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TOTALLY POSITIVE DIFFERENTIAL SYSTEMS

BINYAMIN SCHWARZ

Totally positive (TP), and strictly totally positive (STP)
differential systems are defined, These real, first order, linear
systems are characterized by the form of their coefficient
matrices, and by the decrease of the number of sign changes
of their solution vectors as functions of the independent
variable, A bound is given for the combined number of zeros
of the first and last components of any particular solution
vector of STP system and a similar result is obtained for TP
systems, Examples show that no such bounds exist for the
number of zeros of any other component,

In this paper we consider real differential systems of the form
(1.1) y'(t) = AQ)y() .

Here the solutions %(f) are real column vectors y(f) = (y,(t), ++ -, ¥.(%)
and A(f) is a given » X n matrix (e;;(t)); whose elements a;;(f) are
real functions which are continuous in the open interval (a, b), — o <
a < bZ . Together with the vector differential equation (1.1) we
consider also the corresponding matrix differential equation

(1.2) Y'(t) = AQ)Y(@®) ,

where Y(t) = (¥;;(t));. Let Y(f) be any solution of (1.2); for each
integer p, 1 < p < n, we denote the p th compound of Y(¢) by C,(Y (¢)).

In §2 we construct foreachp,1 < p=<mn,a <Z> % (Z) matrix B®(2),

such that
(1.3) [C(Y(@)] = BP(H)CAY(D)) -

(BY(t) = A(t).) The elements of B*'(t) are easily expressed by the
given n* elements a;;(t) of A(t) (Theorem 1). Special cases of these
compound systems were previously considered: Mikusifski [6] con-
sidered the differential system satisfied by the 2 x 2 Wronskians of
the solutions of the equation u™(¢) + p(t)u(t) = 0 and Nehari [7]
considered all compound systems (1.3) in the case where (1.1) is
equivalent to an n th order linear differential equation. We remark
that for p = n — 1 (1.8) is closely related to the system adjoint to
(1.2); and for p = n (1.3) reduces to Liouville’s equation

(1.4) Aty = (g ah-(t))d(t) :

where A4(t) = C,(Y (t)) is the determinant of Y(¢{). We state an im-
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mediate consequence of Theorem 1, showing a characteristic difference
between the elements a,;(t) with |4 — j| = 1 and the other off-diagonal
elements of A(t), as a corollary.

A real n x n matrix is totally positive (TP) is all its minors are
nonnegative, and the matrix is strictly totally positive (STP) if all its
minors are positive. For each r, a < r < b, we denote the fundamental
solution Y(¢) of (1.2) satisfying

(1.5) Yor) =1,

I = (00, by Y(@) =Y, r). We call the system (1.2), and the
corresponding system (1.1), totally positive (TP) in (a, b) if for each
pair (r,t),a <r=t<b, Y(t r) is TP. If for each pair (r,t),a <
r<t<b Y(tr) is STP then the systems (1.2) and (1.1) are called
strictly totally posttive (STP) in (a,b). In §3 we characterize these
systems by the form of the matrix A(t) = (a;;(¢))?. The system (1.2)
is TP in (a, d) if and only if A(t) is a (variable) Jacobi matrix (i.e.,
a;;(t) = 0 for |7 — 7| = 2) with nonnegative off-diagonal elements (i.e.,
ai1(t) = 0,0,4,;(6) =0,72=1, .-, n —1). This result (Theorem 2)
was first proved by Loewner [5]. Our proof (based on Corollary 1)
is quite elementary and leads also to the following modification of
Loewner’s result: The system (1.2) is STP in (a, d) if and only if
A(t) satisfies the above conditions and none of the functions a;;.,(t)
and a;.,;(t) vanishes identically in any interval contained in (a, b)
(Theorem 3).

In 8§84 we consider vector solutions y(¢) of a STP system. The
system (1.1) is shown to be STP in (a, b) if and only if S*(y(s)) =< S ~(y(r))
holds for all nontrivial solutions %(¢) and all pairs (r, s),a < *r < s < b,
(Theorem 4). This result on the number of sign changes, following
from the variation-diminishing properties of STP matrices, leads now
to results on the number of zeros of the components y,(t) and y,(¢) of
any given vector solution y(¢) of (1.1). The combined number of zeros
of these two extreme components cannot exceed n — 1 (Theorem 5).
No such restriction exists for the interior components y.(t), -+ -+, ¥,_.(?).
We illustrate this dissimilarity between the extreme and the interior
components by examples in the last section (§6). In §5 we consider
vector solutions of TP systems and the results are now weakened
versions of the corresponding results for STP systems. We rely
strongly on the recent book by Karlin [4], but we give all necessary
definitions in order to keep this paper reasonably selfcontained.

2. The compound differential systems. For given integers n
and p,1 < p < n, we consider the p-tuples of increasing integers
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1§’€1<'L:2<"‘<7Ep
Jr <Py < oe- <];n

IA

n,

and we arrange these N = n) p-tuples in lexicographic order. We
denote these p-tuples of indices also by

a:(il!iz)”'!ip)r B:(jly"'yjp)°

For a » X » matrix Y = (y;;)7, we denote the minor, determined by
these rows and columns, by

(i),

JirJes s dp

The pth compound C,(Y) of Y is the N x N matrix having these
minors (in lexicographic order) as elements. The elements of the
N x N matrix B?” are denoted by b,; = b(¢, «++, %, |51y *+++,7,)- In
the following the matrices Aand B will be continuous functions of
t, Y and C,(Y) will therefore be continuously differentiable functions

of t. Using this notation we obtain the following relation between
the given system (1.2) and its compound systems (1.3).

THEOREM 1. Let Y(i) = (y;;(tNF, a <t <b, —cc £a < b < co, be
any solution of the differemtial system

(1.2) Y =AY ,

where A(t) = (a;;(1))7 and the n* real functions a;;(t) are continwous
wn (a, b). The pth compound C,(Y (%) of Y(¥), 1 < p < n, satisfies in
(a, b) the equation

(1.3) [Co(Y @) = B"(O)C(Y () .
The matriz B®(t) = (bp(0)Y, N = <z>, is given by

0 if at most p — 2 of the indices
1 of a coincide with indices j

of B;
bas(t) . ‘ (—1)/+’”ai/jm if exactly p — 1 of
(2.1) =b(ty, cc0, % [ Ju cr 0y 05 = the indices of a coincide with
indices of B, but 1, j,., 1 <
Z,m =P,

b -
/Z;lai/j/zf’b/:]/a/:lr AR

Proof. We choose two p-tuples of increasing indices @ = (¢, + -+, %,),
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¥ = (ky, ++ -, k,) with
S’il<’i2< ---<’l:p
Sho<k <<k,

and consider the minor Y ;c“ o 2” ) Differentiating this minor by
1 b p

rows and using (1.2) we obtain

=n,

n n
)r DL Yoy v D A Yo,
v=1 v=1
= + e

'iu *t ip
Y(

ku cry kp

Yipr, cee Yk,
Yix, Y,
4

n n
Z aip»yukl et »gl aip»yvkp

y=1

We rewrite this as
ku"'ykp v=1 klrkm "'7kp

2.2) +Sa,Y i“”’i”""i")Jr
. @i,
PR kl} kzy ksy ey kp

n iu ".7ip——]!”

=+ Z a; VY .

=T ku L) kp—n kp

The row indices on the r.h.s are, in general, not in increasing order
and the pn determinants appearing there are hence, in general, not
minors of Y. But each of these determinants either vanishes or is
equal to a minor of Y or is equal to (—1) times a minor. We thus

can write (2.2) in the form
() (B
(2.3) TR B oy Ky . .
. . . . T ** s Jp
— b o, 1 NI Y .
1§jl<~-2'-<jp§n S o1 7») (lc“ cee, kp)
To obtain (2.1) we compare (2.2) and (2.3). We first note that on the
r.h.s. of (2.2) appear only p-tuples of row indices for which at least
p —1 of the indices belong to the p-tuple a = (¢, ---,4,). This
gives the first part of (2.1). Secondly, if v does not belong to «,
then the p-tuples

(7), iz: "'yip)? (iu Y, ’53, "'77:1;): *t %y (7:17 "'y'ip-1y 1)) ’

appearing as row indices on the r.h.s. of (2.2), have to be rearranged
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by putting the index v = j,, in its proper place in order to obtain an
increasing p-tuple which in (2.3) is denoted by 8 = (5, - -+, J,). For
the p-tuples corresponding to the first sum on the r.h.s. of (2.2) this
may be achieved by m + 1 transpositions, for those of the second sum
by m + 2 transpositions and, in general, for those of the ~th sum by
m + < transpositions. This implies the second part of (2.1). Finally,
if we choose v = 4, in the first sum on the r.h.s. of (2.2), v =1, in
the second sum and so on, we obtain the last part of (2.1) and we
have thus proved Theorem 1.

We illustrate this result by expressing the elements b,; of B
in terms of the elements a,; in the simplest cases: n = 3, p = 2, n = 4,
p=2and n=4,p=3.

Ji Je Ji1 g Ji J
i1 e 1 2 1 3 2 3
1 2 ai + Qg2 Q23 —ai3
1 3 as2 air + ass Q12
2 3 —as1 azt azz + Qs3
n=3 p=2
Ji g2 Ji o Je Ji o Je Ji1 g2 Ji J2 Ji g2
1 12 1 2 1 3 1 4 2 3 2 4 3 4
1 2 a1 + Qa2 Q23 Q24 l —a13 — Qs 0
1 3 as2 a1t + ass ass ‘ a2 0 —01
1 4 Qa2 Q3 Qi1 + Qus 0 Q2 Qi3
2 3 —as1 Qz1 0 a2 + ass ass — Q24
2 4 — Q41 0 az1 43 Q22 + Qa4 Qzs
3 4 0 —a41 ast — Qa2 asz ass + Qs
n=4, p=2
Ji Jz s Ji Jz Js Jr Ja Js Ji o Ja Js
i1tz s 1 2 3 1 2 4 1 3 4 2 3 4
1 2 3 a1 + Qg2 + Ass Q34 — Q24 Q14
1 2 4 Qa3 G11 + Q22 + Gas ags —a1s3
1 3 4 — Q42 Q32 Q11 + 33 + Qas Az
2 3 4 41 —as1 azt Q22 + Q33 + Qas

n=4 p=3
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We remark that each diagonal element a;; appears as a summand
in (Z _ D diagonal elements of B*. Each a;;, ¢ + j, appears, possibly
with the sign —1, ;’: “1&) times as an off-diagonal element of B,
In each row and each column of B* p(n — p) off-diagonal elements
are of the form =+a;;(¢ # j) and, for 2 < p <n — 2, the remaining
off-diagonal elements are zeros. (2.1) implies also the following symme-
try of the dependence of B on A: if, for a # B, by = ij, bap = —a;
or b,; = 0 then b;, = a;;, by, = —a;; or by, = 0 respectively.

For b =mn, (2-1) gives B(n)(t) = b(ly e, M | 17 ccty ’I’L) = =1 aii(t)9
and the differential system of the »th compound 4(¢) = C,(Y (¢) is
Liouville’s equation

(L.4) 40" = (3 )40 -
We now consider the case p =% — 1. Let Y(¢) be a fundamental
solution of (1.2), then

ST -y = (il P bl m\n
ey = (ywy (TR

= C,.(Y(2)

(2.4)

Here the superscript T denotes the transposition operation, and if
M = (m;;); we define M = (i;;)7 by

My = (= 1) My sniaegy 5,5 =1, 000,

With this notation [C,_ (Y (¢))] = B (t)C,_.(Y (t)) gives

2.5) [Coa(Y®)) = B ()Coi(Y(H)) -

(Y (t)™)7 is a solution of the system adjoint to (1.2):

(2.6) (Y®)™)" = —A@Q"(Y®)™)" .

Differentiating (2.4) and using also (1.4), (2.5) and (2.6) we obtain

(2.7) — AT = Bty — (g aﬁ(t))z.

(2.7) gives the connection between the adjoint equation and the equation
for the (n — 1) st compound.

In the next section we use the following consequence of Theorem 1.

COROLLARY 1. Let A(t) = (a;;(t))t and B™(t) = (bas(t))Y be the
coeffictent matrices of the system (1.2) and its compound systems,
1<p<<n. Then,

(i) None of the matrices B®'(t) contains elements of the form
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_ai,i+1(t)’ _ai+1,i(t)1 'L - 1, cey, M — 1-
(ii) For each pair (i,7),|i —7|=2,¢,5=1, ---,m, —a;;(t) is
an off-diagonal element of B®(t).

Proof. (i) Formula (2.1) implies that +a; ... (t) and *a,,, ,(?),
k=1,--.,mn—1, can appear as elements of B*(¢) only if they are
an element b(3,, +++, %], +-+,J,), where p — 1 of the indices of the
two p-tuples @ = (¢, -+, %,) and 8 = (4,, ---, J,) coincide, but i, = 7,
and where the set {i,,J,} is the set {k, k£ + 1}. If a given (p — 1)-
tuple of increasing indices, which contains neither ¥ nor k + 1, is
completed to a p-tuple of increasing indices by inserting k or k + 1,
then it is necessary to insert either one of them at the same place,
i.e., between the same two elements of the (p — 1)-tuple. Hence / = m.
and (2.1) implies (i).

(i) fl<<i<i1+2<Z75<nthen (2.1) givesb(zs,72+ 1|1+ 1,7) =
—a;5and if 1<j<j+2<49<nmthen b(j +1,4|5,5 +1) = —a,.

3. Positive, strictly positive, totally positive and strictly totally
positive systems. Totally positive (TP) and strictly totally positive
(STP) systems were defined in the introduction. To define positive
and strictly positive systems we agree to call a real n x n matrix
positive if all its elements are nonnegative; and the matrix is strictly
positive if all its elements are positive. The differential system

1.2) Y'(t) = AQY(@) ,

is called positive in (a, b), if for each pair (r,t),a <r <t <b, Y(t, r)
18 positive. (Here Y(t) = Y(t, r) is the fundamental solution of (1.2)
satisfying (1.5).) (1.2) is strictly positive in (a, b) if for each pair
(ryt)ya <r <t<b, Y(t,r) is strictly positive. We start with a
criterion for the positivity of the system.

LEMMA 1. Let the w* real functions a,(t),4,7=1,+-+,n, be
continuous in (a,d), —oo < a < b < oo, and set A(t) = (a;;(t))r. The
differential system (1.2) is positive in (a, b) if and only if all off-
diagonal elements a;;(t), © = j, 1,7 = 1, -++, n, are nonnegative in (a, b).

This lemma is known [1, p.173, exercise 2]. For completeness,
and also in view of the proof of the next lemma, we prove Lemma 1.

Proof. To show the necessity of the condition, suppose to the
contrary that there exist indices ¢* and j*, ¢* # j*, and a point 7 in
(a, b) such that a;.;(r) < 0. Let Y(t, ) = (y;;(t))r be the solution of
(1.2) satisfying (1.5). Then y.;.(r) = 0 and ¥.;.(r) = a.1x(r) < 0. Hence,
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Yi-;+(t) < 0 for all ¢ in some interval (#, » + ¢), ¢ > 0, and the system
(1.2) is not positive.

We first prove sufficiency in the special case where all diagonal
elements a;(t) of A(f) vanish identically in (a, ). Each element of
A(t) is thus nonnegative, and the Peano-Baker expansion

3.1 Y(t,7) = I+ VA(z)dr + YA(?)STA(Tl)drldf b

shows that the same holds for each element of Y(t,7),a <7 <t <b.
To prove sufficiency in the general case (of arbitrary diagonal
elements a,(t) of A(f)) we choose a point 7, + € (a, b), and define

(3.2) pt, 1) = exp [ au@dr,a <t <bi=1, - m.

Using these n positive functions we now build the diagonal matrix
(3.3) P,(t) = diag (p,(t, 7), + -+, p.(E, 7)), a<t<b.

If Y(t) is an arbitrary solution of (1.2) we define Y,(¢) by

(3.4) Yit)=P.)Y.(t), a<t<b.

(1.2) and (3.2) to (3.4) imply that each Y,(¢) satisfies the equation
(8.5) Yity = A,0)Y (), a<t<b,

where A, (t) = (@,(t, r))! is defined by

(3.6)  @yt,r) = a2 s gi =1, a<t<b,
pi(t’ 'V)

and

8.7 Gut,”) =0,i=1,-+,m, a<t<b.

The matrix A,(¢) has thus, together with the given matrix A(),
nonnegative off-diagonal elements but its diagonal elements vanish
identically. By the special case considered above, it follows that the
system (3.5) is positive in (a, b). Let now Y,(¢, r) be the fundamental
solution ¥,(¢) of (3.5) which satisfies Y,(r) = I Then Y, ») is
positive for all ¢ in [»,b). As P, = I, it follows from (3.4) that

(3.8) Y(t, 1) = P Y. 1),

where Y(¢, ) is the solution of (1.2) satisfying (1.5). (3.8) implies
that this matrix Y(¢, r) is positive for all ¢ in [r,b). Since » was
arbitrary in (a, b), this completes the proof of Lemma 1.

For the next lemma it is convenient to use the following termi-
nology. We denote the set of the #* elements a;;(t) of A(t) by S.
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With each subset F' of S we associate a matrix C = (¢;;)! in the
following way: ¢;; = 1if a;;(t) e F, ¢;; = 0 if a;;(t) ¢ F. Then we call ¥
wrreducible or reducible if the associated matrix C is, respectively,
irreducible or reducible. If we associate with F' a directed graph I" of
n vertices P, ---, P,, having a (directed) arc from P; to P; if and only
if a;;e F, then F is irreducible if and only if 7" is strongly connected.
(A matrix C = (¢;;)? is reducible if the index set {1, ---, n} can be split
into two nonvoid sets {7, -+, 7.} and {J,, * -+, Jn}, #+ m = n such that
€y, =0for x=1,-+0, 7/, 0 =1,+-.,;m. If no such partition of the
index set exists, then C is irreducible. A directed graph I is strongly
connected if and only if for every ordered pair (P;, P;) of its vertices
there exists a (directed) path leading from P; to P;,. The matrix C
is irreducible if and only if the corresponding graph I" is strongly
connected. [9, pp. 18-20].)

LEMMA 2. Let the n* real functions a;;(t),%,5 =1, -, m, be
continuous in (a,d), —c < a < b < oo, and set A(t) = (a;;(t))r. Let
S be the set of the n* functions a;,(t). For each r, re€(a,b), the
subset F(r) of S is defined in the following way: a;;(t) € F(r) ¢f and
only if a;;(t) does not vanish identically in any interval [r,r + €],
0<e<b—r. The differential system (1.2) s strictly positive in
(a, b) if and only if the following two conditions hold:

(a) FEach off-diagonal element a;;(t),t+*7,%,5=1,---,m, 18
nonnegative in (a, b).

(b) For each r,a < r < b, the set F(r) is irreducible.

Proof. The necessity of condition (a) follows from Lemma 1.
We prove the necessity of (b) by negation and thus assume that there
exists r, r € (a, b), such that F'(r) is reducible. As the graph I'(r) is
thus not strongly connected it follows that there exists ¢, 0 <& < b — #
and two indices ¢*, j*, ©* # j*, such that for every given ordered set
(o) T4y +++, 1) of indices (with repetition), for which 7, = %, 4, = j*,
at least one function a;; ..,(t),v =0, -+, 7 — 1, vanishes identically in
[r,r 4 €]. For » =1 this implies

(3.9), g"“aiw(r)df ~0.

For » = 2 we obtain

(3.9, IS 6@ nidnds = 0,
and similar equalities hold for » = 3. Using these equalities it follows
from (3.1) that the off-diagonal element y,.,.(» + &, 7) of the matrix
Y(r + ¢, r) vanishes and Y(r + ¢, r) is thus not strictly positive.
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We prove sufficiency of conditions (a) and (b) again first in the
special case where all diagonal elements «;;(f) of A(f) vanish identically
in (a,b). By (b), the set F(r) is, for each r ¢ (a, b), irreducible and
in this special case F(r) does not contain diagonal elements a,;(f). This
and (a) imply that for any given 7, r € (a,d), and any ordered pair
(3%, 3*) of (not necessarily distinct) indices there exists an ordered set
(% 1y +++, 1,) of indices, 4, = 1*,41,=75* and 7, # 1,,, for vy =20, ---,
< — 1, such that

Staiyiv+l<r>dr >0,

for all ¢ in (»,b) and all v,y =0, ..., — 1. But this implies that
for all such ¢

|ae@| ann@ -\ a e e o dede > 0,

and it follows that the element in the place (¢*, 7*) of the (»+ 1) th
summand of the r.h.s. of (3.1) is, for ¢ ¢ (r, b), positive. As » and
the pair of indices were arbitrary it follows that the system (1.2) is,
in this special case, strictly positive in (a, b).

The sufficiency of conditions (a) and (b) in the general case (of
arbitrary diagonal elements a(t) of A(t)) follows again by reduction
to the special case (formulas (3.2) to (3.8)). We now use also the
fact that if the set F(r) is irreducible, so is the set F(r) which is
obtained from F(r) by deletion of its diagonal elements and by multi-
plication of its off-diagonal elements with positive functions. This
completes the proof of Lemma 2.

These criteria for positivity and strict positivity and the corollary
of §2 lead to the main results of this section.

THEOREM 2. Let the n® real functions a;(t),41,5 =1, --+,n, be
continuous in (a,d), —cc < a < b= o, and set A(t) = (a;;(¢))r. The
differential system

1.2) Y = ADY(®) ,

is TP in (a, b) if and only if the following two conditions hold:
(a) a;(0)=0,]1—7|=2,%,5=1,-+,m, a <t <b
(b) @) =0,0;,,t)=0,7=1,---,n—1, a <t<b.

Proof. As total positivity of the system (1.2) implies its positivity,
it follows from Lemma 1 that all off-diagonal elements a,;(t), © # 7, of
A(t) have to be nonnegative in (@, b). If an element a;;(), |? —j[ = 2,
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were to be positive for some ¢ part (ii) of Corollary 1 would imply that
the matrix B®(t) of the second compound system has an off-diagonal
element which is somewhere negative, and Lemma 1, applied to this
second compound system, then shows that (1.2) is not TP. Conditions
(a) and (b) are thus necessary. Their sufficiency follows from part (i)
of Corollary 1 and the sufficiency part of Lemma 1, applied to all
compound systems (1.3). (We remark that we also use that the pth
compound of the unit matrix I = (9;;)" is again I = (0.,)). Hence if
Y(t) = Y(¢t, r) is the solution of (1.2) which satisfies (1.5), then its
compound also satisfies C (Y (r)) = 1.)

THEOREM 3. Let the n* real functions a;;(t),t,5 =1, ---,m, be
continuous in (@, b), —oo < a < b= oo, and set A(t) = (a;;(t)7. The
differential system

1.2) Y'@t)= A0 Y@,

8 STP in (a, d) if and only if the following three conditions hold:
(a) a;()=0,]1—7|=2,¢,5=1,+--,m, a<t<b.
(b) a;;n(t)=0,0;4,;) =20,2=1, .-, —1, a <<t <bh.
(e) None of the 2n — 2 functions mentioned in (b) vanishes
identically in any interval [r,s],a < r < s <b.

Proof. The necessity of conditions (a) and (b) follows from
Theorem 2. To prove that condition (¢) is necessary, we consider the
(0, 1) matrix C* = (¢%)7 where ¢}; =0 if |t —j|+* 1, and ¢/ =1 if
|2 — 71 = 1. Then the following statement holds. (i) C* is irreducible,
and (ii) 1f any element equal to 1 of C* is replaced by 0 then the
new matriz is reducible. This is easily seen by considering the
corresponding directed graph I'*. Assume now that condition (c¢) is
not satisfied and that one of the 2n — 2 functions a,;.,(t) and a;., ;(¢)
vanishes identically in a certain interval [r, s]. Part (ii) of the italicized
statement implies that the set F(r), defined in Lemma 2, is reducible
and Lemma 2 implies that the system (1.2) is not strietly positive in
(a, b). This contradicts the assumption of the present theorem and
condition (c) is thus necessary.

To prove the sufficiency of conditions (a) to (c), we consider also
the (0, 1) matrices C**,1 < p < n, which are built from the elements
¢t of C* = C*" by the rule (2.1). Namely,

n
C*» = (ij,s)iv, N = (p) and ci‘ﬁ = *(@'“ oo, @‘p ]ju ...,jp) =0

except if exactly p — 1 of the indices of a coincide with p — 1 indices
of B and the two remaining indices satisfy |i, —j, | =1; in this
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case ¢} =1. For each p,1=<p=<mn,C*” s arreducible. (For
p =1 this is part (i) of the former italicized statement.) This is
again easily seen by considering the corresponding graph 7/*®, (I'*®
has N vertices P, = P(iy, -+, 1,), Ps = P(j,, --+,7,), ete. There are
arcs (in both directions) between P, and P, if p — 1 of the indices of
« and B coincide and |7, — 7| = 1. Clearly there exists a path of
length 37, (2, — v) leading from P, to the first vertex P, (a* =1 =
(1, -+, p)) and similarly there exists a path leading from P,. to P;.
I'*® ig thus strongly connected). Using part (i) of Corollary 1 and
the irreducibility of C**,1 < p < m, it follows that the present con-
ditions (a) to (c) imply the validity of conditions (a) and (b) of Lemma
2 for each compound system (1.3). Each of these systems is therefore
strictly positive in (a, b) and (1.2) is thus STP. This completes the
proof of Theorem 3.

4. Vector solutions of strictly totally positive systems. Our
next result refers to the number of sign changes of a given nontrivial
vector solution y(f) of a STP system (1.1). We use the standard
notation [2,4]. If z = (x, --+, x,) is a real vector, & == 0, then S—(x)
denotes the number of sign changes in the sequence obtained from
2, %, +++, &, by deleting all zero terms; S*(x) denotes the maximum
number of sign changes possible by allowing each zero to be replaced

+1 (or equivalently, S*(x) = Iim,_, S~(¥)).
THEOREM 4. (1) Let the differential system
(1.1) y'(t) = AQu@) ,

be STP in (a, 0), — > < a < b < o= and let y(t) be a nontrivial solution.
Then

4.1)  STwis) = S~ (yr) for all (r,s) satisfying a <r <s<b.

(ii) Conversely, if (4.1) is valid for every mnontrivial solution
y(t) of the system (1.1), then this system is STP in (a, b).

Proof. (1) Let Y(¢) = Y(¢, r) be the fundamental solution of

(1.2) Y@ty = A@®) Y () ,
satisfying
(1.5) Yr)y=1.

For all s and » in (a, b)

(4.2) y(s) = Y(s, r)y(r) .
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By assumption the matrix Y{(s, ») is, for » < s, STP. (4.1) follows from
the variation-diminishing property of such matrices [4, p.219, Th.
1.2, (a)].

(ii) Let the index k,1 <k <n, and the point », re(a, d), be
given and consider nontrivial solutions y(¢) of (1.1) which satisfy

(4.3) Yulr) = 0.

(4.2) and (4.3) give

4.4) y(s) = Yi(s, 7)c .

Here ¢ is the (n — 1) vector (y,(7), «++, Yps(7), Ypur(), +++, Yu()) and

Y.(s, ) is the m» X (m — 1) matrix obtained from Y(s, ) by deletion
of the kth column. By assumption (4.1), we have for » < s,

S7(y(s) = S~ (y(r) = S~(o) .

As this holds for every nonnull vector ¢, it follows that Y,(s, r) is,
for » < s, strictly sign-regular of order n — 1 [4, p. 219, Th. 1.2, (b)];
i.e., all minors of Y,(s, ) are nonzero and, for each p,1 <p=<n —1,
all minors of order p have the same sign, possibly dependent on p.
But as Y(r,r) = I, it follows that Y,(», ) has for each p,1 < p <
n — 1, a minor equal to 1. It follows, by continuity, that all minors
of Y,(s,7),r <s, are positive. As k was an arbitrary index, this
implies that all minors, up to the order n — 1, of Y(s, ) are positive
for » < s. But the determinant of Y(s, #) is always positive and we
have thus proved that the system (1.1) is STP.

We remark that by the last two theorems property (4.1), for all
nontrivial solutions y(t), is equivalent to the properties (a) to (¢) of
A(t) stated in Theorem 3. A direct proof of this equivalence, without
use of the variation-diminishing properties of the STP matrix Y<s, »),
seems to be rather tedious.

The next theorem, and the examples in the final section, will give
some information about the number of points at which each component
of a fixed solution of an STP system (1.1) may vanish. It might be
of interest to consider here briefly the case of such systems with
constant coefficients A(f) = A. A is thus a Jacobi matrix with positive
off-diagonal elements. But the class of Jacobi matrices B with negative
off-diagonal elements was studied in detail by Gantmacher and Krein
[2, Ch.2, §1.]. For A(=—B) it follows that A has n distinct real
characteristic values A;, A, <A, < +++ < \,, (and that for the charac-
teristic vector ' = (w;, ---, u,;), corresponding to \;, ST(u!?) =
S~(u¥)y=n—-7,7=1, ---,n). Every solution y(¢) of the corresponding
system (1.1) is therefore of the form
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n
y'b(t) = zicju”ezjt : 1 = 1’ e, M,
i=

and it follows that in this case each component y;(f) of a nontrivial
solution y(¢) vanishes at most n — 1 times. (Note that for any system
(1.1) there always exist nontrivial solutions y(¢) satisfying (n — 1)
homogeneous conditions.) As already mentioned in the introduction a
more precise statement holds for the total number of zeros of ¥,(t)
and y,(t) for any STP system (Theorem 5, (ii)); and the examples will
show that, for any %, n = 3, there exist STP systems with wvariable
A(t) having a solution y(f) for which each interior component w;(t),
1 =2, -++,n — 1, vanishes infinitely many times in (— o, oo).

To facilitate the proof of Theorem 5 we now state some evident
properties of the functions S* and S~ as a lemma.

LeEmMMA 3. Let x = (%, +-+, x,), be a real nonnull vector. Then
(4.5) 0=S@=S*(xy=n-—-1.
If m components of x vanish, 1 < m < n — 1, then
(4.6) St@)z=zm,S @) =n—m—1.
If 2, =0, or if x, =0, then

4.7 St(x) — S (®)=1.
If 2, = 0 and x, = 0, then
4.8) Stx) — S (x) = 2.

Part (i) of Theorem 4, and Lemma 3, now imply the following
theorem.

THEOREM 5. Let the differential system
(1.1) y'(t) = AQ@)y(?)

be STP in (a,b), — < a < b < oo, and let y(t) = (y,(t), +--, ¥,(?)) be
a nontriwial solution.

(i) If S~(y(r)) =0, re(a,bd), then no component of y(t) vanishes
in (r,b). If S*(y(s)) =n —1,se(a,b), then no component of y(t)
vanishes in (a, s).

(ii) Let k and - be nonnegative integers and assume that

yl(ai)zovizly"'yk,a<a1<"'<ak<b,
and that
yn(Bi):O!jzly"'y/sa<Bl<"'<;8/<b.
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Then k + «<n — 1. Moreover, if k + 2= n — 1, then no component
of y(t) vanishes in (a, min (a,, 6,)) U (max («, B,), b).
(iii) Assume that m components of y(r), r € (a, b), vanish, and that
yl(ai)zo,izl, ---,lc,r<al< tre <ak<b,
and that
yn(B]) :03j:1r ey L By < e <:8/<b-

Then k+s<n—m—1. Moreover, if k +=mn—m — 1, then no
component of y(t) vanishes in (max (a, Bs), b). A similar statement
holds for the mumber of zeros of y.(t) and y,(t) in (a, ).

Proof. (i) S (y(r)) =0 and (4.1) imply S*(y(f) = 0,r < t < b,
and the first inequality of (4.6) implies that no component of (%)
vanishes. S*(y(s)) =» — 1land (4.1) imply S~(y()) =n —L,a <t <s,
and the other inequality of (4.6) gives the desired conclusion.

(ii) Denote the union of the sets {&;}} and {B;}{ by

{tv}frt1< e <tpr(max(kr/)§p§k+/)'

Then
k4= 3 [ST () — Syl

(4.9) &

i

[SH(y(t.)) — S~(y(E.-N] + S*(y(t)) — S~ (y(t,))
= S*y) - S~(wt) =n-—1.

Here the first inequality sign follows from (4.7) and (4.8), the second
inequality sign follows from (4.1) and the last one from (4.5). This
proves the main assertion of (ii). If £k + ~= n — 1, then (4.9) implies
S—(y(t,) = 0 and S*(y(t,)) = n — 1 and the remaining assertion of (ii)
now follows from (i).

(iii) Let ¢, --+, ¢, have the same meaning as above. (4.9), the
assumption r < ¢, and (4.1), and (4.6) give

k+ < S*(y)) — S~(y(,)

(4.10) < S~(r) — S~@t) =n—m—1.

If k+=n—-—m—1, then (4.10) and S—(y(») <n —m — 1 imply
S—(y(t,)) = 0 and no component of y(f) vanishes in (¢,, ). For zeros
to the left of r,a <t < --- <, <7, we obtain

k+ 2= 8 (yt) — S~(y(¢,)
=S*y) —STwer) =n—m—1.

If k+7=mn—m — 1 this gives S*(y(t,)) = #n — 1 and no component
vanishes in (a, t,). This completes the proof of Theorem 5.
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We remark that the constants # — 1 of part (ii) and n — m — 1
of part (iii) of this theorem, are the best possible as there always
exist nontrivial solutions of (1.1) satisfying n — 1 conditions y;(t,) =
L1, <n,a<t, <byv=1,...,n—1. We conclude this section
with another direct consequence of (4.1). Let r and s be given voints,
a < r<s<b, and assume that y(t) is a nontrivial solution of (1.1)
such that k components of y(r) and » components of y(s) vanish. Then
kE+zs=n—1. Moreower, if k+ «=mn — 1, then there exists-except
for a multiplicative constant-precisely one nontrivial solution y(t) of
(1.1) satisfying the given set of conditions y;(r) = 0, Y;,(s) = 0,y =
1, .-,k u=1, ..., 2. Toprove the first part, we remark that, by (4.6),
S~ (y(r)) =m —k—1and S*(y(s)) = 7. (4.1) gives therefore k + ~ <
n— 1. Assume now k+ =n—1 and let y(¢) and u(¢) be two
solutions satisfying the given set of (# — 1) conditions. We can then
form a linear combination v(¢) = ¢, y(t) + cu(t) such that k + 1 com-
ponents of v(r) and the former [ =#n — k — 1 components of wv(s)
vanish. w(¢) violates the first part of the above statement unless it
reduces to the trivial solution. Hence wu(?) = cy(¢) (cf. [7, p. 507]).
This statement can also be obtained directly from the strict total posi-
tivity of the matrix Y(s, 7).

5. Vector solutions of totally positive systems. According to
Theorem 4, the inequality (4.1) is characteristic for STP systems. It
follows from (4.1) that S—(y(¢)) and S*(y(t)) are decreasing functions
of t. These consequences of (4.1) characterize the larger class of TP
systems.

THEOREM 6. (i) Let the differential system

(1.1) y'() = Ayt ,

be TP in (a, b), — o < a < b < oo, and let y(t) be a nontrivial solution.
Then

(5.1) S—(y(s)) = S—(y(»)) for all (r,s) satisfying a<<r <s<b,
and
(5.2) SHw(s) = S(y(r) for all (r,s) satisfying a <r <s<b.

(i) Conversely, if (5.1) is valid for every montrivial solution
y(t) of the system (1.1), or if (5.2) is valid for every y(t), then the
system (1.1) ©s TP wn (a, b).

Proof. (i) We obtain the necessity of (5.1) and (5.2) by an
approximation procedure. Let the constant matrix C* = (¢})! be de-
fined as in the proof of Theorem 8 (¢} = 1 if |7 — j| =1, otherwise
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¢t =0). If the system (1.1) is TP in (a, b), then it follows from
Theorems 2 and 3 that the system

(5.3) yi(t) = Aty ,  Alt) = A@) + C",

is, for ¢ > 0, STP in (a, b). To prove (5.1) let the solution y(¢) of
(1.1) and the point = be given. For any ¢ > 0, let .(t) be the solution
of (5.3) satisfying

(5.4) Y (r) = y(r) .
(4.1) and (5.4) imply that for any ¢ > 0, and for any s, se(r, b),
(5.5) SH(ys)) = S~(y(r) .

By a standard theorem on differential equations (ef. [3, p. 55, Corol-
lary 4.1])

lﬁigl Ye(s) = y(s) .
This and the relation
$~(im () < lim S7(w.(s) ,
[4, p.217, Lemma 1.1] imply
(5.6) S7(y(s) = im S*(y.(9)) -

(5.5) and (5.6) imply (5.1).
To obtain (5.2) let the solution y{¢) of (1.1) and the point s be
given. For any ¢ > 0, let %.(¢) be the solution of (5.3) satisfying

(5.4") F(s) = y(s) .

(4.1) and (5.4’) imply that for any ¢ > 0, and for any », r < (a, s)

(5.9) S*(y(s) = S (F.(r) .
For ¢ — 0,
(5.6") 1'1310‘1 S=(@.(r)) = S*(y(r) .

(5.5") and (5.6') imply (5.2). This completes the proof of part (i).
(We remark that (5.1) follows also directly from a theorem of Schoenberg
[8, Satz 1] (cf. [2, p. 290] and {4, p. 21]) applied to the vector equation
(4.2). Moreover (5.1) and (5.2) are equivalent as we shall show in
Lemma 4.)

(ii) To prove the first half of this converse assertion, we assume
the validity of (5.1) for all nontrivial solutions y(¢) of (1.1). We now
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proceed as in the proof of part (ii) of Theorem 4. The index k& and
the point r are fixed and we consider only nontrivial solutions of (1.1)
which satisfy

4.3) Ye(r) = 0.

Defining ¢ as before and now using S—(¥(s)) < S~(¢), r < s, we find
that the n x (m — 1) matrix Y,(s, ) (which is of rank » — 1) is, for
r < s, sign-regular of order » — 1 [4, p. 222, Th. 1.4]; i.e., for each
»,1 < p <n — 1, all nonvanishing minors of order p of Y,(s, ) have
the same sign. But, for each p, Y, (r, r) has a positive minor of this
order and not all minors of order p of Y,(s, ) can vanish. It follows,
by continuity, that all minors of Y,(s, r) are nonnegative for » <s
and we thus proved the first half of (ii). (This follows again directly
from the converse theorem of Schoenberg [8, Satz 2]). The second
half of (ii) follows from the first half and the following lemma.

LEMMA 4. Let the w real functions a;;(t),,5=1,+--,7n, be
continuous in (a,d), —o < a < b= o and set A(t) = (a;;(t))r and let
(1.1) be the corresponding differential system. If, for each nontrivial
solution y(t), S~(y(t)) is a decreasing function of t in (a, b), then the
same holds for S*(y(t)). Conversely, if S+(y(t)) is, for each nontrivial
solution y(t), a decreasing function of t, then the same holds for
S=(y(?)).

Proof. We shall use Theorem 2 and the (already proved) parts
of Theorem 6 relating to (5.1), i.e., the first half of part (i) and the
first half of part (ii). Let y(¢) be a nontrivial solution of (1.1) and
define y*(t) = (¥i'(t), « -+, y5(t)) by

(5'7) y:{(t):(_l)zyz(t)y%:]-) e, M, a<t<b.
This and (1.1) imply that

(5.8) % — BUy*(t), a<t<b,

where B(t) = (b;;(t))r is given by

(5.9) bi;(t) = (=) a(t), 4,7 =1, «-+,m, a<t<b.
We now define

(56.10) u(t) = y*(—17), << —a,

and

(5.11) C(t) = —B(—7), -b<7t< —a.



TOTALLY POSITIVE DIFFERENTIAL SYSTEMS 221

(5.8), (5.10) and (5.11) give

(5.12) W _ o), —b<t< —a.
dt

(5.7) and (5.10) imply, that for each {,a <t < b,
(5.18)  S*w@) =n—1) — S~ (y*{#) = (n — 1) — S~ (u(-17)) .

We now assume that S—(y(t)) is, for each y(t), a decreasing function
of ¢t. By the first half of Theorem 6, (ii), and by Theorem 2, it
follows that A(t) is a Jacobi matrix with nonnegative off-diagonal
elements. (5.9) and (5.11) show that the same holds for C(z), hence
using once more Theorem 2 and the first half of Theorem 6, (i), it
follows that S—(u(z)) is a decreasing function of z; S—(y*(t)) is thus
an increasing function of ¢, and (5.13) implies that S*(y(¢)) is a
decreasing function of ¢. Conversely, assume that S*(y(¢)) is, for
each y(t), a decreasing function of ¢t. S—(u(7)) is then also a decreasing
function of 7, C(zr) is a Jacobi matrix with nonnegative off-diagonal
elements, and the same holds for A(f). S~(y(t)) decreases therefore
for each y(t). This proves Lemma 4 and we have thus completed the
proof of Theorem 6.

(We shall use formulas (5.7) to (5.13) in the proof of the following
lemma. We remark here that Lemma 4 is only a special case of the
following statement: If the real n X » matrix M is nonsingular, and
if for every pair of nonnull vectors (z,z), z = Mz, S—(2) < S—(2),
then S*(z) £ S*(x) holds also for all these pairs. This follows easily
from the above mentioned theorems of Schoenberg, by obvious analogues.
of (5.7) and (5.9) and a well-known formula for the minors of the
inverse matrix [4, p. 5].)

For the proof of our final theorem we need the following lemma.

LEMMA 5. Let the differential system
(1.1) y'(t) = A@®)y(0)

be TP in (G/, b)y —co Za< b= oo, let y(t) = (yl(t)r Tty yn(t)) be a
nontrivial solution, and let the points + and s satisfy a < r < s < b.

(i) If

(5-14) y1(/r) = O! yl(s) #0 ’
or if
(5.15) Yu(r) = 0,9.(5) # 0,

then
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(5.16) S7(y(r)) — S*ys) = 1.
Moreover, if both (5.14) and (5.15) hold, then
(5.17) S*(y(r)) — S*(y(s) = 2.
(ii) If

(5.14) yi(r) #= 0, y.(s) = 0,
or if

(5.15) Ya(r) #= 0, ¥,(s) = 0,
then

(5.16) S=(y(r) —S~(yksH =1.
Movreover, if both (5.14') and (5.15') hold, then
(5.17) S~(y(r)) — S~(y(s)) = 2.

Proof. (i) We assume that (5.14) holds for a given pair (r, s),
a <r<s<b By the continuity of w(f), and by considering, if
necessary, —y(¢) instead of y(¢), it follows that there exist points
(ry,s),r <r <s <s, such that

(5.18) y(r) =0, and y,(¢) > 0 for all ¢ in (1}, s,],

and such that no component y,(¢) for which #;(r) # 0 vanishes in
[r,, s.].  We now consider the possible values of y,(r). (a) If y.(») > 0,
then our choice of [r, s implies that also y.(s,) > 0. The pair (y,(?),
¥»(t)) contributes in this case to S*(y(r)) and gives no contribution to
S*(y(s)), and the remaining pairs (y;(¢), ¥;+.(t)), T = 2, «++-, n — 1, cannot
contribute more to S*(y(s;)) than to S*(y(r)). Hence, in this case,

(5.19) SHy(r)) — S*(y(s)) = 1.

(b) The assumption #,(r,) < 0 implies #,(s;) < 0. These inequalities
and (5.18), and once more, the fact that components which are =0
at r, remain so in [r, s,], give S~ (y.(r)) < S~(y.(s)). This contradicts
(5.1) and this case is thus excluded. There remains the case (¢)
Yoy = 0. y,(t) cannot vanish identically in [r, s,] as then the first
component of the equation (1.1), i.e., ¥, = a,¥, + a.y, contradicts
(5.18). Furthermore, ¥.(t) cannot become negative in (r,, s,], as y,(r,) =
0, y.(t) <0 and (5.18) would again give S—(y(r)) < S—(y(t), r < t.
Hence there exists a point s,, s, (7, s;] such that y.(s,) > 0, and we
obtain

{5.19") Str) —ST(s) =1.
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As r<r, <s,<s <s, (5.19),(5.19) and (5.2) imply (5.16). The
assumption (5.15) gives the same conclution. As ¢ increases from #
to s, the decrease of S+*(y(t)) is, under the assumption (5.14) due to
the pair (y,(t), ¥,(t)). Under the assumption (5.15), it is due to the
pair (¥._.(t), ¥.(t)), and it therefore follows that the simultaneous
validity of (5.14) and (5.15) implies (5.17).

(ii) This part now follows from part (i) by the previously used
transformation (formulas (5.7) to (5.13)). Together with the system
(1.1) also the system (5.12) is TP. (5.14') becomes u,(—s) =0, u,(—7) =0
and part (i) gives S+(u(—s)) — S*(u(—r)) = 1. This and

S*tu(—1) = S*y*®) =n — 1 — S~(y(?))

gives (5.16") and we have thus completed the proof of the lemma.

In Theorem 5 we obtained results on the behavior of solutions
y(t) of a STP system (1.1). If the system (1.1) is TP, but not STP,
then none of the assertions of Theorem 5 remains wvalid. To show
this, let A(t) = (a;;(t)) be a Jacobi matrix with nonnegative off-diagonal
elements in (a, b) and assume that for a givenindex ¢, 1 < g n — 1,
and a given interval (a, 8), ¢ < a < B8 < b, the element a,., ,(t) vanishes
identically in (@, 8). We now consider (1.1) only in this subinterval
(¢, B). Here (1.1) may be satisfied by solution vectors y(t) for which
Yori(t) = -+« = 9,(t) = 0. If we consider only such solutions y(¢), then
the vector consisting of their first ¢ components 7(t) = (y.(2), -+ -, Y,(?))
satisfies an equation of the form

(5.20) V() = Ay , a<t<pB,
where
(5.21) Aty = (a:i;(0) a<t<p.

This q th order system (5.21) is again TP (possibly even STP) in (a, B),
and we obtain a g-dimensional subspace of the solutions of (1.1) by
adding the n — g zero components y,.,({)= .- =9,{ =0 to an
arbitrary solution of (5.20). These solutions of (1.1) do not satisfy
the assertions of Theorem 5. Indeed, let » e (@, 8) and choose ¥,(#) =
<o =y, (r) =1. Then S—(y(r)) =0, but the n — ¢ last components
of y(t) vanish identically in (v, 8). If we choose ¥,(r) = (—1),
9=1,--+,q, then S*(y(r)) = n — 1, but the last components vanish
identically («, r). This shows that part (i) of Theorem 5 is not valid
for the present system. Parts (ii) and (iii) are not valid as ¥,(¢t) = 0
in (a, 8). If we assume that an element of the first superdiagonal
@g,4+:(t) vanishes identically in (a, 8), then we have to consider solutions
of (1.1) for which %,(¢) = 9, () = --- = y,(t) =0 in (@, B) and the
remaining components satisfy a system of order % — q. Theorem 5
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does therefore not hold for TP systems; the following weakened
version is however valid for such systems.

THEOREM 7. Let the differential system
(1.1) y'() = A@)y(?)

be TP in (a,b), —o < a < b =< o, and let y(t) = (y.(t), -+, ¥.(?)) be a
nontrivial solution.

(i) If S*y(r)) = 0, re(a, d), then no component of y(t) vanishes
wm [r,b). If S—(y(s)) =n —1,s¢e(a,b), then no component of y(t)
vanishes in (a, s].

(ii) Let

(a<)’\/0 < C(l < fY; < az < M < ’Yk__l < ka < 'Yk(<b)

be 2k + 1 points, such that for each 1,1 =1, -++, k, at least one of
the following two conditions holds.

(5.22) YY) #= 0, yu(@) = 0, yu(v:) # 0,

or

(5.23) Yaltins) # 0, gal@) = 0, 4, (7) # 0.

Set m; =1 if only one of these two conditions holds fo'r~the ndex 1,
and m; = 2 if both conditions hold, 1 =1, -+, k, and let k = >.F. m,.

Then k <mn — 1. Moreover, if k =mn — 1, then no component of y(t)
vanishes in (a, v,] U [k, b).

(iii) Let all the assumptions of (ii) hold and, in addition, assume
that m components of y(r), r € (a, b) vanish and that either r < v, or
Ye<r. Then k<n —m — 1.

Proof. (i) (5.1),(5.2) and (4.6) yield these two assertions.
(ii) We have

F < 318 @) — S o] = SIS w@) — S+ @]
+ SH(@) — S*m) < S*w@) — ST W) =n —1.

The first inequality sign follows from (5.22) and (5.23) by Lemma 5.
The second inequality sign follows by (5.2). This proves % <n — 1.
If & =n — 1, then (5.24) implies S*(y(v,)) = 0, hence part (i) implies
that no component of y(t) vanishes in [v;, ). To show that, if % =
n — 1, no component vanishes in (a, 7,] either, we use

(5.24)

F< 31800 — Sw@)] = 3 [S~w0) — Sl
+ 870 — S~(w@) S S-wen) ~ S-(w@) =n 1.
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(5.25) and & = n — 1 imply S—(y(v,)) = n — 1, which gives the desired
nonvanishing in (a, 7,].
(iii) If » < v, then (5.25), (5.1) and (4.6) imply

k< S~w) — S~(y(a)) < S~(y(r) — S~(y(a,) <n —m —1.
If v, < r, then (5.24), (5.2) and (4.6) give

k< S*y@) — S* () = S*(@) — S @) =m —m —1.
This completes the proof of Theorem 7.

6. Examples. We conclude this paper with a few examples.
All our examples are STP systems (1.1) and for each example we
consider only one particular vector solution %(f). We thus replace
(1.1) in each case by a vector equality where the matrix A(¢), the

particular solution y(¢) and its derivative ¥’(f) are shown explicitly.
As the case n = 2 is trivial, we start with an example for n = 3.

—sint 0 1 0 2+ cost
(6.1) —cost|= —2— —cost O -2— + cost —sint
—sint, 0 1 0 —2 + cost

This shows that, for n = 3, there exists a system (1.1) which is STP
in (— oo, o) and for which the interior component y,(¢) of a particular
solution #(¢) vanishes infinitely many times. However, in this example
the extreme components v,(f) and v,(t) do not vanish at all.

The next examples show that the assertion of Theorem 5, is, for
n = 3, essentially all that can be said about the number of zeros of
the components of any particular solution y(t) of a STP system. Let
a and B, a < B, be zeros of the extreme components #,(f) and vy,(t).
Theorem 5 (ii) implies that these extreme components have no other
zeros and that ¥,(¢) does not vanish outside the interval («, B); however,
no restrictions on the number of zeros of y,(f) in («, B) are given by
Theorem 5. We combine system (6.1) with two other systems to show
that we may obtain an (except for its parity) arbitrary number of
zeros of y,(t) in the interval bounded by the zeros of the extreme
components. The matrix in (6.1) and the vector given there, will be
referred to as A(t) and y(¢). We now consider the equality

1 0 1 0 247
6.2) 0l=|3@2-2 0 3@+ 2
1 1
1 0 1 0 24

Note that the corresponding system
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(6.2 w'(7) = B(t)u(7) ,

is STP in [—2,2]. Furthermore we note that if now wu(r) denotes
the particular solution shown in (6.2), then, for each integer k, the
equalities

(6.3) B(0) = A<— % + Zlm), w(0) = y(— % + 2k7r> ,

(and hence also «'(0) = ¥'(—7x/2 + 2kz) hold. (6.3) allows us to
combine the examples (6.1) and (6.2) at their respective points ¢ =
—7/2 + 2kr and 7 = 0.

We also consider the equality

_1 0 1 0 2_¢
(6.4) 0l=|3@+0 0 3@—9]l-1
4 1
~1 0 1 0 o<

The corresponding system
(6.4") v'(7) = C(7)v(7)
is again STP in [—2, 2] and, for each integer £,

(6.5) C(0) = A(% + 2zm>, w(0) = y(% + 2k7r> ,

and we thus may combine (6.1) and (6.4).
For any nonnegative integer %k, we now define the system

(6.6), [y @®] = APy () ,
in [a, B, a, = —2 —7/2, B, = 7|2 + 2k7 + 2, by setting
B<t+£>, 2Tt T
2 2= = 2
AV = JA®) ~ T << 4 2n,
2 2
C(t—ﬁ—zk T iokr<t<T 1 o%m+2.
2 ﬂ> g tam=t=5+

This systems is STP in [a,, 8,] and has the particular solution

T T T

t+Z), o Ty E

u<+2 2 ="=7

yI(t) = {y() , Tt <X 4 %n,

2 2

T Y T
t—_—zkn), T oiokr<t<T 4+ 2w +2.

”( 2 2 ="=7
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() = y(8) = 0, y(t) < 0 in [a, 8], and y:"(#) vanishes at the
2k 4+ 1 points t = /7w, »=0,1, ---, 2k.
If we define the system

(6.6), [¥® ()] = A®@)y*() ,
in [am /82]y a; = —2 + 7T/2r Bz - 375/2 + 2kn + 2, (k = O, 1, o '), by Setting

/ T T T
Ct—_>, o4 T < T
U2 Tty st=g
A®() =4 A@®), %gté%’l+2kn,
B<t~377r—2k7r>, 3—;r-+2k7r§t§%ﬁ~+2k7r+2,

then this system has a solution y®(¢), for which ¥:®(a,) = ¥(8,) = 0,
y2(t) > 0 in [a,, B,], and y®(t) has again an odd number of zeros in

[ez, Bo].
Defining A®(#) in [a, B, @ — —2 — 72, 8, = 37/2 + 2kx + 2, by
B<t+£>, 2T o< ™
2 5 ='=7
APty = LA@) ~Z<ts 37” + 2kn
B(t—-%”—zzm), 377[+2k7r§t§37ﬂ+2k7t+2,

we obtain a system which is STP in [a,, 8] and has a solution y*(¢),
for which y®(a;) = y¥(8;) = 0, and y'(f) has now an even number
of zeros in [as B.]. By using first C, then A and then again C, we
obtain similarly a fourth example for which y{*(a,) = y*(8) = 0 and
y®(t) has again an even number of zeros in [a,, B.]. These four
examples establish the italicized statement preceding (6.2); the parity
restriction on the number of the zeros of y.(t) follows easily by the
proof of part (ii) of Theorem 5. We remark that there is no need
to consider different systems for all four examples and all nonnegative
integers k. All these cases can be illustrated by considering distinct
solutions y¥", 7 =1, .-+, 4,k = 0,1, ---, of a single system (1.1) which
is STP in (— oo, ). The corresponding matrix A(f) is given by
(1) = au(t) = au(t) = au(t) = 0 and a,(t) = a,(t) = 1 for all ¢, while
the elements a,(f) and a,(t) are determined in the disjoint intervals
[e;1, B;:] by the above formulas and are (otherwise arbitrary) continuous
nonnegative functions of ¢, which only vanish at some of the end
points «a;, and Bjy.
For n = 4 our example is
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sing) (—_—1 1 0 0
3(2 — cos t)
5 4 .
cost 1+ cost — — —sint 0
= 3 3
cos ¢ 0 %Jrsint —g 1 —cost
sin 0 0 éﬁ
cost) )
(6.7)
2 —cost
1 .
- sint
3 + sin
X
1 .
—— + sint
3 + sin
—2 —cost

The corresponding system is STP in (—co, o) and the interior com-
ponents w,(t) and y,(t) of the particular solution y(¢) have infinitely
many zeros. (6.7) is the special case n» =4 of a general example,
valid for any %, % = 4. The nonzero elements of the Jacobi matrix
A(t) = (a;;(t))r are in this general case given by

3—n
a, = , =10, =1+ cost,
Y (m— 1)(2 — cost) “
Ay = 5 — 1 — y Qo = 1 — 4 + —sint,
n—1 n —
n—l( 1 >
ii - 1 —CSt,(Z/Vb:l—’I’L,
an—l 2 —[_2 O
(6.8) 1 1
aml:n— (1~—cost>,i:3,---,n—2,
2 2
. . 8
an—l,n—2:7l—4+ +Slnt)a7z—1,n—1_5—n_ y
n — n—1
an——l,nzl_COSty ann—l:l’ a?’b’ﬂ 3_n

T =D+ cost)
The particular solution is the vector y(t), whose components are

Y, ({) =2 —cost,

yi(t)=m:—21+sint, i=2 +eem—1,

Y,(t) = —2 — cost,
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and all interior components vanish infinitely many times.

I am grateful to Professor Z. Nehari and Dr. M. Lavie for their
valuable advice offered during many discussions.
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