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Let W, denote the space of all functions on the circle
which are the uniform limit of a sequence of trigonometric
polynomials which is bounded as a sequence of multipliers for
l,,1<p =2 Let U, be the interpolation space [W;, W,]; (see
1.1). Our main result, Theorem 2.4, states that for a compact
subset E of the circle, U;| E = C(E) if and only if W, |E = C(&).
A major step in the proof is a maximum principle for interpola-
tion, Theorem 1.7. We also give a direct proof that U, + W,
(see Theorem 2.7) for corresponding s and p.

1. Some properties of analytic interpolation.

1.1. Let B" and B' be two Banach spaces continuously embedded
in a topological vector space V such that B°N B' is dense in both B°
and B'. For 0 <s <1, let , [B, B'], and B’ + B' denote the spaces
as defined in [1, §1]. For two Banach spaces X and ¥ we let O(X, Y)
denote the Banach space of bounded linear operators from X into Y
where the norm is the usual operator norm. Let O(X) denote O(X, X).

1.2. Assume the notation and conditions of paragraph 1.1 and for
convenience let B, denote the space [B’, B'],,0 < s < 1. Let V’ denote
the Banach space

O(B'N BY, B* + BY).

Let A; be a closed subspace of O(BY),7 =0,1. By restricting the
elements in A; to B°N B' in the obvious way we may regard A; as
continuously embedded in the topological vector space V', and it is
with respect to this embedding that we understand [A4,, A.],; in parti-
cular, [A, A)], is a subspace of V’. We will assume that 4,N 4, is
dense in A; with respect to the norm of 4;,5 = 0, 1, when these spaces
are embedded in V’ as described. Since BN B' is dense in B" and
B!, we know from [1, §9.3] that B° N B' is dense in B,; thus, since
B, C B’ + B', the restriction of elements of O(B,) to B°N B* gives a
continuous embedding of O(B,) in V'’ in the obvious manner. Note
that each element of A4, A4, is bounded with respect to the norm
| ||z, restricted to B°N B* and is, therefore, contained in the enbedded
O(B,). Let A, denote the closure of A, N A, in O(B,) where O(B,) is
regarded as embedded in V' in the manner just described. Finally,
we let M, and N, denote the norms of the spaces A4, and [A,, Al],,
respectively.
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LEemmA 1.3, Assuming 1.2, [A, A],C A, and M, < N,,0<s<1.

This lemma is an immediate consequence of [1, §11.1].

1.4. Assume the notation and conditions of 1.1. Let J be a closed
subspace of B’ + B'. We will assume that

(14.1) I =JnNB,, is closed in B/,j = 0,1. Clearly the map «
defined by

ax+IL)y=x+J j=0,1
is a continuous one to one linear map from B?//I’ into V/J. Let
D, = [a(B'/I°), a(B'[T")], .
LEMMA 1.5. Assuming 14, if x€ B,,0 <s <1, then « + JeD,
and

(1.5.1) e+ Jlp, = ll@+ (J NB)|s/(J N B, .

Proof. Let xeB,,hed N B, and ¢ > 0. Choose fe P = F(B’ B
such that f(s) =« + h and

(1.5.2) I fllyse+ e+ hlls,.

Let g(&) = fié) + J for 1 <|&| <e. Thenitis clear that ge @, where
& = F@B/I°), a(B'/I"))

and that

(1.5.3) g(is) =x + J.

Hence, ¢ + Je D,. Furthermore, since it is clear that

(1.5.4) Hgllge =1l Fllg

(1.5.1) follows from (1.5.2), (1.5.3), (1.5.4) and the fact that 2 and ¢

were chosen arbitrarily.

The following lemma can be proved by the usual method of suec-
cessive approximations.

LEMMA 1.6. Suppose that D, is a Banach space that is continu-
ously embedded in a Banach space D, such that D, is demse in D,
with respect to the morm of D,. Suppose that there exist constants
¢, ¢, ¢ <1, with the property that for each xe D, there is a corres-
ponding element z in D, such that
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|ZILSCI|96}0 and lx_zlo§c]x10-

Then D, = D,.

We will now establish a “maximum principle” for analytic inter-
polation.

THEOREM 1.7. If, in addition to the assumptions of paragraph
1.1, B' = [B’, B'], for some s (0 < s < 1), then B’ = B

Proof. From the fact that B° and B' are continuously embedded
in V and the closed graph theorem we conclude that the norms | |,
and | |, on B® and [B’, B'],, respectively, are equivalent. In particular,
there is a constant ¢ such that

(1.7.1) [x], < ¢z, for all  in B°.
From [1, 9.4. (ii)] we conclude that
(1.7.2) o), < a2l for all # in BN B*.
We conclude from (1.7.1) and (1.7.2) that

2], < ¢fla for all x in B°N B'.

Thus, B, is continuously embedded in B°. We shall now prove that
(1.7.3) there is a constant ¢, with the property that for each x
in B' there is a corresponding y in B! such that

[yl =clxl, and [y — 2 = 1/2)lx) .

Let e B'. In particular, x € [B° B'l, and, therefore, there exists
an f e F(B', B') such that f(s) = « and | f |xms = 2|@|,. Since the
norms | |, and | |, are equivalent we can choose a real number \ so
that 2|u|,e* < (1/2) |u|, for every u in B’. Let g(&) = f(&e 9
where 0 < Reé < 1. Then

v = g) = | gy, nat
(1.7.4) -
+ S_wg(l + 1) (s, t)dt

where g, and p, are the Poisson kernels for the strip 0 < Ref <1
(see [1, 9.4]). Let y and z denote the first and second integrals,

respectively, appearing in (1.7.4). Sincer fpa(s, ) ldt <13 =0, 1),
loGt) |, < 2|, e < (1/2) | x|, (all real t), and

gl + it) ], < 2], e < (1/2)e 7 | x],
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(all real t), it follows that |x — 2|, < (1/2) |z|, and [z], < (1/2)e |2 |,
This proves (1.7.3). Since B' is continuously embedded as a dense
subspace in B" and (1.7.3) holds, the conclusion of Theorem 1.7 follows
from Lemma 1.6.

2. The spaces W, and U,. Letl,, 1< p< c, denote the Banach
space of complex valued functions x on the integers such that

Hall, = lam) ) <

where the sum is over all integers n. Each function a on the integers

which vanishes outside some finite set determines a linear transforma-
tion T, on [, defined by

Toam = S an— kak) .
—oo /<00
Let W, denote the closure of the operators 7, in O(l,). Since [, is a
dense subspace of each space [,,1 < p < <, the restriction of elements
in O1,),1 <p <2, to the subspace [, gives a one-to-one continuous
linear embedding of O(l,), 1 < p < 2, into the space

R = O(ln lz) .

Throughout this section we will identify O(l,) with its image under
this embedding without further comment. Let U, denote the space
[W,, W/], where V in 1.1 is, in this case, R.

Our immediate purpose is to define a “Fourier transform” on W)
and to prove Lemmas 2.2 and 2.3.

If « is a complex valued function on the integers Z, let z,x(k) =
a(k — n). Let 6, denote the function on Z such that 6,(rn) =1 and
0,(k) =0,k = mn. If vand y are two complex valued function on Z let

xxy(m) = ﬂ;z a(m — n)y(n)

define the function w+y provided the sum converges absolutely for each
me Z. For each Hin W, let H~ denote the function H(d,) in [,. The
following lemma states the needed properties of the map H — H~. Note
that ¢, v = o,xx for each ne Z and for each complex valued function
% on z.

LEMMA 2.1.
(2.1.1) H— H~ 1is a one-to-one linear transformation from W) into l,.
(2.1.2) Hx = Hxx, He W), xel,.
(2.1.3) (HK)> = H=xK~,H, Ke W].

Proof. The map H — H~ is clearly linear. Evidently, each H in
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W, commutes with all operators z,, m € Z, since the operators of the
form T, commute with the operators z,, me Z. Thus for He W) and
m e Z, we see that

(2.1.4) H(3,) = H(tpdy) = tnH©) = toH™ = H %9, .

From this we see that since the linear span of the elements 4, is
dense in [,, the map H — H~ is one-to-one. Obviously, H~ is in [,.
To establish (2.1.2) we first note that since H~ is in l,(¢~" + p~* = 1)
the map x— H™xx is a continuous linear map from [, into ¢,, the space
of complex valued functions on Z which tend to 0 at . The map
x — Hx is also a continuous linear map from [, into ¢,. These obser-
vations together with (2.1.4) and the density property of the é,,’s noted
above complete the proof of (2.1.2). To prove (2.1.3) we note that
for H and K in W;, K~el,, so by (2.1.2) we have

H-K~ = H(K~) = H(Kb,) = (HK)d, = (HK)~ .

This completes the proof of the lemma.

Let L,(1 £ p < =) denote the Banach space of measurable functions
g(0) on the circle (reals mod 27) whose norm ||g ||,

lglle, = (@2m)| 9@ 1 do >,

is finite. Let L. denote the space of essentially bounded measurable
functions ¢ with |l ¢||,_ denoting the essential supremum of g.

Since each function H~, H e W), is in [,, which is contained in
l,, there is a unique function H" in L, such that >, H>(n)e'*’ is the
Fourier series of H"*

LEMMA 2.2. For 1< p <2 the map H— H" is a norm decreasing
algebraic isomorphism from W, into L...

Proof. The fact that H— H” is a one-to-one linear map from
W} into L, is clear from (2.1.1) and the fact that each function in L,
is uniquely determined by its Fourier coefficients. For each f e L,, let
M f) denote the function on Z defined by:

MSf)(n) = (1/2n)gz’f(0)e_md9 _

It is clear from the Schwarz inequality that the map (f, g) =\ (f-9)(n)
is a continuous bilinear functional on L,@ L, for each integer n. On
the other hand, the map

(/s 9) = (M )M(9)) (1)
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is also a continuous bilinear functional on L,& L,. Since these func-
tionals (for each 7) clearly agree when f and ¢ are trigonometric
polynomials, they must agree on L,& L,. Since )\ is a one-to-one
map, the multiplicative property of H — H” now follows from (2.1.3).
To prove that the map is norm decreasing we first note the following
inequalities:

WH" [y, Z ([ H"0ol1, = [(H")™ I, = [[(H") Ml = HEH) ], = [H")" [z, -

It is well known that (|| H"[|y,)"" converges to the spectral radius of
H, which is dominated by || H ||»,, and that (|| (H")"[[;,)""" converges
to ||H"||;, as m— co. This proves the lemma.

Let W, and U, denote the functions on the circle of the form H"
where H e W), U., respectively. The following lemma is an immediate
consequence of Lemma 2.2,

LEMMA 2.3. W, consists precisely of the functions on the circle
which are the uniform limits of sequences H, of trigonometric poly-
nomials such that H, is a Cuachy sequence in W),

For any subset E of the circle group U,|FE denotes the functions
on E obtained by restricting the functions of U, to E and C(E) denotes
the continuous complex valued functions on E.

THEOREM 2.4. Suppose that E is a compact subset of the circle
group and 0 < s<<1. Then U,|E = C(E) if and only 1f W,|E = C(&).

Proof. Tirst assume that W, | E = C(E). By Lemma 1.3, U,C W,;
consequently, U, W,. We conclude from Lemma 2.3 that W,cC(T).
Thus, U,|Ec C(E). Since W;> W/, it is clear from the definition
of interpolation that U.> W/. Thus, U, | E D C(E).

Consider the converse and assume that U,|E = C(¥). In 1.4 we
let BB= W,,B'= W!,V =R and

J = {aec W0:d@0) =0,0cE}.

The assumptions on J in 1.4 are clearly satisfied since by Lemma 2.2,
the maps a — @ are continuous on W/, and W/. By Theorem 1.5, if
xe U, then © + J is in the space

(2.4.1) (W3] T), a(WI[(J 0 WD, -

However, by hypothesis, the cosets in V of the form = + J,, xe U],
are the same as the cosets y + J, ye W,. Therefore, the space in
(2.4.1) is a(W,/J). Since W, > W/,

a(Wi[J) D a(Wi[(J N W) ;
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therefore, we conclude from 1.7 that
a(Wi[J) = a(W/[(J 0 W) ;

or, what is the same thing, that W,|E = C(E). This completes the
proof.

CoMMENT 2.5. It is natural to compare U, and W, where [I,, 1,], =
l,, i.e., (1 —8)/2+ s=1/p. In [3] we showed that Theorem 2.4 is
not valid for W,. To be exact, there is a compact subset E of the
circle such that W,| E = C(E) = W,,| E,1 < p<4/3. We had originally
used this result to show that W, = U,; however, the referee has sug-
gested a direct proof which we will now give.

LEMMA 2.6. Let h, be a sequence in U, 0 <s <1, such that
| holls < M (here || ||, is the norm in U,) and h,— h almost everywhere.
Then h agrees with some continuous function almost everywhere.

Proof. Since ||k, ||, = M there exist functions f,(f, £), analytic in
& for 0 < B(§) <1 and continuouns in 0 < B(§) < 1, such that for any
real number ¢, (| £,.(6, it) ||, < 2M, || £.(6, 1 + 4t) ||, < 2M and f,(0, s) =
h(0). Let g.(0, &) = £.(0, &)er*¢=*. Then

ha(0) = 1.0, 9) = 0.0, 9) = | 0.0, it)pu(s, )t

+ Si:gnw, 1+ it)u(s, Hdt
= u,(0) + v,(0)

where 1, and g, are the Poisson Kernels for the strip (see [1, 9.4]).
Evidently || u, ||, < 2¢~*M, || v, ||, < 2¢**~M. Since the v, are uniformly

bounded, by taking a subsequence if necessary, we may assume that
v, converges weakly to a bounded function w(f), that is

lim gvn(ﬁ)go(ﬁ)dﬁ - Sv(ﬂ)q)(&)dﬂ

for every integrable o. Furthermore, as is readily seen, v(f) belongs
to U, and therefore is continuous. Since 4, is uniformly bounded and
converges almost everywhere, h, converges weakly. Since 4, and v,
converge weakly, u, converges weakly to some function . From
the fact that |u,(0)| < ||u, ||, < 2¢7*M, it follows that |u(F)| < 2¢*
almost everywhere. Since % = u + v almost everywhere and A can be
taken arbitrarily large, h agrees almost everywhere with the uniform

limit of continuous functions. This completes the proof of the lemma.



248 J. D. STAFNEY
THEOREM 2.7. U, is properly contained in W, for 1 < p < 2.

Proof. To prove the theorem it suffices to exhibit a sequence of
functions in U, whose norms in U, tend to infinity and whose norms
in W, remain bounded. Let A(¢') =1 for 0 <t <7 and h(e') =0 for
m<t<2r., Then h is a multiplier for I, (see [2]), which does not
agree almost everywhere with any continuous function. Let ¢, be
defined by: ¢,(¢") = n for |t| < 1/2n, ¢,(e'') = 0 otherwise, n = 1,2, - .
Let h, — hp,, n —1,2, ---. Since S | h(e") |dt = 1, it follows that the
W, norm of £, is the same as the I/Iof,, norm of k; thus, %, is bounded
in W,. Since both % and ¢, belong to L0, 2x), h, € W,C U,. Obviously,
h, converges to & almost everywhere. Since % does not agree almost
everywhere with any continuous function, it follows from Lemma 2.6
that A, is not bounded in U,.

BIBLIOGRAPHY

1. A. P. Caldrén, Intermediate spaces and interpolation, the complex method, Studia
Math. 24 (1964), 113-190.

2. 1. I. Hirshmann, On multiplier transformations, Duke Math. J. 26 (1959), 221-242.
3. James D. Stafney, Approximation of Wp-continuity sets by p-Sidon sets, Michigan
Math. J. 16 (1969), 161-176.

Received August 26, 1968.

UNIVERSITY OF CALIFORNIA, RIVERSIDE



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON J. DUGUNDII
Stanford University Department of Mathematics
Stanford, California 94305 University of Southern California

Los Angeles, California 90007
RICHARD PIERCE BASIL GORDON*
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLr K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY  UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY TRW SYSTEMS

UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 32, No. 1 January, 1970

Robert Alexander Adams, Compact Sobolev imbeddings for unbounded

AOMAINS . . ..o 1
Bernhard Amberg, Groups with maximum conditions ..................... 9
Tom M. (Mike) Apostol, Mobius functions of order k ..................... 21
Stefan Bergman, On an initial value problem in the theory of

two-dimensional transonic flow patterns . .................ccuiiia... 29
Geoffrey David Downs Creede, Concerning semi-stratifiable spaces . . . . ... 47
Edmond Dale Dixon, Matric polynomials which are higher

COMMUIALOTS . .« o oot et et e e et e e e e e 55
R. L. Duncan, Some continuity properties of the Schnirelmann density.

P 65
Peter Larkin Duren and Allen Lowell Shields, Coefficient multipliers of HP

and BP spaces ...... ... 69
Hector O. Fattorini, On a class of differential equations for vector-valued

AISTFIDULIONS . . ..o o e 79
Charles Hallahan, Stability theorems for Lie algebras of derivations. . ...... 105
Heinz Helfenstein, Local isometries of flattori........................... 113
Gerald J. Janusz, Some remarks on Clifford’s theorem and the Schur

IRAEX . .o e

Joe W. Jenkins, Symmetry and nonsymmetry in the group
diSCrete roUPS . ... .ot

Herbert Frederick Kreimer, Jr., Outer Galois theory for se
algebras. ......... ..o

D. G. Larman and P. Mani, On visual hulls ..............

R. Robert Laxton, On groups of linear recurrences. 1I. El

Dong Hoon Lee, The adjoint group of Lie groups . . ... ...
James B. Lucke, Commutativity in locally compact rings .
Charles Harris Scanlon, Rings of functions with certain Li

PTOPETLIOS .« oo oo v ettt
Binyamin Schwarz, Totally positive differential systems . .
James McLean Sloss, The bending of space curves into pi

James D. Stafney, Analytic interpolation of certain multip
Patrick Noble Stewart, Semi-simple radical classes. . . ...
Hiroyuki Tachikawa, On left QF —3 rings..............
Glenn Francis Webb, Product integral representation of ti

nonlinear evolution equations in Banach spaces . . ..




	
	
	

