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Let Tί and T2 be two flat tori (i.e., provided with a com-
plete Riemannian metric of vanishing curvature). Since they
are locally Euclidean each pair of points Plf P2, Piβ Tiy has
isometric neighborhoods. In general it is not possible, how-
ever, to join these separate isometries of neighborhoods to
produce a single isometry TΊ —> T2 or T2 —> TΊ; indeed there
may not even exist a locally isometric map (of the whole sur-
faces). Necessary and sufficient conditions for the existence
of such maps are deduced, making use of a recent conformal
classification of maps between tori. As expected "ample"
and nonample tori behave differently, and the determination
of all local isometries leads to number-theoretic problems.
Finally, for two given tori, the local isometries are compared
with respect to homotopy by analyzing their effect on the
fundamental groups.

Let R+ denote the positive reals, H the upper 2-half-plane, and

SL(2, Z) the group of all 2 x 2 unimodular matrices with integral

entries acting in the usual way as hyperbolic motions on H. The set

of isometry classes of complete flat tori is parametrized by the 3-

dimensional manifold R+ x (H/SL(2, Z)). A point (r2, τ) of this space

represents the isometry class of the torus E2/Γ, where Γ is the group

of Euclidean motions generated by the translations

t^z) = z + r and t2(z) = z + rh ,

with her, (cf. [2]). Instead of "an isometry class of tori" we speak

simply of "a torus". A torus T = (r2, τ) is called ample if there exists

her such that both ?ϋh and |h | 2 are rational.

2* Riemannian covering maps* The following statements are
generalizations of results obtained in [1] which can be similarly proved.

( i ) For two tori T€ = (r% r*) there exist conformal covering maps
Tx —* T2 if and only if two representatives ht e rt are equivalent under
the action of the group GL+(2, Q) = group of 2 x 2 matrices with
rational entries and positive determinant.

(ii) Lifting any conformal covering TΊ —* T2 to the universal
covering planes we obtain

( 1 ) F(z, C,D) = Cz + B ,

with complex constants C Φ 0 and D.
(iii) For nonample T{ only
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( 2 ) C(/C) = J±-K , K = ± 1 , ± 2 , . . .

are admissible values in (1).
(iv) For ample Ti = (r<, T<) (2) is replaced by

( 3 ) C(κlf tc2) = Jj-iic, + tc2q"s"h2) ,

where /&2 G τ2, /^ = α&2, α an integer, (iτlf Λ:2) ̂  (0, 0) is a pair of arbitrary
integers, and the integers g", s" are determined via the following
relations,

2 \\
q s

p, q > 0, r > 0, 8 > 0 integers,

g.c.d. (p, q) = g.c.d. (r, s) - 1 ,

# = g.c.d. (g, 8), qf = g/flr, s' = s/# ,

flf' = g.c.d. (a, q), a' = α/fΛ g" = ^ ' ,

g" = g.c.d. (α', s'), a" - α'/flf", s" = s'jg" .

The following materices are computable from these numbers.

T -

Our main result is

THEOREM 1. For the existence of a local isometry f: 2\ —* T2 the
following conditions are necessary and sufficient:

( 1 ) τί and τ2 are equivalent under GL+(2, Q);
(2a) If Tι is nonample, then rjr2 must be an integer;
(2b) // TΊ is ample, then (r\/rl)a must be an integer N, and N

must be representable by the quadratic form

f, + fc2f2)

with suitable integers κγ and fc2.

Proof Since / is a conformal covering we have necessarily (1) by
(i). The following identity is readily verified:

r\ 2 (detifcf,) for Tγ nonample

ή a ~ (det (fc.T, + £2Γ2) for T, ample .

(The right hand side gives the number JV of sheets of the covering / ) .
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Together with the condition | C | = 1 for local isometry it leads to
<2a) and (2b). The sufficiency follows from (iii) and (iv).

In both cases we have the following consequences. A flat torus
can cover a countably infinite set of tori by local isometries. For 7\ =
T2 a local isometry is a global isometry, since \C\ = 1 entails N = 1. In
general the existence of a local isometry Tλ —-• T2 does not imply that
there is also a local isometry T2 —> T,; this occurs if and only if both rx = r2

and condition (1) are satisfied. (Then the tori still need not be globally
isometric).

3* Homotopy classes* We show how the combination tc1Tι + tc2f2

controls also the deformation properties of our maps. If the constant
D in (ii) is varied the map stays in the same homotopy class, but
maps corresponding to different parameter values fc or (ιc19 tc2) are not
analytically homotopic (i.e., with analytic intermediately stages during
the deformation), since the set of admissible values of C is discrete.
We show that they are not even homotopic in the ordinary sense.

Since the fundamental group π^T) of a torus is Abelian the set
Sίf of homotopy classes of continuous maps Tx —• T2 is in one-to-one corre-
spondence with the set of all homomorphisms η: π^T^—^π^T^. Denoting
by Li and L (i = 1, 2) the path homotopy classes of two generating
loops of π^Ti), each such η is characterized by the integral matrix

1 Cl

given by

Ύ](L,) = Lξ

2

ιL'2
ξ*, η(L[) =

Tience 'sίf is parametrized by Z4. The subset {ς e Z 4 : det ξ Φ 0} con-
tains those points of Z 4 representing monomorphisms, hence it corres-
ponds to the homotopy classes containing covering maps.

THEOREM 2. The subset of Z4 corresponding to homotopy classes
which contain analytic maps consists of

(a) 0 only if τγ and τ2 are nonequivalent under GL+(2, Q);
(b) the 1-dimensional sublattice spanned by Tι if τx and τ2 are

equivalent under GL+(2, Q) and both are nonample;
(c) the 2-dimensional sublattice spanned by 7\ and T2 if τx and

r2 are equivalent under GL+(2, Q) and both are ample.

Proof We prove only (c); (a) and (b) can be handled similarly.
The generators Lίy L of 7 (̂2 )̂ are represented in E{ by the segments
Sif SI joining the origin to r{ and r{hi respectively. The segments Sλ
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and S[ are mapped by F(z; C, 0) (cf. (ii)) into segments from the origin
of E2 to the points

κγr2 + κ2s"q"r2h2

and

— κ2ra"q'r2 + (/^α + tc2s"pa')r2h2 .

The former can be deformed into the two sides ιtιr2 and ιc2s"q"r2h2

of a parallelogram parallel to S2 and S'2. The first side represents κγ

circuits of L2, the second κ2s"q" contours of L[. Similarly for S[.
Hence the homomorphism

>πι(T2)

induced by / is determined by

and

MU) = LΓ*ra"q'Lr^κ*s"pa' .

This is equivalent to ξ = tcιTι + κ2f2.

The determination of all local isometries for two given tori is easy
for the nonample case. In the ample case it involves the number of
ways in which N = (r2jrl)a can be represented by the quadratic form
(4). Since this form is positive definite we have, in conjunction with
Theorem 2:

THEOREM 3. The number of homotopy classes of local isometries
between two flat tori is finite.

We obtain an upper bound for this number as follows: From (3)
we find

which shows that 9ΐC has the form (r2/r1)(y/2g')J with 7 an integer.
Substituting this in |3ΐC| ^ \C\ = 1 leads to

(5) | 7 | ί S 2 ( 7 ' ^ .

From (£C)2 = \C\2 - (3ΐC)2 we deduce
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/clqs(Xh2y = 4

and

6 ) l q ( 2 y 4

7 ) κ, = — V - tc2s
Ύ _ r e , , P

Each of the 2[2#'(r1/r2)] + 1 integers Ύ compatible with (5) leads
to at most two pairs (ιc19 tc2) compatible with (6) and (7). Thus the
number of homotopically different local isometries does not exceed

/r,)] + 2.
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