COEFFICIENT MULTIPLIERS OF H^p AND B^p SPACES

PETER Larkin Duren and Allen Lowell Shields
COEFFICIENT MULTIPLIERS OF H^p AND B^p SPACES

P. L. DUREN AND A. L. SHIELDS

This paper describes the coefficient multipliers of $H^p(0 < p < 1)$ into $\ell^q(p \leq q \leq \infty)$ and into $H^q(1 \leq q \leq \infty)$. These multipliers are found to coincide with those of the larger space B^p into $\ell^q(1 \leq q \leq \infty)$ and into $H^q(1 \leq q \leq \infty)$. The multipliers of H^p and B^p into $B^q(0 < p < 1, 0 < q < 1)$ are also characterized.

A function f analytic in the unit disk is said to be of class $H^p(0 < p < \infty)$ if

$$M_p(r, f) = \left\{ \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \right\}^{1/p}$$

remains bounded as $r \to 1$. H^∞ is the space of all bounded analytic functions. It was recently found ([2], [4]) that if $p < 1$, various properties of H^p extend to the larger space B^p consisting of all analytic functions f such that

$$\int_0^1 (1 - r)^{1/p - 2} M_1(r, f) \, dr < \infty.$$

Hardy and Littlewood [8] showed that $H^p \subset B^p$.

A complex sequence $\{\lambda_n\}$ is called a multiplier of a sequence space A into a sequence space B if $\{\lambda_n a_n\} \in B$ whenever $\{a_n\} \in A$. A space of analytic functions can be regarded as a sequence space by identifying each function with its sequence of Taylor coefficients. In [4] we identified the multipliers of H^p and $B^p(0 < p < 1)$ into ℓ^1. We have also shown ([2], Th. 5) that the sequence $\{n^{1/q - 1/p}\}$ multiplies B^p into B^q. We now extend these results by describing the multipliers of $H^p(0 < p < 1)$ into $\ell^q(p \leq q \leq \infty)$, of B^p into $\ell^q(1 \leq q \leq \infty)$, and of both H^p and B^p into $B^q(0 < q < 1)$. We also extend a theorem of Hardy and Littlewood (whose proof was never published) by characterizing the multipliers of H^p and B^p into $H^q(0 < p < 1 \leq q \leq \infty)$. In almost every case considered, the multipliers of B^p into a given space are the same as those of H^p.

2. Multipliers into ℓ^q. We begin by describing the multipliers of H^p and B^p into ℓ^∞, the space of bounded complex sequences.

Theorem 1. For $0 < p \leq 1$, a sequence $\{\lambda_n\}$ is a multiplier of H^p into ℓ^∞ if and only if
For $p < 1$, the condition (1) also characterizes the multipliers of B^p into ℓ^∞.

Proof. If $f(z) = \sum a_n z^n$ is in B^p, then by Theorem 4 of [2],

(2) $a_n = o(n^{1/p-1})$.

If $f \in H^1$, then $a_n \to 0$ by the Riemann-Lebesgue lemma. This proves the sufficiency of (1). Conversely, suppose $\{\lambda_n\}$ is a multiplier of H^p into ℓ^∞. Then the closed linear operator

$\Lambda: f \mapsto \{\lambda_n a_n\}$

maps H^p into ℓ^∞. Thus Λ is bounded, by the closed graph theorem (which applies since H^p is a complete metric space with translation invariant metric; see [1], Chapter 2). In other words,

(3) $\sup_n |\lambda_n a_n| = ||\Lambda(f)|| \leq K ||f||$.

Now let

$g(z) = (1 - z)^{-1-1/p} = \sum b_n z^n,$

where $b^\infty \sim Bn^{1/p}$; and choose $f(z) = g(rz)$ for fixed $r < 1$. Then by (3)

$|\lambda_n| n^{1/p} r^n \leq C(1 - r)^{-1}$.

The choice $r = 1 - 1/n$ now gives (1). Note that $\{\lambda_n\}$ multiplies H^p or B^p into ℓ^∞ if and only if it multiplies into c_0 (the sequences tending to zero).

As a corollary we may show that the estimate (2) is best possible in a rather strong sense. For functions of class H^p, this estimate is due to Hardy and Littlewood [8]. Evgrafov [6] later showed that if $\{a_n\}$ tends monotonically to zero, then there is an $f \in H^p$ for which $a_n \neq O(\delta_n n^{1/p-1})$. A simpler proof was given in [5]. The result may be reformulated: if $a_n = O(d_n)$ for all $f \in H^p$, then $d_n n^{1-1/p}$ cannot tend monotonically to zero. We can now sharpen this statement as follows.

COROLLARY. If $\{d_n\}$ is any sequence of positive numbers such that $a_n = O(d_n)$ for every function $\sum a_n z^n$ in H^p, then there is an $\varepsilon > 0$ such that

$d_n n^{1-1/p} \geq \varepsilon > 0$, \hspace{1cm} n = 1, 2, \ldots .

Proof. If $a_n = O(d_n)$ for every $f \in H^p$, then $\{1/d_n\}$ multiplies H^p into ℓ^∞. Thus $1/d_n = O(n^{1-1/p})$, as claimed.
We now turn to the multipliers of H^p and B^p into $\ell^q(q < \infty)$, the space of sequences $\{c_n\}$ with $\sum |c_n|^q < \infty$. The following theorem generalizes a previously known result [4] for ℓ^1.

Theorem 2. Suppose $0 < p < 1$.

(i) A complex sequence $\{\lambda_n\}$ is a multiplier of H^p into $\ell^q(p \leq q < \infty)$ if and only if

\begin{equation}
\sum_{n=1}^{N} n^{q/p} |\lambda_n|^q = O(N^q).
\end{equation}

(ii) If $1 \leq q < \infty$, $\{\lambda_n\}$ is a multiplier of B^p into ℓ^q if and only if (4) holds.

(iii) If $q < p$, the condition (4) does not imply that $\{\lambda_n\}$ multiplies H^p into ℓ^q; nor does it imply that $\{\lambda_n\}$ multiplies B^p into ℓ^q if $q < 1$.

Proof. (i) A summation by parts (see [4]) shows that (4) is equivalent to the condition

\begin{equation}
\sum_{n=1}^{\infty} |\lambda_n|^q = O(N^{q(1-1/p)}).
\end{equation}

Assume without loss of generality that $\lambda_n \geq 0$ and $\sum_{n=1}^{\infty} \lambda_n^q = 1$. Let $s_1 = 0$ and

$$s_n = 1 - \left\{ \sum_{k=1}^{n} \lambda_k^\beta \right\}^{1/\beta}, \quad n = 2, 3, \ldots,$$

where $\beta = q(1/p - 1)$. Note that s_n increases to 1 as $n \to \infty$. By a theorem of Hardy and Littlewood ([8], p. 412), $f \in H^p(0 < p < 1)$ implies

\begin{equation}
\int_0^1 (1 - r)^{\beta - 1} M_i^q(r, f)dr < \infty, \quad p \leq q < \infty.
\end{equation}

Thus if $f(z) = \sum a_n z^n$ is in H^p and $\{\lambda_n\}$ satisfies (4) with $p \leq q < \infty$, it follows that

\begin{align*}
\sum_{n=1}^{\infty} \int_{z_n}^{z_n+1} (1 - r)^{\beta - 1} M_i^q(r, f)dr \\
\geq \sum_{n=1}^{\infty} |a_n|^q \int_{z_n}^{z_n+1} (1 - r)^{\beta - 1} r^n qdr \\
\geq \sum_{n=1}^{\infty} |a_n|^q (s_n)^{nq} \int_{s_n}^{s_n+1} (1 - r)^{\beta - 1}dr \\
= \frac{1}{\beta} \sum_{n=1}^{\infty} |a_n|^q (s_n)^{nq} \left\{ (1 - s_n)^\beta - (1 - s_{n+1})^\beta \right\} \\
= \frac{1}{\beta} \sum_{n=1}^{\infty} |a_n|^q (s_n)^{nq} \lambda_n^q,
\end{align*}
by the definition of s_n. But by (5),
\[\left\{ \sum_{k=n}^{\infty} \lambda_k \right\}^{1/\beta} \leq \frac{C}{n}, \]
which shows, by the definition of s_n, that
\[(s_n)^{n_q} \geq (1 - C/n)^{n_q} \rightarrow e^{-C} > 0. \]
Since these factors $(s_n)^{n_q}$ are eventually bounded away from zero, the preceding estimates show that $\sum |a_n|^q \lambda_n < \infty$. In other words, $\{\lambda_n\}$ is a multiplier of H^p into ℓ^q if it satisfies the condition (4).

(ii) The above proof shows that $\{\lambda_n\}$ multiplies B^p into ℓ^1 under the condition (4) with $q = 1$. (This was also shown in [4].) The more general statement (ii) now follows by showing that if $\{\lambda_n\}$ satisfies (4), then the sequence $\{\mu_n\}$ defined by
\[\mu_n = |\lambda_n|^q n^{(1/p-1)(q-1)} \]
satisfies (4) with $q = 1$. Hence $\{\mu_n\}$ is a multiplier of B^p into ℓ^1, and in view of (2), $\{\lambda_n\}$ is a multiplier of B^p into ℓ^q. Alternatively, it can be observed that $f \in B^p$ implies (6) for $1 < q < \infty$, so that the foregoing proof applies directly. Indeed, if $f \in B^p$, then (as shown in [2], proof of Theorem 3)
\[M_1(r, f) = O((1 - r)^{1-1/p}); \]
hence, if $1 \leq q < \infty$,
\[\int_0^1 (1 - r)^{q(1/p-1)-1} M_1(r, f) \, dr \leq C \int_0^1 (1 - r)^{1/p-2} M_1(r, f) \, dr < \infty. \]

(iii) That (4) does not imply $\{\lambda_n\}$ multiplies H^p into $\ell^q(q < p)$ or B^p into $\ell^q(q < 1)$, follows from the fact [4] that the series
\[\sum_{n=1}^{\infty} n^{q(1-1/p)-1} |a_n|^q \]
may diverge if $f \in H^p$ and $q < p$, or if $f \in B^p$ and $q < 1$.

To show the necessity of (4), we again appeal to the closed graph theorem. If $\{\lambda_n\}$ multiplies H^p into $\ell^q(0 < p < \infty, 0 < q < \infty)$, then
\[A: f \longrightarrow \{\lambda_n a_n\} \]
is a bounded operator:
\[\left\{ \sum_{n=1}^{\infty} |\lambda_n a_n|^q \right\}^{1/q} \leq C \|f\|, \quad f(z) = \sum_{n=0}^{\infty} a_n z^n \in H^p. \]
Choosing $f(z) = g(rz)$ as in the proof of Theorem 1, we now find
and (4) follows after terminating this series at \(n = N \) and setting \(r = 1 - 1/N \). Note that the argument shows (4) is necessary even if \(p \geq 1 \) or \(q < p \).

Corollary 1. If \(\{n_k\} \) is a lacunary sequence of positive integers \((n_{k+1}/n_k \geq Q > 1) \), and if \(f(z) = \sum a_n z^n \) is in \(H^p(0 < p < 1) \), then

\[
\sum_{k=1}^{\infty} n_k^{q(1-1/p)} |a_{n_k}|^q < \infty , \quad p \leq q < \infty .
\]

Corollary 2. If \(f(z) = \sum a_n z^n \) is in \(H^p(0 < p < 1) \), then

\[
\sum n^{p-2} |a_n|^p < \infty .
\]

The first corollary extends a theorem of Paley [13] that \(f \in H^1 \) implies \(\{a_{n_k}\} \in \mathcal{L}^2 \). The second is a theorem of Hardy and Littlewood [7]. It is interesting to ask whether the converse to Corollary 1 (with \(q = p \)) is valid. That is, if \(\{c_k\} \) is a given sequence for which

\[
\sum_{k=1}^{\infty} n_k^{p-1} |c_k|^p < \infty ,
\]

then is there a function \(f(z) = \sum a_n z^n \) in \(H^p \) with \(a_{n_k} = c_k \)? We do not know the answer.

Hardy and Littlewood [9] also proved that \(\{\lambda_n\} \) multiplies \(H^1 \) into \(H^2 \) (alias \(\mathcal{L}^2 \)) if (and only if)

\[
\sum_{n=1}^{N} n^2 |\lambda_n|^2 = O(N^2) .
\]

From this it is easy to conclude that (4) characterizes the multipliers of \(H^1 \) into \(\mathcal{L}^q, 2 \leq q < \infty \). Indeed, let \(\{\lambda_n\} \) satisfy (4) and let \(\mu_n = |\lambda_n|^{q/2} \). Then, by the Hardy-Littlewood theorem, \(\{\mu_n\} \) multiplies \(H^1 \) into \(\mathcal{L}^2 \) (see [3], p. 253). Hence \(\{\lambda_n\} \) multiplies \(H^1 \) into \(\mathcal{L}^q \). (See also Hedlund [12].)

On the other hand, the condition (4) is not sufficient if \(p = 1 \) and \(q < 2 \). This may be seen by choosing a lacunary series

\[
f(z) = \sum_{k=1}^{\infty} c_k z^{n_k} , \quad n_{k+1}/n_k \geq Q > 1 ,
\]

with \(\sum |c_k|^2 < \infty \) but \(\sum |c_k|^q = \infty \) for all \(q < 2 \). The sequence \(\{\lambda_n\} \) with \(\lambda_n = 1 \) if \(n = n_k \) and \(\lambda_n = 0 \) otherwise then satisfies (4) but does not multiply \(H^1 \) into \(\mathcal{L}^q, q < 2 \).

3. Multipliers into \(B^p \). The following theorem may be regarded
as a generalization of our previous result ([2], Th. 5) that if \(f \in B^p \), then its fractional integral of order \((1/p - 1/q) \) is in \(B^q \). (A fractional integral of negative order is understood to be a fractional derivative.)

Theorem 3. Suppose \(0 < p < 1 \) and \(0 < q < 1 \). Let \(\nu \) be the positive integer such that \((\nu + 1)^{-1} \leq p < \nu^{-1} \). Then \(\{\lambda_n\} \) is a multiplier of \(H^p \) or \(B^p \) into \(B^q \) if and only if \(g(z) = \sum_{n=0}^{\infty} \lambda_n z^n \) has the property

\[
M_i(r, g^{(\nu)}) = O((1 - r)^{(p-1/q-\nu)}).
\]

Proof. Let \(\{\lambda_n\} \) satisfy (7), let \(f(z) = \sum a_n z^n \) be in \(B^p \), and let \(h(z) = \sum \lambda_n a_n z^n \). Then

\[
h(\rho z) = \frac{1}{2\pi} \int_0^{2\pi} f(\rho e^{i\theta}) g(z e^{-i\theta}) d\theta, \quad 0 < \rho < 1.
\]

Differentiation with respect to \(z \) gives

\[
\rho^\nu h^{(\nu)}(\rho z) = \frac{1}{2\pi} \int_0^{2\pi} f(\rho e^{i\theta}) g^{(\nu)}(z e^{-i\theta}) e^{-i\nu \theta} d\theta.
\]

Hence

\[
\rho^\nu M_i(r \rho, h^{(\nu)}) \leq M_i(r, g^{(\nu)}) M_i(\rho, f) \leq C(1 - r)^{(p-1/q-\nu)} M_i(\rho, f),
\]

where \(r = |z| \). Taking \(r = \rho \), we now see that \(f \in B^p \) implies \(h^{(\nu)} \in B^q \), \(1/s = 1/q + \nu \). Thus \(h \in B^p \), by Theorem 5 of [2].

Conversely, let \(\{\lambda_n\} \) multiply \(H^p \) into \(B^q \). Then by the closed graph theorem,

\[
A: \sum a_n z^n \longrightarrow \sum \lambda_n a_n z^n
\]

is a bounded operator from \(H^p \) to \(B^q \). If \((\nu + 1)^{-1} \leq p < \nu^{-1} \), let

\[
f(z) = \nu! z^\nu (1 - z)^{-\nu - 1} = \sum_{n=0}^{\infty} a_n z^n,
\]

where \(a_n = n!/(n - \nu)! \), and observe that

\[
h(z) = \sum_{n=0}^{\infty} \lambda_n a_n z^n = z^\nu g^{(\nu)}(z).
\]

Let \(f_r(z) = f(rz) \) and \(h_r(z) = h(rz) \). Since \(A \) is bounded, there is a constant \(C \) independent of \(r \) such that

\[
\|h_r\|_{B^q} = \|A(f_r)\| \leq C \|f_r\|_{H^p}.
\]

In other words,
COEFFICIENT MULTIPLIERS OF H^p AND B^p SPACES 75

\[\int_0^1 (1 - t)^{1/q - 2} M_t(r, h) dt \leq CM_p(r, f) \]
\[= O((1 - r)^{1/p - 1}) . \]

It follows that
\[M_x(r, h) \int_0^1 (1 - t)^{1/q - 2} dt = O((1 - r)^{1/p - 1}) , \]
or
\[M_x(r^2, h) = O((1 - r)^{1/p - 1/1 - q}) . \]
But in view of (9), this proves (7).

COROLLARY. The sequence $\{\lambda_n\}$ multiplies B^p into B^p if and only if

\[M_x(r, g') = O\left(\frac{1}{1 - r} \right) . \]

Proof. If $p = q$, the condition (10) is equivalent to (7). (see [8], p. 435.) This corollary is essentially the same as a result of Zygmund ([14], Th. 1), who found the multipliers of the Lipschitz space A_α or λ_α into itself. Because of the duality between these spaces and B^p (see [2], §§3, 4), the multipliers from A_α to A_α and from λ_α to λ_α ($0 < \alpha < 1$) are the same as those from B^p to B^p. Similar remarks apply to the spaces A^* and λ^*, also considered in [14].

4. Multipliers into H^q. By combining Theorem 3 with the simple fact that $f' \in B^{1/2}$ implies $f \in H^1$, it is possible to obtain a sufficient condition for $\{\lambda_n\}$ to multiply H^p into H^q, $0 < p < 1 \leq q \leq \infty$. However, this method leads to a sharp result only in the case $q = 1$. The following theorem provides the complete answer.

THEOREM 4. Suppose $0 < p < 1 \leq q \leq \infty$, and let $(\nu + 1)^{-1} \leq p < \nu^{-1}$, $\nu = 1, 2, \ldots$. Then $\{\lambda_n\}$ is a multiplier of H^p or B^p into H^q if and only if $g(z) = \sum_{n=0}^\infty \lambda_n z^n$ has the property

\[M_q(r, g^{(\nu + 1)}) = O((1 - r)^{1/p - \nu/2 - 2}) . \]

Hardy and Littlewood ([9], [10]) stated in different terminology that (11) implies $\{\lambda_n\}$ is a multiplier of H^p into $H^q(0 < p < 1 \leq q < \infty)$, but they never published the proof. Our proof will make use of the following lemma.

LEMMA. Let f be analytic in the unit disk, and suppose
\[\int_0^1 (1 - r)^\alpha M_q(r, f')dr < \infty , \]

where \(\alpha > 0 \) and \(1 \leq q \leq \infty \). Then
\[\int_0^1 (1 - r)^{\alpha-1}M_q(r, f)dr < \infty . \]

Proof of Lemma. Without loss of generality, assume \(f(0) = 0 \), so that

\[f(re^{i\theta}) = \int_0^r f'(se^{i\theta})e^{i\theta}ds . \]

The continuous form of Minkowski’s inequality now gives

\[M_q(r, f) \leq \int_0^r M_q(s, f')ds . \]

Hence an interchange of the order of integration shows that

\[\int_0^1 (1 - r)^{\alpha-1}M_q(r, f)dr \leq \frac{1}{\alpha} \int_0^1 (1 - s)^\alpha M_q(s, f')ds , \]

which proves the lemma.

Proof of Theorem 4. Suppose first that \(\{\lambda_n\} \) satisfies (11). Given \(f(z) = \sum a_n z^n \) in \(B^p \), we are to show that \(h(z) = \sum \lambda_n a_n z^n \) belongs to \(H^q \). By (8), with \(\nu \) replaced by \((\nu + 1) \), we have

\[\rho^{\nu+1} |h^{(\nu+1)}(\rho z)| \leq \frac{1}{2\pi} \int_0^{2\pi} |f(\rho e^{i\xi})| |g^{(\nu+1)}(\rho e^{-i\xi})| \, d\xi . \]

Since \(q \geq 1 \), it follows from Jensen’s inequality ([11], §6.14) that

\[\rho^{\nu+1} M_q(\rho, h^{(\nu+1)}) \leq M_q(\rho, f)M_q(\rho, g^{(\nu+1)}) \leq C(1 - \rho)^{1/p - \nu - 2}M_q(\rho, f) , \]

where \(r = |z| \) and (11) has been used. Now set \(r = \rho \) and use the hypothesis \(f \in B^p \) to conclude that

\[\int_0^1 (1 - r)^\nu M_q(r, h^{(\nu+1)})dr < \infty . \]

But by successive applications of the lemma, this implies

\[\int_0^1 M_q(r, h')dr < \infty . \]

Thus, in view of the inequality (12), it follows that \(h \in H^q \), which was to be shown.
Conversely, suppose \(\{\lambda_n\} \) is a multiplier of \(H^p \) into \(H^q \) for arbitrary \(q(0 < q \leq \infty) \). Then by the closed graph theorem,

\[
\Lambda: \sum a_n z^n \longrightarrow \sum \lambda_n a_n z^n
\]

is a bounded operator from \(H^p \) to \(H^q \). An argument similar to that used in the proof of Theorem 3 now leads to the estimate (11).

COROLLARY. If \(0 < p < 1 \leq q \leq \infty \) and \(f \in B^p \), then its fractional integral \(f_\alpha \in H^q \), where \(\alpha = 1/p - 1/q \). This is false if \(q < 1 \).

This corollary can also be proved directly. Indeed, since ([2], Th. 5) the fractional integral of order \((1/p - 1/s)\) of a \(B^p \) function is in \(B^s \) \((0 < s < 1)\), and since ([8], p. 415) the fractional integral of order \((1 - 1/q)\) of an \(H^1 \) function is in \(H^q(1 \leq q \leq \infty) \), it suffices to show that \(f' \in B^{1/2} \) implies \(f \in H^1 \). But this is easy; it follows from (12) with \(q = 1 \). That the corollary is false for \(q < 1 \) is a consequence of the fact ([2], Th. 5) that the fractional derivative of order \((1/p - 1/q)\) of every \(B^q \) function is in \(B^p \).

The converse is also false. That is, if \(f \in H^q \), its fractional derivative of order \((1/p - 1/q)\) need not be in \(B^p(0 < p < 1 \leq q \leq \infty) \). As before, this reduces to showing that \(f \in H^1 \) does not imply \(f' \in B^{1/2} \). To see this, let \(f(z) = \sum c_k z^{n_k} \), where \(\{n_k\} \) is lacunary, \(\{c_k\} \in \ell^2 \), and \(\{c_k\} \in \ell^1 \). Then \(f \in H^2 \subset H^1 \), but \(f' \in B^{1/2} \), since it was shown in [4] (Th. 3, Corollary 2) that

\[
\sum_{k=1}^{\infty} |n_k|^{1/p} |a_{n_k}| < \infty
\]

whenever \(\sum a_n z^n \in B^p \) and \(\{n_k\} \) is a lacunary sequence.

REFERENCES

10. G. H. Hardy and J. E. Littlewood, *Theorems concerning mean values of analytic or harmonic functions*, Quart. J. Math. 12 (1941), 221–256.

Received December 23, 1968. Supported in part by the National Science Foundation under Contract GP-7234.

University of Michigan
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Alexander Adams, Compact Sobolev imbeddings for unbounded</td>
<td>1</td>
</tr>
<tr>
<td>domains</td>
<td></td>
</tr>
<tr>
<td>Bernhard Amberg, Groups with maximum conditions</td>
<td>9</td>
</tr>
<tr>
<td>Tom M. (Mike) Apostol, Möbius functions of order k</td>
<td>21</td>
</tr>
<tr>
<td>Stefan Bergman, On an initial value problem in the theory of</td>
<td>29</td>
</tr>
<tr>
<td>two-dimensional transonic flow patterns</td>
<td></td>
</tr>
<tr>
<td>Geoffrey David Downs Creede, Concerning semi-stratifiable spaces</td>
<td>47</td>
</tr>
<tr>
<td>Edmond Dale Dixon, Matric polynomials which are higher commutators</td>
<td>55</td>
</tr>
<tr>
<td>R. L. Duncan, Some continuity properties of the Schnirelmann density.</td>
<td>65</td>
</tr>
<tr>
<td>Peter Larkin Duren and Allen Lowell Shields, Coefficient multipliers of H^p and B^p spaces</td>
<td>69</td>
</tr>
<tr>
<td>Hector O. Fattorini, On a class of differential equations for vector-valued distributions</td>
<td>79</td>
</tr>
<tr>
<td>Charles Hallahan, Stability theorems for Lie algebras of derivations</td>
<td>105</td>
</tr>
<tr>
<td>Heinz Helfenstein, Local isometries of flat tori</td>
<td>113</td>
</tr>
<tr>
<td>Gerald J. Janusz, Some remarks on Clifford’s theorem and the Schur index</td>
<td>119</td>
</tr>
<tr>
<td>Joe W. Jenkins, Symmetry and nonsymmetry in the group algebras of discrete groups</td>
<td>131</td>
</tr>
<tr>
<td>Herbert Frederick Kreimer, Jr., Outer Galois theory for separable algebras</td>
<td>147</td>
</tr>
<tr>
<td>D. G. Larman and P. Mani, On visual hulls</td>
<td>157</td>
</tr>
<tr>
<td>R. Robert Laxton, On groups of linear recurrences. II. Elements of finite order</td>
<td>173</td>
</tr>
<tr>
<td>Dong Hoon Lee, The adjoint group of Lie groups</td>
<td>181</td>
</tr>
<tr>
<td>James B. Lucke, Commutativity in locally compact rings</td>
<td>187</td>
</tr>
<tr>
<td>Charles Harris Scanlon, Rings of functions with certain Lipschitz properties</td>
<td>197</td>
</tr>
<tr>
<td>Binyamin Schwarz, Totally positive differential systems</td>
<td>203</td>
</tr>
<tr>
<td>James McLean Sloss, The bending of space curves into piecewise helical curves</td>
<td>231</td>
</tr>
<tr>
<td>James D. Stafney, Analytic interpolation of certain multiplier spaces</td>
<td>241</td>
</tr>
<tr>
<td>Patrick Noble Stewart, Semi-simple radical classes</td>
<td>249</td>
</tr>
<tr>
<td>Hiroyuki Tachikawa, On left QF – 3 rings</td>
<td>255</td>
</tr>
<tr>
<td>Glenn Francis Webb, Product integral representation of time dependent nonlinear evolution equations in Banach spaces</td>
<td>269</td>
</tr>
</tbody>
</table>