LOCAL ISOMETRIES OF FLAT TORI

HEINZ HELFENSTEIN
LOCAL ISOMETRIES OF FLAT TORI

H. G. HELFENSTEIN

Let T_1 and T_2 be two flat tori (i.e., provided with a complete Riemannian metric of vanishing curvature). Since they are locally Euclidean each pair of points $P_1, P_2, P_i \in T_i$, has isometric neighborhoods. In general it is not possible, however, to join these separate isometries of neighborhoods to produce a single isometry $T_1 \to T_2$ or $T_2 \to T_1$; indeed there may not even exist a locally isometric map (of the whole surfaces). Necessary and sufficient conditions for the existence of such maps are deduced, making use of a recent conformal classification of maps between tori. As expected “ample” and nonample tori behave differently, and the determination of all local isometries leads to number-theoretic problems. Finally, for two given tori, the local isometries are compared with respect to homotopy by analyzing their effect on the fundamental groups.

Let \mathbb{R}^+ denote the positive reals, H the upper z-half-plane, and $SL(2, \mathbb{Z})$ the group of all 2×2 unimodular matrices with integral entries acting in the usual way as hyperbolic motions on H. The set of isometry classes of complete flat tori is parametrized by the 3-dimensional manifold $\mathbb{R}^+ \times (H/SL(2, \mathbb{Z}))$. A point (r^2, τ) of this space represents the isometry class of the torus E^2/Γ, where Γ is the group of Euclidean motions generated by the translations

$$t_1(z) = z + r \quad \text{and} \quad t_2(z) = z + rh,$$

with $h \in \tau$, (cf. [2]). Instead of “an isometry class of tori” we speak simply of “a torus”. A torus $T = (r^2, \tau)$ is called ample if there exists $h \in \tau$ such that both $\Re h$ and $|h|^2$ are rational.

2. Riemannian covering maps. The following statements are generalizations of results obtained in [1] which can be similarly proved.

(i) For two tori $T_i = (r^i, \tau_i)$ there exist conformal covering maps $T_1 \to T_2$ if and only if two representatives $h_i \in \tau_i$ are equivalent under the action of the group $GL^+(2, \mathbb{Q}) = \text{group of } 2 \times 2 \text{ matrices with rational entries and positive determinant.}$

(ii) Lifting any conformal covering $T_1 \to T_2$ to the universal covering planes we obtain

$$F(z, C, D) = Cz + D,$$

with complex constants $C \neq 0$ and D.

(iii) For nonample T_i only
are admissible values in (1).

(iv) For ample \(T_i = (r_i^1, \tau_i) \) (2) is replaced by

\[
C(\kappa_1, \kappa_2) = \frac{r_2}{r_1}(\kappa_1 + \kappa_2 q'' s'' h_2),
\]

where \(h_2 \in \tau_2, h_1 = a h_2, a \) an integer, \((\kappa_1, \kappa_2) \neq (0, 0)\) is a pair of arbitrary integers, and the integers \(q'', s'' \) are determined via the following relations,

\[
2\Re h_2 = \frac{p}{q}, \quad |h_2|^2 = \frac{r}{s},
\]

\(p, q > 0, r > 0, s > 0 \) integers,

\[
g = \gcd (p, q) = \gcd (r, s) = 1,
\]

\[
g' = \gcd (q, s), q' = q/g, s' = s/g,
\]

\[
g'' = \gcd (a, q), a' = a/g', q'' = q/g',
\]

\[
g''' = \gcd (a', s'), a''' = a'/g'', s''' = s'/g''.
\]

The following matrices are computable from these numbers.

\[
\bar{T}_1 = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}, \quad \bar{T}_2 = \begin{pmatrix} a' ps'' & -a'' q' r' \\ q'' s'' & 0 \end{pmatrix}
\]

Our main result is

THEOREM 1. For the existence of a local isometry \(f: T_1 \rightarrow T_2 \) the following conditions are necessary and sufficient:

1. \(\tau_1 \) and \(\tau_2 \) are equivalent under \(GL^+(2, \mathbb{Q}) \);
2. (a) If \(T_1 \) is nonample, then \(r_1/r_2 \) must be an integer;
 (b) If \(T_1 \) is ample, then \((r_1^1/r_2^1) a \) must be an integer \(N \), and \(N \) must be representable by the quadratic form

\[
\det (\kappa_1 \bar{T}_1 + \kappa_2 \bar{T}_2)
\]

with suitable integers \(\kappa_1 \) and \(\kappa_2 \).

Proof. Since \(f \) is a conformal covering we have necessarily (1) by (i). The following identity is readily verified:

\[
\frac{r_1^2}{r_2^2} |C|^2 a = \begin{cases} \det (\kappa_1 \bar{T}_1) & \text{for } T_1 \text{ nonample} \\
\det (\kappa_1 \bar{T}_1 + \kappa_2 \bar{T}_2) & \text{for } T_1 \text{ ample}. \end{cases}
\]

(The right hand side gives the number \(N \) of sheets of the covering \(f \).)
Together with the condition $|C| = 1$ for local isometry it leads to (2a) and (2b). The sufficiency follows from (iii) and (iv).

In both cases we have the following consequences. A flat torus can cover a countably infinite set of tori by local isometries. For $T_1 = T_2$ a local isometry is a global isometry, since $|C| = 1$ entails $N = 1$. In general the existence of a local isometry $T_1 \to T_2$ does not imply that there is also a local isometry $T_2 \to T_1$; this occurs if and only if both $r_1 = r_2$ and condition (1) are satisfied. (Then the tori still need not be globally isometric).

3. Homotopy classes. We show how the combination $\kappa_1 T_1 + \kappa_2 T_2$ controls also the deformation properties of our maps. If the constant D in (ii) is varied the map stays in the same homotopy class, but maps corresponding to different parameter values κ or (κ_1, κ_2) are not analytically homotopic (i.e., with analytic intermediate stages during the deformation), since the set of admissible values of C is discrete. We show that they are not even homotopic in the ordinary sense.

Since the fundamental group $\pi_1(T)$ of a torus is Abelian the set \mathcal{H} of homotopy classes of continuous maps $T_1 \to T_2$ is in one-to-one correspondence with the set of all homomorphisms $\eta: \pi_1(T_1) \to \pi_1(T_2)$. Denoting by L_i and L'_i ($i = 1, 2$) the path homotopy classes of two generating loops of $\pi_1(T_i)$, each such η is characterized by the integral matrix

$$
\hat{\eta} = \begin{pmatrix}
\hat{\xi}_1 & \hat{\xi}_2 \\
\hat{\xi}_3 & \hat{\xi}_4
\end{pmatrix}
$$

given by

$$
\eta(L_i) = L_i^{\hat{\xi}_1} L_i^{\hat{\xi}_2}; \quad \eta(L'_i) = L_i^{\hat{\xi}_3} L_i^{\hat{\xi}_4};
$$

hence \mathcal{H} is parametrized by Z^4. The subset $\{\xi \in Z^4: \det \xi \neq 0\}$ contains those points of Z^4 representing monomorphisms, hence it corresponds to the homotopy classes containing covering maps.

Theorem 2. The subset of Z^4 corresponding to homotopy classes which contain analytic maps consists of

(a) 0 only if τ_1 and τ_2 are nonequivalent under $GL^+(2, \mathbb{Q})$;

(b) the 1-dimensional sublattice spanned by \bar{T}_1 if τ_1 and τ_2 are equivalent under $GL^+(2, \mathbb{Q})$ and both are nonample;

(c) the 2-dimensional sublattice spanned by \bar{T}_1 and \bar{T}_2 if τ_1 and τ_2 are equivalent under $GL^+(2, \mathbb{Q})$ and both are ample.

Proof. We prove only (c); (a) and (b) can be handled similarly. The generators L_i, L'_i of $\pi_1(T_i)$ are represented in E_i by the segments S_i, S'_i joining the origin to r_i and $r_i h_i$ respectively. The segments S_i
and S' are mapped by $F(z; C, 0)$ (cf. (ii)) into segments from the origin of E_2 to the points
\[\kappa_1 r_2 + \kappa_2 s'' q'' r_2 h_2 \]
and
\[-\kappa_2 a'' q' r_2 + (\kappa_1 a + \kappa_2 s'' p a') r_2 h_2. \]

The former can be deformed into the two sides $\kappa_1 r_2$ and $\kappa_2 s'' q'' r_2 h_2$ of a parallelogram parallel to S_2 and S'_2. The first side represents κ_1 circuits of L_2, the second $\kappa_2 s'' q''$ contours of L'_2. Similarly for S'. Hence the homomorphism
\[f_* : \pi_1(T_1) \longrightarrow \pi_1(T_2) \]
induced by f is determined by
\[f_*(L_i) = L_2^{\kappa_1 s'' q''} L_2' L_2^{r_2 s'' q''} \]
and
\[f_*(L'_i) = L_2^{-\kappa_2 a'' q'} L_2' L_2^{r_2 s'' p a'}. \]
This is equivalent to $\xi = \kappa_1 T_1 + \kappa_2 T_2$.

The determination of all local isometries for two given tori is easy for the nonample case. In the ample case it involves the number of ways in which $N = (r_2/r_1)a$ can be represented by the quadratic form (4). Since this form is positive definite we have, in conjunction with Theorem 2:

Theorem 3. The number of homotopy classes of local isometries between two flat tori is finite.

We obtain an upper bound for this number as follows: From (3) we find
\[\mathcal{NC} = \frac{r_2}{r_1} \left(\kappa_1 + \kappa_2 s'' \frac{p}{2g'} \right), \]
which shows that \mathcal{NC} has the form $(r_2/r_1)(\gamma/2g')$, with γ an integer. Substituting this in $|\mathcal{NC}| \leq |C| = 1$ leads to
\[|\gamma| \leq 2g' \frac{T_1}{r_2}. \]
From $(\mathcal{N}C)^2 = |C|^2 - (\mathcal{NC})^2$ we deduce
Each of the $2[2g'(r_1/r_2)] + 1$ integers γ compatible with (5) leads to at most two pairs (κ_1, κ_2) compatible with (6) and (7). Thus the number of homotopically different local isometries does not exceed $4[2g'(r_1/r_2)] + 2$.

BIBLIOGRAPHY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

RICHARD PIERCE
University of Washington
Seattle, Washington 98105

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

BASIL GORDON*
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan
Pacific Journal of Mathematics
Vol. 32, No. 1 January, 1970

Robert Alexander Adams, Compact Sobolev imbeddings for unbounded domains ... 1
Bernhard Amberg, Groups with maximum conditions 9
Tom M. (Mike) Apostol, Möbius functions of order k 21
Stefan Bergman, On an initial value problem in the theory of two-dimensional transonic flow patterns 29
Geoffrey David Downs Creede, Concerning semi-stratifiable spaces 47
Edmond Dale Dixon, Matric polynomials which are higher commutators ... 55
R. L. Duncan, Some continuity properties of the Schnirelmann density. II ... 65
Peter Larkin Duren and Allen Lowell Shields, Coefficient multipliers of H^p and B^p spaces 69
Hector O. Fattorini, On a class of differential equations for vector-valued distributions ... 79
Charles Hallahan, Stability theorems for Lie algebras of derivations 105
Heinz Helfenstein, Local isometries of flat tori 113
Gerald J. Janusz, Some remarks on Clifford’s theorem and the Schur index .. 119
Joe W. Jenkins, Symmetry and nonsymmetry in the group algebras of discrete groups ... 131
Herbert Frederick Kreimer, Jr., Outer Galois theory for separable algebras ... 147
D. G. Larman and P. Mani, On visual hulls 157
R. Robert Laxton, On groups of linear recurrences. II. Elements of finite order .. 173
Dong Hoon Lee, The adjoint group of Lie groups 181
James B. Lucke, Commutativity in locally compact rings 187
Charles Harris Scanlon, Rings of functions with certain Lipschitz properties ... 197
Binyamin Schwarz, Totally positive differential systems 203
James McLean Sloss, The bending of space curves into piecewise helical curves ... 231
James D. Stafney, Analytic interpolation of certain multiplier spaces 241
Patrick Noble Stewart, Semi-simple radical classes 249
Hiroyuki Tachikawa, On left QF – 3 rings 255
Glenn Francis Webb, Product integral representation of time dependent nonlinear evolution equations in Banach spaces 269