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A Banach *-algebra 7/, with identity e, is symmetric if
zx* + ¢ is regular for each x in Z7. In this paper we gen-
eralize certain conditions on a discrete group GG that are known
to be sufficient to ensure symmetry of ~/,(G). Also we define
semi-symmetry and derive an inequality that must be satisfied
if ~.(G) is not semi-symmetric. Finally we show that if a
group contains a free subsemigroup on two or more generators
then /,(G) is not symmetric.

Let G be a discrete group. «(G) the group algebra of G. 4(G)
is a Banach *-algebra with involution defined pointwise by x*(g) =
2(g~") and with convolution as multiplication. The mapping g — 4,
where d,(s) = 0 if s g and 0d,(9) = 1, is a homomorphism of G into
4(@). In general, we will not distinguish between g and J,. Note
that if x e /(@) then x can be written in the form z = Zx(g)g

27 (@) (or 57°) will denote the real linear subspace of hermitian
elements of 4(G). S#(G) will be the subspace of S97(G) consisting
of all elements z such that

N(x) = {g | z(g) = 0}

is finite.
Let .9 denote the natural cone in 4(G), i.e., 9% is the cone

generated by all elements of the form xx* where x € 4(G). Denote
by % (5#) the continuous linear functionals defined on £#, non-

negative on .9 N 57 and one at the identity.
The right regular representation of A(G) over 4(G), 2 — R,, is

defined by: R.(y) = yx, for each y e 4(G).

DEFINITION 1.1. 4(G) is semi-symmetric if z € 5#(G) and sp (R,) =
0 imply (x + €)' € 4(G).

LEMMA 1.2, If 4(G) ts semi-symmetric then
(1) sp(xx*) =0 for each x tn 4(G) with N(x) finite, and
(ii) if v e 2Z(G) then sp (x) s real.

The proof of this lemma is essentially a duplication of the proof
of the corresponding results for an arbitrary symmetric Banach
*-algebra.

131



132 JOE W. JENKINS

Let P;(G) be the subset of S5#5(G) consisting of all elements with
nonnegative spectra. We observe that Mee P,(G) if A >0 and
x € P/(G), and that, since 4(G) is semi-simple,

PHG) N —PAG) = {0} .
LEMMA 1.3. If 4(G) is semi-symmetric then P,(G) is a cone.

Proof. We need only show that x + ye P,(G) if xe P/(G) and
y e P/(G). Letxe Py(G)and y € P,(G). Then sp(R,) = 0 and sp(R,) =
0. Thus R, and R, are positive definite operators on 4(G) and hence
also R, + R, = R,,,. Therefore sp (R,.,) = 0 and thus

@+y+eteal) .
If @« >0 then a~'x and a~'y are in P,G). Hence
(e +a’w +a’y)™ =al@e + 2+ y) € 4(G) .

Therefore —a ¢ sp (x + y) and, since sp (x + y) is real, sp (x + y) = 0.
If 4(G) is symmetric, then for each x e 57 (G)

sp (x) < {f (@) | fe F ()} -

(This result is implicit in the usual proof of Raikov’s Theorem, see

[7D). If 4(G) is semi-symmetric an abbreviated version of this result
can be proven.

LEmMMmA 1.4. If 4(G) is semi-symmetric and ¢ € 575(G) then
sp (x) C {f(x) [ fe F(22)} -

Proof. Let xe 57(G) be given. Denote by .. (x) a maximal
commutative *-subalgebra of 4(G) containing 2, and by 4(_(x)) the

Gelfand representations of _#(x). Itis well known that if ye _~ (x)
then

SP_s ) (¥) = 8P L&(¥)(=8DP (¥)) .
Since 4(G) is semi-symmetric, P,(G) is a cone. Hence, if we set
A (X)) = A (%) N H(G)

then P,(G) induces an order on . Z;(x). Furthermore, if for o € 4(_# (x))
we set 0; = 0,_,.,, then d, is positive with respect to this order. By
the Monotone Extension Theorem, d, has a positive extension to
4Gy if

(y + ;) N PAG) # @
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is equivalent with
(Y + . 7)) N —PAG) # @

for each ye o7 (G).
Assume ze (y + _Z(x)) N P;(g). Then there is a 2’ e _Z;(x) such
that y + 2’ € P(G). Hence

sp (y + 2') < [0, a]
for some @ > 0. Let 2" =2’ — ae, then 2"’ e _Z(x) and
sp(y +2")=sp(y+2 —ae) =sp(y +2)—ac[—a,0].
Thus
Y+ . @) N —PG) # @ .

A similar argument establishes the converse.
Let d, be an extension of 4, given by the preceding argument.
If ye 2#(G) then y — v(y)ee —P,(G). Hence d,(y — v(y)e) < 0. But

o,y — v(y)e) = o,(y) — v(y) .
Thus 6,(y) < v(y). Similarly, 6,(y) = —v(y). Therefore

10,() | < v() = |yl

for each ye 2#5(G). Since 27(G) is dense 27, 4, has a continuous
extension, f;, to 22 Since the closure of P,(G) contains the natural
cone .77, f,€ A (7).

Now, if xe 27(G) and aesp(x) then there exist an _# (x) and
o€ (. #(x)) such that d(x) = @. But then f;(x) = 6(x) = . Hence

sp (x) < {f(x) | fe A ()} .

It is natural to ask how symmetry of 4(G) and semi-symmetry
of /(G) are related. The following theorems provide a partial answer.

THEOREM 1.5. Assume that 4(G) ts semi-symmetric and that
whenever lim, x, = x for {x,} C 97(Q), lim, v(x,) = v(x); then 4(Q) s
symmetric.

Proof: Let xe 4(G) be given and select {x,} C 2Z7(G) such that
lim, x,x} = xx*. Then, lim, v(z,x}) = v(xx*). Hence, if ¢ > 0 is given,
there is a k such that

v(x,xr) > v(xx*) — ¢/2

and
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|| s — ™| < ¢e/2.
But, by Lemma 1.4, there is an f, € #,(5#) such that
Sol@wp) = v(@ei) .
Since each fe 7,(2#) has || f|| =1,
flral — ax*) = flaear) — flew™) <e/2.
Thus
So@a®) > fo(xxk) — &/2 = v(x,xf) — /2 > v(xa™*) —¢.

Hence

sup f(xx*) = v(xax*)
fesolo)
for each x < /(g), and hence 4(G) is symmetric.

If 4(G) is symmetric then, by Raikov’s theorem, (c.f. [8]), the
spectral radius of each element of the form xa* is equal || T...| for
some *-representation x — T,. However, this *-representation need
not be the right regular representation over 4(G). If we assume G
is amenable, then this latter representation weakly contains all other
*-representations, ([6]), and hence the spectral radius of xxz* is given
by || R..«||. Using these facts we can prove

THEOREM 1.6. If 4(G) is symmetric and if G is amenable then
4(G) is semi-symmetric.

Proof. Suppose that xe 57(G), —lesp(x) and sp (R,) is non-
negative. Let y = ¢ — v(R,)e then

—1 — v(R,)esp(y)

and
sp (R,) = sp (R, — v(R.)e) C [—v(R,), 0] .
Therefore
v(yy*) = v(’) = (1 + v(R,))*,
and
V(R,,) = v(R)) = v(R,)’
But

”(Ryu*) = “ Rw‘ || ,

and, since G is amenable,
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”Rw* ” 2 ” Tﬂy* ”
for any *-representation z — T,. Therefore
v(yy*) = [1 + v(R)] > v(R,)' = || Ry || = || Ty ||

for any *-representation z — T,. This contradicts Raikov’s criteria
for symmetry. Hence, if sp (R,) is nonnegative, then —1 ¢ sp ().

REMARK. The dual hypothesus at Theorem 1.6, namely, that
4(G) was symmetric and that G was amenable, was necessary.
Although all known pertinent results tend to indicate that symmetry
of 4(G) implies amenability of G, we do not know this to be true.

2. A sufficient condition for semi-symmetry. If H is a sub-
group of G then there is a cannonical embedding of 4(H) into
4(@). We will not distinguish between an element of 4(H) and its
image in 4(G). Since for each x ¢ 4(H), Sp4um(®) = sp4w (@) (cf. [3]),
we are assured that this laxity will cause no confusion when making
spectral considerations.

Let m(G) be the space of bounded functions defined on G. The
mapping 6 — 6, where

(@) = X, 0(9)(9)

for ze 4(G), is an isometric isomorphism of m(G) onto A4(G)*.
For AcC G, let (A) be the group generated by A.

LEMMA 2.1. Let x€ 4(G). Then x has no left inverse if, and
only tf, there i1s a 6 € m({N(x))) such that ||0] =1 = 0(e) and the
null space of 0° contains the left ideal gemerated by x.

Proof. Assume z has no left inverse in 4(G). The preceding
remarks imply that @ has no left inverse in 4(N())).

Let L be the left ideal in 4({N(x))>) generated by x. Now, if
Y€ 4(KN(@)) and ||y ]| <1, then

e+y)'t=e+ "Z;(—l)”y”

is in 4(KN(xz))). Hence, if ||e —z]|| <1, set y = —e + 2, and then
= (e + y)* is in 4KN(x)>). Thus

LnfyeaKN@p) [lle -yl <l}=2,

and the distance of L from e is at least one. Hence the desired 6°
exist.
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The converse is obvious.

Let ze 5#4(G) such that xz + e¢ is singular and sp (R,) is non-
negative. Let A = N(z) U {¢}, H =<A)> and s(n) = ¢(4"), the cardi-
nality of A*. Enumerate the elements of H in the following manner:

{gu gz ** gs(l)} =A

and

— 1
{Gstmrsrr =%y Goman) = AT ~ A"

for n =1,2, ---.
Since x + ¢ is singular, and x + ¢ is hermitian, © + ¢ has neither
a right nor a left inverse. Hence there is a 6em(H) such that
f(¢) =1 =1/6|| and the null space of §° contains L, the left ideal
generated by « + ¢. For 6° to vanish on all L, it is necessary and
sufficient that, in particular, 6°(g;x) = 0 for each g, € H.
Let 6, = 6(g;) for 1 =1,2, -.-, and for each positive integer =,
define 8(n + 1) in 4(H) by
0, if 1<1<s(n+1)
o(n + 1)(g) = |
(D6 = 10 it i > stm+ 1)
Then
[[Bere(@(m + 1)) [ = [[0(n + 1) [} + 2(R.(6(n + 1)), 0(n + 1)) .
But sp (R,) = 0, hence
(R, (0(n + 1)),0(n + 1)) =0.
Therefore
2.2 | R, (0(n + 1) [li = [[0(n + 1) |2

forn =1,2, .-..
Now, if g, A" then

N(g;(x + e)) C A"A = A" .
Thus

R...(0(n + 1))(g5) = [0(n + 1)@ + ¢)](9:)
=2 [0(n + D)(g)]l(@ + )(95'9:)]

s(n+1

5 0, + e)(gr95)]

Il

_ 8(:2:) 0,l9:x + €)(9,)]
= 0"(gx + ¢)) = 0.
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If g, H~ A™** then
N(g(x + e) c H~ A,
Hence again
R, (0(n + 1))(g:) = 0.

Therefore

n+2)

IR0+ 1) [ = "5 | Reri0n + D)) -

J=8(mn)
But for g, A" ~ A",
N(g;(x + e)) T A" ~ A",
Hence
‘Rxfl-e(a(n + 1))(91) |2
s(m41) 2
= (S 10dge + o))
= +

s(n—1)+1

= (L8 Jot+ o F) 5 dor)

s{m—

s(n-+1)
slle+ell > [di6f
i=8(n—1)+1
where d;; = 0 if g;(x + e)(9;) = 0 and one otherwise. Note that for
fixed j, d;; # 0 for at most ¢(A4) i’s. Therefore

(n+2)

IR0+ )i S (lo+els 'S d00)

j=s(n)+1 i=s(n—1)

s(n-1)
<o) llo+ell 3 [0

=s(n—1)

We also have
s{n-+1)
[[60(n + 1) |3 = JZ‘, 16;" .

Combining these results by 2.2. we have

$(m—+

s(n+1) s(nr1)
(2.3) c(A) [|@ + ells (Z. 10;1°= >, 16;F
j=8(n—1)+1 =1
for each n = 2,3, ---.
We compile the above argument in

THEOREM 2.4. If 4(G) is mot semi-symmetric then for some
x e S4(G) there is a 6 = (0;) e m(KN(x))) such that |[0] =1 = 6(e)
and (6;) satisfies 2.3.
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3. Condition SS. For a given G let °(G) denote the family
of finite symmetric subsets of G containing the identity. Adel ‘son-
Vel skii and Sreider, [1], considered the following condition on a
group G:

(A — S) for each Ae &7 (G)

¢(A™) = o(d™) for any d > 1.

They proved that if G satisfies (A — S) then G is amenable. Hulanicki,
[5], later showed that if a group satisfies (A — S) then zx* + ¢ is
regular for each x in 4(G) with finite support.

We now define a condition which is weaker than (4 — S):

(SS) for each Aec <“(G)

lim inf, ¢(A"* ~ AM" < 1.

It is not difficult to show that if G satisfies (A — S) then G satisfies
(SS) and that if G satisfies (SS), G is amenable. We also have

THEOREM 3.1. If G satisfies SS then 4(G) is semi-symmetric.

Proof. If 4(G) is not semi-symmetric then by Theorem 2.4
there is a 6 = (0;) e m({A)), where A = N(z) U {e}, such that [[¢| =
1 = 6(e) and

s(n+1) s(n+1) s(n—1)
cAlle+ely > [6;F= X [0;F= X 16,
j=s{n—-1)+1 =1 j=1

for each m = 2,83, ..., Let o' =c(4) || + ¢el]}, a = (&’ + 1)/a’, and

5(2)

b= 2\ 10;F.

i=l

Then, since 6(¢) =1 and ec 4,5 > 0. We have

s(4) 8(2) 5(4)
X0, = 3160+ > (6, ab;

J=5(2)

and if

8(2

2

)

10 = (a)"~'b

it

then

8(2n+2) 8(2n

S0 =301+ S 10,02 @ + Ma)l@b] = (@)D -

p 7=1

Therefore
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s(2n+2

)
5105 2 (@)
for n =2,3, ---.
Since ||4]| =1; |]6;] <1 for each j. Hence

s(2m+2)
2 |0j |2 < C(A2n+2 ~ Azn) .

j=s(2n)+1
Consequently
c(A™7? ~ A = (1/a’)a™b .
forn=2,8, --.. If B= A*then Be .&”(G) and lim inf, C(B"*' ~ B") >1.

This contradiction implies 4(G) is semi-symmetric

4. Condition (C’). Hulanicki [5] proves that 4(G) is symmetric
for any group G satisfying:
(C) there is a k such that for any finite set AC G

sup C(AtlAtZ e Atn) = kmf,i(m’ ’)’b) ’

where the least upper bound on the left is taken over all sequences
(t, ts =+, t,) € G* where at most m of the t/’s are different from the
identity, and the function f,(m, n) satisfies the condition f,(m, n) =
o(c") for any ¢ > 1, uniformly with respect to m < n. We will obtain
the same result for any group G satisfying the condition

(C") there is a k such that for each A e .¢7(G)

liminf, sup [c(4s,As, --- As,)]'" < k .

(s;) G
LEMMA 4.1. If G satisfies (C') then G also satisfies (SS).

Proof. If G satisfies (C’) then for each A e .&”(G)
lim inf, ¢(A™)"'" < k .
If for some B e .o”(G),
liminf, ¢(B")'" =6 > 1,
then choose a positive integer p so that 6> = k. Then
lim inf, ¢((B?)")"» = [lim inf, ¢(B?™)"*"]* = o* = k .
Thus, for each Ac .o/ (G),
lim inf, ¢(4A™)'* < 1.

Now,
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c(A" ~ A" ") < ¢(A™)
for each n = 2. Hence
lim inf, ¢(A™ ~ A" < 1

for each A e .<7(G).

LEMMA 4.2. Assume G satisfies (C') with constant k. Let x
and y be elements of 4(G) such that N(x) is finite. Then

vey) = kllyll Il B.1I .

Proof.

Tl =ll@Xy@Em [ =1 > us) - ys)os - w5l
= 2 Nys) ey s - ws,
= sup [l@s,ceos,fl 3 Y)Y ]

An application of Schwarz inequality gives
[[@s, - @s, || < e(N(@s, «+ - w8,))"" [[ s, « - @S, [y
For any z¢e 4(G)
IR = sup (| R.@) Il = [|RA) |l = |21l
Therefore
sy s @s,[le S | Bosyoooss, || = [[Bosy Ry, + o+ By || = || B
Also,
N(xs, +-- xs,) C N(s,) -+ N(xs,) = N(x)s, - -+ N(@)s,, .
Therefore, if we set A = N(x) U {e} U N(x)™*,
[|ws, «+- s, || < e(ds, -+ As,)* || R, ||” .
Finally
2yl Ty =1yl

o
Consequently

1@ | S [y P I Bl sup_ clds,--- As)™*,

and hence
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v(zy) = liminf, || (@y)" |["* < ||y ||| R, || lim inf, sup ¢(4s, --- As,)""
<kllyllllR.I . oo

We are now ready to prove.
THEOREM 4.3. If G satisfies (C’) then 4(G) is symmetric.

Proof. If 4(G) is not symmetric, then by Raikov’s Theorem
(c.f. [8], p. 307) there is a yy* € 4(G) such that

r= Sup )f(yy*) < v(yy*) .
€5 o7
We may assume that;

inf fyy*) =s > 0:
feFg(x)
if not we consider the element yy* 4 ae for some a > 0.

Let «© = yy* and choose % and v so that 0 < u < s and r < v < v(x).
Then

0<u< floey <wv <y

for each fe . 7,(57).
Let k& be the constant of (C’), ¢t > 1 and p be a positive integer

such that y(x)? > ktv?. Pick Ae .&”(G) so that, if z is « restricted
to A then

(i) 0< f(r) <w, for each fe &,(5#) and

(ii) [lz7ra” || < t.
To see that (i) is possible merely note that by taking A sufficiently
large, ||z — x|/ is less than both » — » and w. Then, since each
fe 7,(27) is of norm one, the condition is satisfied.

For (ii) we first observe that by Lemma 1.4 and 4.1

sp (2) C{f(2) [ fe ()} (0, v).

Thus z is regular, and for fixed p, 27?2 converges to the identity as
A increases.

We now apply Lemma 4.2.
v(ar) = vz "a?)] < k|| z7%a? || || B || .
But

[[Roll = ||R.I?
and

IR, || =vR,) =y <v.

Therefore
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y(x?) = v(x)? < kto? .
But p was chosen so that
v(x?) > kto? .
This contradiction implies that 4(G) is symmetric.

5. Nonsymmetric group algebras. In [3], Frey asked if there
are amenable groups with nonamenable subsemigroups. He proved
that if such groups exist they must contain a free nonabelian sub-
semigroup on two generators. Hochster [4], has recently presented
an example of such a group. In [7], a similar example is presented,
and it is shown that the algebra of this group is nonsymmetric.
The following theorem shows that all such groups have nonsymmetric
algebras. The proof employs the well known fact that in a symmetric
Banach *-algebra the hermitian elements have real spectra (c.f. [8]).

THEOREM 5.1. Let G be a group generated by a and b such
that S, the semigroup generated by a and b is free. Then, 4(G) s
nonsymmetric.

Proof. We will show that 67 € sp (), where
x =aa -+ Bb + rab + Nb'at + Bb + @at,

if 0o = aB/x and | M| Z max {3|«|,3|8]|}. To accomplish this we will
construct a nonzero § € m(G) such that 6" vanishes on the left ideal
generated by y = x — die.

Let S, =SU{e} and S, =aS,U{e} Ubd'S;'. Define 6(g) = 0 if
geS,. Let A= Ny and S’ =S, Ubd 'S, U Sy UaS;:. Direct com-
putations yield:

Agms1:/—_®‘:'g€S’-

Enumerate the elements of S' as follows: s, = e and for n =
1,2, -.4,8, =as,; Sy =bs,; t, =b7"sy,2 s, =s,andforn =1,2, ...,
S_gp = @ISy S_gurn = 07'S_,5 o, = AS_garny.

One can easily verify that the homogeneous equations 6°(ys;) =
0, 312, v+#0, and 6°(yt;) =0, —2=<7 <2, § # 0, have a non-
trivial simultaneous solution.

For n a positive integer,

N(yt'n) = {82n7 84m a/tnv a—ltn! bﬁlaﬂltn! b_ltny tn} *

If at, = ab™'s,, € aS, then b~'s,, € S, which is impossible. Similarly, if
at,€b”'S;* then o' = a~'s~* for some seS. Since S is free in G,
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this also is impossible. Certainly at, # e. Thus at,¢S,. Similar
arguments show that

{a"*t,, b'a"'t,, a'a 't,, t,} NS, = D .
We also have
NW5,) = {Sonr Stnsts Sintar Sny @18,y 078, b'a™s,) .
For n = 3,
N(ys,) NS, = N(ys,) N (aS, U {e}) .
If n is odd then
N(ys,) N Sy C{Senr Sintr 078}
while for n even
N(ys,) NS, C {Sany Sint2r @78y, 07’78,y S,}

Note that not both a's, and b~'a='s, are elements of S,. Also,
a~'s, = 8, €S, implies m < n and b~'a~'s, = s, €S, implies m < n.

Assume now that n» = 3 is given, and that 6(s;) has been defined
for 1 < k < 4n such that |4(s,)| <1 and

0*(ytn) = 0 = 0°(ysn)
for m < n. Now
0" (yt,) = BO(s:,) + M(8,,)
and

00(?/870) = ae(s%b) + )\’0(84n+2) + c_rﬁ(a_lsn) + Be(b——lsn) + Xa(b—-la~1sn)
+ 010(s,) .

Let
0(8471.) = (_ 18/)")0(82%)
and

0<S4n+2) = (—X’/)\’)a(b—la’—isn)
—1/Mab(s.,) + @b(as,) + BO(Ds,) + ds0(s,)]

We consider the two possibilities:
(i) If b'a's,€ S, then db~'a"'s, € aS, U {e} and hence

{a_lsny b~lsn} n S1 = @ .

Also, there is an n > m =1 such that s, = s,,. Since 6°(y¢,) =0



144 JOE W. JENKINS

for 1 < k < n and since 60°(yt,) = £6(sy;) + N0(sy,) = 0 if, and only i1,
0(s4) = (—B/NO(su); 0(82) = O(84m) = (—B/N)0(82m). Thus

0(Sinse) = (—AA)OD'a™s,) — (1/A)(07 — aB/N)O(Sem)
= (=AM a"'s,) .

(ii) If b7'a7's, ¢S, then
O(S4nrs) = (_1/)")[a0(32n) + af(a™'s,) + Eﬁ(b~1sn) + 5’&0(3'»)]

and at most three terms within the parenthesis on the right are
nonzero.

In either case |6(s,,s,)| < 1. Certainly |6(s,,)] < 1. Thus, by
induction, we can define 6(s,,) such that |64(s,,)| <1 and such that

0°(yt,) = 0 = 0°(ys,)

forn=1,2,.--.
Similarly, we can define 0(s_,+,) S0 that |0(s_z.4n)| < 1 and

0°(yt_,) = 0 = 6"(ys_,)

for n =1,2, .--.

REMARK. If G is an amenable group with a nonamenable sub-
semigroup then G has a subgroup H that satisfies the hypothesis of
Theorem 5.1. Hence /(H) is nonsymmetric, and since for each
xe 4(H),

8P/ (T) = 8P4 (X)

4(G) is also nonsymmetric.
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