be written in the
form

(7.12) C.(.:’Lf2:(_ U)n%l/(} + i Cin,2)( __ U)n—1/2+2/3(n+1) .
v=0

From (7.9) follows that the second initial value condition used for
(7.12) is C'»? = 0.
In [6, p. 459, (4.43)], it has been shown that

w(U)u'"(U)
(__ t2Z)'n—1/2+2;r/3

(7.13) \EyU, 0,0 =3,

n=0

and that

2”F<n+%f—>
A+ jU™, e>0.

(7.14)  Ju(U)| = C 5
r<—3"—>r(n 11

LEMMA 7.1. Let U= 14,0 < 4 < t:0/(1 — t?), where (2 + &)t} < &,

5 In the first equation of [6, (4.4)], ¢ is missing after 4F(2).
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0<t,<l,e>0 [0<¢t = |t],tec ], see (1.6). Then the series on
the right-hand side of (7.13) converges absolutely and uniformly for
tec* and 2|U | < & Z|.

Proof. Since {I'(n + 4/3)/'(n + 1)} <n + 1, it is sufficient to
show that 24/|t%4 + 6)] < 1. From our assumptions follows that
6/4 > (1 — t)/t}, therefore, for te * and 4 > 0,

y _ 1 _ 1
&4 + 0)] i)’ =" 1—&'
715) t2<1 + 4 L+
P& 1

tf = @+e)tF = 2+¢

Analogously to Theorem 4.1 we can express the associate (1 + 0)
in terms of

(7.16) lim (4, ) and lim [£7F (4, O],
A0+ 40T

see also [10], [28] and [29]. In formula (7.5) with U = i4 the as-
sociate f = f((1/2)i(4 + (L — ) = F((1/2)(4 + 6)(1 — t*)) is a function
of a real variable (4 + 0). In this case we obtain some modifications
of our results.

Operating with functions of one real variable, it is convenient
for many purposes to represent them in form of trigonometric series.
Analogously, in the case of solutions of (7.3) we introduce a set of
solutions

@mm:Rﬂdﬁwﬂwm+mw

% cos [m(d + O)(1 — tz)/z](Tjd’i@_‘ =012 -,

(7.17)

S.(4,0) = Re | Eu(1,0, (1 + )"
(7.18) - it

% sin [n(4 + 6)(1 — tz)/zlm

of (7.3)

REMARK. We note that when introducing a set of particular
solutions of the equation of elliptic type, we used {U*}, n =0,1,2, -,
as associates (see, e.g., [9], p. 22]); here we use

l(ein(/ﬂ—ﬂ) + 6»—’%(.1—‘*0)) and _]:._(ein(.i'i'ﬂ) i e~in(dw‘-0})
(7.19) 2 2

b

n=2012 ...
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Further, instead of using 1 cos [n(4+6)(1—¢*/2] and < sin [4+60)(1—1¢%)/2]
as associates, we take the real part of the integral in (7.17) (7.18).
The integral operator (7.5) assumes the form

V(4,0) = Re | Euld, 0, 04 + 0)"

(7.20) dt

x f[%(/l + o)1 — tZ)]m :

When considering the integration along %*, it is useful to introduce
the auxiliary variable © = t-(t) given by
T=Ret+1 fortec, =[-1<t <t
(7.21) 7 = l_(log tL) for te @ = [t = ™, 0 < p < 7]
1

(J

T=Ret —t,+ 7, fortez,=[-t, =t<1].

LEMMA 7.2, dz/dt =1 for te (% — P) U (&% — P,) and dt/dr =
’L.ehto fO'r te%z_Pl_PmPl: %1H%Z’PZZ %20%3'

THEOREM 7.1. Suppose that the coefficients {a,}, {0.},n = 0,1, 2,
-+, of the sertes

(7.22) S (@, cos n + b, sin na) ~ g(x) .

are chosen im such a way that

(7.23)
2 n T2
S o | Jawcos (Tt o -7 (z‘)))' sin (24 +0) (1~ (z-)))‘
Vio e
X AT < oo
Then of
w(d, ) = S B4, 8, t)(4 + 6)0
(7.24) . N a
o(5(1+ 0 - t))m :

it holds
(7.25) w(4,0) = 3 (a,C,(4, 6) + b,8,(4,0)) .

Proof. Since for 0<24< |4+ 60|, te =*, E(Z,Z*t) = E(4,0,t)
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and dt/dr are uniformly bounded on ' * — P, — P,and |dz/dt| = A =0
by the Lebesgue theorem (see, e.g., [31, p. 347]), it follows that we
can interchange the order of summation and integration in (7.24).
Using (7.17) and (7.18), we obtain (7.25).

The above investigations suggest that we write the solution® »
as a sum of two operators, namely,

(7'26) ’lr’/\(A’ 0) = "/fr(A» 0) + éF,(A, 0) ’

. 1/6 — 1 {2
(7.26a) . (4, 6) = Su E(4, 0, t)C’f(C)ﬁ)W = E(A + 0)(1 — %)
(7.26b) ¥4, 0) = S (4, 0, t)C”‘*f(C)————( ol

eulCn=[-1=t< —7]U[r=t=1],
%2:[t2T6i¢,~—7f§@§O],
0o<zt<l1.

When considering {y.(4, 6)}, one can apply various results in the theory
of trigonometrical series, while considering {¥.(4, 6)}, we apply theorems
on analytic functions of one complex variable.

The author wishes to thank Paul Rosenthal for his assistance in
preparing this paper.
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CONCERNING SEMI-STRATIFIABLE SPACES

GEOFFREY D. CREEDE

In this paper, a class of spaces, called semi-stratifiable
spaces is introduced. This class of spaces lies between the
class of semi-metric spaces and the class of spaces in which
closed sets are (5. This class of spaces is invariant with
respect to taking countable products, closed maps, and closed
unions, In a semi-stratifiable space, bicompactness and counta-
ble compactness are equivalent properties, A semi-stratifiable
space is F;-screenable,

A T,-space is semi-metric if and only if it is semi-strati-
fiable and first countable, A completely regular space is a
Moore space if and only if it is a semi-stratifiable p-space.

The concept of semi-stratifiable spaces as a generalization of semi-
metric spaces (see Corollary 1.4) is due to E. A. Michael. It appears
that all properties of semi-metric spaces which do not depend on first
countability also hold in semi-stratifiable spaces. The class of semi-
stratifiable spaces contains all stratifiable spaces [3], all cosmic spaces
[13], and all spaces with a ¢-locally finite [15] or o-discrete [2] network.

Some of the results of this paper were announced in [5].

Most terms which are not defined in this paper are used as in
Kelley [10].

1. Preliminaries.

DEFINITION 1.1. A topological space X is a semsi-stratifiable
space if, to each open set U X, one can assign a sequence {U,}r..
of closed subsets of X such that

(a) Ur=t U’n = U,

(b) U,cV, whenever UV, where {V,}:_, is the sequence assigned
to V.

A correspondence U — {U,}7_, is a semi-stratification for the space
X whenever it satisfies conditions (a) and (b) of Definition 1.1.

By comparing the above definition with Definition 1.1 of [3], one
can see that, if the correspondence U — {U,}3., is a stratification for
X, then U—{U}};_,, where U, = Cl U,, is a semi-stratification for X.
In [8], Heath gives an example of a (paracompact) semi-stratifiable
space which is not stratifiable.

THEOREM 1.2. A necessary and sufficient condition for a
topological space X to be semi-stratifiable is that there be a sequence

47
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{g:}:2, of functions from X into the collection of open sets of X such
that (i) N.9:(x) = Cl{x} for each x, and (ii) if y s a point of X and
{x;}:2, s a sequence of points in X, with ye gz, for all i, then
{x;}2, converges to y.

Proof. Let U-—{U,);-, be a semi-stratification for X. For each
1, define the function ¢, by ¢:(x) = X — (X — Cl{«});. The sequence
{g.}:, satisfies conditions (i) and (ii) of the theorem.

Conversely, let {g;}=, satisfy conditions (i) and (ii) of the theorem.
For each n and each open set U, let U, = X — U{g.(x):xe X — U}.
Then correspondence U — {U,}7., is a semi-stratification for X.

DEerFINITION 1.8. A topological space X is semi-metric if there is
a distance function d defined on X such that

1) d(z,y) = d(y, 2) = 0,

(2) d(x,y) = 0 if and only if © =y,

(3) w is a limit point of a set M if and only if inf{d(x,y):y € M}=0.
See [7, 11].

With the aid of Theorem 3.2 of [7] we have the following relation-
ship between semi-stratifiable spaces and semi-metric spaces.

COROLLARY 1.4. A T,-space is a semi-metric space if and only
if it is a first countable semi-stratifiable space.

2. Properties of semi-stratifiable spaces.

THEOREM 2.1. The countable product of semi-stratifiable spaces
18 semi-stratifiable.

Proof. For each ¢, let X; be a semi-stratifiable space and {g,,}7-.
be a sequence of functions on X, satisfying the conditions of Theorem
1.2. Let X = [[z, X, and let w; be the projection of X onto X;. For
each 7,7 and each z in X, let h;;(®) = g;;(w:(x)) if 7 < ¢ and h(x) =
X;if 7 > 1. Now let g;(z) = T[], k() for each 7 and . The sequence
{g:}. satisfies the conditions of Theorem 1.2 and, hence, X is semi-
stratifiable.

THEOREM 2.2. A semi-stratifiable space s hereditarily semi-
stratifiable.

Theorem 2.2 can be proved by taking the natural restriction to
the subspace of a semi-stratification of the larger space. In the case
of closed subspaces, all semi-stratifications on the subspace can be



CONCERNING SEMI-STRATIFIABLE SPACES 49
constructed in this manner.

THEOREM 2.3. If Y 4s a closed subspace of a semi-stratifiable
space X and U —{U,)., is a semi-stratification for Y, then there s
a semi-stratification V—{V. }o_, for X such that (VNY), =(V,NY).

Proof. If W—{W,)}z_, is any semi-stratification for X, then let
V.=(VnY),u(V—7Y), Thecorrespondence V— {V,}z_, is a semi-
stratification for X satisfying (VNY),=V,.NY.

By applying Theorem 2.3 with respect to the common subspace,
we obtain the following theorem:

THEOREM 2.4. The wunion of two closed (in the wumnion) semi-
stratifiable spaces is semi-stratifiable.

DEFINITION 2.5. A topological space is F,-screenable if every open
cover has a o-discrete closed refinement which covers the space.

Theorem 2.6 generalizes McAulely’s Lemma 1 of [12].
Theorem 2.6. A semi-stratifiable space is F,-screenable.

Proof. Let X be a semi-stratifiable space with a semi-stratification
U—{U,}r... Let {O,;aecl} be an open cover of X and let I be well-
ordered. For each natural number #, define: H,, = (0,), and, for each
a>1 H, = (0., — U{0:;8¢ecl, 5 < a}. For each natural number n,
let &7, = {H,,:aecl}. Then 57, is a discrete collection of closed sets.
By the well-ordering on I, .27 = U7.,.9%%, covers X.

DEFINITION 2.7. A topological space is W,-compact if every un-
countable subset has a limit point.

THEOREM 2.8. In a semi-stratifiable T,-spoace X, the following
are equivalent (1) X 4s Lindelof, (2) X 1s hereditarily separable, and
(8) X s W.-compact.

Proof. (1) =(2) Let X be a Lindelof semi-stratifiable space.
Since a Lindelof space in which open sets are F, is hereditarily Lindelof,
it is sufficient to show that X is separable. Let {g;};>, be a sequence
of functions satisfying the conditions of Theorem 1.2. For each 1,
{gx): v e X} is an open cover of X and, since X is Lindelof, there is
a countable subset D; of X such that {g,(®): e D,} is an open cover
of X. The set D = Uy, D, is a countable dense subset of X.
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(2) = (3) The proof of this part is well-known.

(83) = (1) Let X be an Y},-compact semi-stratifiable T,-space. Let
<« be an open cover of X and suppose that < has no countable sub-
cover. By Theorem 2.6, & has a closed refinement 57 = U2, 572
where each 57, is discrete. Since ¥ has no countable subcover, there
is an » such that 57, is uncountable. Let X’ be a subset of X consist-
ing of exactly one point of each nonempty element of 57,. The set

X’ is uncountable and has no limit point.

Theorem 2.8 cannot be strengthened by replacing hereditarily
separable by separable. The example of a Moore space which is not
metrizable due to R. L. Moore (see [9]) is an example of a separable
semi-stratifiable space which is not Lindelof.

Since, in a Lindelof space, bicompact is equivalent to countably
compact, Theorem 2.8 has the following corollary:

COROLLARY 2.9. In a semi-stratifiable T,-space, bicompact 1s
equivalent to countably compact.

3. Mappings. It is a well-known theorem [17] that the closed
compact image of a separable metric space is a separable metric space.
However, there are closed images of separable metric spaces which
are not first countable. The following theorem gives a property of
metric spaces which is preserved by closed maps.

THEOREM 3.1. The closed image of a semi-stratifiable space 1s
semi-stratifiable.

Proof. Let f be a closed continuous function from a semi-strati-
fiable space X onto a topological space Y. Let U—{U,}:-, be a semi-
stratification for X. For each open set V of Y and each natural
number %, let V, = f((f~'[V]).). The correspondence V —{V, }7_, is
a semi-stratification for Y.

Theorem 3.1 does not remain true if closed is replaced by open.

Theorem 3.1 and Corollary 1.4 imply that the closed image of a
semi-metric space is semi-stratifiable. However, it can be shown that
the subspace of BN (the Stone-Cech compactification of the natural
numbers) consisting of N together with one point of SN — N is a semi-
stratifiable space which cannot be the closed image of a semi-metric
space. It is an open question whether the spaces which are closed
images of semi-metric spaces are precisely the semi-stratifiable Fréchet-
Urysohn spaces [2].

4. Moore spaces. In this section, we wish to give necessary
and sufficient conditions for a semi-stratifiable space to be a Moore space.
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DEFINITION 4.1. A sequence {<7,}s-, of open covers of a topological
space X is a development for X if (1) <., is a refinement for &; and
(2), if « is a point of X and U is an open set in X containing x, then
there is a natural number k such that St (z, &) cU. A Moore space
is a regular T,-space which has a development. See [7, 14].

A Moore space is semi-metric and, hence, is semi-stratifiable. The
following example, due to McAuley [11], shows that this implication
cannot be reversed.

ExampPLE 4.2. Let X be the x-axis of the Cartesian plane KE-*.
Let d denote the usual distance function in E? and, if p %= ¢, let a(p, 9)
denote the nonobtuse angle (in radians) formed by X and the line
through » and ¢. Define a distance function D on E* as follows:
D(p, p) = 0 and, if » = q, D(p, q) = d(p, @) + &p, ¢). A Dbasis for the
topology on E* is {UJp): pc E* ¢ > 0} where U.(p) = {¢: D(p, q) < &}.
Let S denote E*® with this topology. If S were a Moore space, it
would be second countable, since it is Lindelof. But S is not second
countable since any basis contains uncountably many elements.

DEFINITION 4.3. A T,-space X is said to be quasi-complete provided
that there is a sequence {®,};_, of open covers of X with the follow-
ing property: if {4,}7_, is a decreasing sequence of nonempty closed
subsets of X and if there exists an element x,¢ X such that, for each
n, there is a B, ¢ B, with 4, U {z,}) © B,, then N3, 4, # ©.

DEFINITION 4.4 (Borges [4]). A T-space X is a wd-space if there
exists a sequence {8,}r., of open covers of X such that, if {4,}7., is
a decreasing sequence of nonempty closed subsets of X and there ex-
ists x,€ X for which A4, St (x,, B,) for all #, then Moo, 4, = &.

Definition 4.3 is at least formally weaker then Definition 4.4. It
is an open question whether all quasi-complete spaces are wA-spaces.

Theorem 4.5, due to Heath [7], gives a sufficient condition for a
space to be a Moore space.

THEOREM 4.5. A regular T.-space X is a Moore space provided
that there is a sequence {g;}7. of functions from X into the topology
on X with the following properties: (A) For each x in X, {g;(x)}7, is
a decreasing local base at x. (B) If y is a point of X and {x;}, is
a sequence in X with y e g,(x;) for each 1, then {x;}7, converges to y.
(C) If y is a point of X, U is an open subset of X containing y, and
{w;}ie, s a sequence in X such that, for each m,y e g,(x,) and there
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18 a natural number k with Cl[g,.n(®,:)] C 9.(x,), then there is a
natural number m with g,(x,) CU.

THEOREM 4.6. A regular T.-space 1s a Moore space if it is a
quasi-complete semi-stratifiable space.

Proof. Let X be a regular quasi-complete semi-stratifiable 7',-
space. Let {®,}r_, be a sequence satisfying the conditions of Definition
4.3 and let {A,};-, be a sequence satisfying the conditions of Theorem
1.2. For each « in X, let B,(x) be a member of 3, containing x. For
each z, let g, (x) be an open subset of X containing x such that
Clg.(®) € B,(x) N h,(x) and let g,.,(x) be an open subset of X contain-
ing & such that Clg,.,(x) C B,..(2) N k.. (@) N g.(x). The sequence
{9.}7-. satisfies the conditions of Theorem 4.5 and, hence, X is a Moore
space.

By Proposition 2.8 of [4], we have the following corollary:

COROLLARY 4.7. If X 1s a regular T.-space, then the following
are equivalent:

(1) X is a Moore space.

(2) X is a semi-stratifiable wa-space.

3) X s a semi-stratifiable quasi-complete space.

If X is a completely regular T,-space, let 8X denote its Stone-
Cech compactfication. The following definition is due to Arhangel’skii
[1, 2].

DEFINITION 4.8. A completely regular T,-space X is a p-space
provided that there is a sequence {B,}>, of collections of open subsets
of BX such that each %, covers X and M., St (z, B,) = X for each
point x in X.

LEMmA 4.9. A p-space s quasi-complete.

Proof. Let X be a p-space and let {®,}7., satisfy the conditions
of Definition 4.8. For each =, let %, be an open cover of X such
that, if Be®,, then Cl,; B is contained in some member of %,. Let
{4,)., be a decreasing sequence of closed subsets of X and « be a
point of X such that there is a B, e®, with A4, U {¢}c B, for each
n. Since Cl;y A, is compact, N7_. Cl,; 4, = @. But Cl;; A, < St (z, B,)
and N, Cl;y A, X. Thus, N7, 4, = N>=.Cliy 4,. Hence, X is
quasi-complete.
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It can be seen that, in completely regular spaces, the concepts
of wd-spaces, p-spaces, and quasi-complete spaces are related. The
exact relationship between these three concepts is an open problem.

THEOREM 4.10. A completely regular T.-space is a Moore space
if and only if it is @ semi-stratifiable p-space.

Proof. Lemma 4.9 and Theorem 4.6 show that a semi-stratifiable
p-space is a Moore space.

Conversely, let X be a completely regular Moore space and let
{Z. -, be a development for X. By the remark following Definition
4.1, X is semi-stratifiable. For each n, let

B, = {BX — Clix (X — G):Gez,} .

The sequence {%,};., satisfies the conditions of Definition 4.8. Since
GeBX —Clxy (X —G), B, covers X. If reXandyeBX — X, let U
and V be disjoint open subsets of 8X containing x and y, respectively.
There is a k¥ where St (x, ) cUNX. Then ye¢ St (x, B,). Hence, X
is a p-space.

Since a locally compact Hausdorff space is a p-space, we have the
following corollary:

COROLLARY 4.11. A locally compact semi-stratifiable Hausdorff
space is a Moore space.

In Theorem 4.10, the condition of complete regularity can be
replaced with regularity by using the Wallman compactification [6, 16]
instead of the Stone-Cech compactification. Appropriate changes will
also have to be made in Definition 4.8.
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MATRIC POLYNOMIALS WHICH ARE HIGHER
COMMUTATORS

Epmonp D. Dixon

Let A be an n X n matrix defined over a field F of

characteristic greater than n. For each n X n matrix X we
define

(1) X =[4,X,=X
Xinn=[4, X =[4, Xi]= AX, — X34

for each positive integer 2. Then X is defined to be k-com-
mutative with A if and only if

(2) [A4, X],=0, [4, X]i-1 = 0.

Let P(xz) be a polynomial such that P(A) # 0. Specifically,
assume that

(3) P(A) =S 2,41 0

where p is a positive integer, each 1; is a scalar from F, and
A, # 0. In this paper we study, for each positive integer %
the matrices X such that

(4) [4, X]. = P(4) .

We specify a polynomial P(A) in the form (3) and show how
the maximal value of % for which (4) has a solution depends
on the polynomial P(A). In Theorem 3 it is assumed that A
is nonderogatory, Since the only matrices which commute
with A in this case are polynomials in 4, we are, in effect,
establishing a more precise bound for % in (2) by predetermin-
ing Xk.

In the derogatory case, a matrix which is not a polynomial
in A may commute with A. However, Theorem 4 shows that
if we choose a polynomial P(A) as X;, then the maximal value
of k£ depends on the polynomial P,

’

The problem of determining the maximal value of k& for which (2)
has a solution has been studied by Roth [8] and others. Roth’s re-
sults are stated in terms of the maximal degrees of the elementary
divisors of the matrix A. In particular, he showed that there exists
a matrix X satisfying (2) for some A if £ < 2n — 1.

Nilpotent case. Throughout the paper we assume that A is in
Jordan canonical form, since [a, X ], = P(A4) if and only if

[BAB~, BXB-], = BP(A)B~" .
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The following notation introduced by W. V. Parker is used to
simplify the proofs of the theorems.

DEFINITION. Let M, for any integer s such that —» + 1 <s <
m — 1 be the set of all nxm matrices in which all elements are zero
except those for which j—14 = s (¢ denotes the row and j denotes the
column in which the element appears). If s >m — 1, M, is defined to
be the set consisting of only the zero matrix. A particular member
of M, will be denoted by D, and will be called an s-stripe matrix.
Note that if X is any % X m matrix then X can be written uniquely
as X = >, D, where D, is an element of M,.

If A, and A, are nxn and m xm nilpotent nonderogatory matri-
ces in Jordan canonical form and if D, = (d;;) is an % X m element
of M, where s is any integer such that —m +1<s<m — 1, let
f(D,) = AD, — D,A, and f*D,) = A, f*(D,) — f*Y(D,A,. It is easily
seen that f*(D,) is an element of M,,,. Notice that the element in
the ij position of f(D,), where j —¢=s+1, is d;,,,;—d; ;. for i 1.
The element in the nj position is —d,,;_, if 7 # 1; the element in the
71 position is d;.,, if © #= n; and the element in the nl position is
ZEro.

LemMA 1. If A is an n X n nilpotent nonderogatory matrix in
Jordan canonical form, if X is an n X n matriz, and if

M=[A4 X] = AX — XA,

then the trace of M is zero and the trace of every subdiagonal stripe
of M is zero.

Proof. Any nxXn matrix X may be written as >,»=*, ., D, where
D, is an element of M,. Thus

[A’ X] - I:A! s:——zj:t‘le—l - s:-—zfrb‘—)-l [A’ DS] )
If s <0, then [A4, D,] is a matrix such that the sum of the nonzero
elements is zero. The matrix [A, D,] forms the (s + 1)-stripe of M.
This completes the proof of the lemma.

If A is an nxn nilpotent nonderogatory matrix in Jordan canoni-
cal form then for any positive integer s < n, (47)°A° plays the part
of a “lower identity” which we denote by L,. That is,

0 0
(5) (A)A:(O In_):LS'
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Similarly,

I, 0
(6) AYAT) = ( 0 0) =U,

which we call an “upper identity .
Using the above, we prove the following lemma.

LEMMA 2. Let A be an n X n nilpotent nonderogatory matrix
an Jordan canonical form. Let L, and U, be as defined above. Then

(7) LS(I - A)Ls+k = (I - A)Ls-Hc
and
(8) Uil = AU, = U, — 4),

where k is any positive integer less than n — s.

Proof. If we partition I — A as follows:
M 0

(I 4) = ( | )

* N

where M is s X (s + k), then

0 0 0 O
Ls(I"‘ A)Ls—Hc = (x N) Ls+k = (0 N) = (I - A)Ls—Hc .

The proof of (8) is similar.

Let V=(@1,1,.---,1), a 1 x #n vector, and let V, = VD,. That
is, V, is the vector in which each element represents a column sum
in D., and since the columns in D, have at most one nonzero element,
V. simply displays these elements in the form of a row wvector. To
simplify the notation we will let V.., = VD,,, where D,., = [A, D],
for some matrix D,. In other words, the added subscript, %, implies
that V.., is the result of % commutations. From now on, s will de-
note a nonnegative integer, 0 < s <% — 1, and subdiagonal stripes of
X will be denoted by D_,. Also, the nontrivial subvector in V, will
be denoted by w,_,, and the nontrivial subvector in V, will be denoted
by #,_,. Thus

(9) Vs - (O’ Oy ] O: dl,s—H) dz,s+29 tr ety dnws,n) = (05’ an—s) .
Similarly,
(10) V——~s = (ds+1,17 ds—‘r2,2’ ] dn,n—s? Oy ] 0) - (wn»—sl Os) .

The following lemma is a vital part of the proof of Theorem 1.
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LemMMA 3. If k is a positive integer and if V,, A, U, and L,
are as defined above, then

( i ) Vs+k = Vs(I - A)kka

(i) V_yu=V_ U — A" if k< s,

(iii) V_,u = V_,U(UI — A*L,_, if k> s.

Proof. Case (i). If k=1, from (7) and (9)

-1 89 n—s Z‘T .
8 ) 8 ( )O )

In this case N has dimensions (n — s)x(n — s — 1), so N has (—1)’s
on the diagonal and 1’s on the first subdiagonal. But

0 0

(0, wn_s)< 0 N

) = (0, W )N = (051, W)
where w,_,_, has only n—s—1 elements of the form (d;, iy —d; 1),
and this is V,,,. Therefore
Vi = VI — A)L,,, .

Similarly,

Vie= VeI — A)L,., = VI — A)L,.(I — AL,,,.
But by Lemma 2,

LI — ALy = — AL, .
Thus V,., = V,(I — A)*L,.,, and by induction it follows that
(11) Veer = V(I — AL,y
In particular,
(12) Vier = Vol — A)FL, .
Case (ii). From (10),

I, O\(M 0O M 0
V—s Us I - A = —s . = An—s! s
a=a=v. (75 o5 g )

where M has dimensions (n — s) X (n — s + 1) and so has 1’s on the
diagonal and (—1)’s on the first superdiagonal. But

M 0

wn—s+17 Os
@)y

) = (wn——s-f—l! Os—l)

where ,_,., has n — s + 1 elements
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Qyrirnior — Goriiy (3=0,1, ++o, m — 5+ 1),
and d,, = d,;;,,_s0. = 0. This is V[4, D_,] = V_.+;. Similarly,
Vo = VUi — A) = V_ U1 - AU,_,(I—-4).

But by Lemma 2, U,(I — A)U,_, = U,(I — A). Thus

Vo = V_,U(I — A),
and by induction it follows that if k < s,
(13) Ve = V_, U — A",
In particular,
(14) V_ere = V_LUI — A)° .

Case (iii). When %k > s, we divide the problem into two parts.
Using case (i) we have

(15) V—-s+k = V—s+s(I - A)kast__s .
But by case (i), V_,.. = V_,U,(I — A)*. Thus

V_s+k - V_SUS(I - A)S(I - A)kﬂst_s
=V_U(I—- A*L,_, .

This completes the proof of the lemma.

Using the above lemmas we prove Theorem 1, which establishes
a precise upper bound for k£ in the case where A is nilpotent and
[4, X], = P(A) = 0.

THEOREM 1. Let A be an mxn nilpotent nonderogatory matrix.
Let p be a positive integer such that p < mn. Let

Xi(?/:pyp+1; "',’l'l/”'l)

be scalars from F such that n, # 0. Then there exists a matriz X
such that

(16) [A, X1, = 5 vA =0

if and only if k < 2p.

Proof. We first prove the case where \; = 0 for all 7 > p. We
may assume without loss of generality that ), = 1 since [4, X], =
A? if and only if [4, M, X ] = N, A%
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If there exists a matrix X satisfying (16) where A is nilpotent,
then [A, X, =[4, >:=t,., D], = A*. Thus we must have

0 if s#»p
17 A, .Ds,__l- == .
am A D=1,

Therefore, for s = p,

VIA, D, )i = Vipotysr = VD, = VA?
= (07 Oy "'50» 1; 1y "'yl) ’

which we will call (0,, E,_,). If k < p, from (11),
V(p—lc)+k = Vp——k(I - A)kLp .

Using an argument similar to that used in proving lemma 2, we
0

find that (I — A)*L, can be written as (8 Nk> where N, has dimen-
sions (® — p + k) x (n — p). Since this matrix has a square submatrix
of order n — p with 1’s on the diagonal, zeros below, it has rank n — p.
Now rewriting (12) as

0, B,,) = (0, wn_m)(o ’ )

0 N,
we see that solving this equation is equivalent to solving E,_, =
(W,—pr)N,. The augmented matrix for this equation is (g‘:_)’ and
since N, has rank n — p, the augmented matrix also has rank n — p.
Thus the system has a solution with (» — » + k) — (» — p) = k para-

meters.
Now if & > p we refer to equation (15) and set

(18) V(p—lc)+k = Vp—/cUlc—p(I - A)kLp .
But the product on the right may be written as <8 IOL‘>

If ¥ =2p then H, is square of order » — p. Since it has minus
signs in a checkerboard pattern, we may transform it into a matrix
with nonnegative elements or nonpositive elements (depending on whe-
ther p is even or odd) by multiplying on the left and right by the
matrix D = diag. (—1,1, —1, .-+, (=1)*?). Thus the determinant of
H, will be unchanged and the resulting matrix has determinant

)
(—1 T A2 L0

=) (p -+ l)
p

(see Muir, Vol. 3, p. 451). Hence H, is nonsingular. Furthermore,
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(—1)*H, is positive definite since the principal subdeterminants are all
positive by the same argument.
Thus if & = 2p we may rewrite the equation (18) as

0 Hk>

(Op! En—p) - (wn—pv Op)<0 0

But solving this system is equivalent to solving
(19) E'n—p = wn—ka ’

and since H, is nonsingular, this system has a unique solution. A
solution for k& = 2p implies the existence of matrices X satisfying
[A, X], = A® for all k < 2p.

Next we show that there is no solution for & = 2p + 1, and thus
for any k > 2p, by the following argument. Since H, is nonsingular,
equation (19) is equivalent to E, ,H;' = ,_,. Multiplying both sides
of this equation by the (n — p) x 1 column vector E_, gives

n—p

(20) E, HE! , =w, EI = 1; dpiiyi -

This is the sum of the nonzero elements in D_,. By Lemma 1, if
[A, X] = D_,, then >27d,.;; = 0. But since (—1)*H, is positive de-
finite, (—1)*H;"* is also. Thus the product on the left in (20) is not
zero and there does not exist a solution for & > 2p.

This completes the proof in the case where [A4, X ], = MA”7. In the
case where [A4, X], = 24" + N, AP+ o0 N, A", we see that
X may be written as >}i=; X,; where [4, X;]. = MAL

If A is derogatory then the Jordan canonical form for A is diag.
(4, 4;, -+, A,) where s > 1. Theorem 1 can also be extended to the
derogatory case. The method of proof is similar to that used in
Theorem 1.

THEOREM 2. Let A be an n X n nilpotent matriz. Let p be a
positive integer such that p < m; where n; 1s the dimension of the
largest block in the Jordan canonical form jfor A. Let \;, (1 = p,
p+ 1, -, m — 1) be scalars from F such that N\, = 0. Then there
exists a matriz X such that

7g—1

(23) [4, X]. = X NAF 5= 0
of and only if k < 2p.

Some remarks about the integer » are in order here. If the Jordan
canonical form for A is diag. (A, A,, ---, 4,) we may assume without
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loss of generality that the dimension #n; of A; is greater than or equal
to the dimension n,;,, of A;,, for i = 1,2, ..., s — 1, Since A” = diag.
(Ar, A2, ---, A?), p must be less than n, if A? is to be different from
zero. However, A? may be zero for some ¢ > 1.

Notice that since the Jordan canonical form for a nilpotent matrix
is the same as the rational canonical form for that matrix, the cons-
tructions for the matrices X in Theorems 1 and 2 may be done with
rational operations.

The general case. Here it is not assumed that A is nilpotent.
We assume that A is in Jordan canonical form. Again we choose a
polynomial P(A) which we desire to write as a higher commutator of
A. Theorems 3 and 4 establish the maximal value for % in equation (4).

THEOREM 3. Let A be an nxXn nonderogatory matrixz in Jordan
canonial form ol -+ N where N 1is the nilpotent matriz with 1’s on
the first superdiagonal and zeros elsewhere. Let P(A) be a polynomial
wn A such that P(A) # 0. Let t be the multiplicity of a as a root
of P(x). Then there exists an nxn matric X such that

(24) [4, X]. = P(4)
if and only if k < 2t.

Proof. If A= (al+ N) then
[4, X]. = [(@] + N), X], = [af, X]. + [N, X], = [N, X] .

Thus condition (24) becomes [N, X], = P(al + N) = 372! \;N* where
N, = pP(«)/i!. Now by Theorem 1, (24) has a solution if and only if
k < 2¢.

THEOREM 4. Let A = diag. (4,, 4,, ---, A,) where A; = (o,] + N;)
(1=1,2, +--,s) where each N; is as in Theorem 3. Let P be a poly-
nomial such that P(A) + 0. Let A;, A, -++, A;, be the blocks of A
such that P(A;,)# 0. Let m;, be the multiplicity of (x—a;) in P().
Let m = min. {m;}. Then there exists an nxn matriz X such that

(25) [4, X]. = P(4)
if and only iof k < 2m.
Proof. If A = diag. (A, A, -+, A,) then
P(A) = diag' (P(Al)! P(Az), M) P(As)) .
If P(A,) = 0 for some A,, then there exists a matrix X, + 0 such that
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[4,, X.]. = P(4,) = 0 for any positive integer k. Thus we need only
consider those A; for which P(4;) = 0. Assume that P(4,) = 0 for all
7=1,2 .-, s. Then if we let

X = diag. (X, X, --+, X))

where [A4;, X;], = P(4;), the matrix X will satisfy (25). Assume with-
out loss of generality that the degree of (z — a)) in P(x) is m =
min. {m;}. Then [4,, X|]= P(A)) if and only if ¥ <2m. Thus [4, X], =
P(A) if and only if k& < 2m.
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SOME CONTINUITY PROPERTIES OF THE
SCHNIRELMANN DENSITY 1II

R. L. DuNcaN

Let S denote the set of all infinite increasing sequences
of positive integers. For all A =~ {a,} and B = {b,} in S define
the metric p(4,B)=0 if A= B; i.e,, if a, = b, for all n and
o(A, B) = 1/k otherwise, where %k is the smallest value of n
for which a, # b,. The main object of this note is to show
that the set of points of continuity of the Schnirelmann density
d(A) is a residual set and that this is the best pessible result
of this type.

The space S and some of the properties of densities defined on it
have been discussed previously [2, 3, 4]. In particular, it has been
shown that the set of points of continuity of d(A4) is the set of all
points having density zero. Let L,={AeS|dA) =aj0=a=1)
denote the level sets of d(A) and define M, = {Ae S|d(A) = a}. Then
L,= M, so that M, is closed and L, is dense in M, [4]. These
results are required in the sequel. A brief and lucid account of all
other necessary topological results is given in [1].

THEOREM 1. The family of all sets of the form S(m,n) =
{AeS|a, =m} is a sub-basis for the topology of S.

Proof. If Ae S(m,n)and B¢ S(m, n), then p(A, B) = 1/n. Hence
S — S(m, n) is closed and S(m, n) is open. Also, the spheres S.(4) =
{BeS|p(A, B) < ¢},0 < e <1, constitute a basis for S and the desired
result follows since

S.(A4) = (1 S(@w ) -

COROLLARY. S has a countable basis.
COROLLARY. S 1s separable.

It is also clear that S is a subspace of X_, P,, where P, is the
set of all positive integers with the discrete topology for each n.

THEOREM 2. S s complete.

Proof. Let A, ={a,.};>, and suppose that {A4,} is a Cauchy
sequence in S. Also, let n, be the smallest positive integer such that

65
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0(A,, A,) < 1/k for all m, n = n, and define A = {a,,..}i=.. Since all
of the A,’s have the same first & terms for n = n,, it is clear that
AeS and p(4,, A) < 1/k for all » = n,. Hence lim,_. 0(4,, 4) =0
and S is complete.

The following corollaries are a consequence of the Baire category
theorem and the fact that M, is a closed subset of S.

COROLLARY. M, is complete.
COROLLARY. M, is a set of the second category in itself.

The following result would be of no interest for those values of
a for which the second of the above corollararies fails to hold.

THEOREM 3. L, is residual in M,.

Proof. M, — L, = U7, M, Since L, = M,, L, is dense in M,
and, since M,,,,,c M,, L, is dense in M, ;. Also, since M,,,, is
closed, M,.,; is nowhere dense in M, and M, — L, is a set of the
first category in M,.

Since the set of points of continuity of d(4) is L, and M, = S,
the following result ensues.

COROLLARY. The set of points of continuity of d(A) is residual
wn S.

The following theorem shows that the above corollary is a best
possible result in the following sense. In the true statement, S — L,
is a countable union of nowhere dense sets, the word countable can
not be replaced by finite.

THEOREM 4. M, — L, is open if and only if a =0 or 1.

Proof. M, — L, is the empty set and hence open. Also, it is
easily seen that M, — L, = S(1, 1) in the notation of Theorem 1 and
hence open.

Suppose that M, — L, is open for @ > 0. Then M, — L,C M,,
since M, is closed, and it follows that L,c S — M, — L,. Since L, = S

and S — M, — L, is closed, we have S — M, — L, =S and M, — L,
is the empty set. Thus a = 1 and the proof is complete.

The following result is included in the preceding proof.
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COROLLARY. The support of d (A) is the set of all sequences
with first term one.

The final result concerns the asymptotic density
o(4) = lim inf A(k)/k ,

where A(k) denotes the number of elements of A which do not exceed k.
THEOREM 5. 6(A4) 1s a function of Baire class two.

Proof. Let 4,(A) = inf,., A(k)/k. Then 6,(A) is a function of
Baire class one [4, Th.3]. Also, 6(4) = lim,_, d,(4). Now d(4) is
obviously everywhere discontinuous on S. Suppose 6(4) is a function
of Baire clagss one. Then the set of points of discontinuity of 6(A)
is a set of the first category [5, Th. 36]. But S is a set of the second
category and the desired result follows.
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COEFFICIENT MULTIPLIERS OF H* AND B” SPACES

P. L. DureN AND A. L. SHIELDS

This paper describes the coefficient multipliers of
Hr(0 < p<1) into s%(p<qg=< o) and into H/(1 < q £ ),
These multipliers are found to coincide with those of the
larger space B? into /%1 < ¢ =< o) and into HY 1l = q £ ),
The multipliers of H” and B® into B‘{O < p<1,0<¢g<1)
are also characterized.

A function f analytic in the unit disk is said to be of class

H?(0 < p < o) if

1 2T 0 ip

My, f) = { o\ | fre) o

21 Jo
remains bounded as »— 1. H= is the space of all bounded analytic
functions. It was recently found ([2],[4]) that if p <1, various
properties of H” extend to the larger space B* consisting of all an-
alytic functions f such that

Sl(l — )P M(r, f)dr < oo .

Hardy and Littlewood [8] showed that H* C B~

A complex sequence {\,} is called a multiplier of a sequence
space A into a sequence space B if {\,a,} € B whenever {a,}c A. A
space of analytic functions can be regarded as a sequence space by
identifying each function with its sequence of Taylor coefficients. In
[4] we identified the multipliers of H? and B*(0 < p < 1) into . We
have also shown ([2], Th. 5) that the sequence {n'*"'/?} multiplies B®
into B’. We now extend these results by describing the multipliers
of H?(0 < p < 1) into #(p < ¢ £ =), of B” into #(1 < ¢ < ), and
of both H* and B? into BY(0 < ¢ < 1). We also extend a theorem of
Hardy and Littlewood (whose proof was never published) by character-
izing the multipliers of H? and B? into H (0 <p<1=Z¢ < ). In
almost every case considered, the multipliers of B? into a given space
are the same as those of H®.

2. Maultipliers into <% We begin by describing the multipliers
of H? and B” into ~*, the space of bounded complex sequences.

THEOREM 1. For 0 < p £ 1, a sequence {\,} s a multiplier of
H? into = if and only if
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(1) A, = O(m'='17) .

For p < 1, the condition (1) also characterizes the multipliers of BP
nto 7=,

Proof. 1If f(z) = 3, a,%" is in B?, then by Theorem 4 of [2],
(2) a, = o(n'*Y) .

If fe HY, then a,— 0 by the Riemann-Lebesgue lemma. This proves
the sufficiency of (1). Conversely, suppose {\,} is a multiplier of H”
into #=. Then the closed linear operator

a: f'—> {7\%(1%}

maps H? into »=. Thus 4 is bounded, by the closed graph theorem
(which applies since H? is a complete metric space with translation
invariant metric; see 1}, Chapter 2). 1In other words,

(3) sup | M, | = AN = K1 f] -
Now let '
9@ = (1 — 277" = 3 b,2",
where b” ~ Bn'?; and choose f(z) = g(rz) for fixed » < 1. Then by (3)
N | mterr < C(L — 7)™

The choice » = 1 — 1/» now gives (1). Note that {\,} multiplies H?
or B? into ~= if and only if it multiplies into ¢, (the sequences tend-
ing to zero).

As a corollary we may show that the estimate (2) is best possible
in a rather strong sense. For functions of class H?, this estimate is
due to Hardy and Littlewood [8]. Evgrafov [6] later showed that
if {6,} tends monotonically to zero, then there is an fe H? for which
a, #= 00,n'*"). A simpler proof was given in [5]. The result may
be reformulated: if a, = O(d,) for all fe H?, then d,n'"~"* cannot tend
monotonically to zero. We can now sharpen this statement as follows.

CorOLLARY. If {d,} is awy sequence of positive numbers such
that a, = O(d,) for every function >,a,2" in H?, then there is an
€ > 0 such that

dn"""=¢e¢>0, n=1,2, 0+

Proof. If a, = O(d,) for every fe H?, then {1/d,} multiplies H?
into #=. Thus 1/d, = O(n'~"?), as claimed.
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We now turn to the multipliers of H? and B” into ~%(q < <o), the
space ‘of sequences {¢,} with > |¢,| < . The following theorem
generalizes a previously known result [4] for ~'.

THEOREM 2. Suppose 0 < p < 1.
(i) A complex sequence {\,} ts a multiplier of H” into
i(p = q< <) if and only if

(4) Sywi n = O(N) .

(ii) If 1 <q < oo, {\,} s a multiplier of B” into ¢ 1f and
only 1if (4) holds.

(iil) If ¢ < p, the condition (4) does not imply that {\,} multi-
plies H? into 2% nor does it imply that {\,} multiplies B® into /°
if ¢ <Ll

Proof. (i) A summation by parts (see [4]) shows that (4) is
equivalent to the condition

(5) 3 = O

Assume without loss of generality that A, =0 and 3,7 A = 1. Let
s, = 0 and

i 18
snzl—{zm} L m=28 ...,

le=n

where 8 = ¢(1/p — 1). Note that s, increases to 1 as w— «. By a
theorem of Hardy and Littlewood ([8], p. 412), fe H*(0 < p <1) implies

(6) So(l—r)ﬁ”‘Mf’(r,f)dv"<oo, P=q< oo,

Thus if f(z) = >\ a,2" is in H? and {\,} satisfies (4) with p < q¢ < oo,
it follows that

o> 3 Ss"“a — )M, F)dr
= Syla e[ —

G| " =

Sn

3
|

v
1M

Ms

- ]a‘n|q (sn)nq{(l - Sn)ﬁ - (1 - sn—H)ﬁ}

n

I

8

Il

B[ |

lan lq (S‘n)nq)’ﬁq’l ’

n=1

]
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by the definition of s,. But by (5),
(v},
k=n

n
which shows, by the definition of s,, that
)= (1 —Cln)"——e>0.

Since these factors (s,)** are eventually bounded away from zero, the
preceding estimates show that ) |a,|"A, < . In other words, {\,}
is a multiplier of H? into ~* if it satisfies the condition (4).

(ii) The above proof shows that {\,} multiplies B* into ~! under
the condition (4) with ¢ = 1. (This was also shown in [4].) The more
general statement (ii) now follows by showing that if {\,} satisfies (4),
then the sequence {x,} defined by

Mo = ])\m iq pL/r—1e—1)

satisfies (4) with ¢ = 1. Hence {g¢,} is a multiplier of B? into ~*, and
in view of (2), {\,} is a multiplier of B? into »% Alternatively, it can
be observed that fe B® implies (6) for 1 < ¢ < o, so that the forego-
ing proof applies directly. Indeed, if fe B?, then (as shown in [2],
proof of Theorem 3)

Mr, ) = O((1 — r)=1%) 5
hence, if 1 < g < oo,

[ (& = rye =, fydr < Cf (U= 2o Migr, fldr < == .
0 0

(iii) That (4) does not imply {\,} multiplies H” into ~%(q¢ < p) or
B? into #%q < 1), follows from the fact [4] that the series

Z{ nq(1-1/17)—1 Ian Iq
n=

may diverge if fe H? and ¢ < p, or if fe B? and ¢ < 1.
To show the necessity of (4), we again appeal to the closed graph
theorem. If {\,} multiplies H? into /(0 < p < =0, 0 < g < =), then

Az f—— (M)

is a bounded operator:

{Enarf sclsl, o) =Serch.

n=y

Choosing f(2) = g(rz) as in the proof of Theorem 1, we now find
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{Sne e = o - ny

and (4) follows after terminating this series at » = N and setting
r =1—1/N. Note that the argument shows (4) is necessary even if
p=1orq<p.

COROLLARY 1. If {n,} ts a lacunary sequence of positive integers
M1, = Q > 1), and if f(z) = 3, a,2" is in H?(0 < p < 1), then

S gl < e, pEg< oo

COROLLARY 2. If f(& = Sa,z" is in H*0<p<l), then
3wt a, P < oo,

The first corollary extends a theorem of Paley [13] that fe H*
implies {a,}ecs*. The second is a theorem of Hardy and Littlewood
[7]. It is interesting to ask whether the converse to Corollary 1 (with
g = p) is valid. That is, if {¢,} is a given sequence for which

St lel < o,
=1

then is there a function f(z) = 3} a,2" in H? with a,, =c¢,? We do
not know the answer.

Hardy and Littlewood [9] also proved that {\,} multiplies H' into
H* (alias ~?) if (and only if)

Sy [ = OV .

From this it is easy to conclude that (4) characterizes the multipliers
of H" into % 2 < q < o. Indeed, let {\,} satisfy (4) and let g, =
{M,|Y%.  Then, by the Hardy-Littlewood theorem, {g,} multiplies H*
into /* (see [3], p. 253). Hence {\,} multiplies H' into ~?. (See also
Hedlund [12].)

On the other hand, the condition (4) is not sufficient if p = 1 and
g < 2. This may be seen by choosing a lacunary series

@) =S, mamzQ>1,
with 3 [c.]? < o but 3|¢,|? = « for all ¢ < 2. The sequence {\,}
with A, =1 if » = », and \, = 0 otherwise then satisfies (4) but does

not multiply H* into 29, q < 2.

3. Multipliers into B’ The following theorem may be regarded
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as a generalization of our previous result ([2], Th. 5) that if fe B,
then its fractional integral of order (1/p — 1/q) is in B (A fractional
integral of negative order is understood to be a fractional derivative.)

THEOREM 3. Suppose 0 < p <1l and 0< q<1l. Let v be the
positive integer such that (v + 1) < p <v'. Then {\,} is a multi-
plier of H? or B? imto B if and only if g(z) = Do o N.2" has the
property

(7) Ml(’,'y g(v)) — O((l _ r)l/p_uq_”) .

Proof. Let {\,} satisfy (7), let f(z) = 3, a,z" be in B?, and let
h(z) = >\ n,a,2". Then

h(oz) = iSZ'Tf(pe”)g(ze“it)dt , 0<po<l1.
21 Jo

Differentiation with respect to z gives
(8) O (07) = =\ Flpet)g ze e dt .
21 Jo

Hence

o*M(ro, ) = My(r, g*)M.(0, f)
= CA — r)r=i=M(p, 1) ,

where r» = |z|. Taking r = o, we now see that fe B” implies 2’ € B,
1/s = 1/g + v. Thus he B? by Theorem 5 of [2].

Conversely, let {\,} multiply H? into B°. Then by the closed graph
theorem,

A: S a2zt —— S N,a,R"

is a bounded operator from H? to B.. If (v + 1) < p <y, let

) = vzl — 2~ = 3, a2,

n=v

where a, = n!/(n — v)!, and observe that
(9) e = 3 M2t =20 @) -

Let f.(2) = f(rz) and h,(2) = h(rz). Since 4 is bounded, there is a
constant C independent of » such that

R llpe = [JAf = Cll Sl -

In other words,
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1
S (1 — By M(tr, h)dt < CM,(r, f)
0
— O((L — )ty

It follows that
M (7, h)gl(l — f)=tdy = O((L — 7)Hr—Yy

or
M%) = O((L — 7)==y

But in view of (9), this proves (7).

COROLLARY. The sequence {\,} multiplies B into B* if and only

if

(10) M(r, g'):0< L )

1—7r

Proof. If p = q, the condition (10) is equivalent to (7). (see [8],
p. 435.) This corollary is essentially the same as a result of Zygmund
([14], Th. 1), who found the multipliers of the Lipschitz space 4, or
L, into itself. Because of the duality between these spaces and B?
(see [2], §§3,4), the multipliers from 4, to 4, and from X\, to A,
(0 < @ < 1) are the same as those from B? to B?. Similar remarks
apply to the spaces 4, and \,, also considered in [14].

4. Maultipliers into H? By combining Theorem 3 with the simple
fact that f’ ¢ B'* implies fe H*, it is possible to obtain a sufficient
condition for {\,} to multiply H? into H%, 0 < p<1< g < . However,
this method leads to a sharp result only in the case ¢ = 1. The follow-
ing theorem provides the complete answer.

THEOREM 4. Suppose 0 <p<1l=<q=oo, and let (v + 1)< p<y,
y=1,2,--.. Then {\,} is a muliiplier of H” or B? into H" if and
only if g&) = D vy N,2" has the property

(11) M(r, g*+9) = O((1 — 7)== .
Hardy and Littlewood ([9], [10]) stated in different terminology
that (11) implies {\,} is a multiplier of H? into H(0 < p < 1 < ¢ < o0),

but they never published the proof. Our proof will make use of the
following lemma.

LEMMA. Let f be analytic in the unit disk, and suppose
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51(1 — P M, f)dr < oo
0
where « >0 and 1 < q < ., Then

| = e, e < oo

Proof of Lemma. Without loss of generality, assume f(0) = 0,
so that

flre®) = S:f "(se*®)e®ds .
The continuous form of Minkowski’s inequality now gives
(12) M, f) = | Mo, £ds .
Hence an interchange of the order of integration shows that
@ = n= e, prar = 2] @ - 5 MyGs, £1ds,
which proves the lemma.

Proof of Theorem 4. Suppose first that {»,} satisfies (11). Given
f(&) = >} a,2" in B?, we are to show that i(z) = >, »,a,.2™ belongs to H.
By (8), with v replaced by (v + 1), we have

o 1R (o) | = 2| L A(pe) | 19 e dt
T Jo

Since ¢ = 1, it follows from Jensen’s inequality ([11], §6.14) that

ot M(ro, h**V) = M0, £)M(r, g**")
= CA — )Mo, f) ,

where r = |z| and (11) has been used. Now set » = p and use the
hypothesis fe B® to conclude that

81(1 — Y M(r, R < oo

[}

But by successive applications of the lemma, this implies
Squ(aﬂ, W)dr < oo .
0

Thus, in view of the inequality (12), it follows that %~ e H? which was
to be shown.
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Conversely, suppose {\,} is a multiplier of H? into H? for arbitrary
q(0 < ¢ £ ). Then by the closed graph theorem,

A: 3 @,z —— 3 N,a,R"

is a bounded operator from H?” to H’ An argument similar to that
used in the proof of Theorem 3 now leads to the estimate (11).

COROLLARY. If0 < p <1<ZqZ «andfeB? then its fractional
integral f,€ H', where a = 1/p — 1/q. This is false if q < 1.

This corollary can also be proved directly. Indeed, since ([2], Th. 5)
the fractional integral of order (1/» — 1/s) of a B® function is in B°
(0 <s<1), and since ([8], p. 415) the fractional integral of order
(1 — 1/q) of an H' function is in H(1 < q £ ), it suffices to show
that f' e B implies fe H'. But this is easy; it follows from (12) with
qg = 1. That the corollary is false for ¢ < 1 is a consequence of the
fact ([2], Th. 5) that the fractional derivative of order (1/p — 1/q)
of every B? function is in B®.

The converse is also false. That is, if fe H¢ its fractional
derivative of order (1/p — 1/q) need not be in B?(0 < p <1 < g £ ).
As before, this reduces to showing that fe H' does not imply f’ e B'-
To see this, let f(z) = 3 ¢,2"%, where {n,} is lacunary, {¢,} e % and
{e.} ¢ #*. Then fe H*c H', but f’¢ B, since it was shown in [4]
(Th. 3, Corollary 2) that

IZ{ i la"’bkl < oo

whenever > a,2" ¢ B? and {n,} is a lacunary sequence.
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ON A CLASS OF DIFFERENTIAL EQUATIONS
FOR VECTOR-VALUED DISTRIBUTIONS

H. O. FATTORINI

The aim of this paper is to seek necessary and sufficient
conditions on the linear operator A in a linear topological
space in order that the Cauchy problem for the eguation
U@ —AU = T should be well set in the sense of dis¢ributions
(see definition in §2), Here 0 < a < oo, U™ is the fractional
derivative of U of order «., Such conditions are obtained for
« integer =3 and then for any a > 0, this time with the ad-
ditional assumption of (at most) exponential growth of the
solutions at infinity.

Throughout this paper E will be a quasi-complete, barreled local-
ly convex linear topological space over the field C of complex numbers
([1], Chapter II, § 4; [2], Chapter II, §1 and §2), A a closed linear
operator with domain D(A) dense in E and range in E.

The equation

(1.1) wO(E) = Au(t)

was studied in [3]. If a is an integer =3 and the Cauchy problem
for (1.1) is “well posed” (strong solutions exist for a dense set of
initial data, are unique and depend continuously on them) it was shown
that
(a) D(A) = E and A is continuous.
(b) The series 3.7, A'u/(aj)! converges in K for all ¢, u.

The solutions of (1.1) are actually holomorphic and can be expressed
as u(t) = D52 S,)u™(0), where S,(t) = >S5, " Aluf(ag + k), 0 <
k< a — 1. Conversely, conditions (a) and (b) imply that the Cauchy
problem for (1.1) is well posed (see [3], Th. 3.1). A necessary and
sufficient condition for the solutions of (1.1) to increase at most ex-
ponentially at oo is the existence of R(:; A) for large || and its
analyticity at - ([3], 8.3). It has been suggested by J. L. Lions that
the above results will still hold if we only assume the Cauchy problem
for (1.1)-or, rather, for its inhomogeneous version—to be well set in
the sense of distributions (this notion was introduced by him in [7]
for the case a = 1). Lions also raised the question of whether the
results could be extended to the case of noninteger a > 2. We give
here some partial answers to these questions. Under a special assump-
tion, Theorem 3.1 of [3] is extended to the distribution setting, although
only for a integer; Theorem 3.3 is also extended for all values of
a > 2. (Theorems 4.1 and 5.2 respectively.) We also examine the case
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a < 2, always with the assumption of exponential increase at infinity
and give conditions on R(»; A) that insure the Cauchy problem to be
well set (Theorem 6.1). For « =1, we obtain the condition of Lions
for generation of distribution semigroups.

2. The Cauchy problem. We denote by R the real numbers.
The symbol & stands for a family {|-|, ---} of semi-norms determin-
ing the topology of E (see [1], Chapter II, §4; for instance, & can
be taken as the family of all continuous semi-norms in E), i.e., such
that the (generalized) sequence {u,} converges to zero if and only if
|u,|—0 for all |-|e &. We assume D(A), the domain of A endowed
with the topology generated by the semi-norms u —|uw|, u — | Aul,
[-]€ &. D(A) is under this topology a quasi-complete locally convex
linear topological space.

In the following remarks the spaces F, G, --- are as E, quasi-
complete, barreled locally convex linear topological spaces. The space
L (F, G) consists of all linear continuous operators from F into G
endowed with the topology of uniform convergence on bounded sets
of F. & (F,G) is a locally convex, quasi-complete linear topological
space (see [2], Chapter III, § 3, no. 7; it is not necessary for this re-
sult that G be barreled). We shall write & (F') instead of <Z(F, F),
F'* instead of &~ (F, C), application of an element u* e F* to ueF
being denoted by <{u*, ) or {u, u*>.

We recall that the “equi-continuity principle” ([2], Chapter III,
§ 3, Théoréme 2) holds in <~ (F, G) (thus in particular in <Z(F), F'*);
if {B,} is a family of elements of < (F, G) such that {B,u} is bound-
ed in G that is, such that sup, | B;u| < < for any continuous semi-
norm |-| in G for every w e F, then {B,} is an equicontinuous family.
This principle will be used many times in what follows, sometimes
without explicit mention.

The space =, (or simply <) consists of all complex-valued func-
tions ¢t — @(t) defined in R, infinitely differentiable there and with
compact support; the space &, , is similarly defined but with reference
to functions (s, t) — @(s, t) of two variables. Both spaces will be
endowed with their L. Schwartz topologies ([10], Chapter III). =
consists of all € & with support in (0, ). By definition, a genera-
lized sequence {p,} in =7, converges to zero if and only if the supports
of the ¢, are contained in a fixed compact subset of (0, ) and
@™ (t) — 0 uniformly in (0, ) for all m = 0. The space <'(F) (or
FUF)) of F-valued distributions of one variable is & (<=7; F'); similar-
ly, 2/(F) = Z£(Z,,; F). The space Z,/(F) (F-valued distributions
defined in (0, «)) is (<, F). For any real a, the subspace of
'(F') consisting of distributions with support in [a, «) will be denoted
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by 2, ., (F); it inherits the topology of <’(F). Finally,
FF) = ng@ Dine(F)

and we assign to &' (F) the inductive limit of the topologies of the
Dlne(F) ([1], Chapter II, §4). As customary, we write 2'(C) =
<" and similarly for other distribution spaces.

Let S be a distribution in, say, 2'.((E, F)), Te &' (E). We
recall briefly the definition of the convolution S* T as given in [9]
(Proposition 39, p. 167). It is a consequence of Proposition 33, p. 145,
that there exists a unique distribution Ve <& ,(F) such that

Vip ® ¥) = S(@)T(¥)

for any ¢,y e < (here ¢ @ 4 denotes the function in <, defined
by (p @ ¥)(s, t) = p(s)¥(t)) and whose support is contained in the
Cartesian product supp (S) x supp (7). S*T is then defined by

(SxT)(p) = V(g)

for any @€ &, where &(s, t) = ¢(s + t) (note that, since the inter-
section of the supports of ¥V and @ is compact the expression V(®)
has a sense although ¢¢ &, if ¢ = 0). For any S, T we have

supp (SxT) S supp (S) + supp (T) ;

the convolution, as a linear map (we assume S fixed) from
' (Z(E, F)) x Z'(E) into &7 (F) is continuous (see again [9], Pro-
position 39 for proofs of these and other facts). The convolution Sx T
can be defined in a similar way when Se &', and Te Z(F), when
Se (¥ (E,F)) and Te F'(~(G, E)), --- and enjoys the same
properties as in the previous case.

Fractional derivatives will be defined by means of convolutions.
For any complex B we write

Y, = —L_Pf. (t*),s -

I'(B)
This distribution (see [10], Chapter II, § II, p. 43) coincides with the
function (k(t)t)**/(B) for Re 8 >0, h the Heaviside function (h(f)=0
for ¢ < 0, h(t) = 1 for ¢ > 1). The function of £ that results apply-
ing it to any @€ < admits of an analytic extension to the entire

! Let &7 _ be the space of all infinitely differentiable functions in R with support
bounded above endowed with its usual Schwartz topology ({10], Chapter VI, §5, p.
172). Then ' (F)c D +(F)= (< _, F) algebraic and topologically. The reverse
inclusion is true if, say, F' is a Banach space but not in general. See [8], p. 62, where
a similar situation is discussed with reference to distributions with compact support.
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plane, and its value at a given B is taken as definition of Y,(p) (see
[10], loc. cit. for details). For any 8, Y, e <7’ and its support is con-
tained in [0, ). If Ue &'(F),0 < a < - we define

U@ = derivative of order o« of U = Y_xU

([10], Chapter VI, §5, p. 174); the definition is justified by the fact
that Y_, =0, =0,1,.-.. If U=0 for t < a, the same it true
of Uw,

Finally, some notational conventions. If, say, Se o'(~(E, F)),
u € K, we denote by Su the distribution (in <'(F')) defined by (Su)(p)=
S(p)u, p € &. Similar definition for AS, where A e <2 (F, G). Follow-
ing [8], p. 51, if Te &', uecF, TQwu is the distribution in <'(F)
given by (T Q u)(p) = T(p)u. We shall use the same notation for an
F-valued function and for the distribution (in <7'(F)) that it defines.

DEFINITION 2.1. Let 0 < & < o, The Cauchy problem for the
equation

(2.1 U« —-—AU=T

is well set (in the sense of distributions) if and only if

(a) (Existence) For every Te¢ <'.(E) there exists a solution
Ue 2" (D(4)) of (2.1).

(b) (Uniqueness) Let Ue o' .(D(4)) be a solution of (2.1) with
Te &' (E). Assume T =0 if t <a. Then U =0 for ¢t < a.

(¢) (Continuous dependence) Let {T,} be a generalized sequence of
elements of =7'(E) with T,—0 in &'(E), T, =0 for t < a (a> — o)
for all v. Let U, e <. (D(4)) be the corresponding solutions of (2.1).
Then U,—0 in =’'(D(A)).

A few comments on (b) and (c¢) will be useful later. Observe first
that (b) implies

(b") Let u(-) be an infinitely differentiable D(A)-valued function
vanishing for large negative ¢ and such that

w'(t) — Au(t) = 0

for ¢t £ 0. Then u(t) =0 for ¢t < 0.
It is also true that (¥") implies (b). To see this, let U, T be the
two distributions of (b), ¢ € &7 with support in (—co, a). Define

Pi(s) = p(s — t), Ip)(s) = P(—s) .

Then if u(t) = U(p,) = (Uxlp)(t), u(-) is a C=, D(A)-valued function
and %'“(t) — Au(t) = T(p,). Since T(p,) = 0 for ¢ <0 (T is zero for
t < a), we have u(0) = U(p) = 0, which shows that U itself is zero
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for ¢t < a as claimed.

By definition of the inductive limit topology ([1], Chapter II, § 4,
n° 6) a generalized sequence {T,} in <. (F) converges to zero if and
only if T,—0 in <’(F) and all the T,s are contained in a fixed
Dlae)(F') (that is, if T, =0 for all v and ¢< some fixed a). This
shows that (¢) amounts to the assertion that the map

(2.2) T—-U

from o' (E) to <'(D(4)) given by the equation (2.1) (which map, by
virtue of (a) and (b) is well-defined and linear) is continuous. It is
also plain that the map (2.2) commutes with translations. We deduce
more information about (2.2) by means of the following result.

AUXILIARY LEMMA 2.2 Let _# be a linear continuous operator
from ' (F) to <'.(G) commuting with translations. Assume, more-
over that .Z T =0 in t < a whenever T =0 in t < a. Then there
exists Se /(F(F, @) with support contained in t = 0 such that

AT =8xT.

The proof is identical to that of the “scalar-valued” theorem
([10], Chapter VI, §3, p. 162; see also [7], p. 150 for the Banach
space case). We define a distribution S e Z'(Z2(F, G)) by the formula
S(p)u = (A0 Qu)p), pe Z,uecF; since supp . (0 Q u) S0, ),
supp (S) &[0, ). Then _#+"U = SxU 1is a linear continuous operator
from </(F) into Z/(G). (See the previous remarks on convolution.)
We only need now to verify the equality .# = .+~ for distributions
U of the form 7,0 Q u,r, the operator of translation by a, uw e F'®.
But Z(t,0Qu) =7, 20 Qu) =17,(8u) = S*¥(t,0 Qu) = A" (7,0 K u),
thus our result is proved.

Return now to the map _# given by (2.2). The distribution
S e /(< (E, D(A)) corresponding to .~ will be called the propagator
of 2.1. It follows from its definition that it satisfies the equation

(2.3) Sw_AS=6Q1I.

We prove now a few simple properties of S.

LemMA 2.3. The operators S(p), S(¥), A commute for any

2 The subspace of < /(F') generated by all elements of the form U®u, Ue &’
€ F can be identified with the tensor product &Z’/Q@ F ([8], p. 50). But 'R F
is dense if &7 /(F); on the other hand, the subspace of <7/ generated by all elements
of the form 7,0, a€ R is dense in &7/ ([10], Chapter II, §2, p. 75) so that the sub-
space of <7 /(F) generated by all elements of the form .0 & u, cER, u€ F is dense

in Z(F).
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Proof. Let weD(A). Since U = A(Su) = (Sw)® — o Qu, it is
clear that Ue Z/(D(A)); moreover

U™ — AU = A((Su)®) — A(A(Su)) = AG Q@ u) =0 R Au .
By uniqueness, U = S(4wu), i.e.,
A(Su) = S(Au)

which shows that S(p) and A commute for any pe &, As for com-
mutativity of S(p), S(++) one only needs to observe that

V = (SW)S)*6 @ u) = S()(Su)

is a solution of V@ — AV = 6 ® S(y)u and reason as before.

LEMMA 2.4. Let o = n be an integer =1, @, e Z,.. Then
(24) Spxv) = 5, SIS =R ().

The proof is a modification of one of Lions ([7], Théoréme 5.1,
p. 149) for the case »n = 1. Let (Ip)(t) = p(—t) for any p e 2. Take
now o,y € <, Let U, W, V, ---, V, be the solutions in </(D(A))
of the equations

(2.5) Um — AU = Iy Q u
(2.6) W — AW = (Ip<Iy) @ u
@7) VAV, =" QU0 (0=k=n-—1),

uwe K. (Observe that U, W, V,, ---, V, are obtained by convolution
of the propagator with the right-hand members of (2.5), (2.6), (2.7)
thus they are all C~ functions.)

Let now & be the Heaviside function. A simple computation shows
that

(hU)(n) — gl 5(n—1—lc> ® U(k)(O) -+ hU(M .
k=0
Taking now into account the fact that U satisfies (2.5) and that
supp (Iy) C (=0, 0), (RU)™ — A(RU) = 33556777 @ U™(0). Then

by virtue of (2.7) we get, by uniqueness

IpxhU = ZZ‘;I V..
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Similarly,
IpxU = W .
Observe, finally, that since supp (Ip) C (— o, 0)
(Ip+xhU)(0) = (IpxU)(0) .
Consequently
S(px)u = (Sx(L{p*4))(O)u = (Sx(IpxIy))(0)u = W(0)
= Ipx0)(O) = Tp<(hUO) = 5, Vi(0)

= ZZ:; (S*((I¢)(k)))(0) U(n—l—k)(o)
- is (@IS (I @ w)(0)

= ES”‘)(@)S‘”“I—’”(W)@L as claimed .
k=0

3. Some regularity results. The results in this section say,
roughly speaking, that if u belongs to a set of “smooth elements”
of E then Su will actually be a C= function in ¢ = 0; moreover, if
#, — 0 “rapidly enough,” then Su, will converge to zero in a topology
considerably stronger than that of <’(F). We also examine certain
smooth solutions of (2.1). As in the last part of the previous section
we assume a = 1 = integer = 1.

We introduce at this point a special hypothesis on S, namely

AssumpTION 3.1. S is a distribution of finite order locally,® which
will be assumed to hold throughout the rest of this section (as well
as in §4).

Recall ([8], Proposition 24, p. 86) that, under the preceding hypo-
thesis, if 2 is any open bounded interval in R then there exists a
continuous < (H, D(A))-valued function defined in 2 and such that

(3.1) S=f® in Q

(the integer p = 0 may depend on 2).
Let D be the subspace of E consisting of all # € E such that Su

3 Assumption 3.1 is unnecessary whenever E is a Banach space-or, more general-
ly, when £(ED(A)) is a (DF)-space ([8], §3). It is also unnecessary, with no special
restriction on E, when % = 1; for the solution of U’ — AU =06 ® S(®)u, o€ <, u€ E
is U= "RV, V the (C®) solution of V' — AV = Ip @ w (7], p. 152), which allows one
to establish all the following regularity results. We do not know whether Assump-
tion 3.1 can be altogether eliminated in all cases.
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coincides with a D(A)-valued function g¢(¢), infinitely differentiable in
t >0 and such that ¢ (0+) = lim,_,,9'™(¢) exists for all m = 0 (all
in the topology of D(A)). For uc D we define Gt)u = g(t). For fixed
t =0 G(¢) is a linear operator in £ with domain D.

LemMA 3.2. D = D(4A™) = N5, D(A™).

Proof. Let we D(A”). Consider the identity
3.2 Sy — A(Su) =0 QR u

(which is a simple consequence of the definition of S). Differentiating
(3.2) repeatedly and making use at each step of the commutativity of
A and S (Lemma 2.3) we obtain for m = 1.

S(mn)u . A(S(m—l)nu) _[_ B(M—l)n ® u = S(m—l)'leu
+ a(m-—l)n ® u = S(m——Z)nAZu + g(m—l)n ® U

+Omn @ A = e = SAMU + 3, 0%m @ Amihy
=

Let now 2 be an open interval in B (say (—a,a), 0 < a < ), f
the function associated with S in 2 by (3.1). We have

3.3) Smmy = @A™y + ELB"‘”’ ® Am—i-ky
o

in 2. Choose a m with mn > p and integrate the differential equa-
tion (3.3). We obtain

(3.4) Sy — fAMy + S Y, @ A"y 4 P,
k=0

in 2, Y, the distribution € &’ defined in § 2, (here we are using the
fact that Y, =4, Y» = Y,_;), P,, a polynomial of degree <p —1
with coefficients in D(A). Since m is arbitrary, it is clear that Su
coincides with a C= function in {¢ € 2;t > 0}; reasoning in this way
for any 2 we see that we D.

Conversely, assume wc D, and let g(¢t) = G(t)u, for t = 0, U,(t) =
g®(t) for t =0, U,(t) =0 for t < 0. Call U= U, Then we have

U =600+ U,---
Uw =3 500 Q@ UM(0) + U,
k=1
Observe now that U = Su satisfies U™ — AU = ¢ @ u; since U is

C= in t > 0 it satisfies U™(t) = AU(t) there. Consequently 6 ® u =
U™ — AU = Szt o0 @ U*(0); equating coefficients we obtain
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90+) = -+ = 9" 2(0+4) =0, 9" (0+) = u .
Observe next that for all m = 0 we have
gmEm(t) = Ag(t), t > 0 .

(This is obtained by differentiating the equality for m = 0.) Taking
m =mn — 1 and letting ¢t —0 we obtain Au = Ag™"0+) = g**(0+)
which belongs to D(A4); then weD(4* and A*u = Ag®V(0+) =
g¥"(0+), --- etc. An examination of the initial values of g readily
shows

COROLLARY 3.3. Let weD. Then GPO0+)u =0 ¢f k+=mn — 1,
k=0 G™0+)u = A™'u, m = 1.

Our next step is to show that D = D(A”) contains “enough”
elements. Observe first that if e <, then S(p)ue D(A~) for any
u e E; for, since S™u — A(Su) = 06 @ u and supp (p) C (0, ), AS(p)=
S™(p)u, thus AS(p)u € D(A) and A*S(p)u = S (p)u. Repeating the
preceding reasoning we see that S(p)u € D(A™) for any m = 0 aand

(3.5) A"S(p)u = S™ (@)
LEMMA 3.4. D is dense in E.

We shall actually show a stronger result, namely that the sub-
space generated by D, = {ve E;v = S(p)u, pe Z,, uc E} is dense in
D(A). Assume this is false. Then there exists u* € D(A*) such that
u*, S(p)yuy = {S(p)y*u*, u> =0 for all ue E, pec &, i.e.,

(3.6) S(p)*u* =0

for all ¢ € &, where S(p)*: D(A)* — E* denotes the operator adjoint
to S(p). Let now K be any bounded set in E and let o 2. Since

sup [{S(p)*w*, up| = sup | <u*, S(p)wy|

it follows from the fact that S is a <2 (&, D(4))-valued distribution
and from the definition of the topology of E* that ¢ — S(p)*u™ =
U(p) belongs to <’(E*). By applying u* to elements of E of the
form (—1)"S(¢"™)u—S(p)Au=(—1)"S(p")u—AS(p)u=p(0)u, u € D(A),
we also see that U satisfies the equation

(3.7 U™ —A*U=0Qu*
where A*: E* — D(A)* is the adjoint of A.* Since S has its support

4 Since D(A) € E algebraically and topologically and D(A) is dense in E, we can
identify E* with a subspace of D(A)*, and the inclusion E* <& D(4)* is also topologic.
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in t = 0, so does U; but, since the vanishing of the expression (3.6)
for all ¢ € &, means that U is zero for ¢ > 0 we see that supp (U)
reduces to the point 0.

Let now £ be an interval around the origin, f a <2 (E, D(A))-
valued function satisfying (3.1) in 2 for some p = 0. The function
g = f*u* takes values in E*, is continuous in 2 and satisfies

(3.8) U=g»

in 2. Since U is zero both for ¢t < 0 and ¢ > 0, g(t) = P(¢) for ¢ > 0,
g(t) = Q(t) for t < 0, both P and @ being polynomials of degree <p—1
with coefficients in £* and such that P(0) = Q(0).

Consider now the different values of p. If p=0,9= U =0 and
there is nothing to prove. If p =1, ¢ is constant in 2 and again
U = 0. Finally, if p =2 U has to be of form

(8.9) U=3 0% Q u
k=0
where m = p — 2, ug, ---, u} elements of E*. Replacing now this

expression for U in the equation (3.7) we get
(3.10) S0 Q@ui = 38 @ A*uf + 0 Qur .
k=0 k=0

Let now ¢ = 0 such that gn < m < (¢ + 1)n. By equating coef-
ficients in (3.10) we easily obtain that

u* = —Aug, u = A*ul, -, uf_,,, = A*uk, ui, =0
which shows u* = 0.

LEMMA 3.5. Let {p,} be a generalized sequence in 2, convergent
to some element @,c <, in the topology of =, v any element of K.
Then G(-)S(p,)v converges uniformly to G(:)S(p)v on compacts of
t = 0 together with all its derivatives.

Proof. Assume—as we may—that ¢, = 0. Let 2 be an open set
containing the origin and let f be the <2 (X, D(A))-valued function
associated with S in 2 by (3.1). Write formula (3.4) for each u, =
S(p,)v (the polynomial in the right-hand side is now dependent on v
and will be called P} ,). It follows from (3.5) applied to u, that A™u,—0
for all m; since S Py, —0 in 2 in the sense of distributions, if
@e = and supp (p) C 2,

5 A vector-valued distribution with support in {0} may not necessarily be of the
form (3.9).
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(3.11) SP,;,p(t)cp(t)dt —0.

But it is not hard to see that (3.11) implies (due to the fact that deg
P}, is uniformly bounded) that P; ,— 0 uniformly on compacts of R
together with all its derivatives; using this in (3.4) we obtain the
desired result.

4. The case n = 3.

THEOREM 4.1. Let n be an integer =3. Assume that the Cauchy
problem for (2.1) is well set and that Assumption (3.1) is satisfied.
Then D(A) = E, A is continuous and the series

1 S U AT
.1 M(04) = 5L A

converges in the topology of ¥ (E) for all t > 0. The propagator S
of (2.1) is actually a < (K)-valued function given by

4.2) S(t) = bty S, — ¢

=0 (nk + m — 1)!

Conversely, let the series (4.1) be convergent for all t>0. Then the
Cauchy problem for (2.1) ts well set and the propagator is given by
the formula (4.2).

We shall find it necessary to use in the sequel a few facts about
analytic functions with values in a quasi-complete barreled locally
convex linear topological space F. A F-valued function f defined in
a domain DZC is analytic in D if the quotient of increments

R f(z + k) — f(2)}

has a limit (in the F-topology) as 2—0 for all ze D. (We shall only
consider the cases F'= E, FF = <&~ (K)). All the usual properties of
scalar-valued functions (Cauchy’s formula etc.) can be extended to F-
valued functions; they can be developed in power series in the usual
way, the series being convergent for |z — z,| < 0 = dist (z,, boundary
of D). In general, a power series > a,(z— 2,)" with coefficients in F'
converges absolutely and uniformly in |z—z,| < o, diverges in |z —z,| >
0, where

o = inf {lim inf | a, |~"/™; |- | € 7}

(& a set of semi-norms defining the topology of F'). All these simple
facts can be proved essentially like in the Banach space case (see [11],
Chapter III, §2). If f(-) is an F-valued function defined in D and
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such that <{u*, f> is a (usual) analytic function for all u* € F'* then
f is analytic in the sense outlined above. Likewise, if B(-) is an <2 (F')-
valued function such that {u*, Bu) is an ordinary analytic function
for all w* € F'*, we F' then B(-) is analytic as an & (F')-valued func-
tion. The proofs of these results also generalize from the Banach space
case. ([11], Chapter III, § 2, p. 93); in fact, they are only based in the
equicontinuity principle for <2 (F') and F'* and in quasi-completeness
of these spaces.

The preceding “weak” characterizations of vector-valued analytic
functions can be used in combination with “scalar” theorems to ob-
tain generalizations to the F-valued case. We shall make use of two
of such extensions:

(a) if f has first continuous partials in D and satisfies the Cauchy-
Riemann equations with respect to two independent directions then it
is analytic

(b) if f is continuous in a domain D, analytic in D minus a
smooth curve I, then f is actually analytic in all of D.

We shall also make use of a slight modification of a result of L.
Schwartz (Théoréme XXIV of Chapter VI in [10], p. 198).

AUXILIARY LEMMA 4.2, Let Te </. Define for each ¢e .=,
Pe(t) = p(t — §) .

Assume that for every e =2, the function §— T(p;), & >0 can be
extended to a function analytic in a fixed region containing & > 0.
Then T utself coincides with an analytic function in & > 0.

The proof is almost identical to the one for the result of Schwartz.
Let a,b,¢,d>0,a<b, c<d but otherwise arbitrary, <, ,,={pec Z;
supp (p) E[a, b]} with the topology generated by the family of norms
| @ |, = MaXogs, MaX,<osy | @P(s) |, » = 0,1,2, - -+ 25, the Banach space
of all functions @ m times continuously differentiable in R with sup-
port in [a, b] (norm: |-|,), &%.a the space of all continuous functions
in [¢,d]. Let » >0, B, ,: D43 — Era1 defined by

(4.3) (Br,p@)(E)Z T(g'pel(p) _ (T(p),,;IZ))(E)
br plr

p=0,1, --.. Reasoning exactly like in [10], p. 198, we see that for
some r (depending on a, b, ¢, d) the family < = {B,,,, » = 0} is equi-
continuous. Then there exists an integer m = 0 and a real number
€ > 0 such that if pe D, [Pl =€

|B,,2l =1
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in &.4. Consequently, <& is as well equicontinuous as a family of
operators from <, ,-endowed with the <™-topology-to &, Let
now @ € (), {®:} a sequence in =, ,, converging to ¢ in 2", It
is plain from (4.3) that

B,..(¢w) - (plr*) " Tl

in the sense of distributions. On the other hand, if & is large enough,
]q)klm g }@|m + 1, then

(4.5) | Bro@) b= e7(|@lm + 1)

in €4 But (d/d8)B, (pr) = (p + 1)rB, ..(p:), thus by virtue of
Ascoli’s theorem we may assume (passing, if needed, to a subsequence)
that for all p = 1, B, ,(®:) is convergent in <, ;;. Then each distri-
bution (p!r?)~'T®xIp coincides in (¢, d) with a continuous function
and by virtue of the estimates (4.5) the set of all these functions is
uniformly bounded in [¢, d]. This shows, via the definition of B,,
that TxIp is actually analytic in a neighborhood of [e, d] for any
P E Dy e

Finally, let Y,,., the distribution in § 2, ¥ a function in <& such
that y =1 in |[¢| b —-a)/4,x=0 in [¢| > (b — a)/3, k = (a + b)/2.
Plainly @(t) = (Y ns)(t — k) belongs to <7,;, while o™ =7,6 + 7, 7,
the operator of translation by %k, ne <.

We have

(—1)"(Txlp)™+ — Txlp = c_,T .

Since the left side of the preceding inequality is analytic, so is T in
[e + k,d + k]; since k= (a + b)/2 can be arbitrarily small and ¢, d
are unrestricted, the result follows.

Proof of Theorem 4.1. Let @ = exp (2wi/n), Cir = {{ € C; 2kni/n <
arg L < 2(k + Vzi/n}, k=0,1,.--,n — 1. Let @ be a fixed element
in &, ue E. Define E-valued functions g, (in C,), ¢,_, (in C,_) as
follows:

(4.6) 0.6 + 70) = 07 5, 0GOS @,
@ 0.& +707) = @ 3, WG IS H(pu

If & ¢&,7, 7 =0 we have, for any two integers p, ¢ = 0

GOIS (e — CPIS pIu = GV ) (S ™ (Pe)
— 8P + (GV7) — GTENS Ve -

This and the regularity results in § 3 show that g¢,(¢,_,) has continu-
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ous partials of any order in C,(C,_,). We compute now the first par-
tials. We have

5700 = 5 07GNDS
—a%go = o Zj WGV (S I pe)ue
Consequently
9 N\, _ _ .
(4.8) (797 - wgé—)go = G"MS(p)u — GS ™ (pe)u .

Since G"(N)S(p:)u = AG(PS(pu = GMAS(pIu = G(1H)S ™ (p:)u the
right-hand side of (4.4) vanishes. But then (4.8) reduces to the
Cauchy-Riemann equation for g, (with respect to the directions 1, w)
and consequently g, is holomorphic in C}, the interior of C,. Proceed-
ing in exactly the same way with g,_, in C,_, we obtain the equation

which likewise implies that ¢, , is holomorphic in C,_,. By virtue of
Corollary 3.3,

(4.9) 9(8) = 9,.(8) = S(p)u .

This shows that the function g defined as ¢, in C,, g,., in C,_, is con-
tinuous in C, U C,_,, and thus analytic there.

Denote now (E) the space of all linear continuous operators
from K to E with the topology of simple convergence (or strong
topology; see [2], Chapter III, §3). It follows from the Banach-
Steinhaus theorem that <% (F) is quasi-complete ([2], Chapter III, § 3).
Moreover, any continuous linear functional in .2%(&) can be written

A— S Cut, A
k=1

where u,, -+, u, € E, uf, --., ute E ([2], Chapter IV, § 2, Proposition
11). Consider the propagator S—as we may—as an element of <'( 4(E))
or, rather, as an element of </(4%(F)) = £(Z,; FA(E)). It follows
from our results on the function g defined by (4.6), (4.7) and from
the equality (4.9) that the distributions in <, obtained from S by
applying arbitrary elements of ((<%(E))* coincide with functions ana-
Iytic in & > 0 in particular, with C functions. Applying a result in
[8], p. 55 (the change of & by <7, has no particular significance),
we see that S itself coincides in ¢ > 0 with a &2 (&)-valued function
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G(-) infinitely differentiable in the _¢%(E)-topology, that is G(:)u is
a C= function in & > 0 for all ue E. Clearly if we D = D(A~) then
Gu coincides with the function defined in § 3. We now extend G to
the complex plane as follows; if { = &éw* + no*t' e C,

(4.10) G(Ea)k + pw’“'l)u = @—‘k+D glw_jG(j)(v)G(n—l—i)(E)u ,

0<k<n-—1. It follows from the equicontinuity principle (§2) that
the family {G(t); t € e}, ¢ any compact subset of (0, «) is equicontinu-
ous in L (E)({G(t)u;tce} is bounded in E for any u € E). This, and
the fact that G is strongly C= in & > 0 shows that G(-) as defined
by (4.10) has any number of continuous partials in C}, the interior of
C, forany k=0,---,n — 1. An argument similar to the one for
the function ¢ shows that Gu satisfies in each C}? the Cauchy-Riemann
equations, and is thus analytic; a fortiori, G itself, as a <~ (E)-valu-
ed function is analytic in C{U --- U CS_..

We now examine more carefully the equality (4.10) when w € D.

Let {p,} be a “smoothing kernel” in =, i.e., let ¢, = 0, ggondt =1,

supp (p,) —0 as n—oco. If £, 7> 0 we have, in view of Lemma 2.3,
S((@))S(Pu))® = S(@n))S(Pa)e)u; letting m, n — o we obtain

(4.11) G(&)G(M) = GMG(E) -

Differentiating the relation (4.11) and making use of the new equali-
ties thus obtained in (4.10), we easily see (by applying the fact that
G(&)u, w € D is smooth in & = 0) that G({)u, { € C,, is actually continuous
even if & or 7 are zero; thus G({)u is continuous in C,, except per-
haps at the origin. On the other hand, it is not difficult to see by
using Corollary 3.3 that the different definitions of G match at the
divisory rays fw*, £=0,k=0,..-.,n — 1. Consequently G(-)u is con-
tinuous in all of C-except perhaps at the origin; being holomorphic
in C0U -+ UC., it is actually holomorphic in all of C-again, with
the possible exception of the origin.

We apply now the same “regularization” method used to obtain
(4.11) to the equation (2.4). We obtain

(4.12) G(s + 1) = 3 GG (1)
for s, t > 0. Applying both sides of this equality to a v € D and using
analiticity of Gu, we can extend (4.12) to all complex z, { e C\{0} as

long as 2, { do not both belong to a divisory ray; in particular

(4.13) Gz + Du = 3G9 EG (O
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if z, e Uiz Cp. But for these values of z,{ the operators in the
right-hand side of (4.18) are continuous, and then (4.13) can be extend-
ed to all ue E. Observe finally that (4.13) allows us to express Gu
near a divisory ray (or near the origin) in a linear and continuous
way by means of its values away from them, thus Gu is actually
holomorphic in C for any w ¢ F'; a fortiori, G is a & (H)-valued entire
function.

We compute now the coefficients in the Maclaurin series of G.
According to Corollary 3.8 G®*2(0)u = Au for u € D; since A is closed
and D dense, D(A) = E and A = G*9(0) is continuous. The fact
that G%(0) =0 if k= mn — 1, G™(0) = A~ for m =1, can be
proved by using Corollary 3.3 and the denseness of D. Then

an+n—1 i

GO = (nk +n — 1)

The convergence of the series for M,(tA) is clear, as M,(tA) =
G, The final step of the proof of the direct part of Theorem
4.1 (that is, to show that S = k@) will be left to the next Remark
4.4 and consists in showing directly that (AG)™ — A(LG) = 6 Q I; by
uniqueness, it follows that (AG)w =Su for all we E and then hG =S.

REMARK 4.3. The proof of Theorem 4.1 depends crucially on the
fact that the »'* roots of unity span C, thought of as a real vector
space or, more precisely, on the possibility of writing any {eC in
the form { = ¢w* 4 nw*+' for some integer k, &, =0, w = exp (27i/n).
This is obviously true only if n =3; forif n =1, 0 =1; if n =2,
w = —1.

REMARK 4.4. We end the proof of Theorem 4.1 by establishing
the following slightly more general form of its converse part.

LEMMA 4.5. Let a >0 (not mecessarily an integer). Assume
Ae F(E) and that

_ < ¢ g, €
M (tA)u = kz‘o—F(ak D

converges for all t>0 in K for each we K. Then the Cauchy problem
for
(4.14) U — AU =T

1s well set; the propagator of (4.14) is a C=, ¥ (E)-valued function
wn t =0 given by

1 Mu(t) is the Mittag-Leffler function of classical analysis.
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(4.15) St =ht) 3, 7_(%%

the series (4.15) being convergent in < (E) for all t.

Proof. Since the series defining M, (tA)u converges for all ¢, the
same is true of the series defining M, ({A)u, (e C. By virtue of the
Banach-Steinhaus theorem ([2], Chapter III, § 3 M. (LA) is a F(E)-
valued function; since M, ({A)u is analytic for each u ¢ E, the same
is true of M, (LA) as a function with values in $2(F). This is easily
seen to imply convergence of the series in (4.15) in the topology of
Z(E) for all ¢, uniformly on compact subsets of R (and thus in
(<L (E))). Recall now that, for 8 > 0 the distribution Y, <"’
used in §2 to define fractional derivatives coincides with the function
(R(t)t)*~Y/T'(8). Then

S = Y—a*(é Ya(k-H) ®Ak>
S Y. RA+ Y, QI=AS+ 61 .
k=1

Consequently S satisfies the equation (2.3) and this implies that U=
SxT satisfies the equation (2.1) for any T e <//(E). It only remains,
then, the question of uniqueness, which we can verify in the form
), §2. Let u(-) be a E-valued C= function, null for £ <0 and such
that

(4.16) wO(t) = Au(t)

for t £ a, a > 0. Take the convolution product of both sides of (4.16)
with the (function) Y,; we obtain () = A(Y »u)}(t) for t < a. Iterat-
ing this equality m times w get u(t) = A™(Y,..xu)(t) for t < a, or

1

(4.17) u(t) = )

St t — s)™A™u(s)ds

for ¢ < a. Observe now that {u(s), 0 < s < ¢t} is a bounded set in E
for every ¢ > 0, then as a consequence of the definition of the topology
of < (E) and of the fact that the series for M,(tA) has infinite ra-
dius of convergence in & (F), if |-|e &

lim | (£ — 8™

Amu(s)| = 0
new| (et

uniformly for 0 < s < ¢. Applying this estimate in the integral (4.17)
we get u(t) = 0 for all ¢ < a. This result, after a clearly permissible
translation is equivalent to (') of §2.
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REMARK 4.6. In the case £ is a Banach space, J. Chazarain ([12]
and personal communication) has characterized the operators A for
which the Cauchy problem for (4.14) is well set for any @, 0<a<
not necessarily an integer in terms of the location of ¢(4), the spec-
trum of A and the growth of R(\; A) = (] — A)~'. In particular, if
a > 2 the Cauchy problem for (4.14) is well set if and only if A is
everywhere defined and bounded. This result, as well as the one in
the next section suggest that Theorem 4.1 is probably true for all
a>2, i.e., that every time the Cauchy problem for (4.14) is well set
for « > 2 we have D(4) = E, A is continuous and the series for
M,(tA) is convergent for all ¢ > 0. However, the method used here,
that is to exploit the simple functional equation (2.4) to extend S to
the complex plane breaks down when « is not an integer. Finally,
note that Theorem 4.1 generalizes Theorem 3.1 of [3] but apparently
only in the case the Cauchy problem for #™ = Awu is, in the termi-
nology of [3] uniformly well posed in ¢ = 0 (see [12] for a proof). For
if the Cauchy problem for u™ = Awu is only well posed in ¢ > 0 the
propagator S,_, which plays the role of S in [3] may a priori grow
arbitrarily fast as ¢t —0 and then does not define a distribution in any
obvious way. It is not difficult, however, to include also this case in
our results. In fact let S be a distribution in &/(<°(E, D(A)) satisfy-
ing Equation (2.4); if the regularity results of §2 are postulated (they
can be easily seen to hold in the situation of [3]) then the proof of
Theorem 4.1 can be carried out just in the same way and its conclu-
sion holds. As for Equation (2.4), it is an immediate consequence of
Equation (2.8) of [3].

5. Exponential increase of S. We relax in this section the
requirement that « be an integer, but we are then forced to impose
restrictions on the growth of S at oo.

A few simple properties of vector-valued Laplace transforms will
be used in the sequel. Denote, as usual, by .&” the space of all in-
finitely differentiable, complex-valued functions ¢ that decrease at
|| faster than any power of 1/]¢| together with all their derivatives,
endowed with its usual Schwartz topology ([10], Chapter VII, p. 234).
The space .&“'(F') (of “tempered”, F-valued distributions) is & (57; F').
Given w e R, 0< w < oo we write I', = (@, «); the space (&'(I",))(F")
consists of all distributions T € <’(F') such that ¢,T ¢ .&”'(F') for all
rvel',, e, the C= function defined by e;(t) = e *. Any distribution
Te (' (I",))(F) has a Laplace transform

LT = (8TH(\), & = & + 17,

a F-valued function holomorphic in Rex > w ([8], p. 74). If, in ad-
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dition, T =0 for ¢ < 0 then for all @ > w, u* ¢ F* there exists a poly-
nomial p such that

(5.1) [KETYN), w*> | = p(I™)

for Rex = a (this is an easy consequence of the “scalar-valued”
theorem; see [10], Chapter VIII, p. 310, and [6]) where the polynomial
may depend on u*. Conversely, if L is a F-valued function holomor-
phic in Ren > w and such that estimates of the form (5.1) hold for
it, then L = 8T where T is a (unique) distribution in ($7'(I",))(F'),
T =0 for t <0 (see again [8], p. 74, and [10], p. 310). If T'=f, f
an ordinary F-valued function (say, continuous, zero for ¢ < 0 and
such that {e;(¢)f(t); ¢ = 0} is bounded in F for any xel',) then LT
coincides with its ordinary Laplace transform, that is

wﬂmy:rwwmm.

Finally, let T e (&7"(C' ))F), Ve & (I",) (and assume, for the sake
of simplicity, that both V, T are zero for ¢ < 0). Then the Laplace
transform of the convolution VxTe (&' (I" ) )NF') is

VxT) = LVRT

([9], Proposition 43, p. 186). We shall only use this result for V =
Y, = (Pf. t*-1)/I"(B); Y, € & for all B and its Laplace transform equals
LY,)(\) =M% by virtue of the preceding observation,

BTN = ZY_+T)N) = MR(THN) .

We shall find it useful to introduce at this point a new space of
distributions. We call (&/(I",))(F) the set of all distributions in
(&L'(I" )(F) such that, for any el

(5.2) e,T = fim

for some m = 0, where f is a continuous function defined in R, with
values in F and such that

(5.3) {X+[t)2ft); te R}

is a bounded set in F for some p = 0. (Note that any T ¢ &'(F) that
satisfies the preceding condition belongs to (&7 (I'.))}(F)). A charac-
terization of some elements in (S4/(I",))(F') is given by the following

AUXILIARY LEMMA b.1. Let Te (&7'(I" ))WF). Then T e (' (I",))(F)
and has support in t =0 if and only if for each a > w there exists
a polynomial p = 0 such that the set
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(5.4) {@ + p(IMD)HRT)N); Re = a}
18 bounded in F'.

Proof. Observe first that the funection f in (5.2) can be assumed
to be zero for ¢t << 0. For if h is the Heaviside function,

;T = he;T = hf™ = (Rf)™ — 3,69 @ fim1-(0) .

Consequently g = hf — >*} Y, _;f™*=9(0) (which is zero in ¢ < 0)
has the same m-th derivative as f. If g is not continuous, replace

m by m + 1, g by Stg(s)ds.
We now use (5.2) for » = a’, ® < ¢’ < @, and the relation
ETHN) = e, THN — ) . Since
®&e., THN) = (S ™PNA) = ™ f)(\) and, on the other hand

K

—  Rexz=e
Rex — ¢

[@NHM | =

for any continuous semi-norm |- | in F' and any ¢ > 0 (the constant
K may depend on |- |, ¢) the result follows. Conversely, assume that
(5.4) is bounded for all @ > w, p the polynomial corresponding to «,
m = degree of p, w < o’ < a. Define

() = 1 S N @ TY(N) e di
271 JRe 2-ar

for te R. It is not difficult to see that g is a continuous function,
zero for ¢ < 0, that the set {e~*‘f(¢); t € R} is bounded in F' and that

(5.5) @) = A mHET)HN)

in Rex > a/. Equality (5.5) and uniqueness of Laplace transforms
plainly imply

T — f(m+2> .
Observe, finally, that

m+2{ M —|— 2 . .
e.T = ee_o(e.f)™™ = Z( ; )a”“z“’(eaf)‘“

=0

which ends the proof.

THEOREM b5.2. Let a > 2, Assume the Cauchy problem for the
equation
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(5.6) U —AU=T
is well set and that the propagator S belongs to the space
(AT INZ (H, DA))

for some 0,0 < @ < . Then A s continuous, D(A) = E, R(\; A)=
(A — A)7' exists for | M| large enough and the function R(-; A) is
analytic at . Conversely, the preceding conditions imply that the
Cauchy problem for (5.6) is well set and that S e (5 )N (HE)) for
some @ < oo,

Proof. Taking Laplace transforms of both sides of the equation
(2.3) (that is, Y_ xS — AS = 6 ® I) satisfied by the propagator we
obtain

(5.7) 0T — A)RS)() = I

for Re x>w, where (28)(\) is a .&7(#, D(A))-valued holomorphic fune-
tion. By virtue of Lemma 2.3 if u e D(A) we also have the equality

Y_ x(Su) — S(Au) = 6 Q
thus
(5.8) (SYNNT — A)u = u

as well. But equalities (5.7), (5.8) plainly imply that R(\%; A) exists
and equals (2S)(\) for Rex > w. Since {¢£€C; it = \% Re\ > w} con-
tains a neighborhood of < if a>2 (more precisely, the region [\ | >
r = (@* + %), v = wtg(n/a)), R(\; A) exists for |\ | large. We develop
now R(-; A) in Laurent series around o>,

(5.9) R(\; 4) = S0D, + D, + 3 VK,
where D;, K; are elements of &7(E, D(A)). Using the relation

O — AR A) = T

in (5.9) and equating coefficients in the series so obtained we get the
system of equations

-Dj+1 - ADj, .7 =1
D, =AD, + 1
(5.10) o
D, = AK,
K;=AK;,,,j=1.

Applying now Lemma 5.1 we see that R(\; 4) = (S)(\") increases
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at oo less than a polynomial, and then K, = 0 for some m = 1; using
equations (5.10), we get K, , = --- = K, =0,D,=0, D, = I and con-
sequently A = D,; this shows that A is continuous and that R(-; 4)
is analytic at o as claimed.

Assume now that A is continuous and that R(:; A) exists in a
neighborhood of <> and is analytic there. Since the development of
R(-; A) at - is

oo

RB(:; Ay = DINUHAT N > 1

20

we see that if |- | is a continuous semi-norm in ~7(E),& >0
(5.11) A7 < K(r +¢),5 =1

for some K < . But then the conditions of Lemma 4.5 are satisfi-
ed and consequently the Cauchy problem for (5.6) is well set. We
now estimate the propagator S. By virtue of (5.11) and of the for-
mula (4.15),

S trEret(p 4 gk
D<K
SO =K o T a

It follows from results in [5], Chapters IV, V, and VI on asymptotic
estimates at - of Maclaurin series that
o tzx(k+1)~1

1,
O I'ak + )« ¢l + o))

as t— o, thus
S| = K" exp ((r + €)''"t)

for t = 0. This shows that Se (<7 (" ))(~ (&)} for = ' and there-
fore ends the proof.

A number of comments are in order. If F is a Banach space and
Te("(I')(F), then Te (.5 ([",)(F); the reason being that, since
F* is a Banach and then a Baire space, a category argument allows us
to pass from the “pointwise” estimates (5.1) for &7 to the “uniform”
estimate in Lemma 5.1. Thus we can change (<5'(I" )<< (E, D(A))
by (L' ) (E, D(A)) in the statement of Theorem 5.2. In the
general case these two spaces may be different, and we do not know
whether the change is possible, i.e., whether or not S has to be as-
sumed to have “finite order” globally.

Consider the conditions (1,) A is continuous and the series defin-
ing M,(tA) converges for all ¢&. (2) R(:; A) exists for large |\ | and
is analytic at «, If F is a Banach space, (1,) for any «, 0 < @ < oo
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and (2) are equivalent to the fact that A is bounded. In the general
case we can only say that 1,=1, if a < 8,21, 0 < a < . The
reverse implications are in general false, as we shall now see.

Let E be the space of all functions x — u(x) defined and continuous
in £ = 0 and such that

|?/l/ |n = SE? |u(x)emc‘ < o ’

n=0,1,---. If we assign to E the topology generated by the family
& =1+, -} of semi-norms K becomes a Fréchet space. If 0<B< oo
and we define

(Asu) (@) = wiu(x)

then A; is a continuous operator in E. In order to compute M,(tA4;)
we use the following asymptotic estimate for the Mittag-Leffler func-
tion M,

(5.12) Mty = % e'(1 + o(1))

(see again [5], Chapter VI). Let now t be fixed, a = 8,7 < k. The
operator > 5_. (tA;)?/[(ap + 1) coincides with the operator of multiplica-
tion by

k P
rie(®) = 3 (Ga?)? /I (ap + 1) .
Do
Then if uck,n =0
|76t [0 = (mggc | 75,6(2) | e‘“) | |z -

Now, by virtue of (5.12)
|7, W(@)e ™| < M (ta')e™ < K exp (x°/* — 22)

for x =0, K independent of j,k. Since, on the other hand,
lim; ,_.7; () = 0 uniformly on compacts of x = 0, it is clear that the
series for M,(tA;) converges for all ¢ to the operator of multiplication
by M,(tx’). But if we assume that « < B and the series for M,(tA4;)
is convergent, then the limit has also to be the operator of multiplica-
tion by M,(txf); but, by virtue of (5.12), this operator is not continuous
in E (the operator of multiplication by exp (#'), ¥ > 1 is not continu-
ous in E). Consequently A, satisfies 1, for o = 8 but not for a<pg.

It is not difficult to construct an operator satisfying 1, for any
a > 0 but not 2; in fact, let

(Aw)(@) = log (1 + x)u(x) .
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By small modifications of the reasoning above it can be shown that
M, (tA) converges for all « >0, te R. But o(A) coincides with the
positive real axis, then 2 is violated. Applying the results of Sections
4 and 5 we see that the Cauchy problem for

U= - AU=T

is well set for @ = B (the propagators increase at - faster than any
exponential), is not well set if 2 < a < B, at least if « is an integer.
In contrast, the Cauchy problem for

U —-—AU=T

is well set for any « > 0 but again none of the propagators is of
exponential growth at oo,

6. The case 0 < a < 2.

THEOREM 6.1. The Cauchy problem for the equation
(6.1) U —AU=T
1s well set and the propagator S belongs to the space
(KL INA (B, D(A))

if and only tf R(\*; A) exists for Re\ >w and for each a> w there
exists a polynomial p = 0 such that

(6.2) {@ + p(INDTRO; A); Red > a}

18 equicontinuous in . (K, D(A)) (or in £(H)).

Proof. The necessity of the conditions can be proved as in Theo-
rem (5.2) by showing that S = R(\%; A) and then using Lemma 5.1.
As for the sufficiency, it follows from equicontinuity of (6.2), from
the considerations opening § 5 and again from Lemma 5.1 that

R(\v; A) = 28

where S is a distribution in (&5'(I",)) (s (E, D(A)) with support in
t = 0. Let now Z= S — AS. Since ¥Z = I, we see that Z=0) 1,
which shows that S satisfies (2.3); then SxT satisfies (6.1) for any
Te <r'(E). It only remains then the question of uniqueness of solu-
tions of (6.1), that is to verify (b) (or b') of §2. Let then u(-) be a
C=, D(A)-valued function, u(t) = 0 for ¢ < @ and such that

w(t) — Au(t) = 0
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for t <b,a <b (we may plainly assume that b = 0). Let now p € &,
@(t) =1 in [a, b]. Then

(6.3) (pu) @ (t) — A(pu)(t) = 9(t)

where g(t) is still zero for ¢ < 0 ((pu)®(t) = u'(t) for ¢ < 0) but it
also vanishes for large ¢. We take Laplace transforms of both sides
of (6.3) and obtain, after multiplying by R(\¢, A)

(6.4) (Lpu)() = B A)(ERg)(N) .

We use now the (easily verifiable) fast that the set {(¥g)(\); Re » = 0}
is bounded in E, the relation (6.4) and equicontinuity of the set (6.2)
to deduce that if Rex > a the set

{@ + (XD ER(Pu)(V); Re: = a}

is bounded in E (p the same polynomial in (6.2)). Applying Lemma
5.1 we see that pu (hence ) is zero for ¢t < 0. This ends the proof
of Theorem 6.1.

Theorem 6.1 reduces for « = 1, E a Banach space to a result of
Lions (see [7], Théorémes 6.1, 5.1 and Corollaire 4.1) that gives neces-
sary and sufficient conditions for the Cauchy problem for U'—AU=T
to be well set in terms of the theory of distribution semi-groups of
exponential increase at .

The author is grateful to Professor J. L. Lions for bringing these
problems to his attention and for most valuable suggestions, as well
as to the referee for spotting several errors in the first version of
the paper.

Results in this article have been announced (under the title “Sur
quelques équations différentielles pour les distributions vectorielles) in
C. Rendus Acad. Sci. Paris 268 (1969), 707-709.
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STABILITY THEOREMS FOR LIE ALGEBRAS
OF DERIVATIONS

CHARLES B. HALLAHAN

Let A be a finite dimensional algebra over a field F' of
characteristic zero and let L be a completely reducible Lie
algebra of derivations of A. If A is associative, then there
exists an L-invariant Wedderburn factor of A. If A is a Lie
algebra, there exists an L-invariant Levi factor of A, If A
is a solvable Lie algebra, there exists an L-invariant Cartan
subalgebra of A. This paper deals with the uniqueness of such
L-invariant subalgebras, For the associative case the assump-
tion of characteristic zero can be dropped if we assume that
the radical of A is L-invariant.

2. Preliminaries. If A4 is a finite dimensional associative algebra
over a field F with radical R such that A/R is separable (that is,
semisimple and remains so under every field extension of F'), then the
Wedderburn principal theorem states that there exists a separable
subalgebra S such that A =S + R, SN R = {0}. S is called a Wed-
derburn factor of A. Since R is nilpotent, for » in R, (1 — »)™* =
14+7+ -« +r~" where » = 0. Let C,_, be the inner automorphism
of A defined by conjugation by the invertible element 1 — ». The
Malcev Theorem states that if S is any separable subalgebra of A and
T is a Wedderburn factor of A4, then there exists » in R such that
C_(S)E T. Thus, the Wedderburn factors of A are just the maximal
separable subalgebras. See [4] for the above information. In §3 it
is shown that if L is completely reducible (every L-invariant subspace
of A has a complementary L-invariant subspace), F' arbitrary, R L-
invariant, and S, T two L-invariant Wedderburn factors of A, then
there exists an element » in R such that C,_.(S) = T and D(») =0
for all D in L. Such an element » is called an L-constant.

If A is a Lie algebra over a field ¥’ of characteristic zero and R
is the radical (maximal solvable ideal) of 4, then the Levi theorem
states that A=S+ R, SN B = {0}, where S is a semisimple subalgebra
of A isomorphic to A/R. S is called a Levi factor of A. The Malcev-
Hanish-Chandra theorem states that any two Levi factors of A are
conjugate by an automorphism exp (Adx), where x is in N, the nil
radical (maximal nilpotent ideal) of A. In §4 it is shown that for
L completely reducible and S, T L-invariant Levi factors of A, then
there is an L-constant « in N such that exp (Adx)(S) = T.

If A is a solvable Lie algebra over a field F of characteristic zero,
then any two Cartan subalgebras are conjugate by an automorphism

1056
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of the form exp (Adz), for x€ A” = N3, A", see [2]. In §5, we
show that for L completely reducible and S, T L-invariant Cartan
subalgebras of A, then there is a L-constant & in A= such that
exp (Adx)(S) = T.

In [8] Mostow considered the situation where G, a completely
reducible group of algebra automorphisms, acts on a finite dimensional
algebra A over a field F of characteristic zero. For each of the three
cases for A mentioned above, Mostow shows that there exists the
corresponding kind of G-invariant subalgebra. One can use an algebraic
group argument, see [1], to conclude the corresponding existence of
L-invariant subalgebras. The problem of relating G-invariant subal-
gebras has been studied by Taft [9], and uniqueness in that case is
given via automorphisms defined by fixed points of G. The uniqueness
results for L-invariant subalgebras (in terms of L-constants) can be
shown directly, and also, for characteristic zero, can be shown to
follow from the results of Taft. It should be noted that if « is an
L-constant (G-fixed) then C,_, centralizes L (or G) so that if S is an
L (or G) invariant subalgebra, so is C,_.(S).

Let F have characteristic zero. The relationship between the
situations of L acting on A and that of G acting on A is given by
the correspondence between a linear algebraic group and its associat-
ed Lie algebra, see Chevalley [3]. In particular, if G is an'algebraic
group of algebra automorphisms of A, then its associated Lie algebra
will consist of derivations of A. Also, complete reducibility is preserv-
ed in the algebraic group-Lie algebra correspondence. The following
lemma follows easily from the definition of the Lie algebra of an
algebraic group. We state it for reference.

LEMMA 2.1. Let V be a fintte dimensional vector space over a
field F. Let G be an algebraic group of automorphisms of V and g
its associated Lie algebra. If x im V 1is a fized point of G, then
X(x) = 0 for all X in g.

The author would like to express his appreciation to Professor
Earl Taft who suggested these problems and acted as thesis advisor
during the preparation of this material.

3. The associative algebra case.

THEOREM 3.1. Let A be a finite dimensional associative algebra
over a field F' of characteristic zero and let L be a completely re-
ducible Lie algebra of derivations of A. If S is an L-invariant
semisimple subalgebra of A and T an L-itnvariant maximal semisim-
ple subalgebra of A, then there exists an L-constant r in R, the ra-
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dical of A, such that C._, carries S into T.

Proof. Given L, let L be its algebraic hull, i.e., the smallest
algebraic Lie algebra containing L, and let G be the unique connect-
ed algebraic group of algebra automorphisms with Lie algebra I. Then
G is also completely reducible. We can apply Theorem 2 of Taft [9]
to get » in R such that C,_.(S)< T and » is a fixed point of G. By
Lemma 2.1 we have that X(r) =0 for all X in L, and L S L implies
that 7 is an L-constant.

COROLLARY 1. Let A and L be as in Theorem 3.1. Then any
two L-imvariant Wedderburn factors of A are conjugate under an
inner automorphism of the form C,._,., where r is an L-constant in
R. Also, we may write C,_, in the form exp (Ady), where y is an
L-constant in R.

Proof. The first statement follows immediately from Theorem 3.1.
Let y =log(l —7r) = —r — v*/2 — v*/3 — -... Then X(y) = 0 for all
xeL and C,_, = C.posu—ry = €xp (Ad (log (1 — 7))) = exp (Ady).

COROLLARY 2. Let A and L be as in Theorem 3.1. Then any
L-invariant semisimple subalgebra S of A s contained in an L-
wnvartant Wedderburn factor.

Proof. Let T be any L-invariant Wedderburn factor. By Theorem
3.1 there exists an L-constant » in R such that C,_(S)S T. Thus,
S=(C._,)(T)=C,_[(T), where y = —r —r* — > — ««.. Thus y is
an L-constant in R. If te T, then C_,(t) = 1L +y + -+ + y")t(1l —y),
where y*** = 0. For D in L, DC,_,(t) = C,_,(D(t)) since y is an L-
constant. Thus, C,_,(T) is L-invariant.

If we drop the assumption of characteristic zero in Theorem 3.1,
then the uniqueness result can be proven directly with the additional
hypothesis that R be L-invariant. (This is always true for charac-
teristic zero.) The technique used in Theorem 8.1 whereby the situa-
tion involving derivations of A is carried over to the situation involv-
ing algebra automorphisms of A does not, in general, carry over to
the case when F' has characteristic p = 0. It is possible to have an
algebraic Lie algebra of derivations of a finite dimensional associative
algebra A over a field F' of characteristic p >0 which is not the Lie
algebra of an algebraic group of algebra automorphisms of A. This
cannot occur in characteristic zero. For example, let G be a cyclic
group of order p and F' an algebraically closed field of characteristic
p. Let A = F(G), the group algebra of G over F. Then {1, g, ---, g*}
is a basis for A over F and {9 — 1, ---, g*~* — 1} is a basis for the
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radical R of A. Define a map D of A by D:g-— 1 and extend D to
a derivation of A. The smallest restricted Lie algebra L of linear
transformations of A containing D is algebraic, see [5]. Since the Lie
algebra of all derivations of A is restricted, L consists of derivations
of A. If G is any algebraic group of automorphisms of A with Lie
algebra L, then G cannot consist of algebra automorphisms of A. If
so, then R would be G-invariant, and, hence, L-invariant, which is
not the case.

THEOREM 3.2. Let A be a finite dimensional assoctative algebra
over a field F of arbitrary characteristic. Let R be the radical of
A and assume A/R is separable. Let L be a completely reducible Lie
algebra of derivations of A and assume R is L-invartant. Lf S is
an L-invariant separable subalgebra of A and T is an L-invariant
Wedderburn factor of A, then there cxists an L-comstant & in R such
that C,_, carries S into T.

Proof. We consider two cases:

Case 1. R*={0}. Let z in R be such that C,_.(S)S 7. z exists
by the Malcev theorem. We claim that D()e RN C, for all DelL,
where C is the centralizer of S in A. Given D e L, define AdD(z), a
linear map of A, by AdD(z): a — D(z)a — aD(z), for a € A. Using the
facts that R* = {0} and R is L-invariant, we have that

AdD(z) = DC,_, — C,_.D .

For se S, AdD(z)(s) = DC,_,(s) — C,_.D(s)e T since S and T are L-
invariant and C,_.(S)< 7. By assumption, D(z) ¢ R, so AdD(z)(S) € R.
Hence, AdD(): S— TN R = {0}). Thus, D) eRNC. RNC is an L-
invariant subspace of R, so by complete reducibility we have R =
(RNC)® U, where U is an L-invariant subspace of R. Write z =
¥y + 2, where yeRNC and 2e¢U. Thus * =2 —y and for DelL,
D) =D — Dy)e(RNC)N U = {0}. Hence,  is an L-constant,
and © = 2z — y where y e C implies that C,_.(S) = C._.(S)ES T.

If R* -+ {0}, we proceed by induction on the dimension of A. Since
R is L-invariant, we have that L is a completely reducible Lie algebra
of derivations of R, T + R?, and A/R? all of which have dimension
less than that of A. Let a — @ = a + R’ denote the natural homomor-
phism of A onto A = A/R’. Then A has radical R and S is an L-
invariant separable subalgebra of A while T is an L-invariant Wed-
derburn factor of A. By induction, there exists e R such that
C_,(S)ST and Dw)eR* for all D in L. R* is an I-invariant sub-
sf)avce of R, so by complete reducibility, we have R = R* U, where
U is L-invariant. Let v =2 + u,2¢€ R*, u € U. Then w is an L-constant
and # = 7. Consider the algebra T + R®. It has dimension less than
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that of A, has radical R?, C,_,(S) is an L-invariant separable subalgebra
of it (since % is an L-constant and S is L-invariant) and 7T is an L-
invariant Wedderburn factor of T + R: By induction, there exists »
in R* such that D(r) =0 for all DeL and C,_,C,_,(S)S T. Let xz=
% + r —wur. Then for De L, D(x) = D(u) + D(r) — D(uw)r — wD(r)=0.
So « is an L-constant and C,_(S) = C,_,.C._(S) < T.

COROLLARY. Let A and L be as in Theorem 3.2. Then every
L-invariant separable subalgebra of A is contained in an L-invariant
Wedderburn factor of A.

The assumption that R be L-invariant is needed in the above
theorem. An example can be given of a semisimple derivation D of
an associative algebra A over a field of characteristic 3 such that D
leaves invariant more than one Wedderburn factor of A and D(r) =0
for re R, the radical of A, implies that » = 0. Let F be any field
of characteristic 3 containing roots of the polynomial * + x + 1. Let
G be a cyclic group of order 3, G = <{¢g>, ¢’ = 1, and form the group
algebra F(G) of G over F. Let @ be the quaternion algebra over F,
i.e., @ has basis {1,%,7, k} over F' and * = j? = k* = —1, and ij =
k= —ji,jk=1= —kj, ki =35 = —ik. Let A= F(G) ®,Q. Then A
is an associative algebra over F' of dimension 12. A can also be thought
of as the algebra of 2 x 2 — matrices with entries from F(G). If we
write for example, g7 for the element g & ¢ of A, then A has basis
{1, 91, 9°1, %, g1, 9, 7, 97, 97, k, 9k, o°k}. {1, 7, 7, k} forms a basis for a
Wedderburn factor W of A and {¢g1 — 1,91 —1,9% — 1, ¢*¢ — 4, 97 — 7,
95 — 7, 9k — k, ¢°k — k} forms a basis for the radical R of A. Then
R’ ={0}. Let re R where r = a(91 — 1) + B(¢’1 — 1) + v(¢°k — k) and
By —ay=v—1,a B,7veF. Consider the Wedderburn factors of A
obtained by applying C,_, to W. We get the following bases for the
resulting Wedderburn factors:

LA+Pi+Y9i+7v9t+7+ A —)gj
+ X+ Mg, —t+ (v —Vgi + (=7 — 1)g*
+ @+ 77+ Ygs + Vg%, k) = {1, b, b, k} .
The polynomial X°+ X +1 has three distinet roots in F’ and for each

distinct root v we define a distinct Wedderburn factor of A by the
above. Define a map D of A as follows:

D) =0, D(g1) = g1, D(9°1) = —¢°1, D(3) = gJ ,
D(gv) = g1 + %7, D(¢*1) = —g* + J, D(3) = —91,
D(gj) = —¢* + 93, D(¢%)) = —1 — ¢°J, D(k) = 0,
D(gk) = gk, D(¢°k) = — g’k
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and extend linearly to all of A. Then D defines a derivation of A,
and it is easy to check that for r e R, D(r) = 0 implies that » = 0.
Also, R is not D-invariant since D(gl — 1) = g1 and (91)’) =1¢R.
Also D is semisimple. Consider the Wedderburn factors with bases
{1, b,, b, k} obtained before, where v* + v + 1 = 0. Then a direct check
shows that D(b,) = (v + 1)b, ahd D(,) = — (v + 1)b,. So all three
Wedderburn factors of A are D-invariant, and they cannot be con-
jugate by a D-constant in R since the only such constant is 0.

4. The Lie algebra case.

THEOREM 4.1. Let A be a finite dimensional Lie algebra over a
field of characteristic zero and N its nil radical. Let L be a com-
pletely reducible Lie algebra of derivations of A. If S 1is an L-
nvariant semisimple subalgebra of A and T is an L-invariant Levi
factor of A, then there exists an L-constant x im N such that
exp (Adzx) carries S into T.

Proof. The proof is similar to that of Theorem 3.2, and the
theorem also follows by using Lemma 2.1 and Theorem 4 of [9], where
uniqueness is given in this situation in terms of fixed points of a
group of automorphisms of A.

5. Solvable Lie algebras.

THEOREM 5.1. Let A be a finite dimenstonal solvable Lie algebra
over a field of characteristic zero. Let L be a completely reducible
Lie algebra of derivations of A. If S and T are L-invariant Cartan
subalgebras of A, then there exists x in A™ such that x is an L-con-
stant, and exp (Adx)(S) = T.

Proof. An analogous proof to the theorem for groups in [9] can
be given. Also the result follows by Lemma 2.1 and Theorem 6 of [9].

If F' has characteristic p # 0, there are examples of solvable Lie
algebras with Cartan subalgebras of different dimensions. For arbitrary
characteristic Winter [10] has shown that if G is a completely reducible
group of automorphisms of a solvable Lie algebra 4 and G has no
nonzero fixed points, then A has at most one G-invariant Cartan sub-
algebra. If L is a completely reducible Lie algebra of derivations of
a solvable Lie algebra A over a field of arbitrary characteristic, then
one can adapt Winter’s proof to show that if A has no nonzero L-
constants, then A has at most one L-invariant Cartan subalgebra.
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6. A counter-example. Let A be a finite dimensional semisim-
ple Lie algebra over an algebraically closed field of characteristic zero
and let s be a semisimple automorphism of A. Jacobson [6] shows
that there exists an s-invariant Cartan subalgebra in this situation.
The question arises as to whether or not a uniqueness result holds in
the sense dealt with previously, i.e., given two s-invariant Cartan
subalgebras of A, are they conjugate by an automorphism ¢ of A such
that ¢ commutes with s? An example will be given to show that
uniqueness in this sense need not hold. Let A and s be as above.
Recall that s is an invariant automorphism if it is a product

exp (Adwx)) - - - exp (Adzx,,) ,

where each Adx; is a nilpotent derivation of A. By a result in Borel-
Mostow [2] there exists a Cartan subalgebra H of A which is point-
wise fixed by s when s is also an invariant automorphism. This follows
from the fact that if a regular element is left fixed by S, then the
Cartan subalgebra it determines is left pointwise fixed. So let s be
an invariant automorphism of A such that H is a Cartan subalgebra
of A left pointwise fixed by s. Given any other s-stable Cartan sub-
algebra T of A, if uniqueness held we would have an automorphism
t of A such that ¢: H— T and st = ¢ts. Then it follows that T is
also pointwise fixed by s. However, the following example shows that
a semisimple invariant automorphism s of a semisimple Lie algebra A
need not leave every s-stable Cartan subalgebra pointwise fixed. Let
A be the simple Lie algebra of % x n-matrices of trace 0 over an
algebraically closed field of characteristic zero. Then A has dimension
n? — 1 with Cartan subalgebras of dimension » — 1. Let H denote
the diagonal matrices of trace 0. Then H has dimension » — 1 with
basis X;,2 <1 < m, where X; has 1 in the (1, 1)-position and —1 in
the (¢, 7)-position with zeros elsewhere. Let M be the invertible n X n-
matrix with 1’s in the (¢, ¢ + 1)-position, 1 < ¢ <n — 1, 1 in the (%, 1)-
position, and zero elsewhere. Define an automorphism s of A by s: N—
M—NM for ne A. Then s is an invariant automorphism of A, Jacob-
son [7, p. 283]. Since M™ = I, s has order at most n», and so s is
semisimple. Thus by the result of Borel-Mostow we know that there
exists a Cartan subalgebra of A left pointwise fixed by s. One checks
directly that s acts on H as follows: s(X;) = X;, — X, for2<i1<n—1
and s(X,) = —X,. Thus, H is not pointwise fixed by s, and it also
follows that s has order exactly n.
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LOCAL ISOMETRIES OF FLAT TORI

H. G. HELFENSTEIN

Let T, and T. be two flat tori (i.e., provided with a com-
plete Riemannian metric of vanishing curvature). Since they
are locally Euclidean each pair of points P, P, P;c T, has
isometric neighborhoods. In general it is not possible, how-
ever, to join these separate isometries of neighborhoods to
produce a single isometry T, — T, or T:;— T,; indeed there
may not even exist a locally isometric map (of the whole sur-
faces). Necessary and sufficient conditions for the existence
of such maps are deduced, making use of a recent conformal
classification of maps between tori. As expected ‘‘ample”
and nonample tori behave differently, and the determination
of all local isometries leads to number-theoretic problems.
Finally, for two given tori, the local isometries are compared
with respect to homotopy by analyzing their effect on the
fundamental groups,

Let R* denote the positive reals, H the upper z-half-plane, and
SL(2, Z) the group of all 2 x 2 unimodular matrices with integral
entries acting in the usual way as hyperbolic motions on H. The set
of isometry classes of complete flat tori is parametrized by the 3-
dimensional manifold R* x (H/SL(2, Z)). A point (#*, 7) of this space
represents the isometry class of the torus E?/I", where I" is the group
of Euclidean motions generated by the translations

t() =24+ and ¢t,() ==z + rh,

with ke, (cf. [2]). Instead of “an isometry class of tori” we speak
simply of “a torus”. A torus T = (7%, 7) is called ample if there exists
h et such that both Ri and |A* are rational.

2. Riemannian covering maps. The following statements are
generalizations of results obtained in [1] which can be similarly proved.

(i) For two tori T, = (v}, ;) there exist conformal covering maps
T, — T, if and only if two representatives h; e 7, are equivalent under
the action of the group GL*(2, @) = group of 2 x 2 matrices with
rational entries and positive determinant.

(ii) Lifting any conformal covering T,— T, to the universal
covering planes we obtain

(1) F(z,C,D)=Cz+ D,

with complex constants C = 0 and D.
(iii) For nonample T; only

113
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(2) Ce) ="k, k=142 ---

1

are admissible values in (1).
(iv) For ample T; = (v}, 7;) (2) is replaced by

(3) Clk,, k) = :2 (£, + £:9"s"hs)

1

where h, € 7,, h, = ah,, a an integer, (k,, k,;) % (0, 0) is a pair of arbitrary
integers, and the integers ¢”,s” are determined via the following
relations,

oRh, =L, |np=1,
q s
p,qg > 0,7 >0,s >0 integers,
g.cd. (p,q) =gcd. (r,8) =1,
g =g.cd. (g, 9,9 =4q/g,s" = s/g,
g, = g.c.d. (ay q)’ a = a/g’, q"' = Q/g, ’
gll — g'c'd- (aI’ SI)’ al' — a’/g”, S" — s’/gll .

The following materices are computable from these numbers.

. a, 0 ~ a'ps’, —a’q'r
nefy ) ne(
0, 1 q'’s"”, 0
Our main result is

THEOREM 1. For the existence of a local isometry f: T, — T, the
Sfollowing conditions are mecessary and sufficient:

(1) 7, and 7, are equivalent under GL*(2, Q);

(2a) If T, is nonample, then r./r, must be an integer,

(2b) If T, is ample, then (r)/r})a must be an integer N, and N
must be representable by the quadratic form

(4) det (v, T, + «,T)

with suitable integers k, and k,.

Proof. Since f is a conformal covering we have necessarily (1) by
(i). The following identity is readily verified:

_ (det (T} for T, nonample
 |det (k,T, + «,T,) for T, ample .

T
75

|Cla

(The right hand side gives the number N of sheets of the covering f).



LOCAL ISOMETRIES OF FLAT TORI 115

Together with the condition |C| = 1 for local isometry it leads to
(2a) and (2b). The sufficiency follows from (iii) and (iv).

In both cases we have the following consequences. A flat torus
can cover a countably infinite set of tori by local isometries. For T, =
T, a local isometry is a global isometry, since |C| = 1 entails N=1. In
general the existence of a local isometry T, — T, does not imply that
there is also a local isometry T, — T; this occurs if and only if both », = 7,
and condition (1) are satisfied. (Then the tori still need not be globally
isometric).

3. Homotopy classes. We show how the combination &, T, + «,T,
controls also the deformation properties of our maps. If the constant
D in (ii) is varied the map stays in the same homotopy class, but
maps corresponding to different parameter values £ or (k,, £,) are not
analytically homotopic (i.e., with analytic intermediately stages during
the deformation), since the set of admissible values of C is discrete.
‘We show that they are not even homotopic in the ordinary sense.

Since the fundamental group 7,(7) of a torus is Abelian the set
&7 of homotopy classes of continuous maps T, — T, is in one-to-one corre-
spondence with the set of all homomorphisms 7: z,(T,) —7,(T,). Denoting
by L; and L} (¢ = 1, 2) the path homotopy classes of two generating
loops of 7,(T;), each such 7 is characterized by the integral matrix

& &
- <§4y ‘;3)
=1, R

Say S

7(Ly) = LiLie, (L)) = LiLis ;

e

given by

hence .7 is parametrized by Z‘. The subset {¢e Z*:det& -+ 0} con-
tains those points of Z* representing monomorphisms, hence it corres-
ponds to the homotopy classes containing covering maps.

THEOREM 2. The subset of Z* corresponding to homotopy classes
which contain analytic maps consists of

@) 0 only if 7, and t, are nonequivalent under GL*(2, Q);

(b) the l-dimensional sublattice spanned by T, if v, and 7, are
equivalent under GL*(2, Q) and both are monample;

(¢) the 2-dimensional sublattice spanned by T, and T, if v, and
7, are equivalent under GL*(2, Q) and both are ample.

Proof. We prove only (c); (a) and (b) can be handled similarly.
The generators L;, L. of 7, (T;) are represented in E; by the segments
S;, S! joining the origin to »; and r;h; respectively. The segments S,
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and S] are mapped by F(z; C, 0) (cf. (ii)) into segments from the origin
of E, to the points

E\ry + ’fzs”q"’rzhz
and
— ke’ q'r, + (K.a + K,8"pa’)rh, .

The former can be deformed into the two sides «,7, and £,s"q"'7r,h,
of a parallelogram parallel to S, and S;. The first side represents &,
circuits of L, the second «k,s”q” contours of L]. Similarly for S..
Hence the homomorphism

f*: ﬁl(Tl) I T[l( Tz)
induced by f is determined by

SFe(Ly) = LjtLy=>"""
and

f*(L:) — L;'fz?‘a"Q’L;lflaleczs”pa’ .
This is equivalent to & = £, T, + «,7..
The determination of all local isometries for two given tori is easy

for the nonample case. In the ample case it involves the number of
ways in which N = (}/r)a can be represented by the quadratic form

(4). Since this form is positive definite we have, in conjunction with
Theorem 2:

THEOREM 3. The number of homotopy classes of local isometries
between two flat tori is finite.

We obtain an upper bound for this number as follows: From (3)
we find

RC = T (/fL + K8 2p ) ,

T ’

which shows that RC has the form (»,/r)(v/2¢’), with v an integer.
Substituting this in |RC| < [C| =1 leads to

(5) 7| < 200 0.

Ty

From (EC)* = |C|* — (RC)* we deduce



LOCAL ISOMETRIES OF FLAT TORI 117

112 o1 _ v
(6) £3q'"*s"*(Zh,)* = T g
and
7 K, = T g P
(7) 5 S5

Each of the 2[2¢'(r,/r,)] + 1 integers v compatible with (5) leads
to at most two pairs (£, £,) compatible with (6) and (7). Thus the
number of homotopically different local isometries does not exceed
4[2g"(r,[r)] + 2.
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SOME REMARKS ON CLIFFORD’S THEOREM
AND THE SCHUR INDEX

G.J. JANUSZ

Some time ago Clifford described the behavior of an ir-
reducible representation of a finite group when it is restricted
to a normal subgroup. One interesting case in this description
requires that the representation be written in an algebraically
closed field. In this note we shall consider this case when
the field is ‘““small’”’, We describe conditions under which an
irreducible representation decomposes as the tensor product
of two projective representations. Our approach uses certain
subalgebras of the group algebra and the course of the discus-
sion makes it fairly easy to keep track of the division algebras
that appear. Hence we obtain some information about the
Schur index, We apply this information to the case where the
group is a semi-direct product PA of a p-group P and a
normal cyclic group A. If &% is an algebraic number field
and y an absolutely irreducible character of PA, then there
normal subgroups P, 2 P; 2 P; of P which contain Cr(A) such
that the Schur index m -(x) of y over & divides 2[P;: P;le
where ¢ is the exponent of P/P;. The factor 2 can be omitted
if p + 2. Some conditions are available to restrict the P;
further,

1. Preliminaries. In this section we summarize the results
about the Schur index and Clifford’s theory that will be used later.

Let G be a finite group, & a field of characteristic zero, M an
irreducible & (G)-module with character 4.

(1.1) There are absolutely irreducible (complex-valued) characters
Y =y X Such that 0 = m(y, + -+« + ).

(1.2) Let .& () denote the field generated over & by the
values of y; on G. Then & (y,) is a normal extension of & and for
each ¢ =1, ---, k, there is a unique element of the Galois group of
(1) over # which carries y; to y;. In particular (& (x): &) = L.

(1.3) The integer m is called the Schur index of ¥, over F
and is denoted by m.(y3). The division algebra D = End - (M) has
center isomorphic to .&# (y,) and the dimension of D over its center
is m’.

One remark on terminology. A matrix ring over D is said to
have index m if D has dimension m? over its center.

119
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The proofs of these statements are available in several places; see
for example Curtis and Reiner [2] or Fein [5].

Now let H be a normal subgroup of G. Clifford’s theory tells
how M behaves as a module over & (H).

14) My=mw(V.®---PV,) where the V; are mutually non-
isomorphic irreducible & (H)-modules, conjugate under the action of
G. Here the coefficient # means direct sum of # copiesof V., .-- P V..

(1.5) Let I, ={xeG|aV,= V, as # (H)-modules}. Then there
exists an irredubible .&# (I)-module W, such that (W), = nV, and
the induced module W¢ = M.

In the case where s > 1, I, is a proper subgroup of G and the
original module is induced from the & (I)-module. Hence some ques-
tions can be answered by induction. In case s = 1 there is no induction
but in its place we have the following.

(1.6) Suppose .~ is algebraically closed and s = 1 in (1.4). Then
the representation afforded by M decomposes into the tensor product
of two (irreducible) projective representations of G one of which can
be viewed as a projective representation of G/H. The one represen-
tation has dimension the same as the dimension of V,, the other, has
dimension .

2. Clifford’s Theorem in the general case. We shall continue
to use the notation introduced in §1. However we assume M, = nV
with V = V, in (1.4). We shall made one assumption that will simplify
the following discussion considerably. Namely we assume that &
contains the values of the character y,. Then in view of (1.2) we
have 0 = my where y = y, in (1.1).

Let V have character v and suppose

(2.1) Y =My(@, + +++ + @)

is the decomposition of v into absolutely irreducible characters of H.

In the group algebra # (G) let e¢(f) denote the central idempotent
which acts as the identity on M and such that .& (G)e(d) is a simple
algebra; let e(v) denote the centrally primitive idempotent in & (H)
corresponding to V. The condition that M, = »V implies v(h) =
v(x~*hx) for all A in H and = in G. It follows that e(y) belongs to
the center of & (G). Also e(f)e(v) = 0 because both act as the identity
on V so e(f)e(y) is a nonzero central idempotent in & (G)e(d). By
simplicity we must have e(@)e(v) = e¢(d). Thus multiplication by e(9)
sends the simple algebra .5 (H)e(y) onto the nonzero subalgebra
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Z (H)e(8) of & (G)e(d) both having the same identity, e(d). We note
that by (1.3) and (2.1) the center &© of & (H)e(d) is isomorphic to
Z (). So we have proved

LEMMA 2.2. & (H)e(d) is a simple algebra with center & 1so-
morphic to F (p.).

Each element of G acts by conjugation on & (H)e(d) since e¢(§)
is central and H is a normal subgroup. Thus G also acts on the
center ¥ of < (H)e(f) as a group fixing &# . Let I denote the ker-
nel of the action of G on <&~ so that I is normal in G and G/I is a
group of .F-automorphisms of <2 Let {y;})1 <7 <~ be a set of re-
presentatives of the cosets of I in G and let y, induce the automorphism
o, oh &~.

LEmMmA 2.3. The elements y,e(0) are independent over # (I)e(d)
and F (@e0) = >, F (I)e(d)y,.

Proof. Suppose there exist elements {«;} in .5 (G)e(d) which
centralize < and with the properties

(2) 3 awe0) = 0.
(b) «a; = 0 for each j.
(¢ ) The integer s is minimal with respect to (a) and (b).

Then for any z in & we have >, a;zy; = > 4,2 = 0. Then y; in-
duces o, .~ so

2.4) g%m—mwm:O-

There is no loss of generality in assuming that y, = 1 since a change
of coset representatives can always bring this about. Thus z — 0,(2) =
0 and the relation (2.4) has fewer than s nonzero terms. By the
choice of s it follows a;(z — 0;(z)) = 0 for each j and all z in o= If
7 > 1 then o; # identity so there exists z in % with 0,(z) = z. But
then «; = 0 contrary to (b). Hence s = 1 but this is also contrary to
(b). Thus no such relation exists. Since & (I)e(d) centralizes &
we have proved the independence of the y,e(6) over % ([)e(d). The
second part of the lemma is clear.

COROLLARY 2.5. & (I)e(0) s the jfull centralizer of ¥ in

F (@)e(d) so F (I)e(0) is a simple algebra with center & and di-
mension (y(1)/t)* over .

Proof. The lemma shows the w,e(d) are independent over the
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centralizer of .~ and so the proper inclusion of .&# (I)e(f) into the
centralizer of &~ would make the equality . (@)e(d) = 3, F (I)e(d)y;
impossible. The remaining statements follow from Albert, Theorem
12, page 53 [1] and the facts that (& (@)e(d): &) = x(1)* and
(F: F) =1t (see(1.2) and (2.2)).

COROLLARY 2.6. [G:I] =t so G/I = Galois group (¥[.5).

Proof. The result follows at once if we use (2.3) and (2.5) to
compute the dimension of & (G)e(d) over & along with the fact that
this dimension is y(1)%

Now let y|H = a(p, + +++ + @,). Since § = my and 6| H = nv,
equation (2.1) implies a = nmy/m. Let I, denote the inertial group
of ¢,; that is

I ={&xecG|ph) = p(xhx) for all he H}.
COROLLARY 2.7. I, = 1.

Proof. The irreducible characters of H appearing in y|H are
conjugate under the action of G so that [G: I] =t = [G: I]. Thus it
is sufficient to show I, & I. Let # = & (p,) and notice that in &, (H)
we have e(v) = e(p,) + --- + e(p,) where e(p,) is the central idempotent
of & (H) corresponding to ¢,. Recall from above that e(v)e(d) = e(9)
S0

F(H)eld) = 7 (H)elp) + -+ + el@))eld) —— 77 (H)e@y)e(0)

where R denotes right multiplication by e(p,). The map R is a ring
isomorphism. One point requires further comment. The obvious range
of R is .7 (H)e(p,)e(0) rather than &, (H)e(p,)e(d). However we can
prove these are equal in the following way. Certainly & < &, so
F (H)e(p)e(0) = 7, (H)e(p,)e(d). We prove equality by computing
the “-dimension of both sides. Since multiplication by e(d) gives an
F-algebra isomorphism of % (H)e(p,) onto 7 (H)e(p,)e(0) we see the
latter algebera has & -dimension equal to @,(1) and .#-dimension
to,(1)2. To compute .o*-dimension of & (H)e(p,)e(d) we first note 7=
dimension of % (H)e(v)e(d) equals & ,-dimension of .7 (H)e(v)e(d) be-
cause the latter algebra is obtained by extending the scalar field from
Z to .. Now the algebra .7 (H)e(v)e(d) equals >, 7 (H)e(p;)e(d)
and this has .%-dimension tp,(1)* as we wanted.

For an element z in I, we have z'¢(p)x = eé(p,) so the map R
commutes with the action of I, on the two algebras in question. It
is clear that . is the center of .# (H)e(p)e(d) because .7 ,(H)e(p,)
is simple with center .%,. Moreover I, fixes &, since .&, is the scalar
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field. But R maps & onto .&, since the center is preserved. Thus
I, fixes &¥ and I, & I.
We can now give the analogue of (1.6).

THEOREM 2.8. The representation of I into & (I)e(d) given by
x — xe(f) decomposes into the temsor product of two projective re-
presentations over &, U, and T,, which map I onto F (H)e(0) and
& respectively where & 1is the centralizer of & (H)e(6) in & (I)e(0).
The dimensions over &~ of these two algebras are ¢, (1) and ao* re-
spectively.

Proof. Each element of I acts by conjugation on & (H)e(d) in
such a way that the center is left fixed. Every such automorphism
of this simple algebra is inner. Hence for each # in I there is an
element U, in & (H)e(6) such that x—‘wx = U;'wU, for every w in
Z (H)e(0). Clearly the element a(x, y) = U,U,U;, induces the identity
automorphism so a(x, y) is in & and it follows that x — U, is a pro-
jective representation of I with factor set & having values in <~

Now let =" denote the centralizer of & (H)e(d) in & (I)e(y). By
Theorem 13, page 53 of [1] it follows

(2.9) F (De()) = 7 (H)e(0)- ¢ = & (H)e(0) ® &

because .&# (H)e(d) and & (I)e(f) both have center &7 We also know
then that = is simple with center &7 Set T, = aU;' so T, is in &".
Then x— T, is a projective representation of I with factor set a
and ze(d) = U, Q T, as required.

We know (& (H)e(6): .r) = ¢,(1)* and from (2.5) that

(F (De(0): ) = D)/D)* .

We also have x(1) = atp,(1) so that we easily obtain from (2.9) the
dimension of &~ over . is a’.

CorROLLARY 2.10. If & (@) = .5 then the algebra & (G)e()
decomposes as the tensor product 7 (H)e(0) Q = and the represen-
tation offered by M decomposes as the tensor product of two projective
representations into & (H)e(d) and & respectively.

Proof. Since & (p) = .» we have & = & and so G =1 by
(2.6).

3. The Abelian case. We continue with the same situation
except that we now suppose G/H is abelian.
Since I is the subgroup fixing ¢,, there is an absolutely irreducible
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character { of I such that {¢ =y and {|H = ap,. Now I <{ G so that
in fact we obtain

(3.1) X1I=Ct - + Lo G H = ag;

where the {; are irreducible characters of I conjugate under the action
of G and ¢ = (..

LEMMA 8.2. There exists a subgroup J of I containing H and
an irreducible character © of J such that {|J =at and 7 = al.
Then also | H = @, and [I: J] = d’.

Proof. Let 4 be the set of linear characters, A, of I/H such that
v =1 and set J = Nker\ as A runs through 4. We show this J
has the required properties.

Let p denote the character of the regular representation of I/H.
It is a straight-forward computation to verify that ap! = (o since
both sides are 0 off H and equal to a[l: H]p, on H. By Frobenius
reciprocity ¢ has multiplicity a in ¢! and so has multiplicity «* in {p.
But p is the sum of the distinct linear characters of I/H and so
there are exactly a* linear characters )\ such that {» = {. Hence
| 4] = a*. Note that 4 is also a subgroup of the group of linear
characters of I/H so by the duality theory of abelian groups we obtain
[L:J]=a*= 4]

Now let 7 be an irreducible character of J contained in {|J with
multiplicity b say. If [I:J] is a prime then either 7/ = or 7/ =
¥, 4+ LW, + --- where the ¥; are the linear characters of I/J. Because
I/J is abelian we use induction to find in the general case that ¢’ is
a sum of characters (¥ where ¥ is a linear character of I/J. But
every such linear character is in 4 so it follows 77 = b{. Also there
is an integer ¢ such that ¢ | H = ¢p, because 7 | H is contained in { | H =
ap,. Now compute degrees of the characters involved.

(1) = [ I: J|z(1) = a’epi(1) = bL(1) = bap,(1) .

So we obtain ac = b.
The decomposition of £ on J has the form

ClT=b(T+ 7o+ - + T4
so we find
L) = ap,1) = bkz(1) = bkep,(1) .

Thus @ = bkc and along with ac =b we find k=¢=1 and a =10
which proves the lemma.
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Notice that 7| H = ¢, implies that ¢ has precisely ¢ conjugates
under G,t =7, -++, T, and the numbering can be arranged to satisfy
;| H = ¢;. Then also y|J = a(z, + --- + 7,). We shall make use of
this in the next result.

LEmmA 3.3. & (J)e(d) is a stmple algebra with center <~.

Proof. The ring & (J)e(f) is semi-simple so simplicity will follow
if we show it has only one irreducible module (up to isomorphism).
Any irreducible & (J)e(f) module, W, is isomorphic to a direct sum-
mand of M, because M is the unique isomorphism type of & (G)e(d)
module. Let p¢ be the character of W. The character v must appear
in p| H since v is the only character of an irreducible & (H)e(6)
module in M. Thus p| H contains each ;. Moreover the absolutely
irreducible characters in ¢ must appear in y|J. By the remark above
the lemma, every 7, appears in . Thus g is invariant under G and
it follows M, = k- W for some k. Hence & (J)e(#) has only one ir-
reducible module. We find also that .& (J)e(d) is isomorphic to
& (J)e(y) and its center is isomorphic to & (r). The equations {|J =
at and 7/ = al imply & () = &~ ({). But then & ({) is isomorphic
to the center of & (I)e(d) so by (2.5) and (2.2) F ({) = & (p.)-
These are isomorphisms over &% so in fact 7 () = & (p,) because
both are normal extensions. Hence the center of & (J)e(6) is isomor-
phic to <. Because of the inclusions

S (He()s & (J)e@)

and the fact that .2~ centralizes & (J)e(d) we have &~ = center
 (J)e(d).

Now that we know & (I)e(d) and .5 (J)e(#) have the same centers
we obtain a decomposition

(3.4) F(De) = = (N)e(0)- &, = .5 (J)e(0) @ &,

where %, is the centralizer of & (J)e(d). If we apply (2.8) with J
in place of H we find dimension &, over .& is a®. This is the same
a that appears for H because y|J = a(t, + --- + 7,). It is clear that
& (the centralizer of .7 (H)e(d)) contains &, and so by dimension
count we find %, = %°. From this it follows that & (J)e(6) =
& (H)e(d). This makes it possible to adjust the projective represen-
tations U and T so that U, = ze(0) if x is in J and T is constant on
the cosets of J.
We are now able to identify the algebra = .

ProrosITION 3.5. Let &, denote & (p,). The algebra & s iso-
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morphic to a twisted group alegebra < ,(I/J), for some factor set B
on IlJ with values in 7.

Proof. Recall that the twisted group algebra & ,(I/J), has a
basis {t,|xe I/J} such that ¢, = B(x, y)t,,. The modification of U
above allows us to view T as a projective representation of I/J. Then
the correspondence ¢,-— T, for x in I/J induces a homomorphism from
F1(I/J)s into =" provided we have fixed identification of &, with
< and 8=« on I/J. If we show this homomorphism is onto =,
we will be finished because both algebras have dimension a* over .&#..
From equation (3.4) it follows

Z (Le(d) = I;/J F (N)eO) R T,
becase the right side contains ¢ along with every ye(@) for y in I.
It follows that the T, span & over &~ (because the tensor product
is taken over &) and hence the homomorphism above is onto % .

Let A denote I/J. The fact that &#,(A), is simple with center
&, imposes restrictions on A and one can say quite a lot about .%(4),.
We shall give a brief sketch of the results of DeMeyer [3] which are
relevant.

Consider the function 7(a, b) = B(a, b)/B(b, a). Because A is abelian
and B is a factor set, it follows that 7 is a (multiplicative) skew
bilinear form from A x A to the multiplicative group of &#,. This is
n(ab, ¢) = n(a, c)n(d, ¢) and n(a, b) = 7(b, a)~'. Because .#, is the center
of #(A); 1 is nondegenerate; that is 7(a, A) = 1 holds only for a =
1. In a way similar to the method of decomposing a vector space
admitting a skew bilinear form, one decomposes A into the direct sum
of ‘“hyperbolic planes’’. The result is the following.

THEOREM (DeMeyer [3]). Let 7 ,(A); be central simple over 7.
Then A decomposes as

A= (Cu X Clz) X (Cm X sz) Xoeee X (Cn X Cr2)

where C;; is cyclic of prime-power order and C;, = C,,. The function
n remains mnondegenerate on C; X C;,, and the subalgebras A, =
F(C;, X Cy)p are central simple over F,. Finally we have the de-
composition

T =AU ®Y, .
This decomposition allows us to get information about the index

of the algebra &7 (A4);. We must now restrict & to be an algebraic
number field. Now the Brauer-Hasse-Noether theorem can be applied.
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It tells us the index of a finite dimensional division algebra over &
is equal to its exponent; that is the order of its class in the Brauer
group of the center of the division algebra.

The index of each ¥; is a divisor of |C;, | since dimension of %I,
over &, is |C; [*. Thus the index of .&#,(4), divides the least com-
mon multiple of the indices of the 9; since the exponent of
AR - QU divides the 1l.c.m. of the exponents of the ;. This in
turn divides the l.c.m. of the numbers |C;, |1 =< 4 < r and this number
is precisely the exponent of A. So we have the

ProposITION 3.6. The index of the algebra = divides the ex-
ponent of I/J.

THEOREM 3.7. The Schur index m_-(x) of x divides
[G: IN-L.em.{m_ (p,), exponent (I/J)}.

Proof. We have &, ® .% (G)e(0) equivalent to & (I)e(d) in the
Brauer group of &, because by Theorem 16, page 56 of [1],

QT (@e0) = 2(F) Q F (1)e®) -

Hence by Theorem 20, page 59 of [1] the factor by which the index
has been reduced after extending the field to &, must divide [#: . & .
By (2.6) this number is [G: I] so the index of .&# (G)e(d) divides [G: I]
times the index of # (I)e(d). By the decomposition of (2.9) we see
the index of & (I)e(f) divides the least common multiple of the index
of .# (H)e(6) and the index of z”. The index of & (H)e(d) is m - (p,)
so the result follows from (3.6).

There is a theorem of Brauer [2, Theorem 70.28] which shows
that certain questions about the Schur index of an irreducible character
for a finite group can be reduced to questions about .#-elementary
groups. Recall that among other things an .#-elementary group is a
semi-direct product PA of a p-group P and a normal cyclic p’-group
A. We now consider the case where G = PA is such a semi-direct
product (not necessarily .#-elementary however). Let H = Cy(A4) so
that H is normal and G/H is abelian (because A has an abelian
automorphism group). Let y be an absolutely irreducible character of
G. In this situation we have the following.

THEOREM 3.8. Assume & 1is an algebraic number field. Then
there exists a chain of normal subgroups

G2G,2I2J2H
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such that the Schur index of y over & divides 2[G,: I]-exponent (I/.J).
The factor 2 can be omitted if p == 2 or iof p = 2 but I = J.

Proof. Since the Schur index will not change, assume & =
Z (y). Let M, be an irreducible & (G)-module with character §, =
my. Suppose M,|H = f(V,D --- @ V,) with the V; distinct irreducible
& (H)-modules. Let G, = {xeG|xV, = V, as &% (H)-modules}. Then
there is an irreducible & (G,)-module W, such that W? = M, and
W, |H = f-V,. Since G/H is abelian we know G, << G so M, |G, =
W, --- P W, where the W, are mutually nonisomorphic irreducible
Z (G))-modules. Now for any nonzero ¢ in End .- (M, we have
o(W) = W, and since the W, are nonisomorphic, 6(W,) = W,. Hence
we imbed End . (M,) into End .-,(W,). Conversely the equation
W = M, provides a natural imbedding of End .- (;,(W,) into End_. ) (M,).
Hence these two division algebras are isomorphic. Let y |G, contain
the character { which also appears in the decomposition of the
character for W,. We have m . (y) = m~({) since these numbers re-
present the indices of the respective endomorphism rings above. More-
over & ({) is the center of End .- (W, so & = 7 (). We may
now apply (3.7) to &, G,, and W, in place of &, G, M and obtain

m () | {G.: I l.c.m. {exponent (I/J), m_-(p,)}

where again ¢, is an irreducible character of H contained in x| H.
But H = C,(4) x A is a nilpotent group so by Roquette’s theorem
[6], m (@) =1 or possibly 2 in case p = 2. Even when m-(p,) = 2
the l.c.m. of exponent (I/J) and m .(p,) will be exponent (I/J) pro-
vided I # J. So the result follows.

COROLLARY 3.9. Ify|H =a(p, + -+ + @,) then m .-(¥) | 2at where
the 2 can be omitted if p + 2.

Proof. If | H=oa(p, + +++ + ) then {|H=a(p, + -+ + p,)
where r|t. Thus |I: J| = o* and exponent (I/J) divides a. The de-
finition of I yields [G;:I] =7 so [G,:I]|t. The result now follows
from the theorem.

REMARKS. (a) It can happen that m . (y) = at. This is the
case when y is an irreducible character of degree 3 for the metacyclic
group <w, y> where &’ = y° = 1 and y~ 'y = 2.

(b) The application of DeMeyer’s theorem shows the interest in
twisted group algebras, & (G)., which are simple with center .. A
discussion of groups G which admit such a factor set a can be found
in [4].



SOME REMARKS ON CLIFFORD’S THEOREM AND THE SCHUR INDEX 129

BIBLIOGRAPHY

1. A.A. Albert, Structure of algebras, Amer. Math. Soc. Colloquium Publications,
24 (1939).

2. C.W. Curtis and I. Reiner, Representation theory of finite groups and associative
algebras, Interscience, New York, 1962.

3. F. DeMeyer, Galois theory in separable algebras over commutative rings, Illinois J.
Math. 10 (1966), 287-295.

4. F. DeMeyer and G.J. Janusz, Finite groups with an irreducible representation of
large degree, Math. Z. 108 (1969), 145-153.

5. B. Fein, Representations of direct products of finite groups, Pacific J. Math. 20
(1967), 45-58.

6. P. Roquette, Realisierung von Darstellungen endlicher nilpotenter Gruppen, Archiv.
der Math. 9 (1958), 241-250.

Received September 9, 1968.

UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS






PACIFIC JOURNAL OF MATHEMATICS
Vol. 32, No. 1, 1970

SYMMETRY AND NONSYMMETRY IN THE GROUP
ALGEBRAS OF DISCRETE GROUPS

JoE W. JENKINS

A Banach *-algebra 7/, with identity e, is symmetric if
zx* + ¢ is regular for each x in Z7. In this paper we gen-
eralize certain conditions on a discrete group GG that are known
to be sufficient to ensure symmetry of ~/,(G). Also we define
semi-symmetry and derive an inequality that must be satisfied
if ~.(G) is not semi-symmetric. Finally we show that if a
group contains a free subsemigroup on two or more generators
then /,(G) is not symmetric.

Let G be a discrete group. «(G) the group algebra of G. 4(G)
is a Banach *-algebra with involution defined pointwise by x*(g) =
2(g~") and with convolution as multiplication. The mapping g — 4,
where d,(s) = 0 if s g and 0d,(9) = 1, is a homomorphism of G into
4(@). In general, we will not distinguish between g and J,. Note
that if x e /(@) then x can be written in the form z = Zx(g)g

27 (@) (or 57°) will denote the real linear subspace of hermitian
elements of 4(G). S#(G) will be the subspace of S97(G) consisting
of all elements z such that

N(x) = {g | z(g) = 0}

is finite.
Let .9 denote the natural cone in 4(G), i.e., 9% is the cone

generated by all elements of the form xx* where x € 4(G). Denote
by % (5#) the continuous linear functionals defined on £#, non-

negative on .9 N 57 and one at the identity.
The right regular representation of A(G) over 4(G), 2 — R,, is

defined by: R.(y) = yx, for each y e 4(G).

DEFINITION 1.1. 4(G) is semi-symmetric if z € 5#(G) and sp (R,) =
0 imply (x + €)' € 4(G).

LEMMA 1.2, If 4(G) ts semi-symmetric then
(1) sp(xx*) =0 for each x tn 4(G) with N(x) finite, and
(ii) if v e 2Z(G) then sp (x) s real.

The proof of this lemma is essentially a duplication of the proof
of the corresponding results for an arbitrary symmetric Banach
*-algebra.

131
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Let P;(G) be the subset of S5#5(G) consisting of all elements with
nonnegative spectra. We observe that Mee P,(G) if A >0 and
x € P/(G), and that, since 4(G) is semi-simple,

PHG) N —PAG) = {0} .
LEMMA 1.3. If 4(G) is semi-symmetric then P,(G) is a cone.

Proof. We need only show that x + ye P,(G) if xe P/(G) and
y e P/(G). Letxe Py(G)and y € P,(G). Then sp(R,) = 0 and sp(R,) =
0. Thus R, and R, are positive definite operators on 4(G) and hence
also R, + R, = R,,,. Therefore sp (R,.,) = 0 and thus

@+y+eteal) .
If @« >0 then a~'x and a~'y are in P,G). Hence
(e +a’w +a’y)™ =al@e + 2+ y) € 4(G) .

Therefore —a ¢ sp (x + y) and, since sp (x + y) is real, sp (x + y) = 0.
If 4(G) is symmetric, then for each x e 57 (G)

sp (x) < {f (@) | fe F ()} -

(This result is implicit in the usual proof of Raikov’s Theorem, see

[7D). If 4(G) is semi-symmetric an abbreviated version of this result
can be proven.

LEmMMmA 1.4. If 4(G) is semi-symmetric and ¢ € 575(G) then
sp (x) C {f(x) [ fe F(22)} -

Proof. Let xe 57(G) be given. Denote by .. (x) a maximal
commutative *-subalgebra of 4(G) containing 2, and by 4(_(x)) the

Gelfand representations of _#(x). Itis well known that if ye _~ (x)
then

SP_s ) (¥) = 8P L&(¥)(=8DP (¥)) .
Since 4(G) is semi-symmetric, P,(G) is a cone. Hence, if we set
A (X)) = A (%) N H(G)

then P,(G) induces an order on . Z;(x). Furthermore, if for o € 4(_# (x))
we set 0; = 0,_,.,, then d, is positive with respect to this order. By
the Monotone Extension Theorem, d, has a positive extension to
4Gy if

(y + ;) N PAG) # @
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is equivalent with
(Y + . 7)) N —PAG) # @

for each ye o7 (G).
Assume ze (y + _Z(x)) N P;(g). Then there is a 2’ e _Z;(x) such
that y + 2’ € P(G). Hence

sp (y + 2') < [0, a]
for some @ > 0. Let 2" =2’ — ae, then 2"’ e _Z(x) and
sp(y +2")=sp(y+2 —ae) =sp(y +2)—ac[—a,0].
Thus
Y+ . @) N —PG) # @ .

A similar argument establishes the converse.
Let d, be an extension of 4, given by the preceding argument.
If ye 2#(G) then y — v(y)ee —P,(G). Hence d,(y — v(y)e) < 0. But

o,y — v(y)e) = o,(y) — v(y) .
Thus 6,(y) < v(y). Similarly, 6,(y) = —v(y). Therefore

10,() | < v() = |yl

for each ye 2#5(G). Since 27(G) is dense 27, 4, has a continuous
extension, f;, to 22 Since the closure of P,(G) contains the natural
cone .77, f,€ A (7).

Now, if xe 27(G) and aesp(x) then there exist an _# (x) and
o€ (. #(x)) such that d(x) = @. But then f;(x) = 6(x) = . Hence

sp (x) < {f(x) | fe A ()} .

It is natural to ask how symmetry of 4(G) and semi-symmetry
of /(G) are related. The following theorems provide a partial answer.

THEOREM 1.5. Assume that 4(G) ts semi-symmetric and that
whenever lim, x, = x for {x,} C 97(Q), lim, v(x,) = v(x); then 4(Q) s
symmetric.

Proof: Let xe 4(G) be given and select {x,} C 2Z7(G) such that
lim, x,x} = xx*. Then, lim, v(z,x}) = v(xx*). Hence, if ¢ > 0 is given,
there is a k such that

v(x,xr) > v(xx*) — ¢/2

and
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|| s — ™| < ¢e/2.
But, by Lemma 1.4, there is an f, € #,(5#) such that
Sol@wp) = v(@ei) .
Since each fe 7,(2#) has || f|| =1,
flral — ax*) = flaear) — flew™) <e/2.
Thus
So@a®) > fo(xxk) — &/2 = v(x,xf) — /2 > v(xa™*) —¢.

Hence

sup f(xx*) = v(xax*)
fesolo)
for each x < /(g), and hence 4(G) is symmetric.

If 4(G) is symmetric then, by Raikov’s theorem, (c.f. [8]), the
spectral radius of each element of the form xa* is equal || T...| for
some *-representation x — T,. However, this *-representation need
not be the right regular representation over 4(G). If we assume G
is amenable, then this latter representation weakly contains all other
*-representations, ([6]), and hence the spectral radius of xxz* is given
by || R..«||. Using these facts we can prove

THEOREM 1.6. If 4(G) is symmetric and if G is amenable then
4(G) is semi-symmetric.

Proof. Suppose that xe 57(G), —lesp(x) and sp (R,) is non-
negative. Let y = ¢ — v(R,)e then

—1 — v(R,)esp(y)

and
sp (R,) = sp (R, — v(R.)e) C [—v(R,), 0] .
Therefore
v(yy*) = v(’) = (1 + v(R,))*,
and
V(R,,) = v(R)) = v(R,)’
But

”(Ryu*) = “ Rw‘ || ,

and, since G is amenable,
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”Rw* ” 2 ” Tﬂy* ”
for any *-representation z — T,. Therefore
v(yy*) = [1 + v(R)] > v(R,)' = || Ry || = || Ty ||

for any *-representation z — T,. This contradicts Raikov’s criteria
for symmetry. Hence, if sp (R,) is nonnegative, then —1 ¢ sp ().

REMARK. The dual hypothesus at Theorem 1.6, namely, that
4(G) was symmetric and that G was amenable, was necessary.
Although all known pertinent results tend to indicate that symmetry
of 4(G) implies amenability of G, we do not know this to be true.

2. A sufficient condition for semi-symmetry. If H is a sub-
group of G then there is a cannonical embedding of 4(H) into
4(@). We will not distinguish between an element of 4(H) and its
image in 4(G). Since for each x ¢ 4(H), Sp4um(®) = sp4w (@) (cf. [3]),
we are assured that this laxity will cause no confusion when making
spectral considerations.

Let m(G) be the space of bounded functions defined on G. The
mapping 6 — 6, where

(@) = X, 0(9)(9)

for ze 4(G), is an isometric isomorphism of m(G) onto A4(G)*.
For AcC G, let (A) be the group generated by A.

LEMMA 2.1. Let x€ 4(G). Then x has no left inverse if, and
only tf, there i1s a 6 € m({N(x))) such that ||0] =1 = 0(e) and the
null space of 0° contains the left ideal gemerated by x.

Proof. Assume z has no left inverse in 4(G). The preceding
remarks imply that @ has no left inverse in 4(N())).

Let L be the left ideal in 4({N(x))>) generated by x. Now, if
Y€ 4(KN(@)) and ||y ]| <1, then

e+y)'t=e+ "Z;(—l)”y”

is in 4(KN(xz))). Hence, if ||e —z]|| <1, set y = —e + 2, and then
= (e + y)* is in 4KN(x)>). Thus

LnfyeaKN@p) [lle -yl <l}=2,

and the distance of L from e is at least one. Hence the desired 6°
exist.
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The converse is obvious.

Let ze 5#4(G) such that xz + e¢ is singular and sp (R,) is non-
negative. Let A = N(z) U {¢}, H =<A)> and s(n) = ¢(4"), the cardi-
nality of A*. Enumerate the elements of H in the following manner:

{gu gz ** gs(l)} =A

and

— 1
{Gstmrsrr =%y Goman) = AT ~ A"

for n =1,2, ---.
Since x + ¢ is singular, and x + ¢ is hermitian, © + ¢ has neither
a right nor a left inverse. Hence there is a 6em(H) such that
f(¢) =1 =1/6|| and the null space of §° contains L, the left ideal
generated by « + ¢. For 6° to vanish on all L, it is necessary and
sufficient that, in particular, 6°(g;x) = 0 for each g, € H.
Let 6, = 6(g;) for 1 =1,2, -.-, and for each positive integer =,
define 8(n + 1) in 4(H) by
0, if 1<1<s(n+1)
o(n + 1)(g) = |
(D6 = 10 it i > stm+ 1)
Then
[[Bere(@(m + 1)) [ = [[0(n + 1) [} + 2(R.(6(n + 1)), 0(n + 1)) .
But sp (R,) = 0, hence
(R, (0(n + 1)),0(n + 1)) =0.
Therefore
2.2 | R, (0(n + 1) [li = [[0(n + 1) |2

forn =1,2, .-..
Now, if g, A" then

N(g;(x + e)) C A"A = A" .
Thus

R...(0(n + 1))(g5) = [0(n + 1)@ + ¢)](9:)
=2 [0(n + D)(g)]l(@ + )(95'9:)]

s(n+1

5 0, + e)(gr95)]

Il

_ 8(:2:) 0,l9:x + €)(9,)]
= 0"(gx + ¢)) = 0.
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If g, H~ A™** then
N(g(x + e) c H~ A,
Hence again
R, (0(n + 1))(g:) = 0.

Therefore

n+2)

IR0+ 1) [ = "5 | Reri0n + D)) -

J=8(mn)
But for g, A" ~ A",
N(g;(x + e)) T A" ~ A",
Hence
‘Rxfl-e(a(n + 1))(91) |2
s(m41) 2
= (S 10dge + o))
= +

s(n—1)+1

= (L8 Jot+ o F) 5 dor)

s{m—

s(n-+1)
slle+ell > [di6f
i=8(n—1)+1
where d;; = 0 if g;(x + e)(9;) = 0 and one otherwise. Note that for
fixed j, d;; # 0 for at most ¢(A4) i’s. Therefore

(n+2)

IR0+ )i S (lo+els 'S d00)

j=s(n)+1 i=s(n—1)

s(n-1)
<o) llo+ell 3 [0

=s(n—1)

We also have
s{n-+1)
[[60(n + 1) |3 = JZ‘, 16;" .

Combining these results by 2.2. we have

$(m—+

s(n+1) s(nr1)
(2.3) c(A) [|@ + ells (Z. 10;1°= >, 16;F
j=8(n—1)+1 =1
for each n = 2,3, ---.
We compile the above argument in

THEOREM 2.4. If 4(G) is mot semi-symmetric then for some
x e S4(G) there is a 6 = (0;) e m(KN(x))) such that |[0] =1 = 6(e)
and (6;) satisfies 2.3.
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3. Condition SS. For a given G let °(G) denote the family
of finite symmetric subsets of G containing the identity. Adel ‘son-
Vel skii and Sreider, [1], considered the following condition on a
group G:

(A — S) for each Ae &7 (G)

¢(A™) = o(d™) for any d > 1.

They proved that if G satisfies (A — S) then G is amenable. Hulanicki,
[5], later showed that if a group satisfies (A — S) then zx* + ¢ is
regular for each x in 4(G) with finite support.

We now define a condition which is weaker than (4 — S):

(SS) for each Aec <“(G)

lim inf, ¢(A"* ~ AM" < 1.

It is not difficult to show that if G satisfies (A — S) then G satisfies
(SS) and that if G satisfies (SS), G is amenable. We also have

THEOREM 3.1. If G satisfies SS then 4(G) is semi-symmetric.

Proof. If 4(G) is not semi-symmetric then by Theorem 2.4
there is a 6 = (0;) e m({A)), where A = N(z) U {e}, such that [[¢| =
1 = 6(e) and

s(n+1) s(n+1) s(n—1)
cAlle+ely > [6;F= X [0;F= X 16,
j=s{n—-1)+1 =1 j=1

for each m = 2,83, ..., Let o' =c(4) || + ¢el]}, a = (&’ + 1)/a’, and

5(2)

b= 2\ 10;F.

i=l

Then, since 6(¢) =1 and ec 4,5 > 0. We have

s(4) 8(2) 5(4)
X0, = 3160+ > (6, ab;

J=5(2)

and if

8(2

2

)

10 = (a)"~'b

it

then

8(2n+2) 8(2n

S0 =301+ S 10,02 @ + Ma)l@b] = (@)D -

p 7=1

Therefore
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s(2n+2

)
5105 2 (@)
for n =2,3, ---.
Since ||4]| =1; |]6;] <1 for each j. Hence

s(2m+2)
2 |0j |2 < C(A2n+2 ~ Azn) .

j=s(2n)+1
Consequently
c(A™7? ~ A = (1/a’)a™b .
forn=2,8, --.. If B= A*then Be .&”(G) and lim inf, C(B"*' ~ B") >1.

This contradiction implies 4(G) is semi-symmetric

4. Condition (C’). Hulanicki [5] proves that 4(G) is symmetric
for any group G satisfying:
(C) there is a k such that for any finite set AC G

sup C(AtlAtZ e Atn) = kmf,i(m’ ’)’b) ’

where the least upper bound on the left is taken over all sequences
(t, ts =+, t,) € G* where at most m of the t/’s are different from the
identity, and the function f,(m, n) satisfies the condition f,(m, n) =
o(c") for any ¢ > 1, uniformly with respect to m < n. We will obtain
the same result for any group G satisfying the condition

(C") there is a k such that for each A e .¢7(G)

liminf, sup [c(4s,As, --- As,)]'" < k .

(s;) G
LEMMA 4.1. If G satisfies (C') then G also satisfies (SS).

Proof. If G satisfies (C’) then for each A e .&”(G)
lim inf, ¢(A™)"'" < k .
If for some B e .o”(G),
liminf, ¢(B")'" =6 > 1,
then choose a positive integer p so that 6> = k. Then
lim inf, ¢((B?)")"» = [lim inf, ¢(B?™)"*"]* = o* = k .
Thus, for each Ac .o/ (G),
lim inf, ¢(4A™)'* < 1.

Now,
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c(A" ~ A" ") < ¢(A™)
for each n = 2. Hence
lim inf, ¢(A™ ~ A" < 1

for each A e .<7(G).

LEMMA 4.2. Assume G satisfies (C') with constant k. Let x
and y be elements of 4(G) such that N(x) is finite. Then

vey) = kllyll Il B.1I .

Proof.

Tl =ll@Xy@Em [ =1 > us) - ys)os - w5l
= 2 Nys) ey s - ws,
= sup [l@s,ceos,fl 3 Y)Y ]

An application of Schwarz inequality gives
[[@s, - @s, || < e(N(@s, «+ - w8,))"" [[ s, « - @S, [y
For any z¢e 4(G)
IR = sup (| R.@) Il = [|RA) |l = |21l
Therefore
sy s @s,[le S | Bosyoooss, || = [[Bosy Ry, + o+ By || = || B
Also,
N(xs, +-- xs,) C N(s,) -+ N(xs,) = N(x)s, - -+ N(@)s,, .
Therefore, if we set A = N(x) U {e} U N(x)™*,
[|ws, «+- s, || < e(ds, -+ As,)* || R, ||” .
Finally
2yl Ty =1yl

o
Consequently

1@ | S [y P I Bl sup_ clds,--- As)™*,

and hence
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v(zy) = liminf, || (@y)" |["* < ||y ||| R, || lim inf, sup ¢(4s, --- As,)""
<kllyllllR.I . oo

We are now ready to prove.
THEOREM 4.3. If G satisfies (C’) then 4(G) is symmetric.

Proof. If 4(G) is not symmetric, then by Raikov’s Theorem
(c.f. [8], p. 307) there is a yy* € 4(G) such that

r= Sup )f(yy*) < v(yy*) .
€5 o7
We may assume that;

inf fyy*) =s > 0:
feFg(x)
if not we consider the element yy* 4 ae for some a > 0.

Let «© = yy* and choose % and v so that 0 < u < s and r < v < v(x).
Then

0<u< floey <wv <y

for each fe . 7,(57).
Let k& be the constant of (C’), ¢t > 1 and p be a positive integer

such that y(x)? > ktv?. Pick Ae .&”(G) so that, if z is « restricted
to A then

(i) 0< f(r) <w, for each fe &,(5#) and

(ii) [lz7ra” || < t.
To see that (i) is possible merely note that by taking A sufficiently
large, ||z — x|/ is less than both » — » and w. Then, since each
fe 7,(27) is of norm one, the condition is satisfied.

For (ii) we first observe that by Lemma 1.4 and 4.1

sp (2) C{f(2) [ fe ()} (0, v).

Thus z is regular, and for fixed p, 27?2 converges to the identity as
A increases.

We now apply Lemma 4.2.
v(ar) = vz "a?)] < k|| z7%a? || || B || .
But

[[Roll = ||R.I?
and

IR, || =vR,) =y <v.

Therefore
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y(x?) = v(x)? < kto? .
But p was chosen so that
v(x?) > kto? .
This contradiction implies that 4(G) is symmetric.

5. Nonsymmetric group algebras. In [3], Frey asked if there
are amenable groups with nonamenable subsemigroups. He proved
that if such groups exist they must contain a free nonabelian sub-
semigroup on two generators. Hochster [4], has recently presented
an example of such a group. In [7], a similar example is presented,
and it is shown that the algebra of this group is nonsymmetric.
The following theorem shows that all such groups have nonsymmetric
algebras. The proof employs the well known fact that in a symmetric
Banach *-algebra the hermitian elements have real spectra (c.f. [8]).

THEOREM 5.1. Let G be a group generated by a and b such
that S, the semigroup generated by a and b is free. Then, 4(G) s
nonsymmetric.

Proof. We will show that 67 € sp (), where
x =aa -+ Bb + rab + Nb'at + Bb + @at,

if 0o = aB/x and | M| Z max {3|«|,3|8]|}. To accomplish this we will
construct a nonzero § € m(G) such that 6" vanishes on the left ideal
generated by y = x — die.

Let S, =SU{e} and S, =aS,U{e} Ubd'S;'. Define 6(g) = 0 if
geS,. Let A= Ny and S’ =S, Ubd 'S, U Sy UaS;:. Direct com-
putations yield:

Agms1:/—_®‘:'g€S’-

Enumerate the elements of S' as follows: s, = e and for n =
1,2, -.4,8, =as,; Sy =bs,; t, =b7"sy,2 s, =s,andforn =1,2, ...,
S_gp = @ISy S_gurn = 07'S_,5 o, = AS_garny.

One can easily verify that the homogeneous equations 6°(ys;) =
0, 312, v+#0, and 6°(yt;) =0, —2=<7 <2, § # 0, have a non-
trivial simultaneous solution.

For n a positive integer,

N(yt'n) = {82n7 84m a/tnv a—ltn! bﬁlaﬂltn! b_ltny tn} *

If at, = ab™'s,, € aS, then b~'s,, € S, which is impossible. Similarly, if
at,€b”'S;* then o' = a~'s~* for some seS. Since S is free in G,
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this also is impossible. Certainly at, # e. Thus at,¢S,. Similar
arguments show that

{a"*t,, b'a"'t,, a'a 't,, t,} NS, = D .
We also have
NW5,) = {Sonr Stnsts Sintar Sny @18,y 078, b'a™s,) .
For n = 3,
N(ys,) NS, = N(ys,) N (aS, U {e}) .
If n is odd then
N(ys,) N Sy C{Senr Sintr 078}
while for n even
N(ys,) NS, C {Sany Sint2r @78y, 07’78,y S,}

Note that not both a's, and b~'a='s, are elements of S,. Also,
a~'s, = 8, €S, implies m < n and b~'a~'s, = s, €S, implies m < n.

Assume now that n» = 3 is given, and that 6(s;) has been defined
for 1 < k < 4n such that |4(s,)| <1 and

0*(ytn) = 0 = 0°(ysn)
for m < n. Now
0" (yt,) = BO(s:,) + M(8,,)
and

00(?/870) = ae(s%b) + )\’0(84n+2) + c_rﬁ(a_lsn) + Be(b——lsn) + Xa(b—-la~1sn)
+ 010(s,) .

Let
0(8471.) = (_ 18/)")0(82%)
and

0<S4n+2) = (—X’/)\’)a(b—la’—isn)
—1/Mab(s.,) + @b(as,) + BO(Ds,) + ds0(s,)]

We consider the two possibilities:
(i) If b'a's,€ S, then db~'a"'s, € aS, U {e} and hence

{a_lsny b~lsn} n S1 = @ .

Also, there is an n > m =1 such that s, = s,,. Since 6°(y¢,) =0
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for 1 < k < n and since 60°(yt,) = £6(sy;) + N0(sy,) = 0 if, and only i1,
0(s4) = (—B/NO(su); 0(82) = O(84m) = (—B/N)0(82m). Thus

0(Sinse) = (—AA)OD'a™s,) — (1/A)(07 — aB/N)O(Sem)
= (=AM a"'s,) .

(ii) If b7'a7's, ¢S, then
O(S4nrs) = (_1/)")[a0(32n) + af(a™'s,) + Eﬁ(b~1sn) + 5’&0(3'»)]

and at most three terms within the parenthesis on the right are
nonzero.

In either case |6(s,,s,)| < 1. Certainly |6(s,,)] < 1. Thus, by
induction, we can define 6(s,,) such that |64(s,,)| <1 and such that

0°(yt,) = 0 = 0°(ys,)

forn=1,2,.--.
Similarly, we can define 0(s_,+,) S0 that |0(s_z.4n)| < 1 and

0°(yt_,) = 0 = 6"(ys_,)

for n =1,2, .--.

REMARK. If G is an amenable group with a nonamenable sub-
semigroup then G has a subgroup H that satisfies the hypothesis of
Theorem 5.1. Hence /(H) is nonsymmetric, and since for each
xe 4(H),

8P/ (T) = 8P4 (X)

4(G) is also nonsymmetric.
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OUTER GALOIS THEORY FOR SEPARABLE ALGEBRAS

H. F. KREIMER

Let G be a finite group of automorphisms of a ring A
which has identity element., Let C be the center of A4, let I’
be the subring of G-invariant elements of 4, and assume that
C is a separable extension of C nI. Im the first section of
this paper, it is shown that every finite group of automor-
phisms of A over I' is faithfully represented as a group of
automorphisms of C by restriction if, and only if, 4 =CXenrl'.
Moreover, suppose that 4 = C Q¢nr I’ and 2 is a subring of
A such that ' £ 2 < A. Then there exists a finite group H
of automorphisms of 4 such that 2 is the subring of H-
invariant elements of A if, and only if, C n 2 is a separable
extension of CNI"and 2 = (Cn 2)Renrl.

Let R be a commutative ring with identity element; and
assume now that 4 is a separable algebra over R and G is a
finite group of automorphisms of the R-algebra 4. In the
second section of this paper, it is shown that C is the centralizer
of I' in 4 if, and only if, 4 = C QcnrI’. Moreover, suppose
that 4 = C QcnrI” and 2 is a subalgebra of 4 such that
I'c 2 cA4. Then there exists a finite group H of automor-
phisms of 4 such that 2 is the subalgebra of H-invariant
elements of A if, and only if, 2 is a separable algebra over E.

These results are obtained without the assumption of no non-
trivial idempotent elements of C, which is required for the Kanzaki-
DeMeyer Galois theory of separable algebras. Moreover, these results
extend the Villamayor-Zelinsky Galois theory of commutative rings
in the same way that the results of Kanzaki and DeMeyer extend
the Chase-Harrison-Rosenberg Galois theory of commutative rings.

1. Galois theory. Throughout this paper, ring will mean ring
with identity element and subring of a ring will mean subring which
contains the identity element of the ring. Let I be a subring of a
ring 4. Call 4 a projective Frobenius extension of I if 4 is a
finitely generated, projective right I™-module and there is a (I, A)-
bimodule isomorphism of 4 onto Hom,(4,I). Call A4 a separable
extension of I" if the (4, A)-bimodule epimorphism of A& ;4 onto A,
which is determined by the ring multiplication in A, splits. Equiva-
lently, A is a separable extension of I" if there exist a positive integer
n and elements x;, y; of 4, for 1 < ¢ <, such that > 2, = 1 and

0, QY = D@y in AR A for every aed. Also, let M
be a left 4-module and let N be a I"-submodule of M. A canonical
A-module homomorphism ¢ of A& N into M is determined by the
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correspondence of a-z to a @« for aed and xe N. It will be con-
venient of write M = 4 N when ¢ is an isomorphism.

Let G be a finite group of automorphisms of a ring 4, and let
I be the subring of G-invariant elements of 4. Call 4 a Galois ex-
tension of I' relative to G if there exist a positive integer n and
elements x;,y; of 4, 1 <% < m, such that >\ x,-0(y;) = ¢, for all
ceG. If A4 is a Galois extension of I" relative to GG, then 4 is a
separable extension of I” by [8, Proposition 1.3]. Let C be the center
of A. If 4 is a Galois extension of I' relative to G and C is the
centralizer of I" in A4, call 4 an outer Galois extension of I" relative
to G. A generalization of the concept of outer Galois extension is
that of outer semi-Galois extension given in [7, Definition 2.4]. 4
will be called an outer semi-Galois extension of I" if, in addition to
the assumptions stated at the beginning of this paragraph, 4 is a
separable extension of I" and C is the centralizer of I" in 4. Finally,
we note that, if S is a G-stable subring of 4; then a homomorphism
of G onto a finite group G of automorphisms of S is obtained by
restricting each element of G to S, and SN /I is the subring of
G-invariant elements of S.

For the remainder of the paper, let G be a finite group of auto-
morphisms of a ring 4, let I" be the subring of G-invariant elements
of 4, and let C be the center of 4.

THEOREM 1.1. If S is a G-stable subring of C such that S 1is
a separable extension of SN I, then the following statements are
equivalent.

(i) C=8@s.(CNT) and 4 =CQ cnrl .

(il) 4=SQsnrl™

(iii) Amn isomorphism of the group of all automorphisms of A
over I' for which S 1is stable onto the group of all automorphisms
of S over SN I is obtained by restricting each automorphism of A
to S.

(iv) Ewvery finite group of automorphisms of A over I' for
which S 1s stable is faithfully represented as a group of auto-
morphisms of S by restriction.

Proof. It is evident that statement (i) implies statement (ii).
If 4=8SQ sarl’, then every automorphism of S over SN I may be
extended to an automorphism of 4 over I' and the identity map on
A is the only automorphism of A over I which restricts to the
identity map on S. With these observations it is easily verified that
statement (ii) implies statement (iii). Clearly statement (iii) implies
statement (iv), and it only remains to verify that statement (iv)
implies statement (i). Since S is a commutative ring and a separable
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extension of SNI,S is an outer semi-Galois extension of SN I.
Let ¢ be an idempotent element of S and ¢ be an element of G such
that o(e-a) = e-a for all aeS. An automorphism & of A over I' is
defined by the rule &(a) = o(e-a) + (1 — e)-a for ac A. Let H be the
group of automorphisms of 4 over I" which is generated by . Since
G is a finite group, ¢ has finite order. Therefore & has finite order
and H is a finite group. Moreover, each element of S is H-invariant;
and H is faithfully represented as a group of automorphisms of S
by restriction, only if G(a) = a and, hence, g(e-a) = e-a for all ac 4.
Since C is stable for any group of automorphisms of 4, the following
lemma may be applied with T = C to establish that statement (iv)
implies statement (i).

LEMMA 1.2. Let S, T be G-stable subrings of A such that SS T
and S 1s an outer semi-Galois extension of SNI. Assume that
whenever e s a central idempotent of S and o is an element of
G such that o(e-a) = e-a for all acS, then o(e-a) = e-a for all
acd. Then T=SQsn(TNT) and 4 =T rarl .

Proof. By hypothesis, S is a separable extension of SN I". Let
1 be a positive integer and let x;, ¥, be elements of S for 1 <1 < #n,
such that >z, =1 and Stox, @y, = S, @ya in S sarS
for every acS. Setting e, = D\, 2;-0(y,), a-e, = e,-0(a) for acS
and oeG. Therefore e, is an element of the centralizer of SN I in
S, which is the center of S, for 0 € G. Moreover

n n n
e = Zleo-xi-a(yi) = lei-ea'a(yi) = Zﬂcye = e,
= i= 1=

for 0 e G. Thus {o(e.) | 0, 7€ G} is a finite set of central idempotents
in S, and it generates a finite, G-stable subalgebra E of the Boolean
algebra of all central idempotents in S. Letting M be the set of
minimal elements in E; M is a finite, G-stable set of pairwise
orthogonal idempotents such that >,.,¢ =1. For ec M and oecG,
let ec denote the mapping a -~ e-g(a), a € 4; and let

N ={ec|lec M,ocG}.

The mapping a -~ goct, ¢ € N, is a permutation on N for each ¢ cG.
Consequently, letting v be the sum of the distinct elements of N; v
is a left S N I"-module endomorphism of 4, the image of which must
be contained in 7. Since S and T are G-stable, ¥ must map S into
SNI and T into TNI. If, for eec M and o €@,

Siaice-0(y;) = e-e, = e,-0(e)
7=1
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is not zero; then ¢ = ¢-¢, = ¢,-0(¢) = g(e) since ¢ and o(¢) are minimal
elements of FE, o(e-a) = ¢,-0(¢e-a) = e-a-e, = e-a for all aeS, and
by hypothesis o(e-a) = ¢-a for all ae Ad. Therefore >~ x;-v(y:a) =
Seewt-a = a for all ae 4. It is now readily verified that the canonical
left S-module homomorphism of S &) snr[" into 4 has an inverse which
is the mapping a -~ X*.x; ® 7(y;,a), ac4; and the canonical left S-
module homomorphism of S& so(T N I") into T has an inverse which
is the mapping a-— >~ K 7(y.a),ae T. Thus 4=S® sn " and
T=SQRsn(TNIT). Since S gsnI" is naturally isomorphic to
S®snr(TnF)®anF:A = T®TWF-

If S has no central idempotents other than 0 and 1, then the
hypotheses of Lemma 1.2 are equivalent to the requirements that S
and T be G-stable subrings of 4 such that SE T, S be an outer
semi-Galois extension of SN I, and G be faithfully represented as a
group of automorphisms of S by restriction. The following example,
however, shows that in general the conclusion of Lemma 1.2 cannot
be obtained if only these latter conditions are assumed.

ExAMPLE 1.38. Let 4 be the ring of all complex 3 x 3 matrices

ab0 abo a —b0 ab0
of the form [¢ d 0], and set olc d O] = —c d O andr{ch =
~ 00g 00g 0 0g 00g
abo
¢ d 0] o and 7 are automorphisms of 4, and they generate a sub-
00g

group G of order four in the group of all automorphisms of 4. The
subring I" of G-invariant elements of A consists of all real, diagonal
3 x 3 matrices, and the center C of /A consists of all complex, diagonal
3 X 3 matrices of the form diag {a,a,b}. Take S=T=C. Cis a
commutative G-stable subring of 4 and G is faithfully represented
as a group of automorphisms of C by restriction. Moreover it may
be verified that C is a Galois extension of C NI with respect to the
group H of automorphisms of C generated by the restriction of 7 to

abdbo a —b0
C, but 4= C® . l’. In fact, setting ¢/ c d 0) =|l—c dO0], ¢is
00g 0 Og

a nontrivial automorphism of A over I” which restricts to the identity
map on C.

The remaining results of this section are directed toward de-
veloping a Galois theory for a ring 4 which satisfies any of the four
equivalent statements of Theorem 1.1.
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LEMMA 1.4. If S is a G-stable subring of C such that S is a
separable extemnsion of SNI and A= 8SQ snrl’y then A is an outer
semi-Galois extension of I' and I" is a (I", I')-bimodule direct summand
of A.

Proof. Let S be a G-stable subring of C such that S is a
separable extension of SNI and 4A=S s /. Then one may
readily verify that 4 is a separable extension of /" and the centralizer
of I" in A4 is C. Therefore 4 is an outer semi-Galois extension of
I'. Furthermore, since S is a commutative ring, S is an outer semi-
Galois extension of SN I"; and, by [7, Th. 3.2], S is a projective
Frobenius extension of SN /". In particular, S is a finitely generated,
projective module over SN /I'; and it follows from [1, Proposition
A.3] and [9, Proposition 1] that SN/  is an SN I-module direct
summand of S. Therefore I" is a (I", I')-bimodule direct summand of
4=8Q& snrl.

LEMMA 1.5. Let G be a finite group of automorphisms of a
commutative ring S, let R be the subring of G-imvariant elements
of S, and assume that S is a separable extension of R. For an
intermediate ring T, RS T < S, the following statements are
equivalent.

(i) There exists a finite group H of automorphisms of S such
that T is the subring of H-invariant elements of S.

(ii) S 1is a projective Frobenius extension of T.

(iii) T 1s a separable extension of R.

Proof. Apply Lemma 1.4 with 4 = S = C and I" = R to establish
that S is an outer semi-Galois extension of R and R is an R-module
direct summand of S. The equivalence of statements (i) and (ii)
follows from [7, Th. 3.3]. But it is a consequence of [7, Th. 2.3]
and [10, 3.15] that S is a weakly Galois R-algebra, and the equivalence
of statements (i) and (iii) follows from [10, Th. 3.8].

THEOREM 1.6. Let S be a G-stable subring of C such that S is
a separable extemsion of SNIT and 4 =S sorl’; and let 2 be a
subring of A such that ' S Q = A. There exists a finite group H
of automorphisms of A such that S is H-stable and Q2 1is the subring
of H-imvariant elements in A if, and only if, SN 2 is a separable
extension of SN and 2 =SSN snrl-

Proof. Suppose H is a finite group of automorphisms of A such
that S is H-stable and 2 is the subring of H-invariant elements in
4. Then SN N is the subring of H-invariant elements in S, and
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SNQ is a separable extension of SN by Lemma 1.5. Also by
Lemma 1.5, S is a finitely generated, projective module over S N 2; and
it follows from [1, Proposition A. 3] and [7, Lemma 1.6] that S is a
faithfully flat module over S N 2. Since 4 = S sarl" and I" C 2, every
group of automorphisms of 4 over 2 for which S is stable is faithfully
represented as a group of automorphisms of S by restriction. Therefore
A=8SQRsno2 by Theorem 1.1. But 4 =S & 5n.(SN L)X sarl” also.
Since S is a faithfully flat module over SN2, 2=(SN2) KR 5o

Conversely, suppose SN £ is a separable extension of SN /" and
=N R s - By Lemma 1.5, there exists a finite group H of
automorphisms of S such that SN £ is the subring of H-invariant
elements in S. Since 4 = S sy, there is a unique extension of H
to a group of automorphisms of 4 over I". Let 2 be the subring of
H-invariant elements in 4. I & £’; and, by the first part of this
proof, 2" = (SN QYR sn . But SN L is the subring of H-invariant
elements in S, so SN =8NL and

=BnN Qs =SSN Rsnrl =2.

If S is a G-stable subring of C such that S is a separable exten-
sion of SN and 4 =S s ; then C=S R (CNT) and 4 =
C & osnrl” by Theorem 1.1, and C is a separable extension of C NI
by [2, Corollary 1.6]. Since C is stable for any group of auto-
morphisms of 4, S may be replaced by C in the preceding considera-
tions. The following corollary is stated for comparison with Lemma
1.5.

COROLLARY 1.7. Assume that C 1is a separable extemsion of
CNI and every finite group of automorphisms of A over I' 1is
faithfully represented as a group of automorphisms of C by restric-
tion. For a subring 2 of A such that I' S 2 S A, the following
statements are equivalent.

(1) There exists a finite group H of automorphisms of A such
that 2 1is the subring of H-invariant elements of A.

(i) 4 is a projective Frobenius extension of Q.

(iii) CnN Q is a separable extension of CN I and

Q= (Cﬂg)®cnz*r-

Proof. Since every finite group of automorphisms of A over [I”
is faithfully represented as a group of automorphisms of C by restrice-
tion, 4 = C® ¢or I" by Theorem 1.1. Therefore 4 is an outer semi-
Galois extension of /" and I" is a (I, I')-bimodule direct summand of
A by Lemma 1.4. Statements (i) and (ii) are equivalent by [7, Th.
3.3], and statements (i) and (iii) are equivalent by Theorem 1.6.
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2. Separable algebras. In this section, let 4 be an algebra
over a commutative ring R and let G be a finite group of auto-
morphisms of the R-algebra A. Let I” be the subalgebra of G-invariant
elements of 4 and let C be the center of A. The results of the
preceding section may be sharpened if 4 is a separable algebra over
R. Thus let 4 be a separable algebra over BR. Then 4 is a separable
extension of C and C is a separable algebra over R by [2, Th. 2.3].
Clearly R-1= CNnI &TI'; and, consequently, 4 is a separable exten-
sion of I" and C is a separable extension of C NI

PROPOSITION 2.1. If A is a separable extension of C and C is
the centralizer of I' in A, then the group of all automorphisms
of A over I' is faithfully represented as a group of automorphisms
of C by restriction.

Proof. Assume that 4 is a separable extension of C and C is
the centralizer of I" in A; but suppose that the group of all auto-
morphisms of 4 over I" is not faithfully represented as a group of
automorphisms of C by restriction, and let » be a nontrivial auto-
morphism of 4 over I" which restricts to the identity map on C. Let
o be an element of 4 such that 7(a) # a, let m be a maximal ideal
of C which contains the set {xeC|z-(p(a) — @) = 0}, and let C,, be
the quotient ring of C with respect to the multiplicative system
C—m. A4Q.C, is a central separable algebra over C® ,C,. = C,.
by [2, Corollary 1.6], and » ® 1 is an automorphism of 4 ® ,C, over
C,. Since C, is a local ring, @1 is an inner automorphism by
[2, Th. 3.6 and the remark which follows it]. Let w®1/s, we 4
and seC — m, be a unit in 4 ;C,, such that w-n(x)  1/s = 2w Q 1/s
for all xe 4. 4 is a finitely generated module over C by [2, Th.
2.1]; so let n be a positive integer and {b;c 4|1 <7< n} be a set
of generators for the C-module 4. Since w-.9(b;) ®1/s = b,cw Q 1/s;
there exists ¢, C — m such that ¢-(w-(b,) — b;-w) =0, 1 <17 =<m,
by [3, §2, No. 2, Proposition 4]. Letting ¢ = [[~.t, it is easily
verified that teC — m and tw-np(x) = ztw for all xe A. Therefore
tw is an element of the centralizer of I" in 4, which is C; w ® 1/s =
tw @ 1/(ts) is a unit in the center of A& .C,.; and, consequently,
@) P@®1 =21 for all xe4. In particular () ®1 =a®1; and,
by [3, §2, No. 2, Proposition 4], there exists weC — m such that
%-(m(a) — a) = 0. But such an element u cannot exist by the choice
of m, and the proposition follow from this contradiction.

COROLLARY 2.2. If A is a separable algebra over R, them the
Jollowing statements are equivalent.
(1) C s the centralizer of I" in A.
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(ii) 4 is an outer semi-Galois extension of I'.
(iii) A - C® Cmrr-

Proof. Assume that 4 is a separable algebra over K. Then A
is a separable extension of ", and therefore statements (i) and (ii)
are equivalent. Moreover, A is a separable extension of C and C is
a separable extension of C N I". It follows from Proposition 2.1 and
Theorem 1.1 that statement (i) implies statement (iii). Clearly state-
ment (iii) implies statement (i).

THEOREM 2.3. Let A be a separable algebra over R such that
A=CQ onrl"; and let Q be a subalgebra of A such that I' S 2 & A.
There exists a finite group H of automorphisms of A such that 2 is
the subalgebra of H-invariant elements of A if, and only if, 2 is a
separable algebra over R.

Proof. A is an outer semi-Galois extension of [” and [" is a
(I", I')-bimodule direct summand of 4 by Lemma 1.4. Since 4 is a
separable algebra over R, A is a (4, A)-bimodule direct summand of
AR z4; and thus " is a (", I")-bimodule direct summand of A 4.
As a (I', I')-bimodule, 4 4 is a left module over the enveloping
algebra I = I' Q [ of I'; and for any left /™-module X there is a
natural isomorphism of Hom (4 & r4, X) onto Hom (;4, Hom (4., X)).
But 4 is a projective Frobenius extension of I" by [7, Th. 3.2]; and,
therefore, 4 is projective as either a left or right /-module. Con-
sequently, 4 & 4 must be a projective left I"*~-module. Therefore I”
is a projective left I'*-module, and it follows that I" is a separable
algebra over R.

By Theorem 1.6, there exists a finite group H of automorphisms
of A such that 2 is the subring of H-invariant elements of 4 if, and
only if, C N 2 is a separable extension of CN I and 2 =(CN Q)R ¢onrl -
But if C N L is a separable extensionof CN/Tand 2 = (CN QR ¢cnils
then one may readily verify that Q is a separable algebra over R.
Conversely, suppose £ 1is a separable algebra over R. Since
R-1cCNI, I and Q are separable extensions of C N I'; and, since
C is the centralizer of 7" in 4, C N I is the center of I" while CN £
is both the centralizer of I" in 2 and the center of 2. But then
C N2 is a separable extension of CN I by [2, Th. 2.3], and 2 =
CNRenrl” by [2, Th. 3.1].
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ON VISUAL HULLS
D. G. LARMAN AND P. MaNI

The concept of visual hull has been introduced by G. H.
Meisters and S, Ulam. In the following article we study a
few of the problems arising from this notion and, in particular,
establish (Theorem 3) a conjecture of W, A, Beyer and S, Ulam.

Let C be a set in R” and 1 <5 <n —1. Then the j* visual hull
H,(C) of C is defined to be the largest set whose j™ projections are
contained in those of C. Alternatively, H;(C) is the set of points
in R" such that each (n — j)-flat through x contains a point of C.
Let G? denote the Grassmannian of j-subspaces in R™ with p¢;(G}) =1
for the usual measure p; associated with G} regarded as a metric 0,-
factorspace. (For further information about g; compare, for example,
[3]). The 5 virtual hull V,(C) of C is defined to be the set of points
x € R" such that almost all (with respect to f,_;) (n — j)-flats through
x contain a point of C. Thus, if n = 3,5 = 2, H(C)(V,C)) corresponds
to those points in R* which are photographically indistinguishable (with
probability one) from C. A j* minimal hull of C in R™ is a minimal
set in R™ whose j® projections coincide with those of C. In [2] the
announced purpose of the paper was to disprove the conjecture that
H,{C) — C is connected to C, i.e., ?» disjoint open sets U, V such
that UD H(C) —C+# @ and VOC # @. To this we remark that
a simple counterexample can be obtained by considering the closed set
C formed by removing the relative interiors of alternate sides of a
regular hexagon inscribed in a plane circle with centre a. The first
visual hull H(C) is then C U {a}.

2. Visual hulls of unions of polytopes.

THEOREM 1. Let A4,, +--, A;,, be spherically convex, closed subsets
(not mnecessarily nonempty) of the sphere S, such that each (n —
J — 1)-subsphere of S™' has a mnomempty intersection with {Jiit A;.
Then AN -+ NAj # D. (so, that, in particulor, each set A, 1is
nonempty).

REMARK. S™'is the unit sphere of B™ and an (n — j — 1)-subsphere
of S™ ' is the intersection of an n — 7 subspace with S*' A set
C < 8™ is spherically convex if C is contained in an open hemisphere
of S and, if %,y e C then C contains the minor arc on the 1-sub-
sphere determined by «, ¥ and 0 (the centre of S"%).

Proof. The case n =1 is trivial. We assume inductively that
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the result is true for all #’ < % and it remains to prove the result
for j + 1 sets on S™'. Assume on the contrary that there exist
spherically convex closed subsets A4,, ---, 4;., C S** such that

TNAU---UA;n) #= O

for each (n — j — 1)-subsphere Tof S**, and A, N --- NA;1, = @. Let
A=A nN---NA,;. Then A4, A;,, are disjoint spherically convex closed
subsets of S™!, and there exists an (n — 2)-subsphere S’ of S™' which
separates A and A,., and such that SNA=0,8NA4;.,= 2. Set
A=A, NS 1 =Z1<7. Then each A} is a spherically convex closed
subset of S’ and, since A4,., NS’ = &, each (n — j — 1)-subsphere of
S’ has a nonempty intersection with AjU --- U A;. Hence by the
inductive assumption A; N .- N A; = AN S # ©; contradiction.

THEOREM 2. In R* let C,, -+, C;;, be j + 1 compact convex sets.
If xe H;(\JiZ! C;) then either xeJiZ! C; or there exists a halfline 1
emanating from x such that I1NC;, %= @,1<1<7 + 1.

COROLLARY. In R* let C,, ---,C;y, be compact convex sets. Then
asuffictent condition for H(Jiz! C;,) = Uil C; is that the sets do not
have a common transversal.

Proof. On S"' define j + 1 spherically convex closed subsets
A, -+, A;, so that we A4; if we S"! and the half line {x + M| X = 0}
meets C;. Then, as z ¢ H;(JiZ! C;) each (n —j — 1)-subsphere of S**
has a nonempty intersection w1th Uirt A;. And so, by Theorem 1,
there exists w e i} A;, i.e., the halfline {# + Mu|X = 0} meets each
of C, +++,Ciyi.

THEOREM 3. In R" let C,, --+, C;;, be nonempty compact convex
sets. Then the number of components of H(JiZi C;) is at most 7 + 1
with equality 1f and only if C,, -+, C;, are patrwise disjoint.

Proof. By Theorem 2, if xe H(Ui* C,) — Ui C;, then there
exists a halfline I = {x + Mu|)\ = 0} such that [ meets each of

Cl! ct Cj+1 .

Then © + a,u € C, for some @, > 0. We set « = min{a, |1k <5 + 1)
and want to show that x + e H;(Ui! C;) for all » with0 =<\ =< a.
Set y = 2 +u and let P be an (n — j)-subspace. As ze H(Jil C

there exists ¢ such that the (n — j)-flat * + P meets C; at v, say.
Set z =2 + aueC,. Then, as y lies between x and z on [, there
exists ¢, 0 < ¢ <1, such that y = po + (L — p#)2. Then the (n — J)-
flat ¥y + P through y contains the point pv + (1 — )z of C;. As P
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was arbitrary we conclude that ye H;(Jiz!C;) and hence that x +
wee H (U C) for 0 <A < a. Hence, if e H; (Uit C;) then x is
connected, via a line segment in H;({JiZ! C;), to at least one of the
sets C;. Hence H,(JiZ} C;) has at most j + 1 components with equality
only if the C;’s are dlSJOlnt If the sets C,, ---, C;;, are pairwise
disjoint then in order to show that H, (Uil C;) has exactly j + 1
components it is enough to show that for each %k, 1 < k < j + 1, there
exist disjoint open sets U,, V, such that U, U V,D H;(Uil C;) and
U.oC, Vio{C,U---UC—, UCy,U--+UCj:i}. We suppose, without
loss of generality, that k=1. For i =2, 4,7 -1 let H, denote a
hyperplane which strictly separates C, from C,;, and let H! be the
open halfspace bounded by H; and containing C,. We can assume that
the H,’s are in general position. Set U, = NiZ: HY, V.= R* — U,. Then
U, and V, are disjoint open sets, C,c U, UYiZ; C; < V.. It remains
to show that H(UUifiC,))c U, UV, and it is enough to show that
({U.nV)n H(Ui C) = @. Since the H;’s are in general position,
their intersection i} H; is an (n — j)-dimensional flat L. Let I be
the j-dimensional subspace orthogonal to L. If M is any subset of
R" we denote by proj; M the set of all points « € I for which the flat
L., which is parallel to L and contains x, has a nonempty intersection
with M. proj; U, and proj, V, are two open sets in I with common
boundary proj, (U, N V,). As proj, C, c proj, U, proj, Ui*i C; < proj, V,
it follows that (proj, (U, n V) n (proj, UYiZiC:) = @. Now, if z is an
arbitrary point in U, n V, it follows that L, N (UiZ} C,) = @, and since
dimL,=n— j, we find, by the definition of H;, that z does not belong
to H,(Ji* C;). Therefore (U, N V)N H(UZC) = @

REMARKS. The proof of Theorem 3 also shows that any component
of H,(JiZ! C;) has the property that any two points of it can be joined
by a broken line in it, consisting of at most 3 segments. Hence it is
natural to ask: When are these components convex? (supposing now
that the C.s are disjoint). In [1] W. A. Beyer has shown an example
of three (nondisjoint) polytopes C; in R® such that H,(C, UC,U C,) is
not a polyhedron. We don’t know whether a similar construction would
be possible with disjoint polytopes. Let us mention here a few more
technical terms. If M is any subset of R”, we denote by aff M the
affine hull of M and by conv M the convex hull of M. relint M means
the interior of M with respect to the natural topology in aff M. By
the dimension dim M of M we understand the algebraic dimension of
the flat aff M. A polytope is the convex hull of some finite set. If
PC E™ is a convex set we denote by ext P the set of extreme points
of P and by exp P the set of its exposed points. For an exact definition
of these terms the reader may compare, for example, the introductory
chapters of [4].
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THEOREM 4. (i) In R" let C,, C, be compact convex sets. Then
H,(C, U C,) is the union of at most two convex components which are
polytopes whenever C, and C, are polytopes.

(ii) There exist in R® three disjoint polytopes such that one of
the components of the second visual hull of their union is not convezx.

LEMMA 1. Let C,C, be n-dimensional polytopes im R". If
a¢ H(C, UC,) there exists a hyperplane H such that

(1) a¢ H, H separates a from C,

(2) HNC,= @ or H supports C; (t =1, 2)

(3) aff (HN(C,UC,) = H.

Proof of Lemma 1. The case n =1 is trivial, and we assume
n = 2. If there exists a hyperplane P through ¢ which does not
meet C, U C, and does not separate C, and C, then conv (C, U C,) is
an n-dimensional polytope not containing @, and the lemma follows
from standard results on polytopes. Hence it can be supposed that
there is a hyperplane H for which (1) and also (2'): H separates C,
and C, holds. We choose H in the set § of hyperplanes for which
(1) and (2') holds. We assume that h = dim aff T is maximal, where
T=Hn(C,UC,). Obviously h=0. If h<n—1, let FC H be an
(n — 2)-dimensional hyperplane in H containing 7T, and denote by =:
R"— FE the projection along F onto a 2-dimensional flat E orthogonal
to F. It is easy to see that there is a line L in F such that: («):
the singleton 7(T) is contained in L. (8):n(a)¢ L, L separates w(a)
from the polygon #(C)(7): L separates 7(C,) and 7(C,).

(@) aff (L N (z(C) Un(Cy) = L.

(Notice that the conditions (a) — (v) are fulfilled by n(H)). The
hyperplane 7—*(L) of E™ intersects C, U C, in a set S with dimaff S =
h + 1. Since Se$ this contradicts the maximality of A. Hence the
lemma is established.

Proof of Theorem 4. (i) We first prove the result when C, C,
are n-dimensional polytopes. If C,N C,+* @ then

Hl(Cx U Cz) = conv (CI. U Cz) s

which is a polytope. We suppose therefore that C,N C, = @. Let
{H;}, be the finite set of those hyperplanes which do not contain an
interior of C;(j = 1,2) and for which dim (H; N (C,U C,)) =n —1. By
C# we denote the (finite) intersection of those closed half spaces which
contain C; and whose bounding hyperplane is amongst {H;}~,7 =1, 2.
Then C7 is polyhedral and, since C,, C, are compact, C; is a polytope,
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7 =1,2. We show that H,(C,UC,) = C;{UCs. Suppose that z* ¢ C¥ U C;.
Then there exist closed halfspaces H*, H; with bounding hyperplanes
H,, H, amongst {H;}", such that a*¢ H* D C,,z* ¢ H ODC,. If

x*e H(C,UC,), H, and H,

must separate C, and C,. Consider H, and the two disjoint compact
sets HNC,H NC, in H,. There exists an » — 2 dimensional flat L
in H, which strictly separates H, N C, and H, N C,. By slightly rotating
H, about L in the appropriate direction we obtain a hyperplane H]
which strictly separates C, and C, as well as z* and C,. Similarly
we can obtain a hyperplane H, which strictly separates C, and C,,
and ¢* and C,., We may suppose that H], H; are not parallel and so
H! N H, is an » — 2 flat. Suppose, without loss of generality, that
H ={x|{x, &) =a>0}, H,={x|{x,ny = > 0}. Then

Ciclx|lz, &> a)n{x|lx, ny > B}
C.c{x|<x, n> < a} N {x|le, > < BY}.

Consider the hyperplane H: {x|<{x, ¢ + (1 — \)p)> = 0}, where A +
(1—-N)B=0and 0<XN<1l Then x*e H and, using the above ine-
qualities, C;N H = @,1=1,2. Hence 2* is not in H,(C, U C,), and we
have H,(C, U C,) c Cyr U C¥. Conversely, if #*eCF U Cy — H,(C, U C,),
suppose without loss of generality that x* ¢ C;. Then, by Lemma 1,
there exists a hyperplane H amongst {H,}", which does not contain
x* and which separates a* from C,. Then, if H* donotes the closed
halfspace containing C, whose bounding hyperplane is H, «* ¢ H* and
so a* ¢ Cf; contradiction. And so H,(C,U C,) = C; U C¥, which is the
union of two polytopes. If C,, C, are compact convex sets we choose
decreasing sequences {P"};_,, {P:};_, of polytopes such that C; = Ny, P?,
42 = 1, 2. Then, using the above notation,

HI(CLUCZ) :pLPLn* mplpéﬂ* .

(ii) Let W be the cube {x = (x, %, @) | -1 <2, <1,7=1,2,8}
in R*, and denote by W, the facet of W defined by «; = 1. Set C, =W,
C,=2W, C,=3W,. Let B,(1 <1< 3) bethe components of H,(J:,C,),
where the indices are chosen such that, for all 4, C;c B,. Clearly
(0, 0, 0) € B, as does, of course, the point (1, —1, —1) e B, N C,. However
we show that the line segment m: {xv = M1, —1, —1) |0 < A < 1} is not
in B,. Now C, U C, is contained in the halfspace {z|<x, (0,1, 1)> = 0}
whose bounding hyperplane P passes through the points (0, 0, 0),
(1,—-1,1) and (—1, —1,1); P naff W, is a line in direction (0, —1, 1).
If yem, then y = (1, —1, —1) for some g, 0 < £ < 1. Consider the
line l =y + {M0, —1,1) | xreal}. If z = (2,2, 25)€l then z, = £ <1,
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i.e., z¢C,. Also <(z,(0,1,1)> = —2¢ < 0 which means that z¢ C, U C..
Therefore | does not meet C, U C, U C,, m does not belong to B,, and
B, is not convex.

In [6] V. L. Klee proved that if all j* projections of a compact
convex body C in R* (j fixed = 2) are polytopes, then C is a polytope.
As a partial analogue to this for unions of two convex bodies we prove

THEOREM 5. Let C,, C, be two disjoint compact convex bodies in
R* such that each j** projection of C, U C, (j fized = 2) is the union
of two polytopes. Then (i) ext (C;) = exp (C,;) and ext (C,) is countable
(t =1, 2) but (il) ext (C;) is not necessarily finite.

Proof. Let a be an extreme point of C, and we suppose, without
loss of generality, that o = 0, the origin of R". Then, to prove (i) it
is enough to prove that the convex cone K of outward normals to C,
at 0 is n-dimensional. We assume that dim K <% — 1 so that K is
contained in an (n — 1)-subspace P,, and seek a contradiction. Let P,
be an (n — 1)-subspace which supports C, at 0. Of course P, # P,
We can choose an (n — 1)-subspace P, so that there exists a translate
of P, which strictly separates C, and C, and such that the normal to
P, at 0 intersects P, only at 0. Then P, N P, is a subspace of dimension
at least » — 2 and we choose an n — 7 subspace @ in P,N P,. The
orthogonal complement S of @ in R" is a j-dimensional subspace which
meets P, in a (j — 1)-subspace. The projection of C, U C, onto S is
the union of two polytopes. Further, as P,N C,= &, 0 is at positive
distance from proj C,. As 0 is an extreme point of proj C,, it follows
that 0 is a locally polyhedral extreme point for proj C.. Hence, in S,
the cone of outward normals to proj C, at 0 is j-dimensional. Further,
any (5 — 1)-plane H of support in S to proj C, at 0 can be extended
to an (n — 1)-plane of support H + @ in R* to C, at 0. Also, the
outward normals to these planes form a j-dimensional convex cone
lying in S. Hence 7 = dim (K N S) = dim (P, N S) = j — 1; contradiction.
And so (i) is proved.

To prove (ii) we construct an example in R® of two convex bodies
C,, C,, both of which have a countable infinity of extreme points but,
nevertheless, each 2-projection of C, U C, is the union of two convex
polygons. Let Il ={x|x, =2, =0, —1 <2, <1} be a line segment and
S={x|(®, —1)®+22=1,2 = 0} a plane circle. By T we denote the
set of those points on S with x,-coordinate *(1/n) for n =1,2, ---..
We take C, = conv {l U T}, which is a compact convex body in R* with
extreme points T U {(0, 0, —1), (0,0, 1)}. It is easily seen that there
is precisely one 2-projection of C, which is not a convex polygon, and
that is in the direction (0, 0, 1). Further the only limit point of extreme
points of this projection is (0, 0, 0). Define C, as a disjoint copy of
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C, formed by placing C, above C, in such a way that their respective
major lines pierce the centres of their respective circles. From above,
every 2-projection of C, U C, is the union of two convex polygons and
and both C, and C, are compact bodies with a countable infinity of
extreme points.

3. Visual hulls of more general sets. The following problem
can be formulated.

Is the visual (virtual) (minimal) hull of a borel (analytic) set
in R"™ mecessarily borel (analytic)?

The answer is affirmative (Theorem 6) for virtual hulls and negative
(Theorem 7) for minimal hulls. Whilst it is not true (Theorem 8) that
the j* visual hull of a borel set is necessarily borel, we have been
unable to decide whether or not the 7 visual hull of a borel or of an
analytic set is always analytic, except in the cases covered by Theorem
9. It is possible also that the j** visual hull of a convex borel (analytic)
set is a borel (analytic) set, and we include some partial results
(Theorem 9) in this direction. As before we denote by G7 the Grass-
mannian of j-subspaces of R" and by p; the invariant (with respect to
0, acting in the usual way on G?) measure normalised so that y¢;(G7?) =1.

LEMMA 2. Let A be an analytic set in R™ and denote by A* the
set of those j-subspaces in G? which meet A. Then

(i) A* is an analytic set in G? and hence A* is pt; measurable.

(ii) If p;(A*) > a then there exists a compact subset A’ of A
such that p;(A™) > a.

(iily If A,C A, C -+ is an increasing sequence of analytic sets
wn R then p (U, A)* = lim, ., p;(A7).

(iv) If A,DA,D--- 18 a decreasing sequence of analytic sets
in R* then p;(Ni A)* = lim, ., p;(AF).

Proof. (i) Let I be the set of irrational numbers in [0, 1] and,
if 1 = (4, ++-, %, ++-) is a typical member of I expressed as a continued
fraction, set ¢|n = (¢, -+-,%,). Then, as A is analytic, it can be
represented as A = >, N A1 | n) where the sets A(¢|n) form, for
each fixed 7, a decreasing sequence of compact subsets of R". Then
A* =3 Niey A*(t]n).  As each A*(i|m) is a compact subset of G?,
we conclude that A* is an analytic set.

(i) If p;(A4*) >a + 0 with 6 > 0, then we can choose m,, 1 <
m, < oo, such that if I, denotes the set of irrational numbers

T= (G vvniyeee)

with 1 <4, <m, and A} = 3., Nro A*(|n) then p;(Af) > a + 0.
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Proceeding by induction we may define natural numbers m,, 1 < p < oo,
such that if I, denotes the subset of those irrationals ¢ with 1 < ¢, < m,
for = 1 ... q, and A;k = Zielq n::;l A*('L 1 n) then /,!](A:;) >a+ 0. Let
I’ be the compact subset of [0, 1] defined as the set of those irrational
numbers ¢ for which 1 <4, <m, for p=1,2, ..., and

A = 3 A% | n) .

i€l n=1

Then N, A7 = A’* and so y;(4A"™*) = a + 9 > a. Also

A = I_GZI,/ DXA(i [n)
is a compact subset of A, as I’ is a compact subset of I.

(1) Uz A)* = (U A7) = limg_ o p5(A7).

(iv) Clearly p;(Nz: 4:)* < lim;_. p£;(A7F). Now set p¢,;(N:= A)* = a
and suppose lim,_, ¢£;(A¥) > a + ¢, for some positive number ¢. By (ii)
we find a compact set B, C A, such that p;(Bf) = p;(A¥) — ¢/2. Now
we have Af = (B, N 4.)* U (47 — By), where

Since A;c A} we derive further A cC (B, N A)* U (AF¥ — B}), or
pi(AF) < p;(B, N A)* + ¢/2. Since B, N A, is analytic there exists,
again by (ii), a compact set B,C (B, N 4,) such that

#J‘(Bz)* Z #j(Bl N Az)k - 8/4

and consequently z;(B,)* = pt;(A.)* — (/2 + ¢/4). Continuing this pro-
cess we obtain a decreasing sequence {B;}:, of compact subsets of R"
such that B,C 4;, 7 = 1,2, ---, and p;(Bf) = 1t;(Af) — 3i_,¢/(2°). Then

2. Bf = (N7, B)* € (N2, A)*, and (N7 BY) = limew (B < a5
but also lim; . p¢;(Bf) = lim,_., z¢,(AF) — 6. Combining the last two
inequalities we find lim,_. ¢,(4,) < a + ¢, a contradiction.

THEOREM 6. Let C be a borel (analytic) set in R*. Then the j™
virtual hull V,(C) is a borel (analytic) set.

Proof. Suppose first that C is a borel set in R", and we need to
show that V,(C) is a borel set. If D is a subset of R" and « ¢ R",
let D[z, n — j] denote the set of those n — j subspaces F in G_; such
that (x + F)ND = @. If 0<x<1let D(n — j,\) be the set of all
¢ in R” such that p,_;(D[z,n — j]) > X. Let B denote the largest
family of subsets of R" such that De B if (i) D is a borel set in R".
(i) D(n — 7, \) is a borel set for all A, 0 <X <1. We shall prove that

B coincides with the family of borel subsets of R"”, and it is enough.
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to show that B contains the open sets and is closed under the operations
of increasing union and decreasing intersection. If D is an open subset
of R", then it is easy to see that D(n — j, \) is open for all », 0 <\ <1,
and so B contains all the open sets. Now suppose that {E;}2, is an
increasing sequence of sets in B and set £ = {J2, E;. We want to show
that for each A\, 0 <) <1, the equality F(n — 7,\) = U, Ei(n — J,\)
holds. In order to do this we observe the following equivalences:
zeE(n —j,\) < t,_j(Elx, n — 7)) >N« lim;_ o N, (B, n — J)) >N —
zeUz, Ei(n — j,\). Here the first equivalence holds by definition,
the second one follows directly from Lemma 2, (iii), if we observe
that this lemma remains true if M* denotes, for each M CR", the set
Mlx, n — j] (xe R™ fixed). (The lemma itself is stated for the special
case where 2 is the origin of R".) The last equivalence again follows
immediately from the definitions, we only have to observe that the
sequence {E;}, is increasing. Now suppose that {H,}2, is a decreasing
sequence of subsets of B and set H = (. H;. Suppose )\ fixed,
0 <A <1, and let m be a natural number such that \ + 1/m < 1.
Then, using (iv) of Lemma 2, we find by an argument analogous to
the one above, H(n — 7,2\ = Ur.. N2 Hi(m — 7, + 1/p).  Hence
H(n — j,\) is a borel set, and He B. Therefore, B is the family of
borel subsets of R and so, in particular, Ce B. Further V,;(C) =
Ny C(n — 7,1 — (1/p)) and so V,;(C) is a borel set.

To show that V;(A4) is analytic whenever A is analytic, we use the
well known result that there exists an F,; set K in R"*" such that
A is the orthogonal projection proj K of K into R" (see, for example,
[8]). Call an (n — j + 1)-subspace H of R"*' upright if H has the
form {H + M0, +++,0,1)| —oo <\ < oo} where HeGr_;. Let U,,, be
the set of upright (n — j + 1)-subspaces in R"*' with the measure g/
induced by f,_; in the obvious manner. We can define U;.,(C) of a
set C in R as the set of all those points & in R"*' such that almost
all (with respect to ) upright (n — j + 1)-flats through o meet C.
As above, it can been shown that U,,,(C) is a borel set whenever C
is a borel set. Clearly proj U; ., (K) = V,;(A) and, since the projection
of a borel set is analytic, we conclude that V;(A4) is an analytic subset
of R~

THEOREM 7. Let C be an open convex subset of R*. Then assum-
ing the continuum hypothesis, C contains a minimal 7 huwll D such
that every analytic subset of D is countable.!

Proof. We assume the continuum hypothesis and let 2 be the

t As the referee pointed out, Theorem 7 may be a special case of a much more
general theorem on effective constructions.
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first uncountable ordinal. Let {4.}..., be an enumeration of the analytic
subsets of R" of (n — j)-dimensional measure zero; let {H,}.., be an
enumeration of the (n — j)-flats which meet C. Let F be a fixed
(n — j)-subspace of R" and denote by « a fixed set, which is not a
point of R*. We now choose a set K = {M,}.., and a collection of
translates {F,}.., of F inductively as follows. Take M, e (H,— A)NC
and let F, be a translate of F through M,. Suppose now that M., F,
have been defined for all & < & where & is some ordinal proceeding
Q. If H, is a translate of F we take F, = H, and consider two
possibilities:

(a) If 3¢ < & such that M. € H. then we take M, = «.

(b)y If 3& < & such that M. € H, we choose M, in the set (H, —
(Uerce He U Ue<: 4:)) N C. Such a choice is possible as H, N C has
positive (n — j)-dimensional measure whereas H, N (U: <. H., UU: < As)
has zero (n — j)-dimensional measure, being a countable union of sets
of measure zero. If H, is not a translate of F we find, by similar
arguments, that the set (H, — (Ueu<: Ho U Uece 4 UUece Fo)) N C
is not empty. We choose M, in this set and let F, be the translate
of F' through M,. We claim that the set D = F — «a is a 5™ minimal
hull for C which meets each analytic subset in at most a countable
number of points. To show that all j* projections of D coincide with
those of C, it is enough to show that the j® visual hull of D contains
C. Let x be a point of C and let P be an (n — j)-flat through . Then
P is amongst {H,}..,, say P=H,. If M, #«athen M, e DN H,. If
M. = «a then IM,., &’ < &, such that M.. e DN H.. In either case
P meets D and so x < H;(D).

If D is not minimal then there exists M., & < 2, such that

H(D - M)=C.

But, projecting C and D — M, onto the orthogonal complement of F
we see that by construction proj C N proj F, = @, but proj (D — M,) N
proj F. = @. Hence D is a j™ minimal hull for C. Finally, suppose
that B is an uncountable analytic subset of D. If B has positive j-
dimensional measure then it is possible to find an uncountable analytic
subset of B of zero j-dimensional measure. Hence it can be supposed
that B has zero j-dimensional measure and so B = 4, for some & < Q.
But A, = A. N Dc .« M., which is countable; contradiction.

Of course, if G is an open or compact set in R" then H,(G) will
accordingly be an open or compact set. Apart from these cases it does
not seem entirely trivial to determine the nature of H,(G) for a given
subset G of R*. Here we prove the following

THEOREM 8. (i) There exists, in the plane R, a borel set C
such that H\(C) is analytic but not borel.
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(ii) If D 1is an F,-subset of R" then H;(D) is the complement
of an analytic set.

REMARKS. We note that by (i) if C is analytic then H,(C) is not
necessarily the complement of an analytic set. To disprove the state-
ment that whenever A is analytic then H;(A) is analytie, it would be
enough, using (ii), to find an F,-subset D of R" such that H;(D) is
not borel. (Notice that, a subset, M of R" is borel if and only if M
and R® — M are both analytic. Compare, for example, [5]).

Proof. (i) As already observed, every analytic set in R' can be
represented as the projection into R' of some F,; set in R°. Let A
be an analytic subset of R' such that A is not a borel set and let B
be an F,, set in R* such that projB = A. Take C to be the union
of B and the “y-axis” (R')*. Then it is easily seen that H/(C) is the
union of all lines which are parallel to (R")* and contain a point of C.
However this is not a borel set as H(C)N R' = AU {0, 0)} is not a
borel set.

(ii) We define a complete separable metric space 2, whose points
are the (n — j)-flats of R", as follows. For each (n — j)-flat F' in R”
let y be the nearest point of F to 0 and set F N (S* + y) = F. Then
the distance o(F', F’) of two (n — j)-flats in Q is defined as the Haus-
dorff distance of F, F’ in R*. Let DcC R" be an F, set, say D =
Uz. D; with D,;c D,.,, each D; compact, i = 1,2, ---. Let D}, i =
1,2 ... denote the closed subsets of 2 such that Fe D} if F meets
D; in R*. Similarly defined, relative to D, is D*. Then D* = >, D}
and so D* is an F, subset of £. Hence 2 — D* is a G, set and so,
in particular, 2 — D* is an analytic subset of Q. Set

Q- D* =3 NAG|p),

1€/ p=1

where the A(¢|p), p = 1,2, ---, form a decreasing sequence of compact
subsets of 2, for each 7¢I, Set

B,={xlzeR", —mZx, <m,t=1,--+,m}.

Let K,(¢|p) be the closed subset of B, such that ¢ K, (¢|p) if = is
contained in an (n — j)-flat ¥ with Fec A(¢|p). Similarly, we define
K, C B,, relative to 2 — D*. Then K,, = >,;c: ;- K,.(¢| p) is an ana-
Iytic subset of R" and so, therefore, is K = Ug-. K,.. We claim that
H D) =R"— K. If e K then z ¢ K,, for some m and so « is contained
in some (n — j)-flat F which is contained (in 2) in some set -, A(7 | p).
Hence F'e 2 — D* which means that F does not meet D; i.e., x ¢ H,(D).
Therefore R* — K D H, (D). Conversely if x ¢ H;(D) then there exists an
(n — j)-flat F' through 2 such that F' does not meet D. Hence FeQ —
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D* and so Fe;-. A(2|p) for some 1€ l. Hence xec 3., K,.(i|p) for
some positive integer m, i.e., z€ K. Therefore B* — K C H;(D) and
so H,(D) = R* — K is the complement of the analytic set K.

DEFINITION. An irregular point = of some closed convex set C in
R? is an extreme point z of C such that « lies in two distinct 1-faces
L, l; of C, with neither of [,, I, being contained in a 2-face of C. Let
C Dbe a closed subset of a simple closed curve in the plane OXY. We
say that a set BC C x (— oo, o) is vertically convex if every line
which is perpendicular to OXY meets B in a (possibly empty) line
segment. We shall make use of the following immediate corollary to
a theorem of K. Kunugui [7].

LEmMA 3. (Kunugui) Let B be a vertically convex borel set in
C X (— o0, ). Then the projection of B into C s a borel set.

As an immediate consequence of Lemma 3, we have

LEMMA 4. Let B be a vertically convex borel subset of some ver-
tically convex closed subset D im C X (— oo, o). Then the set DN
{(proj. B) X (—co, =)} is a wvertically convex borel set.

In [9] the authors have derived properties of visual hulls for the
class of convex sets. Our contribution in this direction is

THEOREM 9. (i) If C is a convex borel (analytic) set in R®
then H,(C) is a borel (analytic) set.

(ii) If C is a convex borel (analytic) set in R* and C does not
have irregular points then H,(C) is a borel (analytic) set.

Proof. (i) We first show that if C is a convex borel (analytic)
set in R? then H,(C) is a borel (analytic) set. If dim C = 1 then the
result is trivial and so it can be supposed that dim C = 2. Note that
C°c H(C)=C. Let the 1-faces of C be {F;}=,. Then

HI(C)ﬂ(C‘—QFi):C—QFi,

which is a borel set. Let {F;}, be the 1-faces of C which meet C.
Then relint F; c H(C)N F;,» =1,2,---. The two endpoints of F;
may, or may not, be in H,(C). Nevertheless, H,(C) differs from the
borel set (C — Uz, F;) U U, relint F; by at most a countable number
of points. And so H,/(C) is a borel set. Similarly, if C is a convex
analytic set in R? then H,(C) is an analytic set. Suppose now that
C is a convex borel set in R°. If dimC < 2 then H,(C) = C, and so
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it can be supposed that dim C = 3. Let {F;}2, be an enumeration of
the 2-faces of C. Then each F; is closed and H,(C)N (C — U=, F)) =
C N (C — Uz, Fy), which is a borel set. As H,(C) < C, it is now enough
to show that H,(C) N F,; is a borel set for ¢ =1,2, --.. Let H/(CNF,)
denote the first visual hull of C N F; relative to aff ;. Then, from
above, H/(CN F;) is a borel set. Let {F;}7., be an enumeration of
the 1-faces of F;. Then H(C)N(F; — U7 F;) = HI(CNFy) — US- F;
which is a borel set K, say. Let {l”'ijy}‘;‘;1 be the 1-faces of F Whicl_l
meet C and have the property that the only plane of support to C
which contains F;  is aff F;. Then relint F;, < Hy(C) and the end
points of F; may or may not be in HyC). Hence Hy(C)N F; differs
from the borel set K; U (U:L, relint F;, ) U (U5, (F;; N C)) by at most
a countable number of points. Therefore H(C) N F; is a borel set,
and so, therefore, is H,(C). Similarly, it can be shown that if C is
a convex analytic set in R® then H,(C) is an analytic set.

(ii) Again we shall prove the result for convex borel sets, and
indicate at the end the modifications required for convex analytic sets.
Let {r;}, be an enumeration of the rational numbers and let P;, denote
the 2-flat {x|z,=7}k=1,2,8;1=1,2, .--. For each 1,7, k, let B(, j, k)
denote the closed set formed by the point set union of all maximal
line segments in C — C° which meet both both P;, and P;,. Let {G..}a-.
be the 2-faces of C. If a 2-face G,, of C meets B(i, j, k) then G, meets
Ci(C; = (C - C)N Py) and C4C; = (C — C°) N P;,) in line segments 1,,
and 1;, respectively. Let 1,12 denote the (at most) two maximal
line segments in G, such that each segment contains an endpoint of
1,, and 1;, but 1, and 12, do not intersect except possibly at end
points. Set C* = (C — C°) N P, where P is a plane parallel to P;, and
lying strictly between P;, and P;,. Then G, cuts C* in an interval
I,.. Let 1, denote the subinterval of I, with endpoints 1, N C*, 1%, N C*,
and let 15 be the relative interior of 1,. Then

¢ =BG, i, k0 (0 - U 1)

is a closed subset of C*. If xe(’, let £ denote the unique maximal
line segment in B(4, 7, k) which passes through = and meets C, and C,.
Let X denote the closed set formed by the point set union of the line
segments Z, x € C’, and set Q(¢, 4, k) = {y|ye X, 32 C", ZNC +# O, y € Z}.
We now show that Q(%, 7, k) is a borel set. Every point ¥ of X can
be given a coordinate vector y = {x, h), where yeZ and h is the
height, relative to the j* coordinate, of y above C*. Because C does
not have irregular points, the number of points ¥ in X which receive
two different coordinate vectors is countable. Let @ be the mapping
X — C* X (—oco, o) defined by taking @<z, h) = (%, h), ze€C’. Then
K is a borel subset of X if and only if ®(K) is a borel subset of the



170 D. G. LARMAN AND P. MANI

closed set @#(X). Hence @(C N X) is a vertically convex borel subset.
of " X (—oo, ). Hence the set D = X N {proj @(C N X) X (— oo, o)}
is a convex borel set and so Q(1, 7, k) = @(D) is a borel set. Hence
the set R(i, 7, k) = Q@, 7, k) — Us-. G.. is a borel set. Consider now
the set S = U,,;.» B(%,J, k) and consider the borel set T defined as the
point set union of all 1-faces of C which are not contained in some
2-face of C. We assert that the set HXC) = H(C) N (T — Uz..G.)
equals S. For if ¥ € H(C) then, because C does not have any irregular
points, there exists a unique 1-face I, not contained in 5., G,., such
that yel. Then ye H/(C) if and only if I N C = ¢, which happens
if and only if I CQ(4, 7, k) or in other words v e R(3, 7, k) for some
4,9, k. Hence H{C)=S. Let V denote the borel set of exposed
points of C and HXC) = V n H,(C), H¥C) = Uz_. (H(C) N (G — V).
Now H,(C) = H{C) U HXC) U H}(C). HXC) =S is a borel set and,
since HX(C) =V N C, HXC) is a borel set. Hence it is enough to show
that H,(C) N (G, — V) is a borel set for all m. Now let {G,}. be
those 2-faces of C which meet C. Then relint G., < H(C) for all v.
Let {G.,.}7-. be the 1-faces of G, . Then either relint G, , < HY(C)
or relint G, , N HYC) = @. Then the endpoints of G, , may or may
not be in H¥(C). Let H, be the countable set of those endpoints of
{Gn,a)= which lie in HXC) and let {G.,. )7 be the l-faces of G,,
whose relative interiors are contained in H{(C). We have G,,, N H{(C) =
relint G, U (Uy-, relint Gm,n#) U H, , which is a borel set. If, on the
other hand, a 2-face of C does not meet C, its intersection with H}(C)
is empty. Therefore H}(C) N G, is a borel set for all m, and H,/(C)
is a borel set.

For the case when C is an analytic set, say C = ., N, C(t | n)
in the usual representation, the only modification required to the above
proof is to show that the set Q(1, 7, k) is an analytic set. With the
previous notation, Q(i|n) ={y|lyeX,xcC,Z2NC3H|N) * O, yei}
Then Q(i|n) is a closed set and Q(4, 7, k) = D Moo, Q| m). There-
fore Q(t, 7, k) is an analytic set.
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ON GROUPS OF LINEAR RECURRENCES II.
ELEMENTS OF FINITE ORDER

R. R. LAXTON

For each quadratic polynomial f(x)< Z[x], whose ratio of
roots is not +1, a group G(f) of equivalence classes of certain
linear recurrences with companion polynomial f(x) has been
constructed by the author, Its structure was shown to be
connected with the structure of the sets of prime divisors of
the linear recurrences. The group G(f) is infinite but its
torsion subgroup is finite and usually, but not always, con-
sists of just two elements; the class of the Lucas sequence
# =1[0,1] of f(x) and the class of the recurrence ¥ = [2, P]
associated with f(x). This subgroup is completely determined
here for each polynomial f(x). In 1961 M. Ward raised the
question whether (_“) and (%) are the only classes whose
sets of prime divisors can be characterized globally, It is
shown in this article that there are groups G( f) with elements
of finite order, other than (_#) and ( & ), whose prime divisors
can be similarly characterized.

We shall use the notation and results of [1]. Part of the object
of defining the group structure G(f), where f(z) = a* — Px + Q € Z[x]
and (P, Q) =1, is to determine those recurrences among the set of
all recurrences with companion polynomial f(x) which are in some
sense special. Probably the true sense of special would mean those
recurrences which have peculiar arithmetical properties not shared
by the remaining ones." For example, the Lucas sequence .7 = [0, 1]
of f(x) is such a recurrence and so to all intents and purposes is the
sequence & = [2, P] of f(x). Both (_#) and (&) are of finite order
in G(f); here we interpret ‘special’ as meaning of finite order in
G(f). There are only a finite number of such elements in G(f);
furthermore if (977) e G(f) and ( 9#")* = () it would seem that the
arithmetical properties of <7~ are fairly closely related to those of
% This is so for (&) and for the other elements (.o7) and (%)
of order two in G(f) (when they exist); for example see Theorem
4.6 of [1] and the final paragraph of that paper. Also some pro-
perties of recurrences of finite order are readily deducible which,
although they may be true for most or even all recurrences, are not so
easily proved in full generality (see for example [1], 8.9.1). Here we
determine the structure of the subgroup of elements of finite order.
Then we shall show by means of examples that the prime divisors of

1 An article “On groups of Linear Recurrences III. Arithmetic properties” is in
preparation.
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some elements of finite order (other than .# and &) can be charac-
terized globally—thus some elements of finite order are even special
in the arithmetical sense. Finally we add a few words concerning
elements of the group which are locally finite everywhere.

1. The elements of finite order in G(f). We shall carry out
the computations only when f(x) is irreducible over Q; The results
remain valid when f(x) is reducible but involve slightly longer cal-
culations. Let 97 e F(f) be given by

(1.1) w, = (A0 — B0;)/(0, — 0,) ,

for all neZ, with 4 =w, — wd, B=w — wb, w,w cZ and
(wo, w,) = (@, w,) = 1. Thus 97  is a reduced recurrence (see beginning
of §3 of [1]).

We denote the subgroup of elements of finite order in G(f) by
H(f). Thus (977) € H(f) if and only if o7 ™ = _# in F(f) for some
positive integer m. But this holds exactly when

(1-2) (wl - w002)m = dﬁf

for some n,deZ. We conclude that (AB)™ = d*Q™ and as 27  is
reduced that (d,Q) = 1. Thus both d* and Q" are m-th powers in
Z; put d* = g™, ge Z, and on squaring both sides of (1.2) obtain

(1.3) (w, — w,b,)*™ = g™oi" .

It follows that if 97 ™™ = _7% then some m-th root of #;" lies in Q(4,)
and if we denote this root by ¥6;" we get

(14) (w1 - woﬁz)2 = QZ 7{7}9—?

for some n, g€ Z and some m-th root of unity e Q(4,).

We remark that if {, m,n are fixed, the solutions (977) e G(f)
obtained from (1.4) are independent of g.

Now we do have a solution to (1.4) when » =m and { =1,
namely (.#) and (%) (see §4 of [1]). So we may take n/m to be
the least positive number for which (1.4) has a solution with
Wy, w;, g € Z and some root of unity {e@(d,). It follows that 0 <
n < m and that n divides m. The latter is clear since if we put
t—1<m/n<t, then m =tn —s,0<s<n and on substituting in
(1.4) with both sides raised to the power t we obtain ((w, — w.0,)")* =
g'C6: % 6. Hence if (1.4) has a solution so does this equation, but
s/m < m/m so that s = 0. If we put kn = m, ke Z, then 1/k is the
least positive number for which there exists a solution w,, w,, g,  to
(1.4); if another solution exists for some m = m’ and n = »/, then
w'/m’ = t/k for some te Z, 0 <t < k. Therefore all elements of H(f)
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are obtained by solving the k& equations
(15t) (w, — woﬂz)z = QCW ’ t=12 .-, k

for some w,, w,, g € Z and some root of unity e Q(6,).

The solutions obtained from the equation (1.5.k) are (.#) and
(#) and if (%) is one solution of (1.5.t), the other is (7 °&).
Since (e Q) it can only take the value +1, +¢ and *w, +w?
where w is a complex cube root of unity. So we have three cases.

Case 1. Here we assume that @Q(6,) contains no complex root
of unity. We are left with solving (1.5.t) with { = 1. Let (%),
(7 #)e H(f) be the solutions derived from (1.5.1); then (%) =
(97~ =)* and so provide one solution of (1.5.2), (2#7) # (o7 &)® are
the two solutions derived from (1.5.8), and similarly up to the solu-
tions (2#7)* and (27" %)* obtained from (1.5.k) the solutions of which
are, as mentioned above, (_#) and (#’). If k is odd then (977)* #
(97 &) and so one of them is (), say (/)" = («). Then clearly
H(f) =<(»)) = Zy,, a cyclic group of order 2k. If k is even and
() = () has a solution in G(f) (see §4 of [1]), then necessarily
()= (7 &) = (%) and again H(f) =<(#)) = Z,. On the
other hand, if (2°)’ = (¥) has no solution in G(f), then ()" =
(7~ &) = () and it follows that H(f) =<(2") x (&) = Z, X Z,
(direct product).

If f(x) is reducible over @, then we have to solve simultaneously
(w, — wb,)™ = gm¢? and (w, — wh,)™ = ¢gm0;* and consequently
(w, — wf,)’ = FVO*  and (w, — wd,) = gV or (w, — wh,) =
—g%6>. We have proved

THEOREM 1. Let Q(6,) + Q(t) or Q(w) and k be the maximal
positive imteger such that (w, — w.,)’ = gl NG and (w, — wb,) =
gCNO: have simultaneous solutions with w,, w, ge Z and {, {, = +1
(which are identical if Q0. + Q). Then the subgroup H(f) of
elements of finite order in G(f) is isomorphic to Z,, when k is odd
or when k is even and (7)) = (%) has a solution in G(f) and is
isomorphic to Z, X Z, when k is even and (-77) = (&) has no solu-
tion in G(f).

The condition of the theorem implies that @ is a unit times a
k-th power in Z. By Theorem 4.5 of [1], (X)* = (E) has a solution
in G(f) when and only when —(P? — 4Q) or —Q(P? — 4Q) is a square
in Z. Since Q(4,) # Q(7) this can only happen when @ is the nega-
tive of a square and P? — 4Q is a square, i.e., f(x) is reducible
over Q.
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EXAMPLE. f(z) = (x — 4)(x + 9) so that Q@ = —6% k is even and
H(f) = Z,. Direct calculation shows that H(f) = {[5, —19], [2, —5],
[1, —35], [0,1]} and is obtained by solving (w, + w,9)* = f(4) and
(w, — wAl)? = —f(—9) simultaneously.

Case 2. Q(f,) = Q(1). The equation (w, — w,0,)* = e¢ has a solu-
tion w,, w,, e € Z; let us denote the resulting solution in G(f) by (¥").
Then (_#), (), (¥7)* and (¥°)* are all distinct and (") = (7).
Furthermore (97°)* is derived from a solution of (¢, — t0,)* =g€eZ
and so must be (¥). It follows that if we obtain all the solutions
of the equation (1.5.t) with { =1 we get all elements of H(f) com-
bining these with the powers of (%7).

Let (277) and (27"«’) be solutions of (1.5.1) with { = 1; then all
solutions of (1.5.1) for all L are (377), (7)), (977 %7) and (%77 & ).
Then two solutions of (1.5.2) are ()} = (#"¥)* and (7 ¥") =
(77" &) = (377)(&), all four solutions of (1.5.8) are (977), (7 &),
(7 77) and (277 «)* and similarly up to the solutions (277)%,
(7Y (777 and (77 &) obtained for (1.5.k) (the solutions
of which are (%), (), (") and ("), for all possible values of
0). If k is odd then the four solutions obtained are all distinet and
so one is (7 )—say () = (7). Then H(f) =L)X (¥)) =
Z, x Z, (direct product). If k= 2 (mod 4), then the distinct solutions
obtained are (. )* and (27)%(%") one of which must be (7). So
we have the same result. If £ = 0 (mod 4) all our solutions in G(f)
obtained for (1.5.k) are identical to (9#7)*. Now we already have
two solutions of the equations (.z°)* = (&), namely (.Z°) = (") and
(#°¢). Such an equation can have no, two or four solutions in
G(f) (see [1] 4.5). If then only two solutions exist, (27 )" = ()
and again our group H(f) =(7 ) x(»")) =Z, x Z,; if four solutions
exist we have (7 ") = () and H(f) =(# ) X {7 7)) = Z, X Z,.
Thus

THEOREM 2. Let Q(6) = Q(t) and k be the mawximal positive
integer such that (w, — w,,)* = gl Y0 has a solution w,, w, g€ Z
and C a fourth root of unity. Then H(f) is isomorphic to Z, if
k is odd, to Z,x Z, if k=2 (mod4) or if k=0 (mod4) when
() = (&) has only two soluttons wn G(f) and to Z, X Z, when
k=0 (mod4) and () = (£) has four solutions in G(f).

Again the condition of the theorem implies that @ is a unit
times a k-th power in Z. Since P* — 4Q is the negative of a square,
the invariant 4(%) = —(P* — 4Q) is a square and so (.Z°)* = (<) has
four solutions in G(f) only when @ is also a square in Z and then
G(f) has three elements of order two (see [1], 4.6).
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Case 3. Q(0,) = Q(w). The equation (w, — w,,)* = ew has a
solution w,, w,, e Z; denote the resulting solution in G(f) by (7).
Then (7), (7), (), (77), (), () are all distinct and (")’ =
(%), Furthermore (7°)° = (¥’); the equation (.2°)° = (") has no
solution in G(f) (since —(P?*— 4Q) = 3 times a square in Z and so
is not a square, and —Q(P* — 4Q) cannot be a square in Z also). If
(9#7) is one solution in G(f) derived from (1.5.1) with = 1, then
all solutions derived from (1.5.1) for all { are (3#7), (77", (37 77%),
(7 &), (7w 7rE), (7). Among the solutions derived from
(1.5.k) are (), (77, (7%, (&), (7<) and
(7 7). If k is odd, then (77°)¢ and (97 &)* provide the two
distinct solutions obtained from (1.5.k) with { =1 and so at least
one of them is (_#); say (277)* = (_#), then H(f) = (7)) X (7)) =
Z, X Z;. If k is even, neither (977)* nor (57 &) can be () (since
otherwise (Z) = (#°) would have a solution in G(f)) and so both
must be (.#), Hence again H(f) =) X)) = Z, X Z,.
Therefore

THEOREM 3. Let Q) = Q(w) and k be the maximal positive
integer such that (w, — w,)? = gl V0 has a solution w, w,geZ
and £ a cube root of unity. Then H(f) = Z, X Z;.

2. Prime divisors of elements of finite order. At present
the only known way to determine if a prime p, (p, @) =1, divides a
general linear recurrence 97~ is to examine any p + 1 consecutive
terms of 2#7; p is a divisor of %~ if and only if it divides one of
these terms. Such a characterization we shall call local. On the
other hand every prime divides (_#) and a prime divides the element
(%) of order two in G(f) if and only if its rank of apparition in .7
is even. M. Ward in [3] termed this a global characterization of the
prime divisors of (_#) and (%) and raised the question whether these
are the only two recurrences (for a given companion polynomial f(zx),
or in our terminology, in G(f)) for which the prime divisors can be
so characterized. Here we show that there are other elements of
finite order besides (_#) and (%) where prime divisors can be globally
characterized. Although we have not made an exhaustive study we
suspect that there are other elements of finite order whose prime
divisors are globally characterized. But it is not clear that every
element of finite order has this property, for example, we know that
an odd prime of odd rank of apparition in .7 is a divisor of one
and only one of the two linear recurrences (%), (&) of order two
in G(f) (when they exist) but we cannot at present say which re-
currence of the two such a prime divides. Nevertheless, we are
tempted to conjecture that if an element of G(f) has its prime
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divisors globally characterized, then it is of finite order.

We consider the example of an element of order four considered
previously; here H(f) = {(77), (7)) = (£), (77)' = (&), (7)) = (L)},
where 7° =[5, —19] and 7" = [1, —35]. Since both (7") and (7"¥)
generate H(f) they have precisely the same prime divisors; by
Theorem 4.3 of [1] there is a labelling of the terms of 7" and 97" =
r&, say v, and w,, such that v,w, = de,,., for all ne Z, some
deZ and k =0 or 1. Comparing the first two products we see that
VW, = —€y,.,, Where v, =5, v, = —19, w, =1, w, = —35, ¢, = 2 and
e, = —5. Since 1,, = 1,¢, for nonnegative integers, where .7 = [0, 1],
1, = 0,4, = 1 is the Lucas sequence of G(f), it follows that the odd
prime divisors of both () and (7#") are precisely those of rank
dn + 2, n = 0,1, --.. Thus the prime divisors of (") and (7"¢) have
been characterized globally.

Now consider the group G(f), where f(x) = a* — bx + 7. The
group has two elements (7°) = ([1,3]) and (W) = (V? = ([1, 2]) of
order three. Since these two elements generate the same subgroup
of G(f) they have the same prime divisors. If we put v, =1, v, =3,
w, =1, w, =2, 4, =0, ¢, =1, then we deduce that 3v,w,i, = ,, for
all » and consequently it follows that the prime divisors of (7°) are
precisely those of rank 3n, » = 1,2, --.. Again the prime divisors of
(77) and (7°)* have been characterized globally.

Both these examples admit of some generalization.

3. Elements which are locally finite everywhere. To say
that an element (277) of G(f) is locally finite everywhere means that
(>77) is of finite order modulo G(f, p) for all primes p, i.e.,
(77 )e H(f, p) for all p (see after Corollary 3.4.1 of [1]). Now
H(f, p) 2 K(f, p) with equality for all p, which are coprime to
Q(P* — 4Q). Here we discuss only the case when Q = +1. Then
(7)) e K(f) = N, K(f, ) if and only if the reduced elements of (W)
have invariant +1. It can be shown that 4(977) = =1 implies
(2#7) = (I) except in the following two situations: when f(x) =
2*—38x+1 with 97 =[1,1] and f(x) = 2*+ 3z + 1 with % =
[—1,1]. Referring to the remark after Theorem 4.4 of [1], we see
that both these exceptional sequences are of order two; K(x* — 3x + 1) =
(), K@+ 3z +1) = (7)) and K(x* — Pr +1) = ((.#)) in all
other cases. Now if (2#7) e N, H(f, p), when (2#7)*e K(f) for some
Ke Z and so we may conclude by means of Theorem 3.7 of [1] that
the elements which are locally finite everywhere are precisely the
elements of finite order in G(f).

REMARKS. (a) The sequence <Z given above is a sequence of
alternate terms of the Fibonacci sequence, the sequence .%7 is similarly
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related apart from signs, and the two exceptional groups G(2* — 3z + 1)
and G(2* + 32 + 1) are isomorphic.

(b) If @ is not a unit the situation is quite different. To begin
with things are complicated by the fact that one cannot use reduced
elements alone in discussing the subgroup K. The above result that
an element which is locally finite everywhere is of finite order is not
true in general.

(¢) We can generalize a result of A. Schinzel given in [2] to
show that if (927) e G(f, ) for all primes p with at most a finite
number of exceptions, then (377) = (_#).

REFERENCES

1. R. R. Laxton, On groups of linear recurrences, I, Duke Math. J. (forthcoming

article)
2. A. Schinzel, On the congruence a*=b (mod p), Polonaise des Sciences, Serie des
Sci. Math., Astr. et Phys. 8 (1960), 307-309.
3. M. Ward, The prime divisors of Fibonacci mumbers, Pacific J. Math. 11 (1961),

379-386.

Received December 11, 1968, and in revised form July 22, 1969.

UNIVERSITY OF NOTTINGHAM






PACIFIC JOURNAL OF MATHEMATICS
Vol. 32, No. 1, 1970

THE ADJOINT GROUP OF LIE GROUPS

Dong HooN LEE

Let G be a Lie group and let Aut(G) denote the group
of automorphisms of (G, If the subgroup Int(G) of inner-
automorphisms of G is closed in Aut(G), then we call G a (CA)
group (after Van Est,). In this note, we investigate (CA)
property of certain classes of Lie groups. The main results
are as follows:

THEOREM A, Let G be an analytic group and suppose that
there is no compact semisimple normal subgroup of G. If G
contains a closed uniform (CA) subgroup H, then G is (CA).

TueoreM B, If G is an analytic group whose exponential
map is surjective, then G is (CA).

In [3], Garland and Goto proved that if an analytic group G con-
tains a lattice, then G is (CA4). Since a lattice in a solvable group is
a uniform lattice, it is finitely generated and so the automorphism
group of this uniform lattice is discrete, and thus this lattice is
trivially a (CA) subgroup. Thus Theorem A generalizes the above
theorem of Garland and Goto for solvable groups. Theorem B is an
improvement of the well known theorem that every nilpotent analytic
group is (CA) (see [2]). In §1, we introduce some notation and
preliminary materials. §2 and §3 are devoted for the proofs of the
main theorems together with their immediate corollaries.

1. Preliminaries and notations. The group Aut(G) of auto-
morphisms of locally compact a topological group G may be regarded as
a topological group, the topology being the (generalized) compact open
topology defined as in [5]. Thus, if we denote by N(C, V) the set
of all 6 ¢ Aut(@) for which d(x)x~*e V and 6~ (x)x~* ¢ V whenever x ¢ C,
then the sets N(C, V) form a fundamental system of neighborhoods
of the identity element of Aut(G) as C ranges over the compact sub-
sets of G and V over the set of neighborhoods of the identity element
of G.

If G is an analytic group and ¥ its Lie algebra, then Aut(G)
may be identified with a closed subgroup of the linear group Aut(%)
of automorphisms of &. Under this identification, Int(G) coincides
with the adjoint group Int(%"), which is generated by ¢**, X e & where
ad denotes the adjoint representation of <. Thus the (CA) property
of analytic groups are entirely determined by their Lie algebras. In
particular, if G is a covering group of G and if G is (CA), then so is
G. This fact is used in the proofs of the main theorems.
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Throughout this paper the following notation is used: If A is a
subgroup of @, then Int,(4) denotes the subgroup of Int(G) which
consists of inner automorphisms induced by elements of A. Thus
Int,(G) is merely equal to Int(G). The center of G is denoted with
Z(G). Also if xe @G, then I, means the inner automorphism induced

by =z.

2. Proof of Theorem A. Let H be a closed uniform subgroup
of an analytic group G, and H, its identity component. Then H/H,
is finitely generated. In order to see this, let G be the simply con-
nected covering group of G, H the complete inverse image of H under
the covering projection and H, the identity component of H. Then
since the covering projection induces an epimorphism H/H, — H/H,, it
suffices to show that H/H, is finitely generated. Nothing that G/H,
is simply connected (see, for example, Mostow [7], Corollary 1, p. 617),
we can identify the discrete group H/H, with the fundamental group
of the compact manifold G/H. As the fundamental group of a com-
pact manifold is finitely presented, it follows that H/H, is, in particu-
lar, finitely generated.

Now we can apply a theorem of Hochschild ([5], Th. 2, p. 212)
to see that if H is a closed subgroup of an analytic group, then Aut(H)
is a Lie group.

The following lemma enables us to assume that G is simply con-
nected.

LEMMA. Let H be a compactly generated Lie group and A a closed
discrete central subgroup of H. Let H = H/A. If H is a (CA) group,
then so is H. In fact, Int(H) is a topological extension of a discrete
group by Int(H).

Proof. Let m: H— H/A = H be the natural map and define y:
Int(H) — Int(H) by x(I3) = L), for he H

(i) yx is continuous. To see this, note first that we can find a
compact nighborhood D of 1 in H which generates H. Now let C be
a compact subset of H and U a neighborhood of 1 in H. Then we
have to find a compact subset C of H and a neighborhood U of 1 in
H so that y(N(C, U)n Int(H)) = N(C, U) N Int(H). Since n(D) =D
is also a compact neighborhood of 1 which generates H, we can find
a positive integer k such that C — D* by using the compactness of C.
Now letting C = D* and U = 7—*(U), it is easy to see that (C, U) is
a desired pair. Hence y is cotinuous.

(ii) x is open. In fact, since H is (CA), the canonical map
H/Z(H) — Int(H) is an isomorpyism of topological groups. Hence (ii}
follows from the following commutative diagram
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H/Z(H) — H/Z(H)

J l

Int(H) — Int(H)

where the left vertical map is always continuous and the top one is
open.

(iii) The kernel .2 of y is a discrete subgroup of Aut(H) and
hence is closed in Aut(H). To see this let 57 be the closure of .%"
in Aut(H), and .57, the identity component of 5. Since Aut(H) is
a Lie group 57/.%%; is discrete.

Since .% = Ker(y) and since A is central in H every element of
%" induces the identity map on H = H/A and on A. Hence f¢ .5
implies that # =1 on 4 and ¢ =1 on H = H/A, which implies that
O(h)h~e A for ke H.

Let e H be arbitrary and define 7;: 5% — A by 7;(0) = 0(h)h,
0e 27 . Then 7; is continuous and thus %;(.97;) is connected in the
discrete A. Since 7;(.57,) contains 1, 7;(.5%;) = 1 and this then im-
plies that 6(k) = I for all 6 .57,. Since & is arbitrary, .5, = 1 and
% is discrete. We have thus shown that .97 is a discrete sub-
group of Aut(H) and hence % is closed in Aut(H).

(iv) Since (Int(H)/.9¢" = Int(H), Int(H) is closed in Aut(H) as a
locally compact subgroup of Aut(H) and the lemma is proved.

Now we are ready to present the proof of Theorem A. Let G
denote the simply connected covering group of G and let 7 be the cover-
ing homomorphism.

Then, by the lemma n—*(H) = H is also uniform and (CA). Hence
no generality will be lost in assuming that G is simply connected. By
the assumption, Int(H) is closed in Aut(H). Thus the canonical map
H/Z(H) — Int(H) is an isomorphism of topological groups. Define o:
Inty(H) — Int(H) to be the restricting homomorphism and let .2~ be
the closure of the kernel of ¢, the closure being taken in Aut(G).
Then Int,(H).22" is a subgroup of Aut(G). We define H/Z(H)—
Int,(H) o7 |25 and Int,(H).%%"/ 2" — Int(H) to be the homomorphisms
induced by the canonical maps H — Inty,(H) and Int.(H)— Int(H),
respectively. Then the following diagram commutes:

Into(H). 27| 9%
/ N
/ N

H/Z(H) ——— Int(H)

and all three maps are continuous and algebraically isomorphisms.
Since the bottom one is an isomorphism of topological groups, Int(H)
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is topologically isomorphic with Int,(H). 2"/ 2 and thus the latter is
a locally compact subspace of the quotient space Aut(G)/.2¢. Hence
it is closed in Aut(G)/.2>¢" and, accordingly, Int,(H).2¢" is closed in
Aut(G).

We next claim that .22 < Int(G). In fact, if 8 ¢ 07, define P(g) =
f(g)g~', for geG. Then P:G— G is continuous, and P(H) = {1} and
G/H compact imply that P(G) is compact. Thus we see that 6 is an
automorphism of bounded displacement in the sense of Tits [8] and @
is therefore an inner automorphism induced by a central element of
the nilradical of G ([8], Lemma (6), p. 102). Thus 22" S Int(G).

By what we have shown, it is clear now that the closure Int;(H)
of Int,(H) is contained in Int(G). Since G/H is compact and since
G/H — Int(G)/Int,(H) is continuous, Int(G) is compact, modulo Int.(H)
and hence Int(G) is closed, proving that G is (CA).

COROLLARY. If a solvable analytic group G contains a closed
abelian uniform subgroup, then G is a (CA) group.

COROLLARY. (See, Garland and Goto [3]). If a solvable analytic
group G contains a lattice, then G s a (CA) group.

REMARK. In [6], we have shown that any extension of a simply
connected (CA) group by a compact connected group is a (CA) group.
Thus Theorem A generalizes this for the solvable case.

REMARK. We have failed to see whether or not the nonexistence
of compact semi-simple normal subgroup in the theorem is necessary.
This was needed in order to apply the result of Tits in the proof.

3. Proof of Theorem B. In order to prove Theorem B, we
first note that an analytic group G is (CA) if and only if its radical
is (CA)(See Van Est [2]). Thus we may assume that the group in the
theorem is solvable.

Let = be a finite-dimensional real solvable Lie algebra and let G
be an analytic group with its Lie algebra Z. If an exponential map
exp: & — G is surjective, then the exponential map into its simply
connected covering group is a bijection. Thus by the remark in §1,
it suffices to prove:

THEOREM B'. Let & be a finite-dimensional real solvable Lie
algebra. If the exponential map is a bijection, then <& 1is a (CA)
Lie algebra (that is, the adjoint group Int(<&”) is closed in Aut(<)).

In order to prove this, we need the following lemma:
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LEMMA. Let 4 be the nilradical of <. If Xe_¥" then the
one-parameter subgroup {e*?": te R} is closed in Aut(Z).

Proof of lemma. Let T denote the given one-parameter subgroup.
We show if T is not closed, then T is trivial. In faet, if 7 is not
closed in Aut(2), then the closure T of T is compact. Define ¢:
Aut(&) — Aut(_#") to be the restricting homomorphism. Since ¢+~
is a characteristic ideal in &, » is well defined and is continuous.

Now let ad , denote the adjoint representation of the nilpotent
Lie algebra _#~. Since 4" is nilpotent, Int(_#") is closed in Aut(_+")
([2], Proposition 1.2.2, p. 322), and thus @(T)CInt(_#"). By using
the fact that the maximal compact subgroup of any nilpotent analytic
group is contained in its center, it follows that Int(_#") is always
simply connected. Hence the compact subgroup @(T) must be trivial,
which means that ad_ X = 0 and so X is central in _#".

Next we show that X is central in . In order to see this, note
first that [X, £ & &’ S 4, &’ being the commutator subalgebra of
Z. Thus X being a central element of .7~ implies that ad(X)* = 0.
Therefore ¢*“" =1 + ad(tX) for te R. Let Ye <% be arbitrary.
Thus we have

exp (R[X, Y]) = exp (ad(RX)(Y)) = exp (¢ — I)(Y)
= exp (T — 1)(Y)) .

Since T is compact, the closure of 7 — 1 is compact in the matrix
topology of End(%), the ring of endomorphisms of the vector space
%’. Therefore, the continuity of exp implies that exp (T — 1)(Y)) is
bounded in G. Consequently, the one-parameter subgroup exp (R[X, Y]
is relatively compact. But G is simply connected and thus this one-
parameter subgroup must be trivial, which implies that ad(X) =0
and we have proved that X is central in =. Therefore T =1 as
desired.

Proof of Theorem B'. By a theorem of Goto ([4], Theorem III,
p. 165), it suffices to show that every one-parameter subgroup of Int(%)
is closed in Aut(¥’). Noting that every one-parameter subgroup of
Int(Z) is of the form e** % for some X e %, assume that there is a
nonzero X such that 7 = % g not closed in Aut(Z). We see
from the lemma that X is not in _#7

Next we select a decreasing sequence of ideals of < :

go:g>gjl>gz>"'>:(/fn!~1:(0)

such that dim.((<;/<;) < 2. Let A, denote the endomorphism on
<,/ &, ., which is induced by ad(X),7 = 0,1, .-+, n. Then there exists
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p such that A, + 0. For, if 4; =0 for all 4, then ad(X) would be
a nilpotent transformation and hence Xe._#, which is impossible.
Since T is relatively compact in Aut(Z), so is S = e*4» in Aut(<,/E,1).
Since A, is nonzero, S is nontrivial and thus dim,(Z,/<,+;) = 2. Since
a maximal compact subgroup of Aut(%,/<,..) is a circle group, it fol-
lows that S is a circle group in Aut(Z,/<Z,+). Nowlet m: & — &/,
be the natural homomorphism and let 5# be the sub-algebra of &/, .,
which is generated by 7(X) and ¥,/<,,,. Then from what we have
seen above, it is easy to see that 57 is the Lie algebra of the group
of the rigid motions on the plane. Thus exp is not a bijection by the
well known theorem of Dixmier ([1], Th. 8, p. 120). Hence every one-
parameter subgroup of Int(Z’) is closed in Aut(%’), which proves the
Theorem B'.

In the proof of Theorem B’, we have actually shown that Int(Z)
contains no compact subgroups. Hence we have:

COROLLARY. Let G be a solvable analytic group such that the
exponential map is surjective. Then Int(G) is simply connected.

COROLLARY. Let G be as above. Then Z(G) is connected.

Proof. By Theorem B, G/Z(G) = Int(G) is an isomorphism of
topological groups. Since Int(G) is simply connected, it follows that
Z(@) is connected.

REMARK. The coverse of the Theorem B is false. The group of
rigid motions on the plane is perhaps the simplest example.
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COMMUTATIVITY IN LOCALLY COMPACT RINGS

JAMES B. LUCKE

A structure theorem is given for all locally compact rings
such that x belongs to the closure of {x*: # = 2}, in particular,
all such rings are commutative, a result which extends a well-
known theorem of Jacobson., Similarly we show the commuta-
tivity of semisimpie locally compact rings satisfying topological
analogues of properties studied by Herstein,

Jacobson has shown that a ring is commutative if for every «
there is some n(x) = 2 such that 2 =« [5, Th. 1, p.212]. Herstein
has generalized this result, and certain of his and other generalizations
are of interest here. A ring is commutative if (and only if) for all x
and y there is some n(x, ¥) =2 such that (z*? — )y = y(@">? - %)
[4, Th. 2]; a ring is commutative if (and only if) for all 2 and y
there is some n(x,y) = 2 such that zy — yx = (xy — yx)"** [3, Th.
6]; a semisimple ring is commutative if (and only if) for all z and ¥
there is some n(x, y) = 1 such that =%y = yx==¥ [4, Th. 1] or if
for all  and y there are n, m = 1 such that z"y™ = y™z" [1, Lemma
1]. The investigation of analogous conditions for topological rings is
the major concern of this paper.

1. A topological analogue of Jacobson’s condition. If 2" =z
for some n = 2, then an inductive argument shows that a*"—9+ — g
for all k= 1. A possible topological analogue of Jacobson’s condition
would thus be that for every a2 there is some n(x) = 2 such that
lim,, Ft»=-b+t = x. But this implies that z** = x, since

EPE) = pn@)—lp — pniz)—1 lim,c R —D+1 — hmk gL @@=+l — g

Thus all topological rings having this property have Jacobson’s property
and hence are commutative.

A less trivial analogue of Jacobson’s condition is that for every
2 in the topological ring A, x belongs to the closure of {¢": n =2}. In our
investigation of these rings, rings with no nonzero topological nilpotents
play an important role. Reecall that an element & of a topological ring
is a topological nilpotent if lim, 2» = 0. We shall prove that a locally
compact ring has no nonzero topological nilpotents if and only if it is
the topological direct sum of a discrete ring having no nonzero nilpotents
and a ring B that is the local direct sum of a family of discrete rings
having no nonzero nilpotents with respect to finite subfields. From
this it is easy to derive a structure theorem for locally compact rings
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having the topological analogue of Jacobson’s property mentioned above.

LEMMA 1. If A is a locally compact ring with no nonzero
topological nilpotents, then A is totally discommected.

Proof. The connected component C of zero in A is a closed ideal
of A and so is itself a connected locally compact ring with no nonzero
topological nilpotents. By hypothesis, C is not annihilated by any of
its nonzero elements, for if xC = (0), then 2* =0, so * =0. Thus C
is a finite-dimensional algebra over the real numbers (cf. [6, Th. III]).
As the radical of a finite-dimensional algebra is nilpotent, C is a semi-
simple algebra. If C = (0), then by Wedderburn’s Theorem, C has an
identity e, and clearly (1/2)e would then be a nonzero topological nil-
potent contrary to our hypothesis. Thus C = (0), and so A is totally
disconnected.

LEMMA 2. A compact ring A has no nonzero topological nilpotents
if and only if A is the Cartesian product of finite fields.

Proof. Necessity: By Lemma 1, A is totally disconnected. Thus
the radical J(A) of A is topologically nilpotent [11, Th. 14], and hence
is the zero ideal. Thus A4 is a compact semisimple ring, and so A is
topologically isomorphic to the Cartesian product of a family of finite
simple rings [11, Th. 16]. A finite simple ring is a matrix ring over
a finite field, and unless the matrix ring is just the finite field itself,
it will have nonzero nilpotent elements. Thus as A has no nonzero
nilpotents, A is topologically isomorphic to the Cartesian product of a
family of finite fields. Sufficiency: Clearly zero is the only topological
nilpotent in the Cartesian product of a family of finite fields.

LEMMA 3. If A is a ring with no nonzero nilpotents, then every
idempotent is in the center of A.

Proof. If e is an idempotent and if ae A, an easy calculation
shows that (ae — eae)® = 0, hence ae — eae = 0. Similarly, ea = eae
and thus ae = ea.

We recall that the local direct sum of a family (4,),., of topological
rings with respect to open subrings (B;);., is the subring of the
Cartesian product [[, 4, consisting of all (a,) such that a, e B, for all
but finitely many <, topologized by declaring all neighborhoods of zero
in the topological ring [, B, to be a fundamental system of neighbor-
hoods of zero in the local direct sum. It is easy to see that the local
direct sum equipped with this topology is indeed a topological ring.
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THEOREM 1. A locally compact ring A has no nonzero topological
nilpotents if and only if A is the topological direct sum of a discrete
ring having mo nmonzero wnilpotents and a ring B (possibly the zero
ring) that is topologically isomorphic to the local direct sum of «a
Jfamily of discrete vrings having mo nonzero nilpotents with respect
to finite subfields.

Proof. Necessity: As A is totally disconnected by Lemma 1, A
contains a compact open subring F [7, Lemma 4]. By Lemma 2, F
is topologically isomorphic to the product of finite fields. Consequently
there exists in F' a summable orthogonal family (e,),., of idempotents
such that Fe, is a finite field and >,., e, = ¢, the identity of F.

By Lemma 3, e is in the center of A, so Ae and A(l — ¢) = {a — ae:
ac A} are ideals. The continuous mappings a — ae and a — (@ — ae)
are the projections from A onto Ae and A(l — ¢). Thus A is the
topological direct sum of Ae and A(l — e). As e is the identity of
F,FNAQ — e = (0). Thus as F is open, A(1 — e¢) is discrete and
hence has no nonzero nilpotents.

As F is open and as Ae¢, N F = Fe, a finite field, Ae, is discrete
and is an ideal as e, is in the center of A. Consequently Ae, has no
nonzero nilpotents. It will therefore suffice to show that B = Ae¢ is
topologically isomorphic to the local direct sum of the descrete rings
Ae,, with respect to the finite subfields Fle,.

Let B’ be the local direct sum of the Ae,’s with respect to the Fe,’s.
Let K:b— (be,) €[], Ae,. Clearly b— be, is a continuous homomorphism
for each v, hence K is a continuous homomorphism from B into [[, 4e,.
If b e B, then (be,) is summable and 3, be, = (3, ¢;) = be = b. There-
fore as F' is open in B, be, ¢ F' N Ae, = Fe, for all but finitely many
vel'. Thus K(B) & B'.

The mapping K is an isomorphism onto K(B), since if xe B and
if e, = 0 for all yeI", then s =xe =23}, ¢,) = >, we, = 0. Let y; € Fe,,
and let o, = 0 for all v = B, x; = y,; then (x,) = K(y,) € K(F') since (e;)7
is an orthogonal family. Thus K(F') contains a dense subring of T, Fle,,
and hence K(F') = [[, Fe, as K(F') is compact. As the restriction of
K to F is thus a continuous isomorphism from conpact F' onto [], Fe,,
F is topologically isomorphic to [J, Fe, under K.

Thus it sufficices to show that K(B) 2 B’, for K is then, by the
definition of the local direct sum, a topological isomorphism from B
onto B’. If (b,e,) € B’, then b, c Fe, for all but finitely many v, say
Yy Vue Call this set I, and let I" — I, = I',, Thus >,., be,e B
and b,e, € F for all vyel',., Hence as F is topologically isomorphic to
I, Fe,, 0’ = X,cr,b,e,€ B. Thus b=10 + >, be € B, and be, = be,,
so K(b) = (b,e,). The sufficiency is clear.
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We will call a ring 4 a Jacobson ring if given any x e A there is
an n(x) = 2 such that 2 = 2. All Jacobson rings are commutative
[5, Th. 1, p.212], and in extending this result to topological rings
we give the following definition, noting that it reduces to Jacobson’s
condition in the discrete case.

DEFINITION. A topological ring A is a J-ring if for each xc 4, x
belongs to the closure of {x":n = 2}.

LEmMMA 4. If A is a J-ring, then A has no nonzero topological
nilpotents.

Proof. If lim, 2" = 0, then since x belongs to the closure of
{z*: n = 2}, we conclude that x = 0.

THEOREM 2. A locally compact ring A is a J-ring 1f and only
if A 1s the topological direct sum of a discrete Jacobson ring and a
ring B which is topologically isomorphic to the local direct sum of
a family of discrete Jacobson rings with respect to finite subfields.

Proof. Necessity: By Theorem 1 and Lemma 4, A is the topologi-
cal direct sum of a discrete ring C and a ring B which is topologically
isomorphic to the local direct sum of a family of discrete rings with
respect to finite subfields. As each of these rings is an ideal of A,
each is a discrete J-ring and so is a Jacobson ring.

Sufficiency: Let B be the local direct sum of a family of discrete
Jacobson rings B,,ve " with respect to finite subfields F,,veI'. Let
(x,)e B and let U be a neighborhood of zero in B. Then we may
assume that there is a finite subset 4 of I" such that z, ¢ F, for all
v¢4 and U = [[,G,, where G, = F, for all v¢ 4. For each ve 4, let
n(v) > 1 be such that " =, Let =1+ [[,e,(n(v) —1). An
inductive argument shows that z} = «, for all ve 4. Hence (z,)" —
(x,) e U. Thus B is a J-ring, and consequently A is also a J-ring.

As all Jacobson rings are commutative we have the following
analogue of Jacobson’s Theorem:

COROLLARY. A locally compact J-ring is commutative.

THEOREM 3. A locally compact ring A is a Jacobson ring if and
only if there exists N = 2 such that A is the topological direct sum of
a discrete Jacobson ring and a ring B that is topologically isomorphic
to the local direct sum of a family of discrete Jacobson rings with
respect to finite subfields of order < N.
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Proof. Necessity: Let |B,| = the order of B,. By Theorem 2
it suffices to show that sup|B,| < + <. If sup|B,| = +, then
there exists (x;) € [[, B; such that the orders of the z,’s are unbounded.
Consequently for no n does x? = «, for all v, i.e., for no »n does (x,)" = (,).

Sufficiency: Let (A4,),., be a family of discrete Jacobson rings with
finite subfields B, such that |B,| < N for all v. Let (x,) be in the
local direct sum of the A,/s with respect to the B,’s. There exists
a finite subset 4 of I" such that if v¢ 4, x,€ B,. Since each A4, is a
Jacobson ring, for v e 4 there is n(v) such that z!" = z,.

If 2*% = #,, an inductive argument shows that a2+ =g, for
all k. If xz,eB,, then |B,| < N, so since |B,| — 1 < N, a;"*¥ = g,
for all k. Let n =1+ [(N!) IT;es (n(v) — 1)]. Then 27 =z, for all
v, l.e., ()" = (x,).

2. Analogues of four of Herstein’s results. An analogue for
topological rings of the first of Herstein’s conditions that are mentioned
above is that for all  and y, 2y — yx is in the closure of {x"y — yx™: = 2},
and we say such a topological ring is an H,-ring. An analogue of the
second of Herstein’s conditions is that for all # and ¥, xy — yx is in

the closure of {(xy — yx)~: n = 2}, and we say such a topological ring
is an H,ring. ({If (xy — yx)"*¥ = gy — yz, then

(xy _— yx)k[%(w,y)—l]ﬂ =%y — Yx

for all £ = 1; hence another topological analogue is the assumption that
for each z, y € A, there exists n(x, y) = 2 that lim, (zy — yx) v+ =
xy — yx; however by an argument similar to that of the first paragraph
of §1, this condition implies that (xy — yx)"*? = 2y — yx.) Similarly
an analogue of the third of Herstein’s conditions is that for all z, y
in 4, lim, 2™y — yx™ = 0, and we say such topological rings are H,-rings,
just as we will call H-rings those topological rings in which for all
2,y there is an m(x, y) = 1 such that lim, x"y™=? — ym=vz* = 0. We
shall prove that those H;-rings which are semisimple and locally compact
are commutative, © = 1, 2, 3, 4.

LEMMmA 5. All idempotents in an Hy-ring, 1= 1,2, 3, 4, commute.

Proof. Let ¢ and f be idempotents in such a ring A. Then
(efe — ef)* =0, so {(efe — ef)"e — e(efe — ef)": m = 2} = {0}. Therefore,
if A is an H-ring, then (efe — ¢f)e — e(efe — ef) = 0, so

0=(efe—ef)e = e(efe — ef) = efe — ef .

If A is an H,ring, then (ef)e — e(ef) = efe — ef = 0 since efe — ef is
in the closure of {[(ef)e — e(ef)]": m = 2} = {0}. Similarly in either case



192 J. B. LUCKE

efe = fe, so ef = fe. As 0= lim,e"f — fe* = lim, e"f™ — fme" = ef — fe,
the assention also holds for H, and H,-rings.

Since it is clear that all subrings and quotient rings determined
by closed ideals of H;,-rings are H;rings, © =1, 2, 3, 4, and since all
idempotents in such rings commute, we see that the following is
applicable.

LEMMA 6. Let P be a property of Hausdorff topological rings
such that:

(1) if A is a Hausdorff topological ring with property P, then
every subring of A has property P and A/B has property P where
B is any closed ideal of A,

(2) tf A has property P, then all idempotents in A commute.
If A is a locally compact primitive rimng with property P, then A
is a division ring.

Proof. Since A is a semisimple ring, A is the topological direct
sum of a connected ring B and a totally disconnected ring C, where
B is a semisimple algebra over R of finite dimension [7, Th. 2]. As
A is primitive, either A = B or A = C. In the former case A is a
matrix ring since it is primitive, and so has idempotents which do
not commute unless it is a division ring.

It suffices, therefore, to consider the case in which A is totally
disconnected. We shall first prove the assertion under the additional
assumption that A4 is a @-ring (i.e., the set of quasi-invertible elements
is a neighborhood of zero). We may consider A to be a dense ring of
linear operators on a vector space K over a division ring D. If FE is
not one-dimensional, then E has a two-dimensional subspace M with
basis {z, 2,}. Let B = {acA:a(M) S M}, and let

N ={acA:aM) =(0)} = K NK,

where K; = {acA:a(z;) =0},1 =1, 2.

There exists u e A such that u(z,) = z,, and hence z — 2u € K,, for
all xe A. If v¢ K, then there exists w e A such that wv(z) = z, so as
% =wv+ (u—wv) and u —wve K, A = Au + K, = Av + K,. There-
fore K,, and similarly K,, is a regular maximal left ideal, an observation
of the referee that simplifies the proof. Hence K, and K, are closed
(cef. [11, Th. 2]), so N is a closed ideal of B. By hypothesis B/N is
therefore a Hausdorff topological ring having property P. Thus all
idempotents in B/N commute; but B/N is isomorphic to the ring of
all linear operators on M, a ring containing idempotents which do not
commute. Hence E is one-dimensional and A is a division ring.

Next we shall show that A is necessarily a Q-ring, from which
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the result follows by preceding. As A is totally disconnected A has a
compact open subring D [7, Lemma 4]. If D = J(D), the radical of
D, then D and hence A are Q-rings. Assume therefore that J(D)c D.
We shall show that D/J(D) is a finite ring and hence is discrete.

The radical, J(D), of D is closed [8, Th. 1], D/J(D) is compact
semisimple ring and thus D/J(D) is topologically isomorphic to the
Cartesian product of a family (), of finite simple rings with identities
(f)rer [11, Th. 16]. As J(D) is topologically nilpotent [11, Th. 14], D
is suitable for building idempotents [12, Lemma 4] (cf. [11, Lemma 12]).
Suppose that I" has more than one element, say {«a, 8} S I". Then there
are nonzero orthogonal idempotents e,, ¢; in D such that e, + J(D),
e; + J(D) correspond, respectively, under the isomorphism to (f%), (f/)
where A =0€eF,if vy = X and f} = f,. Let ¢ be the canonical mapping
x—x + J(D) from D onto D/J(D). As (f*) + (ff) annihilates the open
neighborhood IT,., G, of zero where G, = {0}, G, = {0}, and G, = F, for
v # a, B, we conclude that ¢(e, + ¢,) annihilates a neighborhood V of
zero in D/J(D). Consequently U = ¢~*(V) is a neighborhood of zero
in D, and (e, + ¢;)U(e, + e;) S J(D) (cf. [7, proof of Th. 11]). Therefore
as (e, + e)Ule, + €5) = U N (e, + €))A(e, + €5), (e + €5)Ule, + €;) is a
neighborhood of zero in (e, + e;)A(e, + e;) consisting of quasi-invertable
elements, so (e, + e;)A(e, + ¢;) is a Q-ring. As (e, + e;)A(e, + ¢;) is
primitive [6, Proposition 1, p. 48] and is clearly closed, (e, + €;)A(e, + €5)
is a locally compact, primitive @-ring with property P, so (e, -+ €5)
A(e, + e;) is a division ring. But it contains nonzero e, e, satisfying
e.e; = 0, a contradiction. Thus I" can contain only one element, so
D/J(D) is isomorphic to a finite ring. Hence J(D), being closed in D,
is open in D and thus in A, so A is a Q-ring.

LEMMA 7. If A is an Hyring, 1 =1,2,3,4 and if A is a locally
compact division ring, then A 1s a field.

Proof. If A is discrete and is an H;-ring (¢ = 1,2, 3,4) then A
is commutative [3, Th. 2; 4, Th. 1; 3, Th. 1; 1, Lemma 1].

If A is not discrete, then A has a nontrivial absolute value giving
its topology, and A is a finite-dimensional algebra over its center, on
which the absolute value is nontrivial [10, Th. 8].

If A is an H,-ring and x is nonzero in A, then there exists some
nonzero z in the center of A such that |z| < 1/jz|. Thus |2z| <1,
so lim, (x2)" = 0. Hence for any y ¢ 4, lim, (22)"y — y(x2)" = 0, so as
(x2)y — y(x2) is in the closure of {(x2)"y — y(x2)":n = 2}, 0 = (x2)y —
y(xz) = z(xy — yx). Hence xy = yx, as 2+ 0. Thus A is commutative.

If A is an H,ring and if x, y ¢ A satisfy a2y — yx = 0, then there
exists some nonzero z in the center such that [z| < 1/|2y — yx|. Thus
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| (x2)y — y(x2) | < 1, so lim, [(x2)y — y(xz)]* = 0. Hence 0 = (zz)y —
y(xz) = (xy — yx)z, so 2y — yx = 0 as z # 0, a contradiction. Thus A
is commutative.

Assume that A is an H,ring. As A is a division ring, A is either
totally disconnected or connected [7, Th. 2].

Case 1. A is totally disconnected. Then the topology of A is given
by a nonarchimedean absolute value. Suppose A is not commutative.
Then as A is a finite-dimensional and hence an algebraic extension of
its center C, there exists some « ¢ C having minimal degree m > 1 over
C. Let y be arbitrary in A, and assume that for no 1 <¢<m — 1,
does 2’y = yx'. Hence z'y —y2* 0, 1 <1 =<m — 1, and we claim
{x'y —yxr: 1 <1< m— 1} is a linearly independent set over C.
Suppose >t Bi(x'y — yx') = 0, where B;€C, and let z =33 Bt
Then zy = yz. By the definition of m, either z ¢ C on 2z has degree = m
over C. Suppose z¢ C. Then C[z] has dimension m over C, so m is
the degree of z as ze C[x]. Therefore C[z] = C[2], so as zy = vz,
every element of C[x] commutes with y, contrary to our assumption.
Thus zeC; let —8,=2. Then >r'Bx'=0,8006;,=0,0<7<m—1
since {1, x, ---, x™'} is linearly independent over C.

Since x is algebraic of degree m over the center C of A4, there
exist a;eC,0<7=<m — 1, such that z™ = >\";'ax’; thus for all
n = m, there exist «;,cC,0<¢<m —1, such that z” = >, 2"
We may also assume that |x| > 1, since all our assumption on x are
true for any Az, » e C*. We note that there is therefore some = such
that |[2|" = |a;|,0 < i < m — 1.

Since 2* = Y5t a0

m—1 A )
Y — Yt = >, @, @Y — YY) ;

so lim, #"y — yx* = 0 if and only if lim,«,, =0,1 <1< m — 1.
Since |2*| < max{la;,||z]:0<i<m — 1}, if |, | <1, 154
m — 1, then |z |" < |a,,.|. Let r, be such that |[x|°>|x|+ 1. Since
lim,®;, = 0,1 <¢<m— 1, there exists n, > r + 7, such that |«;,,| <1,
for all n = n, and all ¢ such that 1 <+ < m — 1. But for any n > n,,

m—

2 m—1 i
x%—l—l = Z aii xt+l + am——l,n(Z aiaﬂ)
£ =0 =0

m—1 .
= am—l,nao + Z [ai——l,n + (am——l,n)ai]xl ’
i=1
SO
| al,n+1 I = Jao,n + am—l,nal | Z | ao,n i - | am~1,n | | 6Kl |
zlel" —Jafz o™ — ol =a | (o° - 1) >1.

a contradiction. Hence A4 is commutative.
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Case 2. A is connected. Then the center C of A contains the
real number field R, A is finite-dimensional over R, so the degree of
each element of A over R is less than or equal to 2, and the topology
is given by an absolute value. Suppose z¢ C. Then degx = 2; let
2 = a, + ax, and for each n =2, let z" = a,, + @,,,x, where «,,,
a,,, € R. As before we may assume that |z | > 1. Let » be such that
|2|" > max{|«a,|, |a,|}. Let yc A be such that xy == yx. Then 0 =
lim, (z*y — y2") = lim, &, ,(xy — yx), so lim, «,, = 0. Let m, > r be
such that |«,,| < 1 for all n = n,. Butif n = n, is such that [z |* > 3
2|, then

o] = [, + o] S |+ a, o] <|a,] + ],
so x| — x| <|a,n|. As
" =y, %+ (0 ) = a0+ (A, + 00T,
| Qs | = [, + (@) Z @, — |G, |a] .

Hence |, | = ((2]" — [2]) — (2] Z3|a] ~ |z — |z =|2z|">1, a
contradiction. Hence A is commutative.

Finally let A be an H,-ring. If for all x and y, lim, 2"y — yx" = 0,
then A is an H,ring and so a field; so assume there are x and y in
A such that lim, 2"y — yx" = 0. Let W = {we A:lim, "w — wx" = 0}.
Clearly W is a division subring of A4, and since y¢ W, W is a proper
division subring. By hypothesis, for all a ¢ A there is an r = 1 such
that a"e W; thus 4 is a field [2, Th. B].

THEOREM 4. All H;-rings that are locally compact and semisimple
are commutative, 1 = 1, 2, 3, 4.

Proof. P is a primitive ideal of such a ring A if and only if
P = (B: A) (by definition (B: 4) = {x € A: Ax < B}) where B is a regular
maximal to left ideal [5, Corollary to Proposition 2, p. 7]. Let ec A be
such that « —exe B for all xe¢ A. If xe (B: A), then exc B, so x € B.
Hence (B: 4) & B.

If B is closed, then (B: A) is closed for if (x,) is a directed set
of elements of (B: A) converging to x, then for all ae A, ax, c B,

whence ax = lim az, € B.
As A is semisimple, (0) = N {B: B is a closed regular maximal left

ideal} 2 N {P: P is a closed primitive ideal} [8, Th. 1]. By Lemma 6
and 7, A/P is a field if P is a closed primitive ideal. Thus for all
x,yc A, 2y —yreP, so xy —yre{P:P is a closed primitive
ideal} = (0).
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RINGS OF FUNCTIONS WITH CERTAIN
LIPSCHITZ PROPERTIES

C. H. SCANLON

Let (X, d) denote a metric space, L, (X) the ring of real
valued functions on X which are Lipschitz on each compact
subset of X, L;(X) the ring of real valued functions on X
which are locally Lipschitz relative to the completion of X,
and L #(X), L,*(X) the bounded elements of L.(X), L,(X). The
relations between equality of these rings and the topological
properties of X are studied, It is shown that a subspace (S, d)
of (X,d) is L.embedded (or L. *-embedded) in (X, d) if and
only if S is closed. Further, every subspace of (X, d) is L;-
and L,*-embedded in (X, d).

Su [3] investigated algebraic properties of the rings L,(X) and
L#(X) similar to those of C(X) and C*(X) by Gillman and Jerrison

[2].

2. Equality of rings. Let f denote a real valued function de-
fined on X. f is Lipschitz on Sc X if and only if there is a real
number m, called a Lipschitz constant for f on S, such that if z,
ye S, then | f(x) — f(y)| < md(x, y). f is locally Lipschitz on X if
and only if for each x e X, there is a neighborhood N of z such that
f is Lipschitz on N. If comp X denotes the completion of X, then f
is locally Lipschitz with respect to comp X if and only if for each
x ¢ comp X there is a neighborhood N of x such that fis Lipschitz on
NN X.

THEOREM 2.1. fe LX) if and only if f is locally Lipschitz on
X.

Sufficiency. Let f be locally Lipschitz on X and S a compact
subset of X. Then there exists a finite collection N,, N,, ---, N,, of
open sets covering S, on each of which f is Lipschitz and thus bounded.
Assuming f is not Lipschitz on S implies that there exists a sequence
{x,} from S converging to € S and a sequence {y,} from S such that
| f@,) — fy,)|/d(x,, y,) > n for each positive integer n. Since f is
bounded on S, it follows that {y,} converges to x. Since xe N; for
some j=1,2, .-+, m, f is not Lipschitz on N; which contradicts the
definition of Nj.

Necessity. Let fe L,(X) and xe¢ X. Assuming f is not locally
Lipschitz at z implies there exists sequences {z,} and {y,} such that
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dx, v,) < 1l/n, d(x, y,) < 1l/n, and |f(®,) — fW.)|/&(&., y,) > n. Then
{p:ve{x,}, pe{y.}, or p = x} is a compact subset of X on which f is
not Lipschitz.

COROLLARY 2.2. fe LX) if and only if f s locally Lipschitz
on X and bounded.

Proof. Follows immediately from the definition of L}(X).
CorOLLARY 2.3. L(X)c L(X) end L¥(X)cC L¥X).

Proof. If f is locally Lipschitz relative to com X, then f is
locally Lipschitz.

LEMMA 2.4. If K is a uniformly bounded set of Lipschitz func-
tions defined on Sc X and there is a real number m which is a
Lipschitz constant for each element of K, then f(x) = sup{g(x): gc K}
for each xc S s Lipschitz on S and m is a Lipschitz constant for

fon S.

Proof. f exists since K is a uniformly bounded set. Assume
xeS,ye S, and

(1) fy) — &) — md(z,y) =e>0.
Let g e K such that

(2) JFw) —9y) <e,

then

(3) 9 — 9(@) = md(x, y) .

Combining (2) and (8) yields f(y) — g(x) — md(z, y) < e, which when com-
bined with (1) gives f(x) < g(x). This contradicts the definition of f.

LEMMA 2.5. Suppose each of ¢ and r > 0, pe X, and for

(0/1"){/}" - d(fﬂ, p)} fOT d(i)(?, p) =,

h X, f(x) = .
oach we 7@ {0 otherwise

then f is Lipschitz on X and (¢/r) is a Lipschitz constant for f on
X.

Proof. Let g(x) = (¢/r){r — d(z, p)} for each xe¢ X. Then for z,
ye X,
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9(®) — 9(y) = g9(®) — g(p) + 9(p) — 9(») ,
9®) — g(y) = —(¢/r)d(x, p) + (¢/r)d(y, p) ,

and g(x) — 9(y) = (¢/r)d(x, y) by the triangle property. Since sup {g, 0}
is Lipschitz with a Lipschitz constant sup {(¢/7), 0} by Lemma 2.4, the
conclusion follows.

THEOREM 2.6. FEach of the following 1is equivalent to each of
the others:

(1) LX) = L),
(2) L¥X) = LXX), and
(3) X 1s complete.

Proof. (1) = (2) obviously. The remaining order is (2) = (3) = (1).

Assume (2) and that X is not complete. Then there exists an
x € (comp X) — X and a sequence {x,} of distinet points in X such
that {x,} converges to x. For each odd integer =, let

r, = _;_inf {y:y = d®,,x,) for m=n or y=(1/n)},

C(x,, r,) = {te X:d(t, x,) = .},
and

A/r){r, — dx,, 1)} for teC(x,, r,)
0 otherwise

fa(t) =

for each te X. Let f(t) = sup {f.(¢)} for each te X. If S is a compact
subset of X, then S can intersect at most a finite number of the
elements of {C(x,, r,)} and since only a finite number of elements of
{f.} are nonzero on S, by Lemma 2.4 f is Lipschitz on S and f e L*(X).
For each neighborhood N in comp X of x, there is a point ¢e N and
a point y € N such that f(¢{) =1 and f(y) = 0. Thus f¢ L(X) and by
contradiction, (2) = (3).

If (3) is true, fe L(X) if and only if f is locally Lipschitz.
Thus by Theorem 2.1, L(X) = L, (X) and (3) = (1).

THEOREM 2.7. LX) = LX) if and only if X is compact.

Proof. If X is compact, then each element of L,(X) is bounded.

Assume L. (X) = L¥(X) and X is not compact. Then there exists
a sequence {x,} of distinct points in X which has no convergent sub-
sequence. Let

rnz—é-inf{y:y:d(:cmxm) for =+ m or y:%},
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and

(@r)r, — d@, @) for d(, ©) =7,

|0 otherwise

S (@)

for each xe X. By an argument similar to the one for Theorem 2.6,
fe L/ (X). Since f(x,) = n for each n, fe L .(X) — L*(X) which contra-
dicts the assumption.

THEOREM 2.8. L,(X) = L} X) if and only if comp X is compact.

Proof. Each element of L,(X), L¥(X) can be uniquely extended
to an element of L,(comp X) = L,(comp X), L}(comp X) = L}(comp X).
Since L,(comp X) = LX(comp X) if and only if comp X is compact by
Theorem 2.7, the conclusion follows.

3. If A denotes one of L,, L}, L,, L and S C X, then the state-
ment that S is A-embedded in X means that if fe A(S), there is a
ge A(X) such that ¢g|S = f where g|S ={(&,¥)eg: 2 S}.

THEOREM 3.1. If S is a subset of X, then each of the following
1s equivalent to each of the others:

(1) S is L,-embedded in X,
(2) S ts L}-embedded in X, and
(8) S is closed.

Proof. Czipszer and Geher [1] proved that if S is a closed subset
of X and f is a real valued locally Lipschitz function with domain S,
then there is a real valued locally Lipschitz function ¢ with domain
X such that ¢|S = f. Furthermore, they proved that if f is bounded,
then there exists a bounded such g. Consequently, by Theorem 2.1,
(8)=(1) and (3) = (2).

Assume (2) and S is not closed. Then there exists a sequence
{x,} of distinct points in S and a point x € X — S such that {x,} con-
verges to x. Construet f as in Theorem 2.6. Then fe L*(S) which
has no extension to X in L,(X). Thus (2) = (3). Note that this also
shows (1) = (3).

COROLLARY 3.2. Ewery subset of X is L,-embedded and L}-em-
bedded in X.

Proof. If Sc X, then every element of L,(S) has a unique ex-
tension to the closure of S in comp X and by Theorems 2.6 and 3.1
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an extension in L,(comp X) which when restricted to X is an element
of L(X).
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TOTALLY POSITIVE DIFFERENTIAL SYSTEMS

BINYAMIN SCHWARZ

Totally positive (TP), and strictly totally positive (STP)
differential systems are defined, These real, first order, linear
systems are characterized by the form of their coefficient
matrices, and by the decrease of the number of sign changes
of their solution vectors as functions of the independent
variable. A bound is given for the combined number of zeros
of the first and last components of any particular solution
vector of STP system and a similar result is obtained for TP
systems. Examples show that no such bounds exist for the
number of zeros of any other component,

In this paper we consider real differential systems of the form
(1.1) y'(t) = AQy() .

Here the solutions y(t) are real column vectors y(t) = (%.(f), - -+, ¥.(2))
and A(¢) is a given » X n matrix (a;;({))7 whose elements «,;;(¢t) are
real functions which are continuous in the open interval (a, b), — <
a < bZ . Together with the vector differential equation (1.1) we
consider also the corresponding matrix differential equation

(1.2) Y'@t) = AQ)Y(@) ,

where Y(t) = (¥;,(t));. Let Y(t) be any solution of (1.2); for each
integer p, 1 < p < n, we denote the p th compound of Y(¢) by C,(Y ().
In §2 we construct foreachp, 1 < p <n, a (Z) X (g) matrix B)(¢),
such that

(1.3) [C.(Y@N] = BP()C,(Y(?))

(B (t) = A(t).) The elements of B'”)(f) are easily expressed by the
given n* elements a,;(t) of A(t) (Theorem 1). Special cases of these
compound systems were previously considered: Mikusifski [6] con-
sidered the differential system satisfied by the 2 x 2 Wronskians of
the solutions of the equation «#™(t) + p(t)u(t) = 0 and Nehari [7]
considered all compound systems (1.3) in the case where (1.1) is
equivalent to an = th order linear differential equation. We remark
that for p = n — 1 (1.3) is closely related to the system adjoint to
(1.2); and for p = » (1.3) reduces to Liouville’s equation

(4 40 = (3 0u0)4) |

where 4(t) = C,(Y(t)) is the determinant of Y({). We state an im-

203
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mediate consequence of Theorem 1, showing a characteristic difference
between the elements a;;(t) with |2 — 7| = 1 and the other off-diagonal
elements of A(t), as a corollary.

A real n x n matrix is totally positive (TP) is all its minors are
nonnegative, and the matrix is strictly totally positive (STP) if all its
minors are positive. For each r, a < < b, we denote the fundamental
solution Y(t) of (1.2) satisfying

(1.5) Y(r) =1,

I =)0, by Y(@) = Y, r). We call the system (1.2), and the
corresponding system (1.1), totally positive (TP) in (a, b) if for each
pawr (r,t),a <r=t<b, Y(t r) is TP. If for each pair (r,t),a <
r<t<b Y(t,r) is STP then the systems (1.2) and (1.1) are called
strictly totally positive (STP) in (a,b). In §3 we characterize these
systems by the form of the matrix A(f) = (a;;(¢t))’. The system (1.2)
is TP in (a, b) if and only if A(f) is a (variable) Jacobi matrix (i.e.,
a;;(t) = 0 for |7 — j| = 2) with nonnegative off-diagonal elements (i.e.,
() =0,0;4,,:(6) 20,7 =1, ---, n — 1). This result (Theorem 2)
was first proved by Loewner [5]. Our proof (based on Corollary 1)
is quite elementary and leads also to the following modification of
Loewner’s result: The system (1.2) is STP in (a, b) if and only if
A(t) satisfies the above conditions and none of the functions a;;.,(t)
and a;.,;(t) vanishes identically in any interval contained in (a, b)
(Theorem 3).

In §4 we consider vector solutions y(¢) of a STP system. The
system (1.1) is shown to be STP in (a, b) if and only if S*(y(s)) < S~ (¥())
holds for all nontrivial solutions y(¢) and all pairs (r, s), a < r < s < b,
(Theorem 4). This result on the number of sign changes, following
from the variation-diminishing properties of STP matrices, leads now
to results on the number of zeros of the components y,(t) and y,(f) of
any given vector solution y(¢) of (1.1). The combined number of zeros
of these two extreme components cannot exceed n — 1 (Theorem 5).
No such restriction exists for the interior components ¥,(¢), « -+, ¥._.(%).
We illustrate this dissimilarity between the extreme and the interior
components by examples in the last section (§6). In §5 we consider
vector solutions of TP systems and the results are now weakened
versions of the corresponding results for STP systems. We rely
strongly on the recent book by Karlin [4], but we give all necessary
definitions in order to keep this paper reasonably selfcontained.

2. The compound differential systems. For given integers n
and p,1 < p < n, we consider the p-tuples of increasing integers
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’L'1<'L'2<---<’l:p
T <J < o < Jy

1

A
IA

n,

and we arrange these N = (™) p-tuples in lexicographic order. We
denote these p-tuples of indices also by

a:(iuizy"'yip)y B:(jly"'yjp)'

For a n X n matrix Y = (y;;)7, we denote the minor, determined by
these rows and columns, by

Y(i‘u ,L:zy ct 7:.;0) .

JisJes <9 Dy

The pth compound C,(Y) of Y is the N X N matrix having these
minors (in lexicographic order) as elements. The elements of the
N x N matrix B are denoted by b,; = b(iy, ~++, %, |J1 ++*,J,). In
the following the matrices Aand B will be continuous functions of
t, Y and C,(Y) will therefore be continuously differentiable functions

of t. Using this notation we obtain the following relation between
the given system (1.2) and its compound systems (1.3).

THEOREM 1. Let Y(t) = (y;;(t), 0 <t < b, —o0o £ a < b oo, be
any solution of the differential system

(1.2) Yty =A@0YQ® ,

where A(t) = (a;;(1)); and the #* real functions a,;(t) are continuous
wn (a, b). The pth compound C,(Y(t) of Y(t), 1 < p < n, satisfies in
(a, b) the equation

(1.3) [CAY ()] = BP()C,(Y (1)) .
The matriz B®(t) = (b.s(f))Y, N = (Z), is given by

0 if at most p — 2 of the indices
1 of a coincide with indices j

of 5;
bs(t) (—1)/+mai/jm +f ewactly p — 1 of
(2.1) =b(Ty v+, | Ju 00y J0) =< the indices of a coincide with
indices of B, but i, # j., 1<
4 Mm = P;

p . .
/Z,lai/j/ Wfiy=0s,0=1,+,0.

Proof. We choose two p-tuples of increasing indices @ = (i, + -+, 7,),
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¥ = (ky + -+, k,) with

and consider the minor Y(lzc“ o 7}/:

>. Differentiating this minor by
rows and using (1.2) we obtain

p

n n

; )r DL Yy 2 @i Yor,
v=1 y=1

— I

iu ey 1,
Y(

kly Sty kp

Yo, =+ Yip,
Yiik, o Yik,
e

n n
> Qi Yok, * g;l Qi Yt

v=1

We rewrite this as
Y il,.“,ip ’: S aile( ) iz, ...’ip
ku c Yy kp v=1 ku kzy ""kp

(2 2) +i Y ily Y, iss "',?:p +
. a;., cee
=t kl! kz: k3, ct Y kp

ily STty ip——l! v >

n . VY
* ”Zlalp (ku ) kp—l! kp

The row indices on the r.h.s are, in general, not in increasing order
and the pn determinants appearing there are hence, in general, not
minors of Y. But each of these determinants either vanishes or is
equal to a minor of Y or is equal to (—1) times a minor. We thus
can write (2.2) in the form

Y(lz @) - Zbaﬂy(fc“ 2)
(2.3) u"'rkp [ 1 "ty fy ) )
) o ] Jiy oy d
— 2 b(@ly"'y Zp‘.?u"'!j;n)Y( p).

1Sj1< <G pSn ko ooy k,

To obtain (2.1) we compare (2.2) and (2.3). We first note that on the
r.h.s. of (2.2) appear only p-tuples of row indices for which at least
p»p —1 of the indices belong to the p-tuple a = (4, ---,14,). This
gives the first part of (2.1). Secondly, if v does not belong to «,
then the p-tuples

(U, ’1:2, Y ?;p)! (7:1; Y, ’isy °t Y ’1:;0)7 °t (?:17 A} ip—l) D) ’

appearing as row indices on the r.h.s. of (2.2), have to be rearranged
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by putting the index v = j,, in its proper place in order to obtain an
increasing p-tuple which in (2.3) is denoted by 8 = (5, -+-,7,). For
the p-tuples corresponding to the first sum on the r.h.s. of (2.2) this
may be achieved by m 4+ 1 transpositions, for those of the second sum
by m + 2 transpositions and, in general, for those of the ~th sum by
m + < transpositions. This implies the second part of (2.1). Finally,
if we choose v = 4, in the first sum on the r.h.s. of (2.2), v =14, in
the second sum and so on, we obtain the last part of (2.1) and we
have thus proved Theorem 1.

We illustrate this result by expressing the elements b, of B®
in terms of the elements a,; in the simplest cases: n = 3, p = 2, n = 4,
p=2and n=4,p=3.

Ji Je Ji o Je Ji 7z
1 e 1 2 1 3 2 3
1 2 aun + ag (2] —Q13
1 3 as2 a1 + ass Q12
2 3 —as1 az1 Q22 + a3
n=3, p=2
J1 J2 Ji o J Ji g Jji Je Ji e Ji1 g2
1 2 1 2 1 3 1 4 2 3 2 4 3 4
1 2 a1 + Qg2 (25} Q24 ’ —a13 — Q4 0
1 3 as2 a1+ as3 ass ‘ a1z 0 — Q14
1 4 Qa2 Qa3 Q11+ Qus 0 Q12 Qi3
2 3 —as1 azt 0 a2z + a3 Qs34 — Q24
2 4 —a41 0 a1 a3 Qo2 + Qs Q23
3 4 0 — 41 ast — Qa2 as2 ass + Qas
n=4, p=2
Ji Jz  Js Ji J2 Js Ji J2 g Ji J2 Js
i1 1z 13 1 2 3 1 2 4 1 3 4 2 3 4
1 2 3 11 + d22 + a3 a3t — Q24 G4
1 2 4 43 11+ dzz + Qs ass3 —Qi3
1 3 4 — 042 LED Qi + Q33 + Qus iz
2 3 4 [ 751 —as31 Gzt Q22 + @33 + Qat

n=4 p=3
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We remark that each diagonal element a; appears as a summand

in (Z B i) diagonal elements of B*. Each a;;, ¢ + j, appears, possibly
with the sign —1, (z B %) times as an off-diagonal element of B“.

In each row and each column of B®” p(n — p) off-diagonal elements
are of the form =a;;(¢ # j) and, for 2 < p £ n — 2, the remaining
off-diagonal elements are zeros. (2.1) implies also the following symme-
try of the dependence of B® on A: if, for a = B, bep = @5, bep = —a;;
or b,; = 0 then b;, = a;;, b, = —a;; or b, = 0 respectively.

For p = n, (2.1) gives B™(t) = b1, «+-, |1, -+, m) = >, a;(?),
and the differential system of the % th compound 4(t) = C,(Y () is
Liouville’s equation

(1.4) 40" = (3 a®)4® -
We now consider the case p =n — 1. Let Y(f) be a fundamental
solution of (1.2), then

1--oi—1,i+1---n))fn

ABY (O = ((—w”Y(l e j— L4 1eem))L

= C,_(Y(t)) .

(2.4)

Here the superscript 7 denotes the transposition operation, and if
M = (m;;)? we define M = (#i;;)* by

Mm;; = (—1)Z+Jmn+1—i,n+1—jy (2 .7 == 17 cee,

With this notation [C, (Y (£))]' = B*#)C._(Y () gives

(2.5) [C.es(Y ()] = B"2()C, (Y (D)) -
(Y(t)~)" is a solution of the system adjoint to (1.2):
(2.6) (Y@ = —A@® (YO .

Differentiating (2.4) and using also (1.4), (2.5) and (2.6) we obtain
@ 4y = B — (Faud)l

(2.7) gives the connection between the adjoint equation and the equation
for the (n — 1) st compound.

In the next section we use the following consequence of Theorem 1.

COROLLARY 1. Let A(t) = (a;;(t))F and B®(t) = (b.s(1))) be the
coeffictent matrices of the system (1.2) and its compound systems,
1<p=n. Then,

(i) None of the matrices B®'(t) contains elements of the form
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—Qi41(8), — @iy i(t), T =1, ooy m — 1.
(11) For each pa?:,r (7/!.7)! l7f - .7[ = 2y ’L,] = 1; e, M, —aij(t) 18
an off-diagonal element of B®(t).

Proof. (i) Formula (2.1) implies that +a, ,..(t) and +a,., . (f),
k=1,..-.,2 — 1, can appear as elements of B*'(tf) only if they are
an element b(s, ++-, %, |Jy, --+,J,), where p — 1 of the indices of the
two p-tuples @ = (¢, ++-, %,) and 8 = (4, ---, J,) coincide, but i, 7,,
and where the set {¢,, j,} is the set {k, &k + 1}. If a given (p — 1)-
tuple of increasing indices, which contains neither & nor %k + 1, is
completed to a p-tuple of increasing indices by inserting k or k + 1,
then it is necessary to insert either one of them at the same place,
i.e., between the same two elements of the (p — 1)-tuple. Hence » = m.
and (2.1) implies (i).

(ii) If1=¢<i+2=7=<nthen(2.1) givesb(i,2+ 1|1+ 1,7) =
—a;;;and if 1<j<j+2<i<nthen db(j+1,%7|5,5+1) = —a;.

3. Positive, strictly positive, totally positive and strictly totally
positive systems. Totally positive (TP) and strictly totally positive
(STP) systems were defined in the introduction. To define positive
and strictly positive systems we agree to call a real » X n» matrix
positive if all its elements are nonnegative; and the matrix is strictly
positive if all its elements are positive. The differential system

(1.2) Y't) = A®)Y(Q®) ,

is called positive in (a, b), if for each pair (r,t),a <r <t <b, Y(t,r)
18 positive. (Here Y(t) = Y(¢, r) is the fundamental solution of (1.2)
satisfying (1.5).) (1.2) is strictly positive in (a, b) if for each pair
(ryt),a <r <t<b, Y(¢,v) s strictly positive. We start with a
criterion for the positivity of the system.

LEMMA 1. Let the w* real functions a;(t),%,5=1,+--,n, be
continuous im (a,d), —o < a < b =< o, and set A(t) = (a;;(t)r. The
differential system (1.2) is positive in (a, b) tf and only if all off-
diagonal elements a;;(t), 1+~ j, 1,5 = 1, - -+, n, are nonnegative in (a, b).

This lemma is known [1, p.173, exercise 2]. For completeness,
and also in view of the proof of the next lemma, we prove Lemma 1.

Proof. To show the necessity of the condition, suppose to the
contrary that there exist indices ¢* and j*, i* == j*, and a point r in
(@, b) such that a.;.(r) < 0. Let Y(¢ r) = (y;;(t)); be the solution of
(1.2) satisfying (1.5). Then y}.;(r) = 0 and Y. ;(r) = a;;(r) <0. Hence,
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Yies(t) < 0 for all ¢ in some interval (v, r + €), ¢ > 0, and the system
(1.2) is not positive.

We first prove sufficiency in the special case where all diagonal
elements a;(t) of A(f) vanish identically in (a, b). Each element of
A(t) is thus nonnegative, and the Peano-Baker expansion

3.1) Yit, ) =T + StA(z')dr + StA(r)SrA(fl)dfldr ¥,

shows that the same holds for each element of Y (¢, r),a <7 <t < b.
To prove sufficiency in the general case (of arbitrary diagonal
elements a,;(t) of A(t)) we choose a point 7, 7 € (a, b), and define

(3.2) p:(t, r) = exp Staﬁ(r)d‘c, a<t<bi=1 -, m.

Using these n positive functions we now build the diagonal matrix
(3.3) P.(t) = diag (p.(¢, ), + -+, (L, 7)), a<t<b.

If Y(t) is an arbitrary solution of (1.2) we define Y,(t) by

(3.4) Y(t) = P)Y,(t), a<t<b.

(1.2) and (3.2) to (3.4) imply that each Y,(¢) satisfies the equation
(3.5) Yity = A.0)Y.(t), a<t<b,

where A.(t) = (@,(t, r))! is defined by

3.6 ayt, ) = a2 i =1, e m,  a<t<b,
p,;(t,'}")

and

(8.7 Gult,7) =0,i=1,--,m, a<t<b.

The matrix A,(¢) has thus, together with the given matrix A(%),
nonnegative off-diagonal elements but its diagonal elements vanish
identically. By the special case considered above, it follows that the
system (3.5) is positive in (a, b). Let now Y,(t, r) be the fundamental
solution Y,(¢) of (3.5) which satisfies Y,(r) = I. Then Y, (t r) is
positive for all ¢ in [»,b). As P, = I, it follows from (3.4) that

(3.8) Y(t, r) = PV, ),

where Y(¢, ) is the solution of (1.2) satisfying (1.5). (3.8) implies
that this matrix Y(¢, r) is positive for all ¢ in [r,bd). Since » was
arbitrary in (a, b), this completes the proof of Lemma 1.

For the next lemma it is convenient to use the following termi-
nology. We denote the set of the n* elements a,;(t) of A(t) by S.
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With each subset F' of S we associate a matrix C = (¢;;)! in the
following way: ¢;; = 1if a;;(t)e F, ¢;; = 0 if a;;(t) ¢ F. Then we call ¥
wrreducible or reducible if the associated matrix C is, respectively,
irreducible or reducible. If we associate with F' a directed graph I of
n vertices P, ---, P,, having a (directed) arc from P; to P; if and only
if a;;e F, then F is irreducible if and only if I" is strongly connected.
(A matrix C = (¢;;)? is reducible if the index set {1, ---, n} can be split
into two nonvoid sets {i,, -+, 7.} and {j,, - -+, Jn}, /+ m = n such that
€y, =0forx=1,-+0, 7, =1, -+, m. If no such partition of the
index set exists, then C is irreducible. A directed graph I is strongly
connected if and only if for every ordered pair (P;, P,;) of its vertices
there exists a (directed) path leading from P; to P;,. The matrix C
is irreducible if and only if the corresponding graph I" is strongly
connected. [9, pp. 18-20].)

LEMMA 2. Let the n* real functions a;;(t),t,5 =1, -+, n, be
continuous tn (a,d), —o < a < b < oo, and set A(t) = (a;;(t))r. Let
S be the set of the m* functions a;(t). For each r, re(a,b), the
subset F(r) of S is defined in the following way: a;;(t) € F(r) if and
only if a;;(t) does not vanish identically in any interval [r,r + €],
0<e<b—r. The differential system (1.2) 1is strictly positive in
(a, b) ¢vf and only if the following two conditions hold:

(a) FEach off-diagonal element a;;i(t),1+3,%,5=1,--+,1n, 18
nonnegative in (a, b).

(b) For each r,a < r < b, the set F(r) is irreducible.

Proof. The necessity of condition (a) follows from Lemma 1.
We prove the necessity of (b) by negation and thus assume that there
exists r, r € (a, b), such that F(r) is reducible. As the graph I'(r) is
thus not strongly connected it follows that there exists ¢, 0 < e < b — »
and two indices 7%, j*, ¢* == j*, such that for every given ordered set
(oy Tyy +++, 1) of indices (with repetition), for which 4, = 7%, 4, = j*,
at least one function ;5 01(t), ¥ =0, -+, # — 1, vanishes identically in
[, r 4 €]. For » =1 this implies

(3.9), gmam,(r)dz —0.

For » = 2 we obtain

(3.9), S‘z am(r)graw c)dede = 0,

and similar equalities hold for » = 3. Using these equalities it follows

from (3.1) that the off-diagonal element y,.;.(r + ¢, ) of the matrix
Y(r + ¢, r) vanishes and Y(r + ¢, r) is thus not strictly positive.
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We prove sufficiency of conditions (a) and (b) again first in the
special case where all diagonal elements a,;(f) of A(¢) vanish identically
in (a,b). By (b), the set F(r) is, for each r € (a, b), irreducible and
in this special case F'(r) does not contain diagonal elements a;;(f). This
and (a) imply that for any given 7, r € (a, b), and any ordered pair
(%, 7*) of (not necessarily distinct) indices there exists an ordered set
(%, T4y =+, 1) of indices, 4, =1*,1,=75* and 4, # ¢,., for vy =0, - .-,
< — 1, such that

[ ais,@de > 0,

for all ¢ in (»,b) and all v,y =0, ---, - — 1. But this implies that
for all such ¢

t T T/ —
S aml(f)g ;i (T) + o+ g d 2a,;/ﬁl,-*(z'/_l)dr/_1 ceedrdr >0,

and it follows that the element in the place (¢*, 7*) of the (»+ 1) th
summand of the r.h.s. of (3.1) is, for ¢t ¢ (r, b), positive. As » and
the pair of indices were arbitrary it follows that the system (1.2) is,
in this special case, strictly positive in (a, b).

The sufficiency of conditions (a) and (b) in the general case (of
arbitrary diagonal elements a,(t) of A(f)) follows again by reduction
to the special case (formulas (3.2) to (3.8)). We now use also the
fact that if the set F(r) is irreducible, so is the set F(r) which is
obtained from F(r) by deletion of its diagonal elements and by multi-
plication of its off-diagonal elements with positive functions. This
completes the proof of Lemma 2.

These criteria for positivity and strict positivity and the corollary
of §2 lead to the main results of this section.

THEOREM 2. Let the w* real functions a;(t),1,5 =1, -+, n, be
continuous in (a,b), —«<« < a < b= oo, and set A(t) = (a;;(¢))7. The
differential system

(1.2) Y'@) = AN Y,

is TP in (a,b) of and only if the following two conditions hold:
(a) aij(t):Osli_j|gzyi,j:17"'7’”/,a/<t<b-
(b) @t =0,0,,,()=0,i=1,--,7—1, a<t<b

Proof. As total positivity of the system (1.2) implies its positivity,
it follows from Lemma 1 that all off-diagonal elements a;;(t), ¢ # 7, of
A(t) have to be nonnegative in (a, b). If an element a,;;(t), [t —j| = 2,
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were to be positive for some ¢ part (ii) of Corollary 1 would imply that
the matrix B®(¢) of the second compound system has an off-diagonal
element which is somewhere negative, and Lemma 1, applied to this
second compound system, then shows that (1.2) is not TP. Conditions
(a) and (b) are thus necessary. Their sufficiency follows from part (i)
of Corollary 1 and the sufficiency part of Lemma 1, applied to all
compound systems (1.3). (We remark that we also use that the pth
compound of the unit matrix I = (9;;) is again I = (0,,). Hence if
Y() = Y(¢t, r) is the solution of (1.2) which satisfies (1.5), then its
compound also satisfies C,(Y (r)) = I.)

THEOREM 3. Let the n* real functions a;;(t),t,5 =1, .-, n, be
continuous im (@, b), —oo < a < b= oo, and set A(t) = (a;;(t));. The
differential system

1.2) Y'@t) = A0 Y@ ,

18 STP in (a, b) iof and only if the following three conditions hold:
(a) a;(t)=0,]t—j|=2,4,5=1,+--,m, a<t<b.
(b) a;;n(t)=0,0;1,;) =20,2=1,--e,m —1, a <t <b.
(e¢) None of the 2n — 2 functions mentioned in (b) vanishes
identically in any interval [r,s],a < r < s <b.

Proof. The necessity of conditions (a) and (b) follows from
Theorem 2. To prove that condition (¢) is necessary, we consider the
(0,1) matrix C* = (¢)7 where ¢f; =0 if |1 —j|+# 1, and ¢ =1 if
|2 — 7] = 1. Then the following statement holds. (i) C* is irreducible,
and (ii) if any element equal to 1 of C* is replaced by 0 then the
new matric is reducible. This is easily seen by considering the
corresponding directed graph /°*. Assume now that condition (¢) is
not satisfied and that one of the 2n — 2 functions a,,;.,(t) and a;., (%)
vanishes identically in a certain interval [r, s]. Part (ii) of the italicized
statement implies that the set F(r), defined in Lemma 2, is reducible
and Lemma 2 implies that the system (1.2) is not strictly positive in
(a, b). This contradicts the assumption of the present theorem and
condition (c) is thus necessary.

To prove the sufficiency of conditions (a) to (¢), we consider also
the (0, 1) matrices C**,1 < p < n, which are built from the elements
¢t of C* = C**" by the rule (2.1). Namely,

n
C*? = (ek)¥, N = (p) and  ¢% = ¢*(Gy ++ vy Gy | Ju 00y ) =0

except if exactly p — 1 of the indices of « coincide with p — 1 indices
of B and the two remaining indices satisfy |i, —j,] = 1; in this
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case ¢ =1. For each p,1=<p<mn, C*” 4s drreducible. (For
p =1 this is part (i) of the former italicized statement.) This is
again easily seen by considering the corresponding graph I"*®, ({7*®
has N vertices P, = P(i, -+, %,), Ps = P(j,, -+, 3,), etc. There are
arcs (in both directions) between P, and P; if p — 1 of the indices of
« and B coincide and |7, — j,| = 1. Clearly there exists a path of
length >, (3, — v) leading from P, to the first vertex P, (a* =1 =
(1, ---, p)) and similarly there exists a path leading from P,. to P,.
I'*» ig thus strongly connected). Using part (i) of Corollary 1 and
the irreducibility of C*®,1 < p < m, it follows that the present con-
ditions (a) to (c) imply the validity of conditions (a) and (b) of Lemma
2 for each compound system (1.3). Each of these systems is therefore
strictly positive in (a, b) and (1.2) is thus STP. This completes the
proof of Theorem 3.

4. Vector solutions of strictly totally positive systems. Qur
next result refers to the number of sign changes of a given nontrivial
vector solution () of a STP system (1.1). We use the standard
notation [2,4]. If « = (x, --+, x,) is a real vector, & = 0, then S—(x)
denotes the number of sign changes in the sequence obtained from
Xy, By o, X, by deleting all zero terms; S*(x) denotes the maximum
number of sign changes possible by allowing each zero to be replaced

+1 (or equivalently, S*(x) = lim,_, S~(¥)).
THEOREM 4. (1) Let the differential system
(1.1) y'(t) = A@®)y() ,

be STP in (a, b), — = < a < b < == and let y(t) be a nontrivial solution.
Then

4.1)  Stw(s) = S~ (yr)) for all (r,s) satisfying a <r <s<b.

(ii) Conversely, of (4.1) is valid for every montrivial solution
y(t) of the system (1.1), then this system s STP in (a, b).

Proof. (1) Let Y(¢) = Y(¢t,») be the fundamental solution of

(1.2) Y@ =AW Y@® ,
satisfying
(1.5) Y(r)=1.

For all s and » in (a, )

(4.2) y(s) = Y(s, r)y(r) .
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By assumption the matrix Y{(s, ») is, for » < s, STP. (4.1) follows from
the variation-diminishing property of such matrices [4, p.219, Th.
1.2, (a)].

(ii) Let the index k,1 <k < n, and the point 7, re(a,d), be
given and consider nontrivial solutions y(¢) of (1.1) which satisfy

(4.3) yu(r) = 0.

(4.2) and (4.3) give

4.4) y(s) = Yiu(s, 7)c .

Here ¢ is the (= — 1) vector (y,(7), -+, Ypi(7), Ypea(?), + -+, Y, (r)) and

Y.(s,7) is the m X (n — 1) matrix obtained from Y(s, ) by deletion
of the kth column. By assumption (4.1), we have for » <s,

S7(y(s) = S~ (y(r) = S7(¢) .

As this holds for every nonnull vector ¢, it follows that Y,(s,») is,
for » < s, strictly sign-regular of order n — 1 [4, p. 219, Th. 1.2, (b)];
i.e., all minors of Y (s, ) are nonzero and, for each p,1<p=<n — 1,
all minors of order p have the same sign, possibly dependent on p.
But as Y(r,r) = I, it follows that Y,(r,r) has for each p,1<p <
n — 1, a minor equal to 1. It follows, by continuity, that all minors
of Y,(s,7),r <s, are positive. As k was an arbitrary index, this
implies that all minors, up to the order n — 1, of Y(s, ) are positive
for » < s. But the determinant of Y(s, ) is always positive and we
have thus proved that the system (1.1) is STP.

We remark that by the last two theorems property (4.1), for all
nontrivial solutions y(¢), is equivalent to the properties (a) to (¢) of
A(t) stated in Theorem 3. A direct proof of this equivalence, without
use of the variation-diminishing properties of the STP matrix Y<(s, 7),
seems to be rather tedious.

The next theorem, and the examples in the final section, will give
some information about the number of points at which each component
of a fixed solution of an STP system (1.1) may vanish. It might be
of interest to consider here briefly the case of such systems with
constant coefficients A(t) = A. A is thus a Jacobi matrix with positive
off-diagonal elements. But the class of Jacobi matrices B with negative
off-diagonal elements was studied in detail by Gantmacher and Krein
[2, Ch.2, §1.]. For A(=—B) it follows that A has = distinct real
characteristic values A;, A\, <\, < +++ < \,, (and that for the charac-
teristic vector u'' = (w;j, +--, u,;), corresponding to \; S*(u'?) =
S-(u¥)y=mn—7,7=1, --.,n). Every solution y(¢) of the corresponding
system (1.1) is therefore of the form
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n
y’b(t) = le Cju,;jeljt s 1 = 1’ e, ",
i=

and it follows that in this case each component ¥;(f) of a nontrivial
solution y(t) vanishes at most n — 1 times. (Note that for any system
(1.1) there always exist nontrivial solutions y(¢) satisfying (n — 1)
homogeneous conditions.) As already mentioned in the introduction a
more precise statement holds for the total number of zeros of y,(t)
and v,(t) for any STP system (Theorem 5, (ii)); and the examples will
show that, for any %, n = 3, there exist STP systems with wvariable
A(t) having a solution w(¢) for which each interior component y,(t),
1 =2, «++,n — 1, vanishes infinitely many times in (— o, co).

To facilitate the proof of Theorem 5 we now state some evident
properties of the functions S* and S~ as a lemma.

LemMMmA 3. Let x = (%, +-+, x,), be a real nonnull vector. Then
(4.5) 0=S@=St(®)<n-—1.
If m components of x vanish, 1 < m < n — 1, then
(4.6) St@)yzm,S(@)y=n—m—1.
If 2, =0, or if x, = 0, then
4.7) Stx) — S (@) =1.
If 2, = 0 and x, = 0, then
(4.8) St@) — S(x) = 2.

Part (i) of Theorem 4, and Lemma 3, now imply the following
theorem.

THEOREM 5. Let the differential system
(1.1) Y'(t) = A@D)y(b)

be STP in (a,b), —0 < a < b= oo, and let y(t) = (y.(t), ---, Y.(t)) be
a nontrivial solution.

(i) If S~(y(r)) =0, re(a,b), then no component of y(t) vanishes
wn (r,b). If St(y(s)) =n —1,se(a,b), then no component of y(t)
vanishes in (a, s).

(ii) Let k and ~ be nonnegative integers and assume that

y1(ai):0y7;:1,"',k,a<a1<"'<ak<b,
and that
y’n(Bj):Oyjzly"'7/ya<;81<"'</8/<b.
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Then k + < n — 1. Moreover, if k + #= n — 1, then no component
of y(t) vanishes in (a, min (a;, £,)) U (max (a,, B,), b).
(iii) Assume that m components of y(r), r € (a, b), vanish, and that
yla) =0, =1,--, kr <o, <-.-- <ap<b,
and that
yn(BJ) :Orj: 1: e, B e <;8/<b-

Then k+s<n—m —1. Moreover, if k +=mn — m — 1, then no
component of y(t) vanishes in (max (ay, B,), b). A similar statement
holds for the number of zeros of y,(t) and y,.(t) in (a, 7).

Proof. (i) S~ (y(») = 0 and (4.1) imply SH(y(t)) = 0, < t < b,
and the first inequality of (4.6) implies that no component of ()
vanishes. S*(y(s)) =n — 1l and (4.1) imply S~ (y(@®)) =n —L,a <t <s,
and the other inequality of (4.6) gives the desired conclusion.

(ii) Denote the union of the sets {a;}} and {8,}{ by

)t < oo <t,maxk,N<p=<k+7).
Then

k+

A

“-9) [S*(w(t) — S~(W(t, )] + S*(w(t) — S~(u(t,))

= S*y@)) — S~ () =n—1.

Il

»
>
y=1

?
>
y=2

Here the first inequality sign follows from (4.7) and (4.8), the second
inequality sign follows from (4.1) and the last one from (4.5). This
proves the main assertion of (ii). If & - ~ = n — 1, then (4.9) implies
S—(y(t,) = 0 and S*(y(t,)) = n — 1 and the remaining assertion of (ii)
now follows from (i).

(iii) Let ¢, -+, t, have the same meaning as above. (4.9), the
assumption r < ¢, and (4.1), and (4.6) give

k+ o < SHut) — S-@(t,)

“.10 < S-(y() - S-@t) Sn—m—1.

If k+/=mn—m—1, then (4.10) and S—(y(r) £n —m — 1 imply
S-(y(t,)) = 0 and no component of y(t) vanishes in (¢,, b). For zeros
to the left of r,a <t < --- < ¢, <7, we obtain

k+ =S (yt) — S~ (y(t,)
=S*w#) - STwr)=n—m—1.

If ¥+ =n—m — 1 this gives S*(y(t)) = » — 1 and no component
vanishes in (a, t,). This completes the proof of Theorem 5.
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We remark that the constants » — 1 of part (ii) and n — m — 1
of part (iii) of this theorem, are the best possible as there always
exist nontrivial solutions of (1.1) satisfying n — 1 conditions Y (b)) =
L1, <na<t <byv=1, ..., —1. We conclude this section
with another direct consequence of (4.1). Let r and s be given points,
a <r <s<b, and assume that y(t) is a nontrivial solution of (1.1)
such that k components of y(r) and » components of y(s) vanish. Then
kE+zs=mn—1. Moreover, if k+ «=mn — 1, then there exists-except
for a multiplicative constant-precisely one nontrivial solution y(t) of
(1.1) satisfying the given set of conditions y, (r) =0, yju(s) =0,y =
1, .-,k =1, ..., 2. Toprove the first part, we remark that, by (4.6),
S-(y(r)) =m —k —1and S*(y(s)) = ~. (4.1) gives therefore k + » <
n—1. Assume now k+ s=n —1 and let y(¢) and u(t) be two
solutions satisfying the given set of (» — 1) conditions. We can then
form a linear combination v(¢) = ¢, y(t) + c,u(t) such that & + 1 com-
ponents of wv(r) and the former [ =n — k — 1 components of v(s)
vanish. w(t) violates the first part of the above statement unless it
reduces to the trivial solution. Hence wu(t) = cy(t) (cf. [7, p.507]).
This statement can also be obtained directly from the striet total posi-
tivity of the matrix Y(s, 7).

5. Vector solutions of totally positive systems. According to
Theorem 4, the inequality (4.1) is characteristic for STP systems. It
follows from (4.1) that S—(y(¢)) and S*(y(f)) are decreasing functions
of t. These consequences of (4.1) characterize the larger class of TP
systems.

THEOREM 6. (i) Let the differential system
(1.1) y'(t) = A@®)y() ,

be TP in (a, b), — o= < a < b < oo, and let y(t) be a nontrivial solution.
Then

(5.1 S—(s) = S—(y(r)) for all (r,s) satisfying a <r <s<b,
and
(5.2) SHy(s)) < S~(y(r)y for all (v,s) satisfying a<r <s<b.

(ii) Conversely, if (5.1) is valid for every mnontrivial solution
y(t) of the system (L.1), or if (5.2) ts valid for every y(t), then the
system (1.1) is TP in (a, b).

Proof. (i) We obtain the necessity of (5.1) and (5.2) by an
approximation procedure. Let the constant matrix C* = (cj)" be de-
fined as in the proof of Theorem 3 (¢ =1 if |72 — 5| = 1, otherwise
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¢ =0). If the system (1.1) is TP in (a, b), then it follows from
Theorems 2 and 3 that the system

(8.3) yit) = Aty ,  A(t) = A(t) 4 C*,

is, for ¢ > 0, STP in (a, b). To prove (5.1) let the solution y(t) of
(1.1) and the point = be given. For any ¢ > 0, let ¥.(¢) be the solution
of (5.3) satisfying

(5.4) Y(r) = y(r) .
(4.1) and (5.4) imply that for any ¢ > 0, and for any s, se(+, b),
(5.5) SH(ys)) = S~(y(r) .

By a standard theorem on differential equations (cf. [3, p. 55, Corol-
lary 4.1))

lﬁigl Y(s) = y(s) .
This and the relation
S~(imy.(9) < lim S(.(6)) ,
[4, p.217, Lemma 1.1] imply
(5.6) S7((s) = Im S*(y.(9)) -

(5.5) and (5.6) imply (5.1).
To obtain (5.2) let the solution y(¢) of (1.1) and the point s be
given. For any ¢ > 0, let 7.(¢) be the solution of (5.3) satisfying

(5.4) y(s) = y(s) .

(4.1) and (5.4') imply that for any ¢ > 0, and for any », € (a, 8)

(5.5") S*(y(s)) = S~(F.(r) .
For ¢ — 0,
(5.6") T@ S=(@.(r)) = S (y(r) .

(5.5") and (5.6’) imply (5.2). This completes the proof of part (i).
(We remark that (5.1) follows also directly from a theorem of Schoenberg
[8, Satz 1] (cf. [2, p. 290] and [4, p. 21]) applied to the vector equation
(4.2). Moreover (5.1) and (5.2) are equivalent as we shall show in
Lemma 4.)

(i) To prove the first half of this converse assertion, we assume
the validity of (5.1) for all nontrivial solutions y(¢) of (1.1). We now
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proceed as in the proof of part (ii) of Theorem 4. The index k& and
the point r are fixed and we consider only nontrivial solutions of (1.1)
which satisfy

(4.3) Y(r) = 0.

Defining ¢ as before and now using S—(y(s)) < S—(c),r < s, we find
that the n x (n — 1) matrix Y.(s, r) (which is of rank n — 1) is, for
r < s, sign-regular of order » — 1 [4, p. 222, Th. 1.4]; i.e., for each
»,1 < p <n — 1, all nonvanishing minors of order p of Y,(s, r) have
the same sign. But, for each p, Y,(r, r) has a positive minor of this
order and not all minors of order » of Y,(s, ) can vanish. It follows,
by continuity, that all minors of Y,(s, ) are nonnegative for » < s
and we thus proved the first half of (ii). (This follows again directly
from the converse theorem of Schoenberg [8, Satz 2]). The second
half of (ii) follows from the first half and the following lemma.

LEMMA 4. Let the wn* real functions a;(t),4,7=1,+--,n, be
continuous im (a,b), —cc < a < b= o and set A(t) = (a;;(t))" and let
(1.1) be the corresponding differential system. ILf, for each nontrivial
solution y(t), S~(y(t)) is a decreasing function of t in (a,b), then the
same holds for S+(y(t)). Conversely, if S*(y(t)) is, for each nontrivial
solution y(t), a decreasing function of t, then the same holds for
S=(y(?)).

Proof. We shall use Theorem 2 and the (already proved) parts
of Theorem 6 relating to (5.1), i.e., the first half of part (i) and the
first half of part (ii). Let y(¢) be a nontrivial solution of (1.1) and
define y*(t) = (¥i'(t), « -+, y5(t)) by

(5.7) i) = (=D'g@),1=1,---,m, a<t<b.
This and (1.1) imply that

dy*

(5.8) T

= B(t)y*(t) , a<t<b,

where B(t) = (b;;(t))r is given by

(5.9) bi;(t) = (=D)at), 6,5 =1, «++,m, a<t<b.
We now define

(56.10) u(t) = y*(—17), << —a,

and

(5.11) C(t) = —B(—7), << —a.
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(5.8), (5.10) and (5.11) give

(5.12) W _ o),  —b<t< —a.
dt

(5.7) and (5.10) imply, that for each ¢, a < t < b,
(5.13)  S*@) = —-1) — S~ (¥*@®) = (n — 1) — S~ (u(-1)) .

We now assume that S—(y(t)) is, for each ¥(t), a decreasing function
of t. By the first half of Theorem 6, (ii), and by Theorem 2, it
follows that A(t) is a Jacobi matrix with nonnegative off-diagonal
elements. (5.9) and (5.11) show that the same holds for C(z), hence
using once more Theorem 2 and the first half of Theorem 6, (i), it
follows that S—(u(r)) is a decreasing function of z; S—(y*(¢)) is thus
an increasing function of ¢, and (5.13) implies that S*(y(¢)) is a
decreasing function of ¢. Conversely, assume that S*(y(t)) is, for
each y(¢), a decreasing function of ¢. S—(u(7)) is then also a decreasing
function of 7, C(z) is a Jacobi matrix with nonnegative off-diagonal
elements, and the same holds for A(f). S~(y(¢)) decreases therefore
for each y(t). This proves Lemma 4 and we have thus completed the
proof of Theorem 6.

(We shall use formulas (5.7) to (5.13) in the proof of the following
lemma. We remark here that Lemma 4 is only a special case of the
following statement: If the real » x » matrix M is nonsingular, and
if for every pair of nonnull vectors (z,?), 2 = Mz, S—(2) < S—(%),
then S*(z) < S+*(x) holds also for all these pairs. This follows easily
from the above mentioned theorems of Schoenberg, by obvious analogues.
of (5.7) and (5.9) and a well-known formula for the minors of the
inverse matrix [4, p. 5].)

For the proof of our final theorem we need the following lemma.

LEMMA 5. Let the differential system
(1.1) y'(t) = Ay(t)

be TP in (a,b), —c0c <a<b< co, let y(t) = (y(t), -++, y.(t)) be a
nontrivial solution, and let the points r and s satisfy a < r < s < b.

(i) If

(5'14) yl(r) = 07 yl(s) # 0 y
or if
(5.15) Yu(r) = 0,9.(s) # 0,

then
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(5.16) S (y() — S*ys) = 1.

Moreover, if both (5.14) and (5.15) hold, then

(5.17) S*(y(r)) — S*(y(s) = 2.
(ii) If

(5.14) v(r) # 0, 4.(s) = 0,

or if

(5.15) Ya(r) #= 0, ¥,(s) = 0,

then

(5.16) S=(w(r) — S (k) = 1.

Moveover, if both (5.14') and (5.15') hold, then

(5.17) S(y(r)) — S~(y(s)) = 2.

Proof. (i) We assume that (5.14) holds for a given pair (r, s),
a <7r<s<b By the continuity of %(¢f), and by considering, if
necessary, —y(t) instead of y(f), it follows that there exist points
{(rys),r<r <s <s, such that

(5.18) yr) =0, and y,(f) > 0 for all ¢ in (r, s/],

and such that no component y;,(¢) for which y;(r)) # 0 vanishes in
[r,, s.].  We now consider the possible values of y,(r). (a) If y.(r) > 0,
then our choice of [r, s,] implies that also y.(s,) > 0. The pair (y,(?),
¥»(t)) contributes in this case to S*(y(r.) and gives no contribution to
S*(y(s)), and the remaining pairs (y;(t), ¥;+.(£), 1 = 2, ---, # — 1, cannot
contribute more to S*(y(s)) than to S*(y(r))). Hence, in this case,

(5.19) S () — S*y(s)) = 1.

(b) The assumption %,(r,) < 0 implies w,(s;)) < 0. These inequalities
and (5.18), and once more, the fact that components which are == 0
at r, remain so in [r, s,], give S~ (y.(r)) < S~(y.(s)). This contradicts
(5.1) and this case is thus excluded. There remains the case (c)
Yy(r,) = 0.  9,(t) cannot vanish identically in [r, s,] as then the first
component of the equation (1.1), i.e., ¥ = a,¥, + a.y, contradicts
(5.18). Furthermore, ¥,(f) cannot become negative in (r, s,], as y,(r,) =
0, ¥,(t) < 0 and (5.18) would again give S—(y(r)) < S~ (y®), r < t.
Hence there exists a point s,, s, (7, s,] such that y.(s,) > 0, and we
obtain

{5.19") S*t(r) — S*(s)) = 1.
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As r<r <s,<s <s, (5.19),(5.19) and (5.2) imply (5.16). The
assumption (5.15) gives the same conclution. As ¢ increases from #
to s, the decrease of S*(y(t)) is, under the assumption (5.14) due to
the pair (y.(t), ¥,(t)). Under the assumption (5.15), it is due to the
pair (¥,_.(t), ¥.(t)), and it therefore follows that the simultaneous
validity of (5.14) and (5.15) implies (5.17).

(ii) This part now follows from part (i) by the previously used
transformation (formulas (5.7) to (5.13)). Together with the system
(1.1) also the system (5.12) is TP. (5.14') becomes u,(—s) =0, u,(—7) # 0
and part (i) gives S*(u(—s)) — St(u(—7r)) = 1. This and

S*tu(—1) = S*y*®) =n — 1 — S (y(?))

gives (5.16") and we have thus completed the proof of the lemma.

In Theorem 5 we obtained results on the behavior of solutions
y(t) of a STP system (1.1). If the system (1.1) is TP, but not STP,
then none of the assertions of Theorem 5 remains wvalid. To show
this, let A(t) = (a;;(t))r be a Jacobi matrix with nonnegative off-diagonal
elements in (a, b) and assume that for a givenindex ¢, 1 < g =< n — 1,
and a given interval (a, 8), a < @ < B £ b, the element a,., () vanishes
identically in (a, 8). We now consider (1.1) only in this subinterval
(¢, B). Here (1.1) may be satisfied by solution vectors y(¢) for which
Youi(t) = --+ = y,(t) = 0. If we consider only such solutions y(¢), then
the vector consisting of their first ¢ components 7(f) = (y.(?), -+, ¥,(?))
satisfies an equation of the form

(5.20) y'(t) = AWy, a<t<p,
where
(5.21) At) = (ai;(t)1 a<t<p.

This q th order system (5.21) is again TP (possibly even STP) in («, B),
and we obtain a g¢-dimensional subspace of the solutions of (1.1) by
adding the n — ¢ zero components y,,,({)= -+ =y,({) =0 to an
arbitrary solution of (5.20). These solutions of (1.1) do not satisfy
the assertions of Theorem 5. Indeed, let 7 ¢ (a, B) and choose ¥,(r) =
«oo =y, (r) =1. Then S-(y(r)) =0, but the » — ¢ last components
of y(t) vanish identically in (r, 8). If we choose w;(r) = (—1),
4=1,--+,q, then S*(y(r)) = n — 1, but the last components vanish
identically («, r). This shows that part (i) of Theorem 5 is not valid
for the present system. Parts (ii) and (iii) are not valid as y,(t) = 0
in (a, B). If we assume that an element of the first superdiagonal
@, .+:(t) vanishes identically in («, 8), then we have to consider solutions
of (1.1) for which ¥,(f) = y,(t) = -+ = y,(t) =0 in («, 8) and the
remaining components satisfy a system of order » — q. Theorem 5
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does therefore not hold for TP systems; the following weakened
version is however valid for such systems.

THEOREM 7. Let the differential system
(L.1) y'(t) = A@B)y(t)

be TP in (a,b), —o0 < a < b =< oo, and let y(t) = (y.(t), + -, Y.(t)) be a
nontrivial solution.

(i) If S*(y()) = 0, re(a, b), then no component of y(t) vanishes
wm [r,b). If S—(y(s)) =n —1,sec(a,b), then no component of y(t)
vanishes in (a, s].

(ii) Let

@), <o, <7 <y < voe <Yy < 0 < 7(<D)

be 2k + 1 points, such that for each 1,1 =1, -+, k, at least one of
the following two conditions holds.

(5.22) (Vi) # 0, yi(@)) = 0, y,(v:) = 0,

or

(5.23) Yn(Viet) # 0, Yulas) = 0, ¥u(v:) # 0.

Set m; =1 if only one of these two conditions holds for the mdeo; 7,
and m; = 2 if both conditions hold, i =1, -+, k, and let k = ¢, m,.

Then k <mn — 1. Moreover, ifk=mn—1, then no component of y(t)
vanishes in (a, ¥,) U [, b).

(iii) Let all the assumptions of (ii) hold and, in addition, assume
that m components of y(r), r € (a, b) vanish and that either » < v, or
Ye<r. Then k<mn—m—1.

Proof. (i) (5.1),(5.2) and (4.6) yield these two assertions.
(ii) We have

F < 318 w@) — S o] = SIS w@) — S+ @en)]
+ SHy(e) — S*ym) < ST w@) — S* ) <n —1.

The first inequality sign follows from (5.22) and (5.23) by Lemma 5.
The second inequality sign follows by (5.2). This proves ¥ <n — 1.
If & =n — 1, then (5.24) implies S*(y(v:)) = 0, hence part (i) implies
that no component of y(t) vanishes in [v,, b). To show that, if k=
n — 1, no component vanishes in (a, 7,] either, we use

(5.24)

F < SIS0 — S-@@)] = 3 [S-wr-) — S~ )]
+ 8~(w() — S~ (wlaw) = S~(y() — S~(y@)) =n —1.

(5.25)
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(5.25) and k = n — 1 imply S—(y(7,)) = n — 1, which gives the desired
nonvanishing in (a, 7,].
(iii) If r <, then (5.25), (5.1) and (4.6) imply

k< S~(w() — 8~(y(e)) < S~(y(r) — S~(yla) <n —m —1.
If v, < r, then (5.24), (5.2) and (4.6) give
k< 8*@w@) — S*ur)) = S*y(@) — S*w@) =n —m — 1.
This completes the proof of Theorem 7.

6. Examples. We conclude this paper with a few examples.
All our examples are STP systems (1.1) and for each example we
consider only one particular vector solution y(f). We thus replace
(1.1) in each case by a vector equality where the matrix A(¢), the
particular solution y(¢) and its derivative ¥'(f) are shown explicitly.
As the case n = 2 is trivial, we start with an example for n = 3.

— sint 0 1 0 2+ cost
(6.1) —cost|= % —cost O % + cost —sint
—sint, 0 1 0 —2 + cost

This shows that, for n = 3, there exists a system (1.1) which is STP
in (— oo, o) and for which the interior component y,(f) of a particular
solution y(¢) vanishes infinitely many times. However, in this example
the extreme components %,(¢) and y,(t) do not vanish at all.

The next examples show that the assertion of Theorem 5, is, for
n = 3, essentially all that can be said about the number of zeros of
the components of any particular solution y(f) of a STP system. Let
a and B, « < B, be zeros of the extreme components y.(f) and y.(t).
Theorem 5 (ii) implies that these extreme components have no other
zeros and that y,(t) does not vanish outside the interval («, 8); however,
no restrictions on the number of zeros of ¥.(f) in («, 8) are given by
Theorem 5. We combine system (6.1) with two other systems to show
that we may obtain an (except for its parity) arbitrary number of
zeros of y,(t) in the interval bounded by the zeros of the extreme
components. The matrix in (6.1) and the vector given there, will be
referred to as A(¢t) and y(f). We now consider the equality

1 0 1 0 2+7
|38 3
(6.2) Ol=1=2—-17) 0 =2+ 1) 2
4 4
1 0 1 0 -2+

Note that the corresponding system



226 B. SCHWARZ

(6.2)) w'(7) = B(t)u(7) ,

is STP in [—2,2]. Furthermore we note that if now wu(r) denotes
the particular solution shown in (6.2), then, for each integer k, the
equalities

(6.3) B(0) = A<— .721 + Zlm), u(0) = y(— g + 2k71:> ,

(and hence also #'(0) = y'(—7x/2 + 2km) hold. (6.3) allows us to
combine the examples (6.1) and (6.2) at their respective points ¢ =
—7m/2 4+ 2kr and 7 = 0.

We also consider the equality

—1 0 1 0 27
_ |3 3
(6.4) 0l=|=2@2+7 0 2@2—-10]| -1
4 4
~1 0 1 0 —2 -7

The corresponding system
(6.4 v'(7) = C(7)v(7)
is again STP in [—2, 2] and, for each integer £,

(6.5) c(0) = A<—721 n 2lc7r>, 2(0) = y(ZZE + 2k7r> ,

and we thus may combine (6.1) and (6.4).
For any nonnegative integer %k, we now define the system

(6.6), [y @®] = APy (@) ,
in [a, B, 0, = —2 —7/2, B, = w/2 + 2km + 2, by setting
B(t+£>, 2T op< T
2 2 - 2
AV(t) =A@, Tt ® 4 2kr,
2 2
C<t—£—2k . T iokr<t<T +2%n 42
2 7r> 5 + 2k =t < 5 +

This systems is STP in [a,, 8] and has the particular solution

u<t+£>, 2T << T
2 2 2
yI(t) = Jy(@) , ~ Tt < T 4 okr,
2 2
T s T
t—_*m), T oiokr<t<Z 4 2%r 2.
”( 2 g Tem=t=



TOTALLY POSITIVE DIFFERENTIAL SYSTEMS 227

Yy (o) = yP(B) =0, y"() <0 in [a, B8], and y"(t) vanishes at the
2k + 1 points t = /7w, »=0,1, ---, 2k.
If we define the system

(6.6), [y® ()] = A® @)y (¢) ,
in [am /82]y o, = -2 + 7'[.'/2, Bz - 375/2 + 2kn + 2, (k = 0, 1, o '), by Setting

{ T T T
Ct—_>, a4 T T
(S T Et=Eg
At = { A, T <37 4 okr,
2 2
B<t~3?7t—2k7r>, 3—27T-+2kn§t§37ﬂ+2k7r+2,

then this system has a solution y®(¢), for which y®(a.,) = y*(5,) = 0,
y2(t) > 0 in [a,, B,], and y@'(t) has again an odd number of zeros in

[z, Bo].
Defining A®(t) in [a,, Bs], o = —2 — 7w/2, B; = 37/2 + 2kw + 2, by
B<t+£>, 2T o< ™
2 2 = =3
A9t = {A(t) -Z <t %ﬂ- + 2k,
B<t~37n—2k7t>, 37”+2kn§t§37”+2kn+2,

we obtain a system which is STP in [a,, 8,] and has a solution y*(¢),
for which y®(a;) = y¥(8,) = 0, and y®(¢) has now an even number
of zeros in [as B;]. By using first C, then A and then again C, we
obtain similarly a fourth example for which y{*(a,) = ¥*(8,) = 0 and
y®(t) has again an even number of zeros in [a,, 5,]. These four
examples establish the italicized statement preceding (6.2); the parity
restriction on the number of the zeros of #,(¢t) follows easily by the
proof of part (ii) of Theorem 5. We remark that there is no need
to consider different systems for all four examples and all nonnegative
integers k. All these cases can be illustrated by considering distinct
solutions y¥*, 5 =1, .-+, 4,k = 0,1, --., of a single system (1.1) which
is STP in (—oo, ). The corresponding matrix A(f) is given by
() = a(t) = a,() = au(t) = 0 and a,(t) = as,(t) = 1 for all ¢, while
the elements a,(f) and () are determined in the disjoint intervals
[e;, B;:] by the above formulas and are (otherwise arbitrary) continuous
nonnegative functions of ¢, which only vanish at some of the end
points «a;, and 5.
For n = 4 our example is
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sint) (——1 1 0 0
3(2 — cos t)
5 4 .
cost 1+ cost —= — —sint 0
B 3 3
cos ¢ 0 —g——ksint ——g— 1 —cost
sin t 0 0 Q?ELﬁ'
cost) )
(6.7)
2 — cost
1 .
— + sint
3 5
X
1 .
—— 4+ sint
3 +
—2 —cost

The corresponding system is STP in (— o, ) and the interior com-
ponents ,(t) and w,(t) of the particular solution y(f) have infinitely
many zeros. (6.7) is the special case n = 4 of a general example,
valid for any m,n = 4. The nonzero elements of the Jacobi matrix
A(t) = (a;;(t))? are in this general case given by

3—n
— , Qs =1,0, =14+ cost,
T T )@ —cos ) &
Ay = b — N — s Qo =1 — 4 + —sint,
n—1 n —
n—l( 1 >
a“-“ = 1+—COSt ,aii=l—%,
6.8) ' 2 2
Qipry = ’)’b—l<1__1_cost>’q:=3,-..,n_z,
2 2
Aytyn—z = /)?/—4"[— —I_Sin t! Qptyn—1 = 5—n — 8 >
n — n—1

3—n
(m — 1)©2 + cost)

Qyyyn = 1 — cos by Qs = 17 Uy =

The particular solution is the vector y(¢f), whose components are

Y, (t) =2 — cost,

gty =2 F1=20 Lgny . =2 n—1,

Y (t) = —2 — cost,



TOTALLY POSITIVE DIFFERENTIAL SYSTEMS 229

and all interior components vanish infinitely many times.

I am grateful to Professor Z. Nehari and Dr. M. Lavie for their
valuable advice offered during many discussions.
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THE BENDING OF SPACE CURVES INTO
PIECEWISE HELICAL CURVES

JAMES M. SLOSS

It is the purpose of this paper to show that a regular C3
space curve I’ in a Euclidean 3-space, whose curvature x = 0,
can be bent into a piecewise helix (i.e., a curve that is a helix
but for a finite number of corners) in such a way that the
piecewise helix remains within a tubular region about C of
arbitrarily small preassigned radius. Moreover, we shall show
that the bending can be carried out in such a way that either
(a) the piecewise helix is circular or (b) the piecewise helix
has the same curvature as I at corresponding points except
possibly at corners, of (¢) if the torsion of I” is nowhere zero,
then the piecewise helix has the same torsion as I" at corres-
ponding points except possibly at corners.

Also we shall show that if, in addition, /" has a bounded fourth
derivative, then an explicit formula can be given for a sufficient number
n of helices that make up the piecewise helix, where n depends on I”
and the radius of the tubular region about I". In this case, we shall
also show how the determination of the piecewise helix can be reduced
to a problem in simple integration.

1. Bendability.

DEFINITION 1. A curve is called a piecewise helix if it consists
of a finite number of segments, each of which is a helix (i.e., a curve
whose tangent makes a constant angle with a fixed direction). A point
at which two consecutive helices meet will be called a corner of the
piecewise helix.

REMARK. If, in particular, between corners the helix is a circular
helix, then the piecewise helix will be called a piecewise circular helix.

THEOREM 1. Let I':7(s), s = arc length, 0 < s <1, be a regular
C*[0, I]* curve whose curvature k(s) is nowhere zero. Then for any
given € >0

(a) there exists a piecewise circular helixz I'F: hi(s), s = arc length,
0 <s <l such that:

[7(s) — Ri(s)| < e, 0=s=1;

1 (I.e., (s) can be extended to lie in C® on some open set containing 0 < s < 1.)
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(b) there ewists a piecewise helix I'F: hi(s), s = arc length,
0 <s=<l, such that:

[r(s) — hi(s)| < e, 0<s=<l

and 'y has the same curvature as I" at corresponding points, except
possibly at the corners of hi(s);

(¢) oprovided the torsion T(s) ts mnmowhere zero, there exists a
piecewise helix I'F: hi(s), s = arc length, 0 < s <1, such that:

[r(s) — hi(s)| < e, 0<s<l

and I'§ has the same torsion as I' at corresponding points, except
possibly at cormers of hi(s).

REMARK. In each case the curve I" is “bent” into a piecewise
helix.

Proof. We shall prove (b) and indicate what minor modifications
are necessary to prove (a) and (c¢). Let x£(s) and z(s) be the curvature
and torsion respectively of I". Then «(s)eC'[0,1] and z(s) e C"[0, ]
since 7(s) € C°[0, []. By hypothesis, £(s) = 0; therefore,

7o) = =8
is continuous and thus uniformly continuous on [0, l]. Let
(1.1) [£(8) | = Kinax on0=<s=<l!
and
1.2) [ F ()] = S on0=<s=l

and choose d(¢) > 0 such that

(1.3) [ f(s2) — fs)] < ae

provided [s, — s,| < d, where

1.4) Q@ = {fmexlV/6 €xp {1600V 2(L + Fra)D™
Let

n = n(e) = smallest integer = %
and
I, ={s:0<s <6}
(1.4.1) IJ:{S-]5<3§(.7+1)5}1 .7.:1’27"5%_2
I, ={sn—-10o<sZ ).
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Then I;(0 < j < n — 1) form a disjoint covering of [0, I], each of length
<.
Let

(1.5) 7i(s) = fik(s), sel;, j=01--,n-1
where

_ f[(.7+1)5] fOI'j:O,l,...’rn__z.

fi= fI for j=n—1

By the fundamental theorem for space curves there exists a unique
curve h;(s), s€ I;, for which:

(i) its curvature and torsion are respectively k(s) and 7,(s) as
defined by (1.5), and

(ii) its position h,(s), tangent ¢;(s), principal normal n;(s) and
binomial b;(s) satisfy the initial conditions:

(1.6)  hy(40) = 7(jd), £(40) = €,(40), n;(§5) = ex(J0), b;(jO) = ex(§0)

where e,(s), e,(s) and e,(s) are the tangent, principal normal and binormal
of r(s) respectively, and s is the arc length parameter of ;.
Moreover, if

t;(s) 0 1 0
(1.7) @j(s) = nj(s) , A_.; = —1 O fj y
bi(s) 0 —f; 0
then @,(s) satisfies the differential equation:
(1.8) Di(s) = £(s)A;95(s) .

Also, because 7,(s)/k(s) = f; = constant on I, ;(s) is a helix on I;.
By the Frenet formulae for I”, we have:

(1.9) 7'(s) = £(s)A(5)¥(s) » 0=ss=<1,
where

e, (s) 0 1 0
(1.10) U(s) =|efs), A(s) = | -1 0 S(s)

ey(s) 0 —f(s) O

Considering both (1.8) and (1.9) as differential equations on I;, we
obtain:

w.11) 0,(5) = 0,(30) + || KOA0,Dt, s L,
320,1, -.o,n——l
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and

(s) = ¥(jo) + S;/c(t)A(t)ilf(t)dt, sel,,
./]'::O,]_’ ...’n_l

(1.12)

Since by (1.6) @,(j6) = ¥(j0), we see that if
leali =y 3 ¢,
then
176) — 0,011 < | 16 140) — 4,1 17Ol dt
(1.13) "
+ [ IEO A 11T O — 0,01 dt .

But by (1.7), (1.10), and (1.3)

|A®t) — A;|| = V2[F(t) — f;F < V2ae for tel, .
Also we have
1T@® = V'3
and by (1.7)
141 =v20 + ) = V21 + fi) -
Thus
(1.14) | ¥ (s) — @y(s)|| < Moea + NS; \T@) — 0,1 dt,  sel;,
where
M=K,V 6
N = £ V20 + fia) -
Let

C=sup||¥@) — 2,
then by (1.14)
(1.15) |T(s) — D;(s)|| < Moeaw + NC(s — 76)

from which we see upon combining (1.14) and (1.15) that
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[|#(s) — @;(s) |l
s 28 —Jgoy ... « (8 — Jo)*
<M35a[1+N(s 38) + NI +N—k—!—]
(1.16) (s — go)*+ k41 Seate™
+ —(k =y CN** < Moeae
< Mleae™
<e¢ll, sel;,
by the definition (1.4) of a.
If we let
i(s) ¢; (s)
O*(s) = | m(s) | = Pi(s) = | my(s) |, sel;,
b(s) b;(s)

"]:0,1,"',771:1,

then @*(s) is piecewise continuous on [0, ] with discontinuities possibly
at

s =jo, 1=012-,2—1,

and by (1.16) since I; is a cover of [0, [],

1.17) [|T(s) — D*(s)|] < ¢/l for 0<s=<1.
Let
(1.18) h¥(s) = 7(0) + Sst(a)da , for 0<s=<1.

Then h*(s) is a piecewise helix 'y for which
h*'(s) = Ri(s), for sel;,;5=0,1,---, 0 — 1.
Thus for 0 <s < It

7(6) = 1) = | eils) = t(s)| ds

=\ [[¥(s) — O*(s) | ds
<e

by (1.17).
Next we note that s is the arc length of %h*(s) since

[h*'(s)| = [hi(s)| = [ti(s)| =1, for sel;.
Moreover on the interior of I;:

[R*"(s)| = |k}(s)| = curvature = £(s)
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by construction of A;(s).

This completes the proof of part (b). For the proof of part (a)
and part (¢), only obvious slight modifications are necessary. In part
(a), we need only the additional fact that a helix is circular if the
curvature and torsion are both constant.

2. Explicit results. If we allow r(s) to have one more bounded
derivative we have:

THEOREM 2. If in addition to the assumptions of Theorem 1, we
also assume that r(s) has a bounded fourth derivative on [0, 1], then
we can choose n(€) in part 2 to be

2.1) n(e) = smallest integer > 9"l
«@
where
(2.2) & = KV 6 eXP {1h1axV 2T + fRa) D
,rl'(?,,ll >< ,rllll) _ 3[,,.”’.1”’[][,},.’_(7.’[ >< /',.HI)] < g*, 0 g 8 é l ’
[,',.H . 1.”]3/2 [7'" . ,',.I’]5/2
(2.3)

/ 4 uy
lw < fmax) [7'”'7'”]1/2 < Krmax s 0 é S __—-<: l b)

[1"" . 7.1']3/2
REMARK. A similar result holds for parts (a) and (c).

Proof. Since
K(s) = [17/(3)"(5)]"
and

’ 44 4
o(s) = 1@ X 17)
7'” . ,’.H

the expression in the first inequality in (2.3) is simply the derivative of

= )
7o =S
Thus
£ = )] =|[“Feds| < g1, — s

If we choose

(2.4) o =%
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where « is given by (2.2) = (1.4), then

[f(s) — fls)| < e
whenever |s, — s,| < 6. This, by the proof of part (b) of Theorem 1,

gives the result since
g*l l

ae i

n(e) = smallest integer >

THEOREM 3. Let I':7r(s), s = arc length, 0 < s <1, be a regular
space curve with bounded fourth derivative and mowhere-zero curva-
ture. Denote the curvature, torsion, tangent, principal normal and
binormal of I' by K(s), 7(s), e,(s), ex(s) and eys). For any given ¢ > 0,
let n(e), 0, and I; (j = 0,1, ---, n) be given by (2.1), (2.4) and (1.4.1),
respectively. Put

1

ti(s) = oo

{L.f7 + cos (g,(sym)]e.(§0) + [m sin (g;(s)m)]ex(59)

+ fil1 — cos (g;(s)m)]es(50)}

where

£ = 7l + DOYRIG+ D3N, m = +VTF T 06) = | (o)do
and let

t(s) = ti(s),sel;,5=0,1, -+, 0.

Then the curve
I: 1 (s) = 7(0) + Sst(a)da, s = arc length,0 < s <1,
0

18 a piecewise helix such that
|7(s) — h*(s)| < e, 0<s <1,

and I'* has the same curvature as I” at corresponding points except
possibly at the corners.

Proof. From (1.7)
¢5(s)
0,(s) = | my(s)
b;(s)

satisfies the system of differential equations
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(1.8) D(s) = k(s)A;D,(s) on I;,
where A; is given by (1.7). The solution of (1.8) for which @,(j0) =
¥(jo) is given by

D;(s) = e%94i¥(50) .

The eigenvalues of A; are 0, im and —¢m and the corresponding
eigenvectors are:

i 1 1
T, =10 |,T,=|1m |, T,=| —1m
1 —fi —fi
Also the matrix T = (T, T,, T;) has the inverse
2f; 0 2
=11 —im
2m? .
1 m —f;
Thus
T~leaj(S)AjT — e'lj(S)Dj s
where
0 0 0
D;=|0 im 0
0 0 —1m
and

e!]j(s):lj —_ Tegj(s)DfT‘l
f2+ cos g,(s)ym, m sin g;(sym, f,(1 — cos g;(s)m)

*x * *

*k k *

From this it follows that

ti(s) e.(59)
ny(s) | = 0y() = @513 e(j) | = —L x
pou:
by(s) €,(j9)
[ £+ cos g;(s)m]e,(50) + [m sin g,(s)m]e,(58) + f;[1 — cos g,(s)m]e,(59)
X * * w
* % *

which gives (2.5) and the theorem is proved.
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REMARKS. By using the definition of torsion as given by Hartman
and Wintner [1], p. 771, [3] p. 202, the continuity requirement of
Theorem 1 can be relaxed from C® to C®.. A question of further in-
terest would be to consider the bending of normal curves, see for ex-
ample, Nomizu [2] and Wong and Lai [4].
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ANALYTIC INTERPOLATION OF CERTAIN
MULTIPLIER SPACES

JAMES D. STAFNEY

Let W, denote the space of all functions on the circle
which are the uniform limit of a sequence of trigonometric
polynomials which is bounded as a sequence of multipliers for
l,,1<p =2 Let U, be the interpolation space [W;, W,]; (see
1.1). Our main result, Theorem 2.4, states that for a compact
subset E of the circle, U;| E = C(E) if and only if W, |E = C(&).
A major step in the proof is a maximum principle for interpola-
tion, Theorem 1.7. We also give a direct proof that U, + W,
(see Theorem 2.7) for corresponding s and p.

1. Some properties of analytic interpolation.

1.1. Let B" and B' be two Banach spaces continuously embedded
in a topological vector space V such that B°N B' is dense in both B°
and B'. For 0 <s <1, let , [B, B'], and B’ + B' denote the spaces
as defined in [1, §1]. For two Banach spaces X and ¥ we let O(X, Y)
denote the Banach space of bounded linear operators from X into Y
where the norm is the usual operator norm. Let O(X) denote O(X, X).

1.2. Assume the notation and conditions of paragraph 1.1 and for
convenience let B, denote the space [B’, B'],,0 < s < 1. Let V’ denote
the Banach space

O(B'N BY, B* + BY).

Let A; be a closed subspace of O(BY),7 =0,1. By restricting the
elements in A; to B°N B' in the obvious way we may regard A; as
continuously embedded in the topological vector space V', and it is
with respect to this embedding that we understand [A4,, A.],; in parti-
cular, [A, A)], is a subspace of V’. We will assume that 4,N 4, is
dense in A; with respect to the norm of 4;,5 = 0, 1, when these spaces
are embedded in V’ as described. Since BN B' is dense in B" and
B!, we know from [1, §9.3] that B° N B' is dense in B,; thus, since
B, C B’ + B', the restriction of elements of O(B,) to B°N B* gives a
continuous embedding of O(B,) in V'’ in the obvious manner. Note
that each element of A4, A4, is bounded with respect to the norm
| ||z, restricted to B°N B* and is, therefore, contained in the enbedded
O(B,). Let A, denote the closure of A, N A, in O(B,) where O(B,) is
regarded as embedded in V' in the manner just described. Finally,
we let M, and N, denote the norms of the spaces A4, and [A,, Al],,
respectively.

241
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LEemmA 1.3, Assuming 1.2, [A, A],C A, and M, < N,,0<s<1.

This lemma is an immediate consequence of [1, §11.1].

1.4. Assume the notation and conditions of 1.1. Let J be a closed
subspace of B’ + B'. We will assume that

(14.1) I =JnNB,, is closed in B/,j = 0,1. Clearly the map «
defined by

ax+IL)y=x+J j=0,1
is a continuous one to one linear map from B?//I’ into V/J. Let
D, = [a(B'/I°), a(B'[T")], .
LEMMA 1.5. Assuming 14, if x€ B,,0 <s <1, then « + JeD,
and

(1.5.1) e+ Jlp, = ll@+ (J NB)|s/(J N B, .

Proof. Let xeB,,hed N B, and ¢ > 0. Choose fe P = F(B’ B
such that f(s) =« + h and

(1.5.2) I fllyse+ e+ hlls,.

Let g(&) = fié) + J for 1 <|&| <e. Thenitis clear that ge @, where
& = F@B/I°), a(B'/I"))

and that

(1.5.3) g(is) =x + J.

Hence, ¢ + Je D,. Furthermore, since it is clear that

(1.5.4) Hgllge =1l Fllg

(1.5.1) follows from (1.5.2), (1.5.3), (1.5.4) and the fact that 2 and ¢

were chosen arbitrarily.

The following lemma can be proved by the usual method of suec-
cessive approximations.

LEMMA 1.6. Suppose that D, is a Banach space that is continu-
ously embedded in a Banach space D, such that D, is demse in D,
with respect to the morm of D,. Suppose that there exist constants
¢, ¢, ¢ <1, with the property that for each xe D, there is a corres-
ponding element z in D, such that
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|ZILSCI|96}0 and lx_zlo§c]x10-

Then D, = D,.

We will now establish a “maximum principle” for analytic inter-
polation.

THEOREM 1.7. If, in addition to the assumptions of paragraph
1.1, B' = [B’, B'], for some s (0 < s < 1), then B’ = B

Proof. From the fact that B° and B' are continuously embedded
in V and the closed graph theorem we conclude that the norms | |,
and | |, on B® and [B’, B'],, respectively, are equivalent. In particular,
there is a constant ¢ such that

(1.7.1) [x], < ¢z, for all  in B°.
From [1, 9.4. (ii)] we conclude that
(1.7.2) o), < a2l for all # in BN B*.
We conclude from (1.7.1) and (1.7.2) that

2], < ¢fla for all x in B°N B'.

Thus, B, is continuously embedded in B°. We shall now prove that
(1.7.3) there is a constant ¢, with the property that for each x
in B' there is a corresponding y in B! such that

[yl =clxl, and [y — 2 = 1/2)lx) .

Let e B'. In particular, x € [B° B'l, and, therefore, there exists
an f e F(B', B') such that f(s) = « and | f |xms = 2|@|,. Since the
norms | |, and | |, are equivalent we can choose a real number \ so
that 2|u|,e* < (1/2) |u|, for every u in B’. Let g(&) = f(&e 9
where 0 < Reé < 1. Then

v = g) = | gy, nat
(1.7.4) -
+ S_wg(l + 1) (s, t)dt

where g, and p, are the Poisson kernels for the strip 0 < Ref <1
(see [1, 9.4]). Let y and z denote the first and second integrals,

respectively, appearing in (1.7.4). Sincer fpa(s, ) ldt <13 =0, 1),
loGt) |, < 2|, e < (1/2) | x|, (all real t), and

gl + it) ], < 2], e < (1/2)e 7 | x],
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(all real t), it follows that |x — 2|, < (1/2) |z|, and [z], < (1/2)e |2 |,
This proves (1.7.3). Since B' is continuously embedded as a dense
subspace in B" and (1.7.3) holds, the conclusion of Theorem 1.7 follows
from Lemma 1.6.

2. The spaces W, and U,. Letl,, 1< p< c, denote the Banach
space of complex valued functions x on the integers such that

Hall, = lam) ) <

where the sum is over all integers n. Each function a on the integers

which vanishes outside some finite set determines a linear transforma-
tion T, on [, defined by

Toam = S an— kak) .
—oo /<00
Let W, denote the closure of the operators 7, in O(l,). Since [, is a
dense subspace of each space [,,1 < p < <, the restriction of elements
in O1,),1 <p <2, to the subspace [, gives a one-to-one continuous
linear embedding of O(l,), 1 < p < 2, into the space

R = O(ln lz) .

Throughout this section we will identify O(l,) with its image under
this embedding without further comment. Let U, denote the space
[W,, W/], where V in 1.1 is, in this case, R.

Our immediate purpose is to define a “Fourier transform” on W)
and to prove Lemmas 2.2 and 2.3.

If « is a complex valued function on the integers Z, let z,x(k) =
a(k — n). Let 6, denote the function on Z such that 6,(rn) =1 and
0,(k) =0,k = mn. If vand y are two complex valued function on Z let

xxy(m) = ﬂ;z a(m — n)y(n)

define the function w+y provided the sum converges absolutely for each
me Z. For each Hin W, let H~ denote the function H(d,) in [,. The
following lemma states the needed properties of the map H — H~. Note
that ¢, v = o,xx for each ne Z and for each complex valued function
% on z.

LEMMA 2.1.
(2.1.1) H— H~ 1is a one-to-one linear transformation from W) into l,.
(2.1.2) Hx = Hxx, He W), xel,.
(2.1.3) (HK)> = H=xK~,H, Ke W].

Proof. The map H — H~ is clearly linear. Evidently, each H in
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W, commutes with all operators z,, m € Z, since the operators of the
form T, commute with the operators z,, me Z. Thus for He W) and
m e Z, we see that

(2.1.4) H(3,) = H(tpdy) = tnH©) = toH™ = H %9, .

From this we see that since the linear span of the elements 4, is
dense in [,, the map H — H~ is one-to-one. Obviously, H~ is in [,.
To establish (2.1.2) we first note that since H~ is in l,(¢~" + p~* = 1)
the map x— H™xx is a continuous linear map from [, into ¢,, the space
of complex valued functions on Z which tend to 0 at . The map
x — Hx is also a continuous linear map from [, into ¢,. These obser-
vations together with (2.1.4) and the density property of the é,,’s noted
above complete the proof of (2.1.2). To prove (2.1.3) we note that
for H and K in W;, K~el,, so by (2.1.2) we have

H-K~ = H(K~) = H(Kb,) = (HK)d, = (HK)~ .

This completes the proof of the lemma.

Let L,(1 £ p < =) denote the Banach space of measurable functions
g(0) on the circle (reals mod 27) whose norm ||g ||,

lglle, = (@2m)| 9@ 1 do >,

is finite. Let L. denote the space of essentially bounded measurable
functions ¢ with |l ¢||,_ denoting the essential supremum of g.

Since each function H~, H e W), is in [,, which is contained in
l,, there is a unique function H" in L, such that >, H>(n)e'*’ is the
Fourier series of H"*

LEMMA 2.2. For 1< p <2 the map H— H" is a norm decreasing
algebraic isomorphism from W, into L...

Proof. The fact that H— H” is a one-to-one linear map from
W} into L, is clear from (2.1.1) and the fact that each function in L,
is uniquely determined by its Fourier coefficients. For each f e L,, let
M f) denote the function on Z defined by:

MSf)(n) = (1/2n)gz’f(0)e_md9 _

It is clear from the Schwarz inequality that the map (f, g) =\ (f-9)(n)
is a continuous bilinear functional on L,@ L, for each integer n. On
the other hand, the map

(/s 9) = (M )M(9)) (1)
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is also a continuous bilinear functional on L,& L,. Since these func-
tionals (for each 7) clearly agree when f and ¢ are trigonometric
polynomials, they must agree on L,& L,. Since )\ is a one-to-one
map, the multiplicative property of H — H” now follows from (2.1.3).
To prove that the map is norm decreasing we first note the following
inequalities:

WH" [y, Z ([ H"0ol1, = [(H")™ I, = [[(H") Ml = HEH) ], = [H")" [z, -

It is well known that (|| H"[|y,)"" converges to the spectral radius of
H, which is dominated by || H ||»,, and that (|| (H")"[[;,)""" converges
to ||H"||;, as m— co. This proves the lemma.

Let W, and U, denote the functions on the circle of the form H"
where H e W), U., respectively. The following lemma is an immediate
consequence of Lemma 2.2,

LEMMA 2.3. W, consists precisely of the functions on the circle
which are the uniform limits of sequences H, of trigonometric poly-
nomials such that H, is a Cuachy sequence in W),

For any subset E of the circle group U,|FE denotes the functions
on E obtained by restricting the functions of U, to E and C(E) denotes
the continuous complex valued functions on E.

THEOREM 2.4. Suppose that E is a compact subset of the circle
group and 0 < s<<1. Then U,|E = C(E) if and only 1f W,|E = C(&).

Proof. Tirst assume that W, | E = C(E). By Lemma 1.3, U,C W,;
consequently, U, W,. We conclude from Lemma 2.3 that W,cC(T).
Thus, U,|Ec C(E). Since W;> W/, it is clear from the definition
of interpolation that U.> W/. Thus, U, | E D C(E).

Consider the converse and assume that U,|E = C(¥). In 1.4 we
let BB= W,,B'= W!,V =R and

J = {aec W0:d@0) =0,0cE}.

The assumptions on J in 1.4 are clearly satisfied since by Lemma 2.2,
the maps a — @ are continuous on W/, and W/. By Theorem 1.5, if
xe U, then © + J is in the space

(2.4.1) (W3] T), a(WI[(J 0 WD, -

However, by hypothesis, the cosets in V of the form = + J,, xe U],
are the same as the cosets y + J, ye W,. Therefore, the space in
(2.4.1) is a(W,/J). Since W, > W/,

a(Wi[J) D a(Wi[(J N W) ;
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therefore, we conclude from 1.7 that
a(Wi[J) = a(W/[(J 0 W) ;

or, what is the same thing, that W,|E = C(E). This completes the
proof.

CoMMENT 2.5. It is natural to compare U, and W, where [I,, 1,], =
l,, i.e., (1 —8)/2+ s=1/p. In [3] we showed that Theorem 2.4 is
not valid for W,. To be exact, there is a compact subset E of the
circle such that W,| E = C(E) = W,,| E,1 < p<4/3. We had originally
used this result to show that W, = U,; however, the referee has sug-
gested a direct proof which we will now give.

LEMMA 2.6. Let h, be a sequence in U, 0 <s <1, such that
| holls < M (here || ||, is the norm in U,) and h,— h almost everywhere.
Then h agrees with some continuous function almost everywhere.

Proof. Since ||k, ||, = M there exist functions f,(f, £), analytic in
& for 0 < B(§) <1 and continuouns in 0 < B(§) < 1, such that for any
real number ¢, (| £,.(6, it) ||, < 2M, || £.(6, 1 + 4t) ||, < 2M and f,(0, s) =
h(0). Let g.(0, &) = £.(0, &)er*¢=*. Then

ha(0) = 1.0, 9) = 0.0, 9) = | 0.0, it)pu(s, )t

+ Si:gnw, 1+ it)u(s, Hdt
= u,(0) + v,(0)

where 1, and g, are the Poisson Kernels for the strip (see [1, 9.4]).
Evidently || u, ||, < 2¢~*M, || v, ||, < 2¢**~M. Since the v, are uniformly

bounded, by taking a subsequence if necessary, we may assume that
v, converges weakly to a bounded function w(f), that is

lim gvn(ﬁ)go(ﬁ)dﬁ - Sv(ﬂ)q)(&)dﬂ

for every integrable o. Furthermore, as is readily seen, v(f) belongs
to U, and therefore is continuous. Since 4, is uniformly bounded and
converges almost everywhere, h, converges weakly. Since 4, and v,
converge weakly, u, converges weakly to some function . From
the fact that |u,(0)| < ||u, ||, < 2¢7*M, it follows that |u(F)| < 2¢*
almost everywhere. Since % = u + v almost everywhere and A can be
taken arbitrarily large, h agrees almost everywhere with the uniform

limit of continuous functions. This completes the proof of the lemma.
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THEOREM 2.7. U, is properly contained in W, for 1 < p < 2.

Proof. To prove the theorem it suffices to exhibit a sequence of
functions in U, whose norms in U, tend to infinity and whose norms
in W, remain bounded. Let A(¢') =1 for 0 <t <7 and h(e') =0 for
m<t<2r., Then h is a multiplier for I, (see [2]), which does not
agree almost everywhere with any continuous function. Let ¢, be
defined by: ¢,(¢") = n for |t| < 1/2n, ¢,(e'') = 0 otherwise, n = 1,2, - .
Let h, — hp,, n —1,2, ---. Since S | h(e") |dt = 1, it follows that the
W, norm of £, is the same as the I/Iof,, norm of k; thus, %, is bounded
in W,. Since both % and ¢, belong to L0, 2x), h, € W,C U,. Obviously,
h, converges to & almost everywhere. Since % does not agree almost
everywhere with any continuous function, it follows from Lemma 2.6
that A, is not bounded in U,.

BIBLIOGRAPHY

1. A. P. Caldrén, Intermediate spaces and interpolation, the complex method, Studia
Math. 24 (1964), 113-190.

2. 1. I. Hirshmann, On multiplier transformations, Duke Math. J. 26 (1959), 221-242.
3. James D. Stafney, Approximation of Wp-continuity sets by p-Sidon sets, Michigan
Math. J. 16 (1969), 161-176.

Received August 26, 1968.

UNIVERSITY OF CALIFORNIA, RIVERSIDE



PACIFIC JOURNAL OF MATHEMATICS
Vol, 32, No. 1, 1970

SEMI-SIMPLE RADICAL CLASSES

PATRICK N. STEWART

The purpese of this paper is to characterize all semi-simple
radical classes (those classes of rings which are semi-simple
classes and at the same time radical classes).

Andrunakievic has shown that the class of Boolean rings is a semi-
simple radical class. More recently, Armendariz has considered such
classes.

For “I is an ideal of the ring R” we shall write “I <] R”.

Following Divinsky [6], but substituting classes of rings for ring
properties, we define:

(1) A nonempty class of rings & is a radical class if and only
if & satisfies the following conditions:

(A) Homomorphic images of rings in & are in & .

(B) Every ring R has an ideal & (R) € &~ such that if I <] R and
Ie ¥ then IS & (R).

(C) The only ideal of the factor ring R/z’(R) which is in & is
the zero ideal.

(ii) If = is a radical class, a ring R is & semi-simple if and
only if Z(R) = (0).

(iii) A nonempty class of rings & is a semi-simple class if and
only if & satisfies the following conditions:

(E) Every nonzero ideal of a ring in & can be homomorphically
mapped onto a nonzero ring in % .

(F) If every nonzero ideal of a ring R can be homomorphically
mapped onto a nonzero ring in % then Re % .

2. Rings without nilpotent elements. Our purpose in this
section is to establish:

THEOREM 2.1.' A ring R without nilpotent elements is tsomorphic
{to a subdirect sum of rings without proper divisors of zero.

It will be convenient to first prove:

LemmA 2.2. If R has no nilpotent elements and 0 = x e R then
(i) z,={yeR:xy =0} <]|R and x, =z, = {y e R: yx = 0},
(ii) x¢ux,

1 The author wishes to thank the referee for pointing out that this result has
also been obtained by V. Andrunakievie and Ju. M. Rjabuhin, Rings without nilpotent
elements, and completely simple ideals, Dokl. Akad. Nauk. SSR. 180, 9-11 (Translation,
Soviet Mathematics 9 (1968), 565-568).
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(iii) if re R and rxex, then rcua,,
(iv) the factor ring R/x, has no nilpotent elements.

Proof. Let R be a ring with no nilpotent elements and 0 = x ¢ R.
If aeR and ax = 0 then (xza)* =0 so xa = 0. Similarily if xa = 0
then ax = 0. This establishes (i). Since x* == 0, (ii) is clear. If a,
beR and ab* = 0 then (bab)* =0 so bab = 0, but then (ab)* =0 so
ab = 0. From this (iii) and (iv) follow immediately.

To prove the theorem it is sufficient to find, for each 0 +# xe R,
an ideal I(x) of R for which R/I(x) has no proper divisors of zero and
x¢ I(x). Let Z(x) ={I < R:x¢1, if ra el then re I, and R/I has no
nilpotent elements}. By 2.2 z, e Z(x) so Z(z) + & and it is clear that
the union of an ascending chain in Z(x) is also in Z(x). Thus we may
choose, by Zorn’s Lemma, I(x) maximal in Z(z).

IfacRandac¢I(x) let J = {yeR:ayel(x))21(x). Then J/I(z) =
(@ + I(z)), in R/I(x) and by 2.2 (i) (a + I(z)), = (a + I(x)), < R/I(x).
Since a ¢ I(x), ax ¢ I(x) so x ¢ J. If rx e J then arex € I(x) so ar € I(x), hence
redJ. Finally by 2.2 (iv)R/J = R/I(x)/J/I(x) has no nilpotent elements,
so Je Z(x). Hence J = I(x) so R/I(x) has no proper divisors of zero.

Note 2.3. The generalized nil radical Ng of Andrunakievic [4]
and Thierrin [10] (see also [6]) is the upper radical with respect to
the class of rings without proper divisors of zero. A ring R is Ny
semi-simple if and only if R is isomorphic to a subdirect sum of rings
without proper divisors of zero. In this context, 2.1 can be restated
as: A ring R is Ng semi-simple if and only if R has no nilpotent
elements.

3. B-rings. If xe R, let [x] = the subring of R generated by .
DEFINITION 3.1. R is a <Z,-ring .=. for all xe R, [z] = [z]%

Let R be a ring and z e R. Clearly [«¢] = [¢]* if and only if x € [x]
if and only if there are integers a,, ---, a, such that x = X%, a,a'.
Using this it is clear that homomorphic images of .<Z,-rings are .<Z;-
rings and that if A/B and B are .<Z,-rings then A is a <Z-ring. It
then easily follows that the class of .<2-rings (which we shall denote
by <7,) is a radical class.

LEMMA 3.2. A nonzero Z.-ring without proper divisors of zero
1s a field of prime characteristic which is algebraic over its prime
subfield.

Proof. Let R be a nonzero .2Z,-ring without proper divisors of



SEMI-SIMPLE RADICAL CLASSES 251

zero. If x is a nonzero element of R there are integers a,, - -+, a, such
that « = >k, a2, hence ¢, = >\%, a;x** is an identity for [¢]. Since
x is not a zero divisor e, is an identity for R. If weR, w # 0,
e, € [w] = [w] so e, e[w]-wZ Rw thus R = Rw. Since R is nonzero,
R is a division ring.

Let ¢ be the identity of R. Then [2¢] = [2¢]* = [4e] so Ne = 0
for some positive integer N. Consequently the characteristic of R is
a prime and since ¢ = ¢, ¢ [w] for all nonzero we R, R is algebraic
over its prime subfield. Therefore, by Theorem 2, page 183 of Jacobson
[7] R is a field.

COROLLARY 3.3. If R 1is a <Z,-ring then R is isomorphic to a
subdirect sum of algebraic fields of prime characteristic. So, in
particular, R 1s commutative.

Proof. If xeR,2¥ =0and Re =%, then [¢] =[¢) = --- =[z]" =
(0) so © = 0. Hence <z,-rings do not have nilpotent elements so the
corollary follows from 2.1 and 3.2.

THEOREM 3.4. A ring R is a Z-ring if and only if every
finitely generated subring of R is isomorphic to a finite direct sum
of finite fields.

Proof. Let Re <%, and R’ be a finitely generated subring of R.
Then R’'€ .2z, and hence is commutative, so by the Hilbert Basis
Theorem R’ has maximum condition on ideals. If P’ == R’ and P’ is
a prime ideal of R’ then P’ is a maximal ideal of R’ since by 3.2 R’/P’
is a field. Since R’ is finitely generated, commutative, and [g] has an
identity for each generator g of R’, R’ has an identity. Then by
Theorem 2, page 203 of [11] R’ has minimum condition on ideals. But
then R’ is a commutative Wedderburn ring so R’ is isomorphic to a
finite direct sum of fields each of which must be finite since they are
finitely generated, algebraic and of prime characteristic.

The converse is obvious; in fact, if xe R’ and R’ is isomorphic to
a finite direct sum of finite fields then there is an integer n(x) = 2
such that 2** = x. Thus we have:

COROLLARY 3.5. R is a z&-ring tf and only if for each xe R
there exists an integer n(x) = 2 such that x™" = x.

A class of rings & is said to be hereditary if I <] Re & implies
that Ie€%. Analogously we say:

DerFINITION 3.6. A class of rings & is strongly hereditary .=
if S is a subring of Re % then Se&.
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ProposiTiON 3.7. If Z# s a strongly hereditary finite set of
finite fields then a ring R is isomorphic to a subdirect sum of fields
wm F if and only if every finitely generated subring of R is 1so-
morphic to a finite direct sum of fields in F .

Proof. Since & is a finite set of finite fields there exists an in-
teger N = 2 such that ¥ = 2 for all xe Fe. & .

Let R have ideals I,-acA such that R/I, = F.,c % and
N{L;:ae A} = (0). Let R’ be a finitely generated subring of . Then
R € .27, since ¥ = x for all xtc R2 R, so by 34 R = A &PH--- P A,
and the A; are finite fields. Choose a; € R’ such that [a;] = A;. Then
a; # 0 soa; eI, for some B;e A but I; N [a;] <][a;] so I;, N [a;] = (0).
Therefore A; = [a;] = [a;] + I,,/I;, is isomorphic to a subring of F.
Since .57 is strongly hereditary R’ is isomorphic to a finite direct sum
of fields in & .

Conversely, if every finitely generated subring of R is isomorphic
to a finite direct sum of fields in &, R must be a .2Z,-ring since again
¥ = 2 for all e R. Thus by 3.3 there are ideals I,: ¢ A of R such
that N{l,:ae A} = (0) and R/I, is a field of prime characteristic;
moreover, R/I, must be a finite field since #¥ — x = 0e I, for all x ¢ R.
Therefore, for each ae A, there exists x, e R such that [x,] + /I, =
R/I,. But then R/I, is a homomorphic image of [x,] so R/I, is iso-
morphic to a field in & .

4. Semi-simple radical classes.

LEMMA 4.1. If =" is a class of rings such that subdirect sums
of rings in = are in & and & satisfies (A) then Z 1is strongly
hereditary.

Proof. Let Re% and S be a subring of R.

Set R, = R for all 1€ Z+ = the set of positive integers. Now the
(discrete) direct sum 3>\ {R;:1e€ Z*} is an ideal of the direct product
(complete direct sum) [[ {R;: i€ Z*}. If seSlet §¢) = s forallieZ+.
Then S — 4(S) = {8:se S} is an embedding of S into ] {R;:ie Z*}.
AS) + S {Ri:1e Z*) is a subdirect sum of copies of R and hence is
in z, so

AS) + D {Ri:ie Z7})
Si{R:1e Z+}

S = AS) = IZ

Using a theorem of Amitsur [1] which states that every ring is
a homomorphic image of a subdirect sum of total matrix rings of
finite order over the ring of all integers, Armendariz in [5] proves
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that if a hypernilpotent radical class & is a semi-simple class, then
&« contains all rings. A hypernilpotent radical class is a hereditary
radical class which contains all nilpotent rings.

THEOREM 4.2. If «° is a semi-simple radical class and & &L <7,
then < consists of all rings.

Proof. Let % be a semi-simple radical class. If « & .27 then
there is a Re%” and xzeR such that [z] = [z]*. In [8] Kurosh
shows that for any semi-simple class .57, subdirect sums of rings
in & are in .9°. Thus, by 4.1, [#]e~ and since [z]* <][x],
[«]/[x)e . Now [x]/[x]* is a zero ring on a cyclic group and since
" satisfies (F'), C= = the zero ring on the infinite cyclic group is in
% . This implies (see [3] and [6]) that ««  contains all nilpotent rings.
Since &~ is a semi-simple class (see [2] and [6]) " is hereditary, hence
%" is hypernilpotent. Therefore, by [5], «~ is the class of all rings.

THEOREM 4.3. If <« 1s not the class of all rings then the follow-
ing are equivalent:

1) & s a semi-simple radical class,

(2) there is a strongly hereditary finite set ‘= (F) of finite fields
such that: Re = if and only if R is isomorphic to a subdirect sum
of fields wn = (F),

(8) there is a strongly hereditary finite set < (F') of finite fields
such that: Re <« if and only if every finitely generated subring of
R is isomorphic to a finite direct sum of fields in & (F).

Proof. By 3.7 we have that (2) and (3) are equivalent.

Assume that &~ satisfies condition (3). Clearly <~ satisfies (A)
and (E).

If B<]{A and both A/B and B are in « and A’ is a finitely
generated subring of A then A’ + B/B = A'/A’ N B is isomorphic to a
finite direct sum of fields in & (F). A slight modification of the proof
given for Proposition 1 on page 241 of Jacobson [7] shows that A’ N B
is finitely generated as a ring. Thus A’ N B is also isomorphic to a
finite direct sum of fields in =’ (F) and so A’ = A'JA' N B A’ N B.
Therefore Aez’. From this it is easy to show that if «’(R) = the
sum of all ideals of R which are in % then “(R)es and
&« (R (R)) = (0). Thus, &~ satisfies (B) and (C).

If every nonzero ideal of a ring R can be homomorphically mapped
onto a nonzero ring in = then by 3.7, every nonzero ideal of R can
be homomorphically mapped onto a ring in < (F). Sulinski [9] (see
also [6], Theorem 46) shows that this implies that R is isomorphic to
a subdirect sum of rings in «”(F) and hence by 3.7 again, Re =". So
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< satisfies (F) and hence %~ is a semi-simple radical class.

Conversely, suppose &  satisfies condition (1). Let & (F') = the
class of all fields which are in & and define 4 = [[ {R: Re & (F)}.
Since %= is a semi-simple class subdirect sums of rings in & are in
%"; thus Ae %’. By hypothesis, & = .7, so by 3.4 all elements of A
must be torsion. From this it follows that there is a finite number
of primes p,, ---, py such that every field in & (F) is of characteristic
p; for some 1 <4< N. For each finite field Re & (F) choose a(R)
such that [a(R)] = R and for each infinite field K e & (F') set a(R) = 0.
Then a = {&(R)}zc:» 18 in A and by 3.5 a* = a for some integer
K = 2. Thus, for all finite fields R in & (F'), the dimension of R over
its prime subfield is < K — 1. Hence there is only a finite number of
finite fields in <« (F'). Suppose there is an infinite field R e & (F).
By 3.2 R is of prime characteristic and is algebraic over its prime sub-
fleld so R has an infinite number of non-isomorphic finite subfields. Al
these subfields are in = (F') since = is strongly hereditary by 4.1.
This is impossible since there is only a finite number of finite fields in
& (F'). Therefore = (F') is a strongly hereditary finite set of finite
fields. If Re % then Re <% so by 3.3 R is isomorphic to a subdirect
sum of fields all of which are in <’ (F) since & satisfies (A). Con-
versely, any ring isomorphic to a subdirect sum of rings in & (F') is
in & since %~ is semi-simple class. Thus & satisfies (2).
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ON LEFT QF-3 RINGS

HiroYukl TACHIKAWA

In this paper the following results are proved:

(i) Three classes of left QF-3 rings are closed under
taking left quotient rings respectively.

(ii) A subcategory of left modules having dominant di-
mensions = 2 over a right perfect left QF-3 ring R is equiva-
lent to a category of all left fRf-modules, where f is a suitable
idempotent of R.

(iiif) In case a left QF-3 ring is obtained as the endomor-
phism ring of a generator, dominant dimensions (= 2) of
modules are closely connected with the vanishing of Ext-
functors,

(iv) Three classes of left and right QF-3 rings are identical
in case of perfect rings,

Let R be an associative ring having an identity element 1 and
denote by R (resp. R,) a left (resp. right) R-module R. To gener-
alize the notion of QF-3 algebras [18] we shall make the following
definitions:

(1) R is said to be left QF-3, if ,R has a direct summand Re
(e is an idempotent of R) which is a faithful, injective left ideal.

(2) R is said to be left QF-3+, if the injective hull E(,R) of
=R 18 projective.

(3) R is said to be left QF-3, if the injective hull E(,R) of ;R
is torsionless in the sense of Bass [1].

Right QF-3, QF-3* and QF-3’ rings are defined in a similar fashion.
It is obvious that the class of left QF-3’ rings is the most general
class of the above three classes.

Our main purpose in this note is to introduce some generalizations
of results for QF-3 algebras [11], [12], [15], [16], [17] and semi-primary
QF-3 rings [4], [6], [13], [14] to the above generalized classes of rings.

We shall say that the dominant dimension of left (resp. right)
R-module X, denoted by dom. dim ,X(resp.dom. dim X}), is at least
n, if there exists an injective resolution of X:

0 X W, W, o W,

such that all W,, 1 < ¢ < n, are torsionless. Then it is clear that R
is left (resp. right) QF-3’ if and only if dom. dim R (resp. dom. dim R;) =
1.

In 8§81 we shall show that each class defined as above is eclosed
under taking quotient rings (not necessarily classical), that is, a left
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quotient ring S of R is left QF-3’, QF-3* or QF-3 if R is left QF-3’,
QF-3T or QF-3 respectively. Further, S is the maximal left quotient
ring of R if and only if dom. dim ¢S = 2. This is a generalization of
the results for QF-3 algebras by Morita [12], Tachikawa [17] and
Mochizuki [11]. Then, as an immediate consequence we have that R
and the double centralizer R’ of any faithful right ideal of R are
contained in the same class, and dom. dim ,R =1, if R’ + R. Here
it is to be noted that the double centralizer of a faithful left ideal
of R is not necessarily left QF-3', even if R is left QF-3’ (cf. §4,
example 1).

In §2 we shall consider a left QF-3 ring R which has a faithful
projective right ideal K and shall develop a proof in order to notice
that the injectivity of K, is not necessary to obtain some results in
[14, Propositions 1.1 and 1.2]. Further, defining a special injective
dimension closely connected to a fixed injective module, we shall prove
that in the case R is a right perfect left QF-3 ring, there exists a
suitable idempotent f of R such that the subcategory of left R-
modules of dominant dimension at least two is equivalent to the catego-
ry of all left fRf-modules. We shall remark also that the two charac-
terizations for dominant dimension by Mueller [15] can be applied to
an estimation of dominant dimensions of endomorphism rings of modules
which are generators.

Recently, the characterization of Artinian QF-3 rings due to Wu,
Mochizuki and Jans [19] suggested the notion of QF-3’' rings to Colby
and Rutter [4] and Kato [7]. In [4] it was proved that semi-primary"
left QF-3’ rings are not necessarily left QF-3*, however ¢ left QF-3""’
implies ‘“left QF-3" for semi-primary rings. Without the proof we
shall state in §3 that the same result holds for perfect rings, since
the proof in [4] is available for this case. Moreover, we shall prove
by duality of modules and the result proved in the first part of §2
the notions of two sided QF-3’, QF-3* and QF-3 are identical for per-
fect rings.

1. Quotient rings of QF-3 rings. Let R be a ring with an identi-
ty element 1 and N a submodule of a left R-module M. M is said
to be a rational extension of N in case f(IN) = 0 implies f = 0 for
f eHom,, (L, M), where L is any submodule of M containing N. Then,
following Lambek [10], a ring S is said to be a left quotient ring of
R if S contains R as a subring and if S is a rational extension of R
as a left R-module. To begin with we shall prove

ProprosITION 1.1 Let S be a left quotient ring of R. If R is

1 In this case a ring R is said to be semi-primary if it contains a nilpotent ideal
N with R/N semi-simple with minimum condition.
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left QF-3' (resp. QF-3%), then S is left QF-3' (resp. QF-3%).

Proof?. Denote by I the injective hull E(,R). Then, by the
assumption I = F(;S) and we have

- LRSS,

<resp. I—jezz@R—ﬁ—» Z;EBS)

where @ is an R-monomorphism and j is the inclusion mapping.

Suppose s be an element of S such that @j(sz) = s(@j(x)) for
some x ¢ l. Then we have a projection p, of []; S(resp. >, P S) onto
S such that the R-homomorphism

S

> Pi@g(sw) — s(@g(e))

of S into S is nonzero but has kernel containing RE. However, this
contradicts that .S is a rational extention of K. Hence ¢j is an S-
monomorphism and consequently S is left QF-3’ (resp. left QF-3+).

ProposSITION 1.2. Let S be a left quotient ring of R. If R 1is
left QF-3, then S is left QF-3.

Proof. Let Re, ¢ = e be a faithful projective, injective left ideal
of R. Since .S is an essential extension of R and e¢* = ¢, ,Se is an
essential extension ,Re so Se = Re.

Next, we shall prove that (Se is injective. Let L be a left ideal
of S and ¢ a left S-homomorphism of L into Se. Denote by & the
map of LN R into Se(= Re) which is the restriction of @. Since
»Re is injective, it follows by Baer’s Criterion that there exists an
element ¢ of Re such that &(l) = lq for all le L R. Then we shall
define a map ¥ of L into Se by putting ¥(r) = ¢(r) — rq, for all
reS. Now we shall suppose that ¥ (r,) = 0 for some nonzero element
r,of L. ¥(r) and », are both elements of S. Since .S is a rational
extension, there exists an element r, of R such that »,¥(r) # 0 and
ro€R. Then 7y, e RN L and hence 70 (r) = ro(r) — r(r.q) =
o(rer) — rerq = P(rer) — (rer)g = 0. This is a contradiction. Thus
T(r)=0 for all »re L. Hence a left S-homomorphism @ of S into Se
defined by @(r) = rq for all r¢ S is an extension of ¢ and by Baer’s
Criterion we obtain that (Se is injective.

It remains to prove the faithfulness of (Se. Let ¢ be a nonzero
element of S. Then there exists an element d of R such that dge R
and dq #+ 0. Then there exists an element = of Re such that dqx = 0,

2 The author is grateful to the referee who clarified the proofs in this section.
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because ,Re is faithful. Hence qx # 0, x € Se, this implies that ;Se
is faithful.

Let us denote by @ the maximal left quotient ring of R. Then
we have

ProposiTION 1.3. If R is left QF-3' and S is a left quotient
ring of R, then dom. dim. (S = 2 if and only if S = Q.

Proof. It is known [9] that S is a subring of @ and @ can
be imbedded into I by a @-monomorphism j. Lambek proved in [9]
that j(Q) = {x e I|h(j(S)) = 0 implies h(x) = 0 for h e Hom(I, I)}. If
dom. dim (S = 2, I/5(S) is isomorphic to a submodule of a direct pro-
duct of copies of S. Hence for x eI such that x¢ j(S), there exists
a S-homomorphism f of I into I with f(x) = 0 and f(45(S)) = 0. Thus
by the remark above z ¢ j(Q) and consequently S = Q.

Conversely assume S = @. Since the maximal left quotient ring
of Q is itself, by the same reason we have ,.,, Ker 2 = j(Q), where
H, = {he Hom, (I, I) | h(§(Q)) = 0}.

Thus,

0—sQ-2,1-7

1z

he H,

is exact, where p(x) = (---, h(x), ---), v I. It follows that
dom. dim ¢S = dom. dim ,@ = 2.

In case R is a finite dimensional QF-3 algebra, E(,R) is similar
to the unique minimal faithful left R-module and the double central-
izers of these modules are isomorphic to each other. Thus Proposition
1.3 is a generalization of the result for QF-3 algebras by Tachikawa
[17] and Mochizuki [11].

COROLLARY 1.4. Let K be a faithful right ideal of R. If R is
left QF-3 (QF-3’ or QF-3+), then the double centralizer R’ of K, is also
left QF-3 (QF-3’ or QF-3* respectively).

Proof. Since every left quotient ring of R can be imbedded natu-
rally into @, we shall prove that R’ is a left quotient ring. For this
purpose it is sufficient to show that for any two elements 7, # 0 and
r, of R’, there exists an element » of R such that »# # 0 and »7; € R.
However, K is faithful, hence there exists an element k¢ K = R such
that k»] %= 0 and it is obvious kr,ec K < R.

COROLLARY 1.5. Let R’ be a double centralizer of a faithful right
ideal of R. If dom.dim R = 2, then R’ = R,
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2. On left QF-8 rings. Throughout this section we shall assume
that Re means always a faithful, projective, injective left ideal of R
and @ is the maximal left quotient ring of R.

We shall denote by K a finitely generated, projective, faithful
right ideal of R, by C the ring eRe, by D End.(K,) and by U the
D-C-bimodule Ke respectively. Then we have

ProroSITION 2.1. Let R’ be the double centralizer of Kp. If R
is a left QF-3 ring having Re as a faithful, projective, injective left
vdeal, then it holds

(1) x[Hom, (,K., ,U)l. = pRe,,

(2) ,U is injective.

Proof. Since K is faithful, we shall identify a D-endomorphism
of ,K obtained by the right multiplication of an element r of R with
1 itself. Then it follows that Hom, (K, U) = Hom, (K, Ke) 2 Re. On
the other hand, Hom, (K, U) (= Hom, (K, Ke¢)) is a subset of R’ =
Hom, (K, K). Hence we have that Hom, (K, U) & R’e. However, it
is known by Proposition 1.2 that Re = R’e. Thus we have (1).

Next, assume that the diagram

0— Y2,y
U

is given, where the row is exact, Y, Y’ are left D-modules and j,
are left D-homomorphisms. Then we have the following diagram

Tom D) [ Hom, (K, Y')]

0 — [Hom, (K, Y)]

-
e

lHom 1, ¢) s

[Hom, (K, U)] .

By (1), x[Hom, (K, U)] is isomorphic to Re and hence injective. There-
fore there exists a dotted R-homomorphism @ so as to make the above
diagram commutative. Further, we have the next commutative diagram:

0 — K ® Hom,, (K, V) 282 L7, & Hom, (K, Y)
R S R

| [

e

! 1®Hom (1, ¢) /’/1® @

|
K®Hom, (K, U) .
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Since K is a finitely generated, projective right R-module, the functor
K @ Hom, (K, —) is naturally equivalent to the identity functor on
the category of left D-modules. It follows that ,U is injective.
This completes the proof.

Let ,_# and ,_# be categories of left B-modules and left D-modules
respectively. We shall define covariant functors S:, # — .. #
and T:, # — ,.# by S(Y) = p[Hom, (K, Y)] for Ye, ~ and
T(X) = [K®r X] for X . # respectively. Then, since K is finitely
generated, projective it is well known that there exists a natural
equivalence o: TS — 1,,_#, where 1,_# means the identity functor
on ,. 7 and o(Y) (r ® f) = f(r) for re K, f e Hom, (K, Y). On the
other hand, there exists a natural transformation (not necessarily an
equivalence) 7:1, , — ST, where 1, , means the identity functor on
et and [t(X)](r) = r Rz, for xe X, re K.

Assume that W is isomorphic to a direct product [];.,Re”,
Re'Y =~ Re. Since K, is finitely generated, projective, by (1) of Pro-
position 2.1 we have that

2 W =TI Re® = ] Hom,, (K, Ke'?) = Hom,, (K, _Ht Ke'?)

ied ied
= Hom, (K, K(? HA Re'") = Hom,, (K, K(%) W)= ST(W)
and the composite of all isomorphisms is z(W).

Now, we shall introduce a special injective dimension closely con-
nected with ,U. Let Y be a left D-module. Then we shall say that
Y has U-injective dimention = n (denoted by U-inj.dim ,Y), if there
exists a following injective resolution of Y:

0 Y Vi V. R V.

such that all V,, 1 < ¢ < =, are isomorphic to direct products of copies
of U. It is to be noted that this notion can be defined for any in-
jective module.

Then we have

PrRoPOSITION 2.2. Let &7 be the category comsisting of left R-
modules X such that dom.dim ,X = 2 and <% the category of left
D-modules Y such that U-inj.dim ,Y = 2. Then .o and <& are
equivalent by S and T.

Proof. If Xe.%, then we have a injective resolution of X:

0— X W, W, «+-, where W,1=1,2,

are torsionless and injective. Since Re is faithful, R is imbedded
into a direct product of copies of Re. On the other hand, every
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torsionless, injective left R-module is imbedded into a direct product
of copies of ,R. Thus, every torsionless injective left R-module is
imbedded into a direet product of copies of Re. Hence, without loss
of generality we can assume that W, are isomorphic to [];.,, Re®, 1 =
1, 2, Ret® = Re. 1t follows by the finitely generated projectivity and
the faithfulness of K, that U-inj.dim ,T(X) = 2, if Xe.ox Con-
versely dom. dim ,S(Y) = 2, if Ye <#, by Proposition 2.1 (1). Now,
by the exposition preceding this proposition, it is enough to prove
that the restriction of z:1_, — ST to .o~ is an equivalence. How-
ever, from the above remark and the exposition, in the following
commutative diagram

0 X W, W,
lr(X) lr( W) lr( Ws)
0 — ST(X) — ST(W,) —> ST(W))

we know that z(W)) and z(W,) are left R-isomorphisms. Hence by
the Five lemma it follows that 7(X) is a left R-isomorphism.

THEOREM 2.3. Let R be a right perfect ring. If R isleft QF-3,
then there exists an idempotent f of R such that fR, ts faithful,
and the category .o consisting of all left R-modules of dominant

dimension at least two is equivalent to the category ;.. of all left
JFRf-module.

Proof. Since R is a right perfect ring, every nonzero left R-
module has nonzero socle and there exists at most a finite number of
non-isomorphic irreducible left R-modules. Therefore we can assume
that the socle S of Re is a direct sum of finite number of non-isomorphic
irreducible left R-module. Then there is an idempotent f of R such
that Rf/Nf is isomorphic to ,S, where N is the Jacobson radical of
R.

Suppose that fR, is not faithful. Then there exists an nonzero
element » of R such that fR»r = 0. Since Re is faithful, there exists
an element x of Re such that »x # 0. Hence we have a nonzero sub-
module Rrx of Re. It follows that Rra NS =0, for Re is an es-
sential extension of S. Therefore fRrx = 0. Thus we have that
and fRr = 0, but this is a contradiction.

Now, it is known that we can set fR as K in Proposition 2.2
and fRf as D. It follows that ,,,fRe is injective. Further, the condi-
tion that Rf/Nf = .S insure that ,,,f Re is cogenerator. Hence every
left fRf-module has fRe-injective dimension = 2 (in fact = ). This
completes the proof by Proposition 2.2.
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By similar proofs as in [14, Proposition 2.6 and Theorem 2.4] and
[13, Corollary 5.3] we have further

THEOREM 2.4. Under the same assumption as in Theorem 2.3,
the following facts hold:

(1) Let X be a left R-module. dom.dim ,X = 2 if and only if
X = ;Hom, (fR, Y) for a left D-module Y where D = fRf.

(2) If [End,(fR)]° = R, then R = Q (= the double centralizer
of E(zR))".

(3) If dom.dim X = 1, then there exists a left R-module X'
such that X'>X and such that dom.dim X' = 2. Further,
dom. dim ,X” = 1 and dom. dim , X’/ X" =0, if X'> X" > X.

(4) The following two conditions are equivalent (n = 1).

I. dom.dim X ==n +1

II.  (a) z[Hom, (fR, fR®,; X)] = ,X,

(b) Extt (fR,fRR®R, X) =0 for 1<k <n—1.

Now for given left modules M and U over a ring D, we shall say
that U is a M-cogenerator if for a nonzero left D-homomorphism f of
M into itself there exists a left D-homomorphism ¢ of M into U
such that the composite of f and ¢ is a nonzero left D-homomorphism.
Then we prove

ProrosiTION 2.5. Let M be a left module over a ring D such
that (1) ,M is a generator and (ii) M has an injective, M-cogenerator
submodule ,U. Then the inverse D-endomorphism ring R of ,M is
left QF-3. Conwversely, every left QF-3 ring is obtained in the above
way for a suitable ring D and ,M which satisfy (i) and (ii).

Proof. Assume that ,M satisfies the conditions (i) and (ii). Since
oM is a generator, M, is finitely generated, projective and hence
[Hom, (,M,, ,U)] is injective. On the other hand, if we denote by
e the projection of M onto U, z[Hom, (,M,, ,U)] is Re and hence is
projective. Let » be a nonzero element of R. By (ii) there exists
an element 7’ ¢ Re such that 77’ 4 0. Thus Re is faithful and R is
left QF-3.

To prove the converse, we have only to take R as D, R as M
and Re as U respectively.

In view of Proposition 2.5, it seems of interest to obtain a method
by which we can calculate dom. dim ,R in case R = [End, (M)]’ and

3 (2) follows from (1) and Theorem 1.5 by putting ¥ = fR and (2) implies that
every right perfect left QF-3 ring R’ of dominant dimension > 2 is obtained as an
inverse fRf-endomorphism ring of a generator-cogenerator fRf-module. (cf. Kato [8].)
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oM is a generator. However it was done already by Morita [13],
when D is an Artinian ring. We shall remark here that his condition
concerned with the self injective dimension can be replaced by another
condition related to Ext-functors.

PRroPOSITION 2.6. Assume that D, M and R retain their mean-
ings in Proposition 2.5. Then 1 implies I, where I and 11 are the
Sollowing two conditions for a left R-module X:

I. dom.dim X>=n+1 (n =1).

II. (a) p[Homp (Mg, nM @ X)] = 2 X

(b) Exty ( PEM, MR,X)=0for1<k<n—1and for every
mazimal left ideal P of D such that D[P is not isomorphic to any
submodule of U.

The two conditions are equivalent, if D is a right perfect ring.
Similarly, if ,U is a cogenerator, the two conditions are equivalent,
proviced we replace PH M in 11 (b) by M.

Proof. Let S = Hom, (,M, —) and T = M ®, — be two covariant
functors. Assume I. There exists an exact sequence

(1) 0 X W, W, ‘e Wit

such that all W, are direct products of S(U):. Then, in the follow-
ing commutative diagram:

0— X w, W, —- W

(2) J J lz l+

0 — ST(X) —> ST(W) —> ST(Wy) — « -+ — ST(W...)

T, Ty =+, Ty, are isomorphisms, becacuse M, is finitely generated,
projective. Hence 7 is an isomorphism and this implies

II. (a) Hom, (,M, \M K, X) = . X.

On the other hand, we have the following exact sequence

(3) 0—TX)y—T(W)— T(W,) —> ++» — T(W,.)

where all T(W,) are isomorphic to direct products of ,U(= TS(U)).
Since T(W,) are injective, the sequence (3) can be consider as an in-
jective resolution of T(X). Hence by the exactness of the bottom

sequence in (2) it follows that

+ By Proposition 2.5 we know Re = S(U).
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(4) ExttM, T(X)) =Exth (M, MR X) =0, 1<k<mn-1.
R
Let

Jgo 25} g2 Jn

(5) 0 — T(X) Vi V. Vi

be the minimal injective resolution of 7(X). Then, by [15, Lemma
1] V., is isomorphic to a direct summand of a direct product T(W;)
of U. Hence any irreducible submodule of V; is isomorphic to a sub-
module of U. Thus by [15, Lemma 7] we have that Ext% (B, T(X)) =
Exth (B, M Q; X) =0 for all 0 <k <n and for all irreducible left
D-modules B which are not isomorphic to submodules of U.

Now, let P be a maximal left ideal of D such that D/P = B.
Then,

(6) Exth (P, MR X) =Ext"" (B, MR X) =0, 1<k<n-1.
R R

Hence form (4) and (6) we obtain

II. (b) Extt (PP M, MR, X) =0, 1<k<n-1.

Conversely, assume II. Clearly II (b) implies (4) and (6). Since
S is left exact, it follows from II (a) and (4) that

oo 71 S(os O
0— X T 8(v) X8 5(v) 2 - T 5w

is an injective resolution of X, where 6 is a given isomorphism:
X —Hom, (M, MR, X)(= ST(X)) in II (a).

Now, we shall assume that D is right perfect. Since every non-
zero left D-module has a nonzero socle, each V; is the injective hull
of its socle. However, by [15, Lemma 7] it follows from (6) that B
is not isomorphic to a submodule of V,. Hence V,; is imbedded into
a direct product of U and consequently S(V;) is imbedded into a direct
product of S(U). Thus dom.dim ,X = n + 1 by [15, Lemma 1].

In case ,U is a cogenerator, V, is imbedded into a direct product
of U and the converse also holds® by [15, Lemma 1].

Especially, dom. dim ,R is characterized only by the vanishing of
Ext, (PO M, M), k=1,2,---.

3. Perfect QF-3 rings. Following Thrall’s paper [18] we shall
say that R has a minimal faithful left module L if L is a faithful
left R-module and if L appears as a direct summand of every faith-
ful left R-module. It is clear that L is projective, and injective,
and is isomorphic to some left ideal direct summand of R. Jans

5 This proof can be regarded as a proof of Theorem 2.8, (4) for the case R =
[Endp(fR)]°, since fRf is right perfect and pfR is a cogenerator.



ON LEFT QF-3 RINGS 265

proved in [5] that semi-primary ring has a minimal faithful left
module, if E(,R) is projective.

The next propositions show the equivalence between notions of
left QF-3 and left QF-3’ for right perfect rings and show a necessary
and sufficient condition for perfect, left QF-3’ rings to be left QF-3*.

PropogiTION 3.1. If R is a right perfect ring, then the follow-
wng conditions are equivalent:

(1) E(:R) ts torsionless, i.e., R is left QF-3'.

(2) R has a minimal faithful left module.

(3) R has a faithful, projective, injective ideal, i.e., R is left
QF-3.

PropOSITION 3.2. Let R be a perfect left QF-3' ring. Then R
is left QF-3* if and only if the socle of R is finitely generated.

For the proofs we shall refer to that of Proposition 2 and Theo-
rem 2 in [4], which are known to be valid, if we consider that for
right perfect rings, every nonzero left module has nonzero socle and
for left perfect rings, every projective module is isomorphic to a direct
sum of primitive left ideals.

ProOPOSITION 3.3. Let R be a perfect ring. If R is left and
right QF-3', then R 1s left and right QF-3'.

Proof. By Proposition 3.1 we may assume that R has faithful,
projective, injective left ideal Re and right ideal fR, where e¢ and f
are idempotents of R. Then it is seen by Proposition 2.1, (2) fRe is
an injective left fRf-module as well as an injective right eRe-module.
Further, by Proposition 2.3, without loss of generality we can assume
that fRe is a cogenerator in the category of all left fRf-modules and
the category of all right eRe-modules respectively. By Proposition
2.1, (1) we have that Hom/,,, (fRe, fRe) = eRe¢°,;, and Hom,,, (fRe,
fRe) = ;,,fRf and hence End,,, (fRe) = eRe° and End,, (fRe) = fRf.
Therefore the fRe-duality between categories of finitely generated
left fRf-modules and finitely generated right eRe-modules holds, and
by Proposition 2.1, (1) we have that Hom,,, (fR, fRe) = Re and
Hom,,, (Re, fRe) = fR which implies fR and Re are both fRe-reflexive
in the sense of Cohn [3]. It follows by [12, Lemma 2.2] that the
socle of fR is reflexive. Since fRf is a perfect ring, the socle of
srrfR is a nonzero submodule and hence it is isomorphic to a direct
sum of a finite number of irreducible fRf-modules. Thus, for an
integer n», we have an exact sequence:
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0— ;eifBE— 3, @ [fRe]. Hence

n

0 — Hom;y, (fR, fR) — >, @ [Hom, s, (fR, fRe)]

| g==1
n

]
R 3. @ [Re]

is exact and consequently, E(,R)(= E(yR’)) can be imbedded into a
direct sum of finite number of copies of Re. Thus E(,R) is projective.
By symmetry it can be proved that E(R;) is projective.

4. Examples. 1. As was remarked in the introduction, we shall
give a left QF-3’' ring R such that the double centralizer of a faithful
left ideal of R is not left QF-3’. For this purpose first we shall refer
to

PRrROPOSITION 4.1. Let R be a left primitive ring with a minimal
ideal M. If R is left QF-3', then R 1is left QF-3 and M 1is a faith-
Jul, projective, injective ideal.

Proof. Since pM is imbedded into E(yR), the injective hull E(,M)
of M is imbeded into E(,R). Hence we have an exact sequence:

0— E(uM) —— T B*,

where R* = R, N,..Ker ¢, = 0, provided ¢, are defined by o¢(x) =
(++-, px), +++), x€ E(;M). Now, suppose Ker ¢, = 0 for all ¢,, ve A.
Since M is essential in FKE(,M),Kerop, N M= 0. It follows that
Ker ¢, 2 M, because M is minimal. This implies ,., Ker ¢, 2 M = 0,
and this is a contradiction. Therefore E(,M) can be imbedded into
R, and hence E(,M) is projective. Since R has a faithful, projective,
injective ideal E(,M), R is left QF-3.

On the other hand, .M is faithful and hence R can be imbedded
into a direct product of copies of M. Hence, similarly as above we
can prove that E(,M) can be imbedded into M. However M is minimal
and hence M is isomorphic to E(,M). Thus M is projective and in-
jective.

Let K be a field and V an infinite dimensional left K-vector space.
Denote by F' the inverse K-endomorphism ring of V. Then F is a
primitive ring and has a pair of projective, minimal ideals M and N
such that M = ,V* = Homy (yVy, «K), N, = V5. Since N, is pro-
jective, M is injective and hence F' is left QF-3. However F' is not
right QF-3’. For otherwise, it would follow by Proposition 4.1 that
F is right QF-3 and N is injective. Then, by [6, Th. 1]



ON LEFT QF-3 RINGS 267
» = N = M* = Hom, (,My, Ky) = Vi*,

but it is impossible, because (V: K) = co.

Now, consider the double centralizer F’ of .M. Since [End, (M)]° =
K, it follows F’ = End, (M). Then, similarly as above we can prove
that F” is not left QF-3’. Hence the double centralizer F’ of a faith-
ful left ideal M of a left QF-3 ring F need not be left QF-3".

2. The following example shows that perferct left QF-3 rings
are not necessarily semi-primary. Let K be a field, .V, s-dimensional
vector spaces over K,s =1,2, -... Denote by M the direct sum of
all V.. Then every element of [End, (M)]' can be considered as a
row finite matrix. Let A be a subring of [End, M)]’ such that each
element of A has the following matrix representation NE -+ 3, T, where
Nve K, E is the identity matrix, 7T, is the zero matrix for almost all
s and T, is written by

>, 7;Ciy;, where p = (s+ 1)(s + 2)/2,q¢ = s(s +1)/2 and C

means the matrix with 1 in the (7, ) position and 0’s elsewhere and
7;,€ K. Then, T, is a lower triangular matrix and every element of
the Jacobson radical N of A is a sum of 7T.’s.

Now, consider a ring R = Ke,, + M*e¢, + Ke,, + Acy, + Mey, + Koy,
where M* = [Hom, (,M,, .K:)], and + means the direct sum as K-
modules, and the multiplication of ¢,;,1 < 4,7 < 3, is same as that
of matrix units and mf = f(m) for fe M*, me M.

Then primitive idempotents of R are ¢, = ¢, ¢, = ¢, and ¢, = &,
and the Jacobson radical J of R is M*c, + K¢, + Ne,, + Mc,,. Since
RiJ=KPKPK and J is left and right T-nilpotent, R is perfect.
However R is not semi-primary, for J is not nilpotent. Since Re, =
o[Hom, (¢,R, . K)], Re, is a faithful, projective, injective left ideal of
R and hence R is left QF-3. On the other hand, by Proposition 3.2
R is not left QF-3*, because the socle of ,R is not finitely generated.

3. The next example shows that every right Artinian QF-3 ring
is not necessarily left Artinian,® while every Artinian self-injective
ring (i.e., quasi-Frobenius ring) is left Artinian.

Let @ and P be skewfields such that P is a subfield of @ and
the right dimension of @ over P is finite and the left dimension of
Q@ over P is infinite. The existence of such skewfields was proved
by Cohn [2]. Similarly as in Example 2, consider a ring R such that

6 1t was proved by K. Morita {13, Th. 1.1] that for left or right Artinian rings
“left QF-3"’ implies ‘‘ right QF-3’.
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Qc,, + Qc, + Qe + Pey, + Qe + Qey,, that is to say, R is a subring
of the matrix ring @,. Then it is clear that R is right Artinian but
not left Artinian. On the other hand, R is semi-primary and Re,
and ¢, R are faithful, projective, injective, left and right ideals re-
spectively.

4. The next example shows a non-perfect QF-3 ring.

Let K be the field of rational numbers and Z the ring of rational
integers. Consider a subring R of the matrix ring K, such that
Ke,, + Ke,, + Key + Zey, + Keyy, + Keg,. 1t is clear that FE(RR)(resp.
E(R,)) is isomorphic to the direct sum of 3-copies of a projective,
injective ideal Rec, (resp. ¢, R). Hence R is QF-3, while R is not per-
fect.
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PRODUCT INTEGRAL REPRESENTATION OF TIME
DEPENDENT NONLINEAR EVOLUTION
EQUATIONS IN BANACH SPACES

G. F. WEBB

The object of this paper is to use the method of product
integration to treat the time dependent evolution equation
u'(t) = A{@)(u(t)), t = 0, where u is a function from [0, ) to
a Banach space S and A4 is a function from [0, ) to the set
of mappings (possibly nonlinear) on S. The basic requirements
made on A are that for each ¢t =0 A(f) is the infinitesimal
generator of a semi-group of nonlinear nonexpansive transfor-
mations on S and a continuity condition on A(¢) as a function
of t.

The product integration method has been used by T. Kato in [5]
to treat evolution equations in which A(¢) is the infinitesimal generator
of a semi-group of linear contraction operators. In [6] Kato treats
the nonlinear evolution equation in which A(¢) is m-monotone and the
Banach space S is uniformly convex. For other investigations of non-
linear evolution equations one should see P. Sobolevski [9], F. Browder
[1], J. Neuberger [8], and J. Dorroh [3].

1. Definitions and theorems. In this section definitions and
theorems will be stated. For examples satisfying the definitions and
theorems below, one should see § 4. Let S denote a real Banach space.

DEFINITION 1.1. The function T from [0, =) to the set of mappings
(possibly nonlinear) on S will be said to be a &~semi-groups of mappings
on S provided that the following are true:

(1) T+ y) = T(x)T(y) for =,y = 0.

(2) T(x) is nonexpansive for x = 0.

(3) If peS and g,(») is defined as T(z)p for * = 0 then g, is
continuous and ¢,(0) = p.

(4) The infinitesimal generator A of T is defined on a dense
subset D, of S (i.e., if pe D,g," (0) exists and Ap = g,"(0)) and if
peD, gt (x) = Ag,(x) for x =0,9,(x) =p + S:Ag,,(u)du for © = 0, g,"
is continuous from the right on [0, ), and || ¢," || iS nonincreasing on
[01 o).

DerFINITION 1.2. The mapping A from a subset of S to S will be
said to be a Z-mapping on S provided that the following are true:
(1) The domain D, of A is dense in S.
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(2) A is monotone on S, i.e., if ¢ > 0 and
p,geD, [T —eA)yp— T —eA)qll=]lp—aqll.

(3) A is m-monotone on S, i.e. A is monotone on S and if ¢ >0
then Range (I —¢A) = S.

(4) A is the infinitesimal generator of a “-semi-group of map-
pings on S.

DEFINITION 1.3. Let each of m and » be a nonnegative integer
and for each integer 7 in [m, n] let K; be a mapping from S to S.
If m > n define J[~.K;,=1. If m <n define [[,.K; = K, and if
m+1<j<n define [[/..K; = K,;[[Iz: K;. Define [1;""K; = 17-n Kntmi-
If each of a and b is a nonnegative number then a chain {s;}.”, from
a to b is a nondecreasing or nonincreasing number-sequence such that
s, = a and s,, = b. The norm of {s;}i", is max {| sy — 8. || ¢ € [1, m]}.

DEFINITION 1.4. Let F be a function from [0, ) X [0, «) to the
set of mappings on S. Suppose that pe S, a,b =0, and % is a point
in S such that if ¢ > 0 there exists a chain {s;};”, from a to b such
that if {¢,}3*, is a refinement of {s;}:™, then

Hu’ - ﬁ[lF(tzi—u | tzi - tzi—z!)pH <é€.

Then u is said to be the product integral of F’ from a to b with respect
to » and is denoted by [[:!F(, dl)p.

REMARK 1.1. Let A be a Z*mapping on S and define the function
F from [0, o) x [0, =) to the set of mappings on S by F(u,v) =
(I —vA)~ for w,v =0 (Note that (I — vA)™* exists and has domain S
by virtue of the m-monotonicity of A). The following result in [10]
will be used in the theorems below:

If A is a ““mapping on S, T is the «™-semi-group generated
by A, and F is defined as above, then for pe S and 2 = 0 T(x)p =
LI F(, dI)p.

In this case let T(x) be denoted by exp (xA) for xz = 0.

Let A be a function from [0, =) to the set of mappings on S
such that the following are true:

(I) For each t = 0 A(t) is a &-mapping on S

(II') There is a dense subset D of S such that if ¢ = 0 the do-
main of A(t) is D

(III) A is continuous in the following sense: If a,b =0, M is
a bounded subset of D, and ¢ > 0, there exists ¢ > 0 such that if
u, v € la, b] and |u — v| < 0 then || A(u)z — A(v)z|| < ¢ for each ze M.
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THEOREM 1. Let A satisfy conditions (I), (II) and (III). If pec S
and a,b = 0 the following are true:

(1) If T(u,v) = exp (WAuW)) for u, v=0, then [1¢ T, dI)p exists.

(2) If Lu,v) = I —vAw))™ for u,v =0, then [|!L(, dI)p
exists and [[: L, d)p = [I: T(L, dl)p.

THEOREM 2. Let A satisfy conditions (I), (II) and (III) and define
Ub,a)p =T]. T, dI)p for pe S and a, b= 0. The following are true:

(1) U, a) is nonexpansive for a,b = 0.

(2) U®,e)Ule, a)=Ub, a) for a,b=0 and ce[a, b] and Ula, a) =
I for a = 0.

(38) If peS and a =0 then Ula, t)p s continuous n t

(4) If peS,0=a<t, and U, a)pe D, then 0TU(t, a)p/ot =
AU, a)p and if peS,0<s=<b, and U(s,b)pe D, then

0~ Ul(s, byp/os = — A(s)U(s, b)p .
2. Product integral representations. In this section, Theorems

1 and 2 will be proved. Before proving part (1) of Theorem 1 three
lemmas will be proved each under the hypothesis of Theorem 1.

Lemma 1.1, If peD,a,b=0, and {s;})i" is a chain from a to
b then

M T 182 = s Dp = ) = 35 15 = sl 1Al |-

Proof.

[ Do [ = 52 09 — ]

m

IT T(s2j1y | 825 — S2j2 )0 — jLIﬂ T(ojors | 825 — 82z l)p“

i=

IA

IA

>
=1
21 | T(Szi—1y | 82 — Swo ) — D

’
il

Il

L A ) T, tpat]

| S — Soia ||| Alsn)D || -

1

IA
s

LemMA 1.2. If peD,a,b=0,{s}i" s a chain from a to b, and
{si}, is a sequence in [a, b], then

| L5t I3 = 50D = 2] = 30— s 1 AEDP |-

Proof.
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[T L(sh |5 — 50w — 3]

< SITLL6S 155 — susp — IT L 55— s D
=1 =1 =1
= & [| L(Si, | 825 — Saia )P — D

= ;l | L(si, ‘Szi — Sy 5 |)P
- L(S,:, ‘Szi — Spi_s |)(I - |321' — Spis ‘ A(S:))p ||

=

s

[ S — Sois] “ A(s)p [ .

4

LeEmmA 1.3. If M s a bounded subset of D,a,b=0,v >0, and
€ > 0, there exists 6 > 0 such that of u,ve|a,d],|u —v|<d, 02 <,
and ze M, then || T(w, )z — T(v, 2)z|| < x-¢.

Proof. Let M’ = {17, L(v, S;; — 8y o)z |2€ M,ve|a,b],0 < x <7,
and {s;}i", is a chain from 0 to x}. Let z,€ M, let ze M, let v ¢ [a, b],
let 0 <« <7, and let {s;}™, be a chain from 0 to x. Then,

=llz—=ll.

III L(v, 85; — 83 5)2 — I—I1 L(v, 8;; — 8522,
Further, by Lemma 1.2,

= @- max || A(w)z, || .

welo,z])

m
H L(v, 8y — 8:i-:)2 — 2,
=1

Then, H ]]:n1 L(?), So; — Szi—z)z “ = H R—2 H + H % ” +x-. max,ero,r || A(u)zo H
and so M’ is bounded. There exists d > 0 such that if u,ve]q,b],
|w —v| <0, and ze M’, then || A(u)z — Aw)z|| <e. Thenif 0 <o <7,
ze M, {s;}", is a chain from 0 to z, u, ve]a, b], and |u — v| < 0,

|

ﬁ L(u” Sy — Szi—z)z - ﬁ L(U, Spy — Szi—z)zH

m m i—1
= Z: [T L(w, S:5 — Suj-2) kIll L(v, 83 — $y-2)2
T J 1 ==
m i
— 11 L 50y = 550 11 LG, 50— 5007
J=etl k=1
m | i—1
= 21 L(u, 83 — 83.5) II[IL(% Sor = Sap—2)?
q= =

- kfIﬂ L(v, 83 — 851 5)2 1

1—1

= 3L, 50 = 5092

T — (32 — S AW)) kﬂ L0, 80 — $u)2

|
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m
= Zf (S2i — S3i—s)
=

— A(u) kf;[l L(v, 8y — 8p-0)2

|40) [T Lo, 52 — -0

,\

< (Szi - Szi-2)'5

s

1

8
N

Then, since T(u, )z = [1¢ L(u,dI)z and T(v, x)z = [; L(v, dI)z (see
Remark 1.1), || T(u, )z — T(v, 2)2|| < x-&.

Proof of Part (1) of Theorem 1. Let pe D, let a,b =0, and let
€>0. Let M = {TIr, T(rozyy | 79 — Teis )P | @ € [@, b] and {r;}i", is a chain
from a to #}. Then M is a bounded subset of D by Lemma 1.1. There
exists 0 > 0 such that if u,vela,b],|u —v|<0,0=c=<1and zeM,
then || T(u, ®)z — T(v, x)z|| < e-2. Let {s;}i", be a chain from a to b
with norm < min {0, 1} and let {t]}*, be a refinement of {s;}i7, i.e.,
there is an increasing sequence % such that u, = 0, u,, = n, and if
1=i=msy =1, For 1<i=<m let K; = T(s;_,, |8: — Su|) and
let J; = [1%u, 41T (tojy | T2 — to52]). Then,

20—19 |t2~; — by ‘)p - l_]l T(32i~1y l Soi = Saiz |)pH

ng—HKﬂ)
= S| 7, 1 Kep — 1T 7, 11 Koo

Mgﬁm—&gmw

=3l 1 mmww-wwﬁ&p

2L,
— I T lty — b T Ko

S N 1 A T (PR ) .
= I T Ve = s, TL T [t = b [T Ko
gﬁréwﬂmmm—ma>ymmmum—mmump

— Tty [ ey — Ty ‘) ﬂ T(t?.h v 1 tan — tanz]) H K.p

uj—-1t

=20 2 |ty —tyelre=b—al-e.

=1 j=u;__1+1

|

Hence, [I. T(I, dI)p exists. Further, using the fact that D is dense



274 G. F. WEBB

in S and T(u, x) is nonexpansive for u, x = 0 one sees that if pe S,
a,b =0, then J]:! T, dl)p exists and thus part (1) of Theorem 1 is
proved.

Before proving part (2) of Theorem 1 three lemmas will be proved
each under the hypothesis of Theorem 1.

LEmMMA 1.4. If p,gqeS,a,c=0, and be|a,c], then the following
are true:

(i) |III: T, dDp — I1. T, dD)q ) = llp — q|l.

(ii) IIs Td, 1) I1: T, dD)p = [1; T, dI)p.

(iii) IfpeDthen||1]. T, d)p —p|| =< |b—al| -max,cr,; || A(w)pl|.

Proof. Parts (i) and (ii) follow from the nonexpansive property
of T(u,x), w, x = 0. Part (iii) follows from Lemma 1.1,

LEMMA 1.5. If M is a bounded subset of D,a,b=0, and ¢ > 0,
there exists o > 0 such that +f u,vela, b], |v—u| <d, welu, v], and
ze M, then

“H; T(I, dD)z — T(w, | v — u 2| < |v — ul-c.

Proof. Let M' = {117 T(Ssi1) |80 — Suz 2|26 M, 2,y € [a, b], {s:}i™
is a chain from y to «#}. Then M’ is a bounded subset of D by Lemma 1.1.
By Lemma 1.3 there exists ¢ > 0 such that if w,vefa,d], |u —v]| <
6,zeM’ and 0<<z<1, then | T, 2z~ Tw,x)z| <x-c. Let
u,vela,b],|v—u| < min{s, 1}, w e [u, v], z € M, and let {s;}i", be a chain
from u to ». Then,

[T T(sucss 150 — 502 — T, [0 — w {)z|i

H T(S5i—1s | 8o — Spis )% — H T(w, | 83 — S5i_s 1)ZH
= Z. T(83;15 I Sy — Spia) J];[l T(Szj—u lszj — S5 |)z

- T(w, Iszi - Szi~2l) ﬁ T(Szj—u | Szj - Sj«z I)Zl,

3

II

= Z ISZL Szi—zl‘s
=

=lv—ule¢.
Thus, ||1I: T, d)z — T(w, |v —u)z|| < |v — u|-e.

LEMMA 1.6. If M is a bounded subset of D,a,b=0, and &> 0,
there exists 0 > 0 such that if u,ve|a,bl,welu,v],|v—u|<o,zeM,
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and {s;}", is a chain from w to v, then

Hﬁ L85y [ 82 — 82i2[)Z — ﬁ L(w, [sx — 321—2‘)z{i =[v—ule.
Proof. An argument similar to the one in Lemma 1.3 proves
Lemma 1.6.

Proof of Part (2) of Theorem 1. Let peD,a,b =0, and ¢ > 0.
Let M ={I]: T, dI)p|x€[a, b]}. Then M is a bounded subset of D
by Lemma 1.4. By Lemmas 1.5 and 1.6 there exists ¢ > 0 such that
if w,vela,bl,welu,v], | —v| <0d,ze M, and {s;}i", is a chain from
% to v, then

ﬁ L(Szi—u Iszi — Syiz |)z - ﬁ L(w’ Iszi — Sgi2 |)ZH § Iv — ul-s/3| b — dl

and || [1: T, dl)z — T(w, |v —u)z|| < |v — u|-€/8|b —a|. Let {r}2,
be a chain from a¢ to b with norm < d. Let {s;}:", be a refinement
of {r;}¥2, such that there exists an increasing sequence % such that
U =0, =m, if L1 qry =s,, and if 1 <1=<q and {t,}i*, is a
refinement of {s;}3“,,, ,, then

I L(ru s |t — tu—a ) [T T, dD)p

k=1

— T |7 = s T T A0 < 17— racal-</31 — al

(Note that if
1242 q T0ucs |75 — 7)) 11 70, dDp

= 11 Lra_,, dI) H T, dD)p = 11 Lira ., dI) H I, dI)p

r2¢—2 T2i
—see Remark 1.1). Let {¢;}*, be a refinement of {s;}", and let v be
an increasing sequence such that »,=0,v, =%, and if 1 <1< m
Sy = t2vi' Then,

ot = Do — T 70 dlyp

ﬁ ﬁ ]._[ L(tzk—n Itzk - tzk—z |)p

1 Ta, dI)p]i

=1 rgi—3
q
=2

%
4:=1

M Lltucss [t — tacsl) 11 T, dD)p

J=u;_+1 k= vj 1+t

— 11 T, dI) H 1, dI)pH

7212
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IA

é‘ *7'% - 7'21'—2"5/311) — CL|

q ug vj
+ 2

=1

L(ra | ta — tus)) 11 T, dD)p

J=uy g+l k:vj__1+1

T 7 = 7 ) 1T T dDp|

q
+ D 7w — Toi 2] €/3|b — a|

-,
-

<¢g.

Thus, [I!L(I, dI)p exists and is [[:7T(, dI)p for pe D. Further,

using the fact that D is dense in S and L(u, x) is nonexpansive for

u, x = 0 one sees that [’ L(I, d)p = [I. T, dI)p for all pe S.
Define U(b, a)p = 11 T, dI)p for pe S and a,b = 0.

Proof of Theorem 2. Parts (1), (2), and (3) of Theorem 2 follow
from Lemma 1.4. Suppose that peS, 0= a <¢, and U, a)pe D.
Let ¢ > 0. There exists 6, > 0 such that if 0 < h < 6,

I A@T@, WU, a)p — AB U, a)p ] < ¢/2

(see Definition 1.1, part (4)). By Lemma 1.5 there exists d, > 0 such
that if 0 < h < 6,|| U + h, t)U(t, a)p — T(t, k) UL, a)p || < h-¢/2. Then,
1f 0 < h < min {5“ 52}7
I A/R)UE + h, a)p — U, a)p) — AR UE, a)p ||
= || /U + R,OU(E, a)p — U(t, a)p) — A@)U(E, a)p ||
< ¢&/2 + {[ A/RUT(E, B U, a)p — Ult, a)p) — AR U(t, a)p ||

h
— ¢+ Hl/hSO[A(t) T(t, w)U(t, a)p — A(t)U(t, a)p]duH <e.
Hence, 07U(t, a)p/ot = A(C)U(t, a)p. Suppose that peS,0 < s < b,
and U(s,bype D. Let e > 0. There exists 6, > 0 such that if 0 < h < 4,

then 0 <s—h and |[A®GS)T(s, H)U(s, b)p — A(s)U(s, b)p|| < ¢/2. By
Lemma 1.5 there exists 6, > 0 such that if 0 < h < 4,

| U(s — h, s)U(s, b)p — T(s, )U(s, b)p || < h-¢/2.
Then, if 0 < h < min {3,, 8,}

11/ =h)(U(s — h, b)p — Uls, b)p) — (—A(s)U(s, b)p) ||
= [ @/R)(U(s — h, 5)U(s, b)p — U(s, b)p) — A(s)U(s, b)p ||
< &/2 + [[A/h)(T(s, U(s, b)p — Uls, b)p) — A(s)U(s, b)p ||

— 2 + Hl/hS:[A(s) T(s, u)U(s, b)p — A(s)Us, b)p]du“ <e.

Hence, 0-U(s, b)p/os = — A(s)U(s, b)p.
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3. Product integral representation in the uniform case. For
Theorem 3 A is required to satisfy, in addition to conditions (I), (II),
(III) of §1, the following:

(IV) For each t = 0 A(¢) has domain all of S.

(V) If 0=<a=b, M is a bounded subset of S, and & > 0, there
exists 6 > 0 such that if wefa,b],z, weM, and ||z — w]|| < d, then

| Au)z — Aww|| <e.

THEOREM 3. Let A satisfy conditions (I)—(V) and define
Mu, v) = (I + vA(u))
Jor u,v=0. IfpeS and a,b =0, then [[. MU, dl)p = U(b, a)p.

Before proving Theorem 3, three lemmas will be proved each under
the hypothesis of Theorem 3.

LeEMMmA 3.1. Let pe Sand let a,b =0. There is a netghborhood
N,,; about p, a positive number v, and a positive number K such
that if e N,;,xz,yela,bl, |y — x| <7, and {s}i™ is a chain from
x to y, then

1;[1 M(Syi_iy | S5 — Saia )Q — (]H =ly— .’L}K .

Proof. There exists a positive number K such that if u € [a, b]
and ge N, then [[A(u)q|| =< K. Let 6 =1/2 and let v = 1/2K. Let
ge N, x,yela, b, |y — 2| <7, {s;}i" a chain fromz toy,1 <j < m —
1, and suppose that I 11171 M5y, | 800 — Si2)q — @ | = |32j — 50|+ K.
Then, 17, M(Ss_1y | Su — Su_z])g€ N,, and so

”ﬁM(sZi_l, | $3 — Suis)q — qH
< [ Mo 52— 5t o

81— 8 -G T M5 85 = 5202 D

= [ Spire — S| K.
LeEmmA 3.2. If pe S and a =0 then U(t, a)p is continuous in t.

Proof. Let peS and a,b=0. In a manner similar to Lemma
3.1 one proves the following: There is a neighborhood N, , about ¢ =
U, a)p,y >0, and K > 0such thatif ze N, ;, z,y€[a,d], |y — x| <",
and {s;}i™ is a chain from « to y then
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E[ (I — | 85 — S35 |A(S3i1))2 — z“ Sly—= [-K .

Let ¢ > 0, let x€[a, b] such that |& — b| < 7, let {s;}*, be a chain
from a to b and £ < m an integer such that s,, = 2 and

|, @)p = 1T Lisus | 50 — 5.2 || < min e, 3
and
k
U@ @p = [T Lsusy L35 = s ]| < e

Then,
|| U, a)p — Ub, a)p||

i=k+1 m
<2+ || IT (— [8u — 8z |A(851)) 1:[1 L(ssi_yy | 85 — Sz |)D

— 1T Loucs 5 — 20

<24+ |b—w|-K.
Then, lim,_, Uz, a)p = U(b, a)p for x € [a, b]. Further, by Lemma 1.4
lim,_, Uz, a)p = U(b, a)p for ¢ [a, b].

LEMMA 3.3. Let pe S and a = 0. There exists a neighborhood
N, ; about p and v > 0 such that the following are true:

(1) If €>0 there exists @ > 0 such that if qe N,s,a <x=a+7,
and {s;}i", is a chain from a to & with norm < «, then

1 Mo 5 — 500 — Ulwr, g | < e

and
(2) If €>0 there exists a>0 such that tf g€ N, ;, max{0,a—7} <
z < a, and {s;}i", ts a chain from a to x with norm < «, then

*b

Proof. By Lemma 3.1 there exists ¢ > 0 and v > 0 such that if
geN,,,a<a=a-+ 7 and {s;}", is a chain from a to x then

T Mo 53¢ = 82)a — Uler, a)g|| <.

m
‘]ji M(S5i—1y Sz — Sp2)q € N, -
7=

Let ¢ > 0. By Lemma 1.5 there exists «, > 0 such that if

wvelg, e+, 0 v—-—u<a,u=w=wv,
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and ge N, ,;,, then || Uw, u)g — T(w,v — u)q|| < (v — u)-¢/2y. There
exists a, > 0 such that if ge N, , u€la,a + 7], and 0 <z < a,, then
|| A(w) T(u, )qg — A(u)q|| < €/2y (Note that
1 T, g = qll = ||| A@) T, Hdt| < @+ A@w)q | = -
% (max || A(t)z ||, te[a, @ + 7], 2€ N,.)) .

Let a = min {«a,, &}, let qe N,,; let a <x < a + v, and let {s;}", be
a chain from a to x with norm < @. Then,

1T M5y 52~ 500 — Ula, )|

1 Msssrr 80— 590 — 1 Ul 5.0

m
=3
1 =

!U(Sziy S5;_s) ﬁ‘M(Szj—u S25 — S2j2)q
i

. l

!T(Szi—ly Sz — Si) Hl M8y 805 — 835-0)9
i i=

it
— M(Syi1y S — S5is) H1 M(Sy5—1y S2j — Szj-2)q
7

<ef2+ 3

it
— M(8s_1s Sz — S3i2) H1 M(sz5_1y 825 — Szj—z)qu
b=

824
0

—2+ 3 S A1) T8y €) T1 M50 85 — 825200

- A(Sz-;—l) ]j M(Szj—n Sgj — Szj—z)q]dt“
jt
<2+ 3 (s — sua)-6/2y <€
A similar argument proves part (2) of the lemma.

Proof of Theorem 3. Let peS and 0 < a < b. Suppose that if
a<x<b[[:M(,dIl)p exists and is U(x, a)p. Let a < x < b, let {s;}i™,
be a chain from a to b, and let j < m such that s,; = . One uses
the inequality

|00, 00 — [T Misiss 50 — 08

< ”U(b, ayp — T M(L dI)pH

+ i 01, anyp — 11 MGsasy 52— 50
+ 1]:[1 M(Szi—n Sos — 32i~2)p

m 7
- M(8gi—1y Soi — S2is) ]_—I1 M(S3i_1y Soi — Szi_s)D
=

=7 +1

|
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and Lemmas 3.1 and 3.2 to show []: M, dI)p exists and is U(b, a)p.
Suppose now that for ¢ <z < b[[: M, dl)p = Uz, a)p. Let b < x,
let {s;}", be a chain from a to x, and let j < m such that s,; = b.
One uses the inequality

U@, ap = I Mesusy 52~ 598
< vt HU®, ayp — U, b) 1] M 5 = 5090

N HU(w, b) 1:1 M(85i1y S0 — S0}

and Lemma 3.3 to show that there exists vy >0 such thatif b <ax<b+ v
then T2 M(I, dI)p exists and is U(x, a)p. Thus, if pe Sand0<a<b
then [1% M, dI)p exists and is U(b, a)p. With a similar argument one
shows that for pe Sand 0 < a < b [[¢ M, d])p exists and is Ul(a, b)p.

m

7
- H M(s3; 1y S2; — Sis) II1 M(Syi_1y S — S255)D
i=

i=g41

4. Examples. In conclusion two examples will be given.

ExampLE 1. Let S be the Hilbert space and let A be densely
defined and m-monotone on S (Definition 1.2). In M. Crandall and A.
Pazy [2] and in T. Kato [6], it is shown that B is the infinitesimal
generator of a Z-semi-group on S (Definition 1.1). Let X be a function
from [0, «) to S such that X is continuous. Define A(t)p = Bp + X(t)
for p € Domain (B) and ¢t = 0. Then A satisfies conditions (I)—(III).

ExampLE 2. Let S be a Banach space and let B be a mapping
from S to S such that B is m-monotone S and uniformly continuous
on bounded subsets of S. In [11] it is shown that B is the infinitesimal
generator of a “™-semi-group of mappings on S. Let C be a continuous
mapping from [0, =) to [0, =), let D be a continuous mapping from
[0, =) to (0, ), and let each of E and F be a continuous mapping
from [0, ) to S. Define A(t)p = C(t)-B(D(t)-p + E(t)) + F(t) for t =0
and pe S. Suppose ¢t = 0,e >0, and p,qe S. Then,

(I —eA®)p — (I — eA@D)q ]|
= /D) || — eCH)DHB)D(b)p + E(t))
— (I = COD®)B)(D(t)g + E)) ||
= (/DN [ (D@)p + L)) — (D(H)g + E@)) ||
=|lp —qll

and so A(t) is monotone for ¢ = 0. Suppose t =0,e >0, and pe S.
Let ¢’ be in S such that (I — eC(t)D()B)q = D(t)p + E(t) + ¢D(t)F(t).
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Let ¢ = (1/D(t))(¢' — E(t)). Then (I —cA(t))g = p and so A(¢) is m-
monotone. Then A satisfies conditions (I)—(V).

REFERENCES

1. F. E. Browder, Nonlinear equations of evolution, Ann. of Math. 80 (1964), 485-523.
2. M. G. Crandall and A, Pazy, Nonlinear semi-groups of contractions and dissipative
sets, J. Functional Analysis, 3 (1969), 376-418.

3. J. R. Dorroh, A class of nonlinear evolution equations in a Banach space (to appear)
4, E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer.
Math. Soc. Coll. Pub., Vol. XXXI, 1957.

5. T. Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc.
Japan 5 (1958), 208-234.

6. , Nonlinear semi-groups and evolution equations, J. Math. Soc. Japan 19
(1967), 508-520.

7. Y. Komura, Nonlinear semi-groups in Hilbert space, J. Math, Soc. Japan 19 (1967),
493-507.

8. J. W. Neuberger, Product integral formulae for monlinear expansive semi-groups
and non-expansive evolution systems, J. Math. and Mech. (to appear)

9. P. E. Sobolevski, On equations of parabolic type in a Banach space, Trudy Moskov.
Mat. Obsé. 10 (1961), 297-350.

10. G. F. Webb, Represeniation of monlinear nonexpansive semi-groups of transfor-
mations in Banach space, J. Math. and Mech., 19 (1969), 159-170.

11. , Nonlinear evolution equations and product integration in Banach spaces
(to appear)

12. K. Yosida, Functional analysis, Springer Publishing Company, Berlin-Heidelberg-
New York, 1965.

Received May 16, 1969.

VANDERBILT UNIVERSITY









Pacific Journal of Mathematics

Vol. 32, No. 1 January, 1970

Robert Alexander Adams, Compact Sobolev imbeddings for unbounded

AOMAINS . . ..o 1
Bernhard Amberg, Groups with maximum conditions ..................... 9
Tom M. (Mike) Apostol, Mobius functions of order k ..................... 21
Stefan Bergman, On an initial value problem in the theory of

two-dimensional transonic flow patterns . .................ccuiiia... 29
Geoffrey David Downs Creede, Concerning semi-stratifiable spaces . . . . ... 47
Edmond Dale Dixon, Matric polynomials which are higher

COMMUIALOTS . .« o oot et et e e et e e e e e 55
R. L. Duncan, Some continuity properties of the Schnirelmann density.

P 65
Peter Larkin Duren and Allen Lowell Shields, Coefficient multipliers of HP

and BP spaces ...... ... 69
Hector O. Fattorini, On a class of differential equations for vector-valued

AISTFIDULIONS . . ..o o e 79
Charles Hallahan, Stability theorems for Lie algebras of derivations. . ...... 105
Heinz Helfenstein, Local isometries of flattori........................... 113
Gerald J. Janusz, Some remarks on Clifford’s theorem and the Schur

IRAEX . .o e

Joe W. Jenkins, Symmetry and nonsymmetry in the group
diSCrete roUPS . ... .ot

Herbert Frederick Kreimer, Jr., Outer Galois theory for se
algebras. ......... ..o

D. G. Larman and P. Mani, On visual hulls ..............

R. Robert Laxton, On groups of linear recurrences. 1I. El

Dong Hoon Lee, The adjoint group of Lie groups . . ... ...
James B. Lucke, Commutativity in locally compact rings .
Charles Harris Scanlon, Rings of functions with certain Li

PTOPETLIOS .« oo oo v ettt
Binyamin Schwarz, Totally positive differential systems . .
James McLean Sloss, The bending of space curves into pi

James D. Stafney, Analytic interpolation of certain multip
Patrick Noble Stewart, Semi-simple radical classes. . . ...
Hiroyuki Tachikawa, On left QF —3 rings..............
Glenn Francis Webb, Product integral representation of ti

nonlinear evolution equations in Banach spaces . . ..




	 vol. 32, no. 1, 1970
	Masthead and Copyright
	Robert Alexander Adams
	Bernhard Amberg

