SOME CONTINUITY PROPERTIES OF THE SCHNIRELMANN DENSITY II

R. L. Duncan

Let S denote the set of all infinite increasing sequences of positive integers. For all $A = \{a_n\}$ and $B = \{b_n\}$ in S define the metric $\rho(A, B) = 0$ if $A = B$; i.e., if $a_n = b_n$ for all n and $\rho(A, B) = 1/k$ otherwise, where k is the smallest value of n for which $a_n \neq b_n$. The main object of this note is to show that the set of points of continuity of the Schnirelmann density $d(A)$ is a residual set and that this is the best possible result of this type.

The space S and some of the properties of densities defined on it have been discussed previously [2, 3, 4]. In particular, it has been shown that the set of points of continuity of $d(A)$ is the set of all points having density zero. Let $L_a = \{A \in S : d(A) = \alpha\} (0 \leq \alpha \leq 1)$ denote the level sets of $d(A)$ and define $M_a = \{A \in S : d(A) \geq \alpha\}$. Then $L_a = M_a$ so that M_a is closed and L_a is dense in M_a [4]. These results are required in the sequel. A brief and lucid account of all other necessary topological results is given in [1].

Theorem 1. The family of all sets of the form $S(m, n) = \{A \in S : a_n = m\}$ is a sub-basis for the topology of S.

Proof. If $A \in S(m, n)$ and $B \in S(m, n)$, then $\rho(A, B) \geq 1/n$. Hence $S - S(m, n)$ is closed and $S(m, n)$ is open. Also, the spheres $S_\varepsilon(A) = \{B \in S : \rho(A, B) < \varepsilon\}, 0 < \varepsilon \leq 1$, constitute a basis for S and the desired result follows since

$$S_\varepsilon(A) = \bigcap_{n=1}^{[1/\varepsilon]} S(a_n, n).$$

Corollary. S has a countable basis.

Corollary. S is separable.

It is also clear that S is a subspace of $\bigotimes_{n=1}^{\infty} P_n$, where P_n is the set of all positive integers with the discrete topology for each n.

Theorem 2. S is complete.

Proof. Let $A_n = \{a_n\}_{n=1}^{\infty}$ and suppose that $\{A_n\}$ is a Cauchy sequence in S. Also, let n_k be the smallest positive integer such that
\[\rho(A_m, A_n) < \frac{1}{k} \] for all \(m, n \geq n_k \) and define \(A = \{a_{n_k, a}\}_{k=1}^{\infty}. \) Since all of the \(A_n \)'s have the same first \(k \) terms for \(n \geq n_k \), it is clear that \(A \in S \) and \(\rho(A_n, A) < \frac{1}{k} \) for all \(n \geq n_k \). Hence \(\lim_{n \to \infty} \rho(A_n, A) = 0 \) and \(S \) is complete.

The following corollaries are a consequence of the Baire category theorem and the fact that \(M_a \) is a closed subset of \(S \).

Corollary. \(M_a \) is complete.

Corollary. \(M_a \) is a set of the second category in itself.

The following result would be of no interest for those values of \(a \) for which the second of the above corollaries fails to hold.

Theorem 3. \(L_a \) is residual in \(M_a \).

Proof. \(M_a - L_a = \bigcup_{k=1}^{\infty} M_{a+1/k} \). Since \(\bar{L}_a = M_a \), \(L_a \) is dense in \(M_a \) and, since \(M_{a+1/k} \subset M_a \), \(L_a \) is dense in \(M_{a+1/k} \). Also, since \(M_{a+1/k} \) is closed, \(M_{a+1/k} \) is nowhere dense in \(M_a \) and \(M_a - L_a \) is a set of the first category in \(M_a \).

Since the set of points of continuity of \(d(A) \) is \(L_0 \) and \(M_0 = S \), the following result ensues.

Corollary. The set of points of continuity of \(d(A) \) is residual in \(S \).

The following theorem shows that the above corollary is a best possible result in the following sense. In the true statement, \(S - L_0 \) is a countable union of nowhere dense sets, the word countable can not be replaced by finite.

Theorem 4. \(M_a - L_a \) is open if and only if \(a = 0 \) or \(1 \).

Proof. \(M_i - L_i \) is the empty set and hence open. Also, it is easily seen that \(M_0 - L_0 = S(1, 1) \) in the notation of Theorem 1 and hence open.

Suppose that \(M_a - L_a \) is open for \(a > 0 \). Then \(M_a - L_a \subset M_a \), since \(M_a \) is closed, and it follows that \(L_0 \subset S - M_a - L_a \). Since \(L_0 = S \) and \(S - M_a - L_a \) is closed, we have \(S - M_a - L_a = S \) and \(M_a - L_a \) is the empty set. Thus \(a = 1 \) and the proof is complete.

The following result is included in the preceding proof.
Corollary. The support of $d(A)$ is the set of all sequences with first term one.

The final result concerns the asymptotic density

$$\delta(A) = \liminf_{k \to \infty} A(k)/k,$$

where $A(k)$ denotes the number of elements of A which do not exceed k.

Theorem 5. $\delta(A)$ is a function of Baire class two.

Proof. Let $\delta_n(A) = \inf_{k \in \mathbb{N}} A(k)/k$. Then $\delta_n(A)$ is a function of Baire class one [4, Th. 3]. Also, $\delta(A) = \lim_{n \to \infty} \delta_n(A)$. Now $\delta(A)$ is obviously everywhere discontinuous on S. Suppose $\delta(A)$ is a function of Baire class one. Then the set of points of discontinuity of $\delta(A)$ is a set of the first category [5, Th. 36]. But S is a set of the second category and the desired result follows.

References

Received February 6, 1968, and in revised form July 15, 1969.

King of Prussia Graduate Center
The Pennsylvania State University
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

RICHARD PIERCE
University of Washington
Seattle, Washington 98105

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

BASIL GORDON*
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMAN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *

AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan
Robert Alexander Adams, *Compact Sobolev imbeddings for unbounded domains* .. 1
Bernhard Amberg, *Groups with maximum conditions* ... 9
Tom M. (Mike) Apostol, *Möbius functions of order k* .. 21
Stefan Bergman, *On an initial value problem in the theory of two-dimensional transonic flow patterns* .. 29
Geoffrey David Downs Creede, *Concerning semi-stratifiable spaces* .. 47
Edmond Dale Dixon, *Matric polynomials which are higher commutators* .. 55
R. L. Duncan, *Some continuity properties of the Schnirelmann density. II* .. 65
Peter Larkin Duren and Allen Lowell Shields, *Coefficient multipliers of H^p and B^p spaces* .. 69
Hector O. Fattorini, *On a class of differential equations for vector-valued distributions* 79
Charles Hallahan, *Stability theorems for Lie algebras of derivations* ... 105
Heinz Helfenstein, *Local isometries of flat tori* ... 113
Gerald J. Janusz, *Some remarks on Clifford's theorem and the Schur index* 119
Joe W. Jenkins, *Symmetry and nonsymmetry in the group algebras of discrete groups* 131
Herbert Frederick Kreimer, Jr., *Outer Galois theory for separable algebras* .. 147
D. G. Larman and P. Mani, *On visual hulls* .. 157
R. Robert Laxton, *On groups of linear recurrences. II. Elements of finite order* 173
Dong Hoon Lee, *The adjoint group of Lie groups* .. 181
James B. Lucke, *Commutativity in locally compact rings* .. 187
Charles Harris Scanlon, *Rings of functions with certain Lipschitz properties* 197
Binyamin Schwarz, *Totally positive differential systems* ... 203
James McLean Sloss, *The bending of space curves into piecewise helical curves* 231
James D. Stafney, *Analytic interpolation of certain multiplier spaces* ... 241
Patrick Noble Stewart, *Semi-simple radical classes* .. 249
Hiroyuki Tachikawa, *On left QF – 3 rings* .. 255
Glenn Francis Webb, *Product integral representation of time dependent nonlinear evolution equations in Banach spaces* .. 269