Pacific Journal of

Mathematics

SOME CONTINUITY PROPERTIES OF THE SCHNIRELMANN
DENSITY. II

R. L. DUNCAN




PACIFIC JOURNAL OF MATHEMATICS
Vol. 32, No. 1, 1970

SOME CONTINUITY PROPERTIES OF THE
SCHNIRELMANN DENSITY II

R. L. DuncaN

Let S denote the set of all infinite increasing sequences
of positive integers. For all A = {a,} and B = {b,} in S defire
the metric p(4,B) =0 if A = B; i.e,, if a, = b, for all n and
o(A, B) = 1/k otherwise, where k is the smallest value of n
for which a, # b,. The main object of this note is to show
that the set of points of continuity of the Schnirelmann density
d(A) is a residual set and that this is the best pessible result
of this type.

The space S and some of the properties of densities defined on it
have been discussed previously [2, 3, 4]. In particular, it has been
shown that the set of points of continuity of d(A4) is the set of all
points having density zero. Let L,={4deS|dA) =a}0=ZLa=1)
denote the level sets of d(A4) and define M, = {Ae S |d(A) = a}. Then
L,= M, so that M, is closed and L, is dense in M, [4]. These
results are required in the sequel. A brief and lucid account of all
other necessary topological results is given in [1].

THEOREM 1. The family of all sets of the form S(m,n) =
{AeS|a, =m} is a sub-basis for the topology of S.

Proof. 1f Ae S(m,n)and B¢ S(m, n), then p(4, B) = 1/n. Hence
S — S(m, n) is closed and S(m, n) is open. Also, the spheres S.(4) =
{BeS|p(A, B) < ¢},0 < e <1, constitute a basis for S and the desired
result follows since

S.(A) = (1 S m) -

COROLLARY. S has a countable basts.
COROLLARY. S 1is separable.

It is also clear that S is a subspace of X, P,, where P, is the
set of all positive integers with the discrete topology for each n.

THEOREM 2. S is complete.

Proof. Let A, ={a,,.};>, and suppose that {4,} is a Cauchy
sequence in S. Also, let n, be the smallest positive integer such that
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0(An, A,) < 1/k for all m, n = n, and define 4 = {a,,.}i-.. Since all
of the A,’s have the same first k¥ terms for n = n,, it is clear that
AeS and p(4,, A) < 1/k for all » = n,. Hence lim,_. 0(4,, 4) =0
and S is complete.

The following corollaries are a consequence of the Baire category
theorem and the fact that M, is a closed subset of S.

COROLLARY. M, is complete.
COROLLARY. M, is a set of the second category in itself.

The following result would be of no interest for those values of
a for which the second of the above corollararies fails to hold.

THEOREM 3. L, 1s residual in M,.

Proof. M, — L, = U7 M,,,,. Since L, = M,, L, is dense in M,
and, since M,.,,,c M,, L, is dense in M,, ;. Also, since M,,,, is
closed, M,.,; is nowhere dense in M, and M, — L, is a set of the
first category in M,.

Since the set of points of continuity of d(4) is L, and M, = S,
the following result ensues.

COROLLARY. The set of points of continuity of d(A) is residual
wm S.

The following theorem shows that the above corollary is a best
possible result in the following sense. In the true statement, S — L,
is a countable union of nowhere dense sets, the word countable can
not be replaced by finite.

THEOREM 4. M, — L, s open if and only if a =0 or 1.

Proof. M, — L, is the empty set and hence open. Also, it is
easily seen that M, — L, = S(1, 1) in the notation of Theorem 1 and
hence open.

Suppose that M, — L, is open for @ > 0. Then M, — L,C M,,
since M, is closed, and it follows that L,c S — M, — L,. Since L, = S
and S — M, — L, is closed, we have S — M, — L, =S and M, — L,
is the empty set. Thus a = 1 and the proof is complete.

The following result is included in the preceding proof.
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COROLLARY. The support of d (A) is the set of all sequences
with first term one.

The final result concerns the asymptotic density
0(A4) = lim inf A(k)/E ,

where A(k) denotes the number of elements of A which do not exceed k.
THEOREM 5. 0(4) is a function of Baire class two.

Proof. Let 6,(A) = inf,., A(k)/k. Then 4,(4) is a function of
Baire class one [4, Th.3]. Also, 6(4) = lim,_. 0,(4). Now d(4) is
obviously everywhere discontinuous on S. Suppose 6(4) is a function
of Baire class one. Then the set of points of discontinuity of 6(A)
is a set of the first category [5, Th. 36]. But S is a set of the second
category and the desired result follows.
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