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A condition on an open set G c E, which is both necessary
and sufficient for the compactness of the (Sobolev) imbedding
H»(G) — H™@G) is not yet known. C, Clark has given a nec-
essary condition (quasiboundedness) and a much stronger suf-
ficient condition. We show here that (unless n = 1) quasibound-
edness is not sufficient, and answer in the negative a question
raised by Clark on whether the imbedding can be compact if
0G consists of isolated points, We also substantially weaken
Clark’s sufficient condition so as to include a wide class of
domains with null exterior. The gap between necessary and
sufficient conditions is thus considerably narrowed.

Let G be an open set in Euclidean n-space, E,. Let H™(G) for
each nonnegative integer m denote the Sobolev space obtained by com-
pleting with respect to the norm

1/2
Ve ={ = |, 1 D@ s}
the space C;°(G) of all infinitely differentiable complex valued functions
having compact support in G. Here, as usual, « = (@, -+, @,) is an
n-tuple of nonnegative integers; |a|=«a, + --- + ,, and D* = D ...
Di» where D; = 0/0x;, 5 =1, «++, n.

We shall say that G has the Rellich property if for each integer
m >0 the imbedding mapping H*(G) — H(G) is compact. It is well
known that any bounded G has this property. An unbounded domain
G is called quasibounded if dist (x, 0G) — 0 whenever 2 tends to infinity
in G. If G is unbounded and not quasibounded then it contains an
infinite number of mutually disjoint, congruent balls. If ¢ is infinitely
differentiable, has support in one of these balls, and has nonzero L*G)
norm then the set of its translates with supports in the other balls
provides a counterexample showing the imbedding H(G) — H{(G) = L¥G)
is not compact. Thus for an unbounded domain gquasiboundedness is
necessary for the Rellich property.

In [2] Clark showed that the following Condition 1 is sufficient to
guarantee that G has the Rellich property.

ConDITION 1. To each R=0 there correspond positive numbers d(R)
and o(R) satisfying
(a) d(R)+ o0(R)—0 as R— o,
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(b) dR)/IR) <M<  for all R,
(¢) foreachx e G with |2]|> R there exists y such that |z —y|<d(R)
and GN{z: |z —y| <R} = @.

This condition is considerably stronger than quasiboundedness. It
implies, for example, that G has nonnull exterior. In [3] Clark gave
an example of an unbounded domain having the Rellich property but
not satisfying Condition 1. His example was the “spiny urchin,” an
open connected set in E, obtained by removing from the plane all
points whose polar coordinates (», ) satisfy for any £ = 1,2, --- the
two restrictions r =k and 6 = 2 *mzw, m = 1, 2, .- ., 28+,

In this paper the gap between quasiboundedness as a necessary
condition and Condition 1 as a sufficient condition for a domain to have
the Rellich property is narrowed from both ends. On the one hand
we show that if » = 2 then no open set whose boundary consists only
of isolated points with no finite accumulation point can have the Rellich
property. This settles a question raised by Clark in [3]. On the other
hand we show that Condition 1 can be replaced by the following weaker
Condition 2, which is still sufficient to guarantee that G has the Rellich
property. In the statement B,(x) denotes the open ball of radius
about x.

CONDITION 2. There exists B, = 0 such that to each R = R, there
correspond numbers d(R), 6(R) > 0 such that

(a) d(R) + 8(R)—0 as B —s oo,

(b) d(R)/6(R) < M < - for all R = R,

(c) for each xe@G such that x| > R = R, the ball B, () is
disconnected into two open components C, and C, by an » — 1 dimen-
sional manifold forming part of the boundary of G in such a way that
each of the two open sets C, N Byr(x), © = 1, 2, contains a ball of
radius o(R).

Roughly speaking if the % — 1 dimensional manifolds in the bound-
ary of G are reasonably smooth and unbroken, and bound a quasi-
bounded domain (containing G) then G will satisfy Condition 2. Clark’s
“spiny urchin” is an example of such a domain. If » = 1 any quasi-
bounded domain satisfies Condition 2, (but not necessarily Condition 1)
and so in this case quasiboundedness is necessary and sufficient for the
Rellich property.

Our principal results are as follows

THEOREM 1. If G is open tn E,, n = 2, and the boundary of G
consists only of isolated points with mo finite accumulation point,
then the imbedding H{(G)— L*G) is not compact. Thus quasibounded-
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ness 1s not sufficient to guarantee the Rellich property.

THEOREM 2. If G is open in E, and satisfies Condition 2 then
1t has the Rellich property.

For the proof of Theorem 1 we require the following

LeMMA 1. Given p,0 >0, x,€ E, (n=2), there exists a function
ue C=(E,) with the following properties

(1) u(x) =0 in a netghbourhood of x,

(2) 0=2u(x) <1 for all x

(3) u(x) =1 outside the ball B,(x,)

(4) L | Vu(e) |2 do® < 6%

Proof. Let fcC=(R) satisfy 0 < f(®) = 1, f(t) = 1 for t =1 and
Sf(t) = 0 in a neighbourhood of ¢ = 0. Let m be a positive integer, put
r=|x — x,| and define

w(@) = v(r) = f[r/e]'™) .
Clearly ue C=(FE,) and satisfies (1), (2) and (3). Also

V@) = 33| Dae) | = V@)

Denoting by w, the surface area of the unit sphere in E, and making
the change of variables ¢ = (/)™ we obtain

SM | Vu(z) P de = o, SO) '—C%l;f<[_:;-]um>

o (] d [2 ot
— n—2 1 t tl-,—m(n )dt
WP So] dt £

2
r*dr

< 0,0MPm 2 + m(n — 2)]sup | £(¢) P

which, for # = 2, can be made less than 4° for a suitably large choice
of m.

REMARK., If peCy(E,) and u is constructed as above, then
pueCr(HE, — {@)) C Hi(E, — {x}).

Proof of Theorem 1. Let @ be a fixed open ball in E,. Let
p € C(Q) be extended to all of E, so that ¢(x) =0 in E, — Q. Sup-
pose @(x) = 0 for all » and

I|@Ho,En:C>Oy H@H;,EnZK>0.
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There exists M > 0 such that for all « in E,
lp@) | <M, |Dip@)| <M, j=1 -, n.

If @ contains no boundary points of G put ¥ = . Otherwise @ con-
tains only a finite number of boundary points of G, say z,, «--, ,.
For 1 =1,.--,k let B;= B,(x;) where p;, is small enough that
vol. B; < (C/2kM)*. Let 6 = K/Mk and let u; be the function const-
ructed as in Lemma 1 corresponding to the point x; and the constants
0;and 6. Put = p-u,---u,. Clearly v € H(Q — {w;, - - -, x,}) € HI(G).
We have

k
([ o, = ”‘P”orn - g; H@”O,Bi
= C— 3 M(vol. By = 1C.

Also

1D llos < | Dy, + 3| @t =+ Dt =+ 0,
<K+ kMo = 2?{
Since || ¥ |lo,¢ = [|@lo,e = C we have
9 lhe < (C* + 4nK? = C, .

Now let {@;}), be a family of mutually disjoint open balls in E~»
all congruent to Q. Let ¢; be a translate of ¢ with support in @; and
let +; € H{(G) be constructed from ¢, as above, so that

lilhoz S0 llvlho =G
Then the sequence {v-}, is bounded in H}(G) but contains no sub-
sequence convergent in L*G) since for 4 = j|[v; — ¥, llee = CHV 2.
Thus the imbedding H}G) — L*G) is not compact.

The proof of Theorem 2 is based on the following generalization
of Poincaré’s inequality which is a variant on those forms appearing in
Agmon [1] and Clark [2].

LEMMA 2. Let G be open in E, and satisfy Condition 2. Let
G, denote G N {x: |x| > R}. Then there exists a constant ¢ depending
only on n and M (the constant of Condition 2 (b)) such that for all
R = R, and every uc HNG)

LR u(@) [ do < o(dB)Y || Vu@) do.
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Proof. Fix R=R, and let d=d(R),0=0(R). If = (a, -+, ,)
is an n-tuple of integers let Q, = {x e E,: a,n~*d < z,, < (a0, + L)n~'d}.
Then E, = J.Q.. Let peCy(G). Fix xe G Then x €@, for some
«a. Let B, = B,(x), Bsy = By(x). There exists an n — 1 dimensional
manifold forming part of éG which disconnects B,, into open components
C, and C, and there exist points y; € C; (1 = 1, 2) such that B;(y;) < C,.
Thus ¢ can be written as ¢ = ¢, + @, where ¢; € C;°(G) and ¢, = 0 in
C, while ¢, =0 in C,. Since @, B, we have

oo lp@rar =] e rd |

1!

ey

2

If (r, 0) and S denote respectively spherical coordinates in F, centered
at y, and the surface of the unit sphere about ¥, we have

2d

gcde ) [ dy = Ssdo' Sa | pu(r, @) Fr ~'dr

< 2d S | pu(t, 0) [ t—do
N

where t = t(0o) satisfies 6 <t < 2d. Since ¢,(d, 0) = 0 it follows that

¢ d
adr

2
tn—l

@,(r, o)dr

oty oyt | = | |

d
ar @1(7'3 U)
N 2d ‘ d 2
< @dyar g (0, 0)‘ i
s L dr

2d7'

< )" |

2d
é

Thus, since d/0 < M,

2d

)

[, o) Py = @iy | do |

d P
ET—@I(T, o)f r*'dr

< 2T Md? S | veu(y) I dy
osly—~ygl=2d
é 27L+1M7L—ld2 S l V@l(y) IZ dy .
By
Combining this with a similar expression for ¢, we obtain
[ le@rdyszomd | |Vew)dy
QuNGR B3g

= 2| (Vo) dy
Qa

where @', is the union of all the sets @, which intersect B,;,. There
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is a number N depending only on 7 such that any N + 1 of the sets
@’ have null intersection. Summing the above inequality over all «
for which Q, intersects G, we obtain

[, o) dy = 2 NM- @) | Vo) Fdy .

This inequality extends by completion to HXG).

The remaining part of the proof of Theorem 2 is similar to Clark’s
proof [2, Th. 8] and is included here for completeness. First, how-
ever, let H™(G, R) be the completion in the norm || - ||, ¢nx, of the
space C°(G, R) of all C= functions whose support is a compact subset
of G N K, where K, = B,(0). Since the imbedding H+*(K,) — H"(Ky)
is known to be compact [4, Chapter XIV] and since an element of
H™(G, R) can be extended to be zero outside its support so as to be-
long to H*(K,) it follows that the imbeddings H"'(G, R) — H™(G, R),
m=20,1,2, --. are compact.

Proof of Theorem 2. It suffices, by an inductive argument, to
prove only that the imbedding H;(G) — L*G) is compact. We make use
of the following well known compactness criterion for sets in L*G):
if G E, and the sequence {w,};-, is bounded in L*G) then it is com-
pact in L*G) provided

(a) for every bounded G’ < G the sequence {u,|G’} is compact
in L*G’), and

(b) for each ¢ > 0 there exists R > 0 such that for all %

S lup(x) Pde < e
Gr

Now let {u,} be a sequence bounded in HXG), say ||u.|l,c < K. By
Lemma 2, for R = R, we have || u;|lo,¢, = C(d(R))’K —0 as R— c so
condition (b) of the criterion is satisfied. To establish (a) let G’ be a
bounded subset of G, so that G’ K, for some R. Since {u,| Ky} is
bounded in HY(G, R) it is compact in HYG, R) = LXK, N G) and so
{u, | G’} is compact in L*(G’). Thus {u,} is compact in L*(G), whence
the theorem.
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